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ABSTRACT 25 

Glacio-eustatic cycles lead to changes in sedimentation on all types of 26 

continental margins. There is, however, a paucity of sedimentation rate data over 27 

eustatic sea-level cycles in active subduction zones. During International Ocean 28 

Discovery Program Expedition 375, coring of the upper ~110 m of the northern 29 

Hikurangi Trough Site U1520 recovered a turbidite-dominated succession 30 

deposited during the last ~45 kyrs (Marine Isotope Stages (MIS) 1-3). We present 31 

an age model integrating radiocarbon dates, tephrochronology, and δ18O 32 

stratigraphy, to evaluate the bed recurrence interval (RI) and sediment 33 

accumulation rate (SAR). Our analyses indicate mean bed RI varies from ~322 yrs 34 

in MIS1, ~49 yrs in MIS2, and ~231 yrs in MIS3. Large (6-fold) and abrupt 35 

variations in SAR are recorded across MIS transitions, with rates of up to ~10 36 

m/kyr occurring during the Last Glacial Maximum (LGM), and <1 m/kyr during 37 

MIS1 and 3. The pronounced variability in SAR, with extremely high rates during 38 

the LGM, even for a subduction zone, are the result of changes in regional sediment 39 

supply associated with climate-driven changes in terrestrial catchment erosion, and 40 

critical thresholds of eustatic sea-level change altering the degree of sediment 41 

bypassing the continental shelf and slope via submarine canyon systems.  42 

Introduction 43 

Subduction trenches can vary greatly in their dimensions and sedimentary fill 44 

(Jarrad, 1986; Underwood and Moore, 1995), where lithologies, facies architecture, total 45 

thickness, and depositional rates of trench sediments are strongly controlled by climate, 46 

sedimentary dynamics, tectonic-geomorphology of the margin, plate convergence rate, 47 
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and uplift rates in detrital source areas (von Huene, 1974; Schweller and Kulm, 1978; 48 

Underwood and Bachman, 1982; Underwood, 2007). In trench settings characterised by 49 

relatively high rates of siliciclastic sedimentation (>1 m/kyr), sediment thickness can 50 

exceed 7 km (e.g., Westbrook et al. 1984; Smith et al. 2012; McNeill and Henstock, 51 

2014). Terrigenous sediments are predominantly delivered to trenches via transverse 52 

submarine canyons and slope gullies that cut across or circumvent bathymetric 53 

obstructions such as structural ridges (Underwood and Karig, 1980; Thornburg et al. 54 

1990; Lewis et al. 1998; Völker et al. 2006; Bourget et al. 2011; Goldfinger et al. 2012). 55 

Transport parallel to the margin also occurs through axial channels (Piper et al. 1973; 56 

Thornburg and Kulm, 1987; Covault et al. 2012; McArthur and Tek, 2021) and through 57 

reworking or sustained suspension by bottom currents (Carter and McCave, 1994).  58 

Sediment cores recovered during half a century of ocean drilling and shallow (<30 59 

m depth) gravity/piston coring show that trench facies in siliciclastic settings are 60 

dominated by gravity-flow deposits with varied proportions of hemipelagite and tephra 61 

(e.g., Piper et al. 1973; Aubouin et al. 1982a, b; Taira and Niitsuma, 1985; Kimura et al. 62 

1997; Westbrook et al. 1994; Underwood and Moore, 1995; Nelson et al. 2000a; Moore 63 

et al. 2001; Underwood, 2007; Harris et al. 2013; Jaeger et al. 2014; Barnes et al. 2019). 64 

Typical sediment accumulation rates (SAR) range from 0.2 to >1.5 m/kyr, and temporal 65 

variability in those rates may be affected by numerous factors including tectonic uplift of 66 

detrital source area, progressive deformation of the accretionary prism, seismicity, 67 

volcanism, changes in climate and eustatic sea-level, and anthropogenic landscape 68 

modification (von Huene and Kulm, 1973; Nelson, 1976; Underwood and Karig, 1980; 69 

Underwood and Moore, 1995; Völker et al. 2006; Covault and Graham, 2010; Goldfinger 70 

et al. 2012; Pouderoux et al. 2012a; Harris and Whiteway, 2011; Bourget et al. 2011; 71 

Kuehl et al. 2016; Soutter et al. 2021). These studies indicate that gravity flow deposits 72 
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are commonly emplaced with decadal to multi-century recurrence intervals (RIs).  73 

Furthermore, one of the key considerations may be the spacing of submarine canyons 74 

along the strike-length of the margin, and their proximity to the shoreline over the course 75 

of full eustatic cycles (e.g., Bourget et al. 2010).  76 

Quantitative data on sedimentation rates and turbidite RIs in trenches at 77 

timeframes of 104 yrs are sparse, although several studies present age models of 78 

sequences spanning timeframes of several tens of thousands of years (e.g., Zuffa et al. 79 

2000; Underwood et al. 2005; Blumberg et al. 2008; Knudson and Hendy, 2009; Bourget 80 

et al. 2010). Consequently, although the general spatio-temporal depositional settings are 81 

well-studied, accurate documentation of how individual trench sequences respond to 82 

high-order glacio-eustatic sea-level cyclicity is currently limited.  83 

In this study, we use a Late Pleistocene-Holocene aged succession at Site U1520 84 

from the northern Hikurangi Trough, eastern New Zealand, cored during International 85 

Ocean Discovery Program (IODP) Expedition 375 (Fig. 1) (Wallace et al. 2019a; Barnes 86 

et al. 2019). Our analysis provides a high-resolution assessment of trench-floor 87 

sedimentation at this site over the last ~45 ka spanning major glacio-eustatic sea-level 88 

cyclicity. We quantify the magnitude and interpret the major causes of changes in SAR, 89 

as well as comparing our results with core data from other subduction trenches spanning 90 

similar timeframes.  91 

Regional Subduction Setting and Location of Site U1520  92 

The Hikurangi Subduction Margin (HSM) straddles the boundary between the 93 

obliquely converging Australian and Pacific plates (Fig. 1; Wallace et al. 2004). The 94 

margin strikes NNE-SSW and extends ~750 km from NE South Island to the southern 95 

Kermadec Trench (Lewis and Pettinga, 1993; Wallace et al. 2009; Barnes et al. 2010). 96 
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The Hikurangi Trough is a sediment-rich subduction system, with onlapping 97 

trench-wedge sediments (Underwood and Moore, 1995) ranging in thickness from ~6 km 98 

in the south to <1 km in the north (Lewis et al. 1998; Plaza-Faverola et al. 2012; Ghisetti 99 

et al. 2016; Barnes et al. 2019, 2020; McArthur et al. 2020). Sediment is delivered by >10 100 

shelf-incising canyons and numerous submarine slope gullies (e.g., Lewis and Barnes, 101 

1999; Orpin, 2004; Mountjoy et al. 2009, 2013; Pedley et al. 2010; Watson et al. 2020). 102 

Axial sediment transport is focussed through the Hikurangi Channel, which traverses the 103 

trench for >600 km before turning sharply eastward to cross the oceanic Hikurangi 104 

Plateau (Figs. 1 and 2A) (Lewis, 1994; Lewis et al. 1998; Lewis and Pantin, 2002, 105 

Mountjoy et al. 2018; McArthur and Tek, 2021; Tek et al. 2021a, b).  106 

Hikurangi Trough terrigenous sediments are sourced from both the South (today 107 

primarily from Kaikōura and Cook Strait canyons) and North islands (including Madden 108 

and Māhia canyons), with rates fluctuating significantly over glacial-interglacial cycles 109 

(Lewis et al. 1998; Lewis and Barnes, 1999; Berryman et al. 2000; Eden et al. 2001; 110 

Carter and Manighetti, 2006; Carter et al. 2008; Alloway et al. 2007; Mountjoy et al. 111 

2009, 2013; Pouderoux et al. 2012a; Barrell, 2013; Upton et al. 2013; Claussmann et al. 112 

2021, 2022). Furthermore, large earthquakes (MW >7.0), internal tides, and storm-113 

associated hyperpycnal flows can trigger turbidity currents, debris flows, and slumps, 114 

reworking and transporting large amounts of sediment to the trough (Pouderoux et al. 115 

2012b; Kuehl et al. 2016; Mountjoy et al. 2018, 2020; Howarth et al. 2021). Dispersal 116 

offshore has occurred via a range of processes including downslope gravity flows (e.g., 117 

Lewis et al. 1998; Lewis and Barnes 1999; Lewis and Pantin, 2002; Orpin 2004; 118 

Pouderoux et al. 2012a; Mountjoy et al. 2013, 2018; Watson et al. 2020; Howarth et al. 119 

2021; Tek et al. 2021a, b) and alongslope oceanic currents (e.g., Carter and Manighetti, 120 

2006; Paquet et al. 2009; Bostock et al. 2019a, b; Bailey et al. 2021; Tek et al. 2021a, b). 121 
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There is also air-fall deposition of tephra, dominantly sourced from explosive eruptions 122 

within the Taupō Volcanic Zone (TVZ) of the central North Island (Fig. 1) (e.g., Carter 123 

et al. 1995, 2002; Hopkins et al. 2021a, b). 124 

IODP Site U1520 is located in the northern Hikurangi Trough in ~3520 m water 125 

depth, 16 km east of the deformation front (Barnes et al. 2019). Here the forearc wedge 126 

is ~70 km wide and exhibits mixed frontal accretion and tectonic erosion in response to 127 

subducting seamounts (Collot et al. 1996, 2001; Lewis et al. 1998; Pedley et al. 2010; 128 

Bell et al. 2010; Barker et al. 2018; Gray et al. 2019; Barnes et al. 2020; Gase et al. 2021). 129 

The trough sedimentary succession varies in thickness from ~1-0.5 km and pinches out 130 

seaward against incoming seamounts (Figs. 1 and 2) (Lewis et al. 1998; Barnes et al. 131 

2019, 2020; Gase et al. 2021). Site U1520 is positioned between the subduction 132 

deformation front and the volcanic Tūranganui Knoll (Figs 1 and 2; Barnes et al. 2019), 133 

which rises ~1000 m above the trench floor. To the northeast lies the broad, flat, 134 

Whenuanuipapa Plain and Ruatoria Debris Avalanche (Lewis et al. 1998, Collot et al. 135 

2001). To the south, a prominent field of sediment waves occurs between Tūranganui 136 

Knoll and the mouth of Māhia Canyon (Lewis et al. 1998; Pedley et al. 2010, Shorrock, 137 

2021). 138 

IODP drilling at Site U1520 recovered a ~1 km thick sediment succession (Fig. 139 

2B; Barnes et al. 2019). Here we focus on the uppermost stratigraphic unit as defined by 140 

shipboard scientists, Unit I (see Supplementary Information (SI); Barnes et al. 2019), 141 

which extends from 0-110 metres below seafloor (mbsf). Unit I is comprised 142 

predominantly of silts and sands with minor clay and tephra, accumulated over the last 143 

~45 kyrs, with sedimentary structures indicative of multiple depositional processes. 144 



 

7 

 

Regional Oceanography 145 

East coast New Zealand waters are influenced by the complex interplay of several 146 

water masses, eddies, currents, and fronts (Fig. 1). The shelf and upper slope of the eastern 147 

North Island is bathed in warm, salty, nutrient-poor subtropical waters (STW) associated 148 

with the East Auckland Current (EAUC) and East Cape Current (ECC) (Fig. 1; Chiswell 149 

et al. 2015; Lorrey and Bostock, 2017; Stevens et al. 2021). The ECC transports water 150 

southwest offshore of the North Island at water depths down to ~2000 metres (Fig. 1) 151 

(Chiswell, 2005; Chiswell et al. 2015), influencing sediment transport and deposition 152 

along the continental slope (Carter and Manighetti, 2006; Carter et al. 2010; Keuhl et al. 153 

2016; McArthur et al. 2020; Bailey et al. 2021). Reported flow speeds vary with depth; 154 

~0.25 ms-1 at 100 mbsl, decreasing to 0.10 ms-1 at 1000 mbsl (Carter et al. 2002). 155 

Inshore of the ECC, the continental shelf is influenced by cool, low salinity, 156 

nutrient-rich surface water of the Wairarapa Coastal Current (WCC) flowing to the 157 

northeast (Figs. 1 and 2A) (Brodie, 1960; Chiswell, 2000). The WCC is a combination of 158 

Subantarctic Surface Water (Heath, 1975; Sutton, 2003), and STW transported by the 159 

D’Urville Current (dUC) through Cook Strait (Fig. 1). Nearshore swell waves, wind 160 

direction, and the northward flowing WCC with ephemeral gyres, primarily associated 161 

with the ECC, control sediment transport dynamics (Foster and Carter, 1997; Chiswell, 162 

2000). 163 

Deep-water currents east of New Zealand comprise the Deep Western Boundary 164 

Current (DWBC), which flows into the Pacific Ocean around the Chatham Rise (Carter 165 

and McCave, 1994; Whitworth et al. 1999), and consists of Lower Circumpolar Deep 166 

Waters (LCDW) flowing at water depths >2500 mbsl (Chiswell et al. 2015; Lorrey and 167 

Bostock, 2017). Below ~3500 mbsl, the LCDW is steered along the eastern edge of the 168 

Hikurangi Plateau, interacting with seafloor morphology before flowing north along the 169 



 

8 

 

Kermadec Trench slope (Fig. 1) (Fenner et al. 1992; Carter and McCave, 1994; McCave 170 

and Carter, 1997; Moore and Wilkin, 1998; Whitworth et al. 1999; Chiswell et al. 2015). 171 

The velocity of deep-water flow on the floor of the northern Hikurangi Trough is 172 

unknown as instrumented observations are yet to be recorded.  173 

Oceanic currents are inferred to influence sediment dispersal and deposition on 174 

the Hikurangi trench floor (Lewis and Pantin, 2002; Carter and Manighetti, 2006; Bailey 175 

et al. 2020, 2021) and across contourite drifts of the Hikurangi Plateau (Fenner et al. 1992; 176 

Carter and McCave, 1994; McCave and Carter, 1997; Saffer et al. 2019). Previous 177 

paleoceanographic studies indicate that during the Last Glacial Maximum (LGM; see 178 

Clark et al. 2009) the strength of the ECC decreased, while the proto-Wairarapa Coastal 179 

Current (pWCC) strengthened (Carter and Manighetti, 2006). In the deep waters of the 180 

Hikurangi Plateau, analysis of sortable silt fractions at core site CHAT 10K (Fig. 2A) 181 

(3003 mbsl, McCave et al. 2008) reveal little sedimentological change between the 182 

Holocene and the LGM, potentially indicating similar bottom-current activity was 183 

sustained across the eastern Hikurangi Plateau. 184 

Materials and Methods 185 

Sedimentological Analyses 186 

Lithological descriptions of Unit I integrate high-resolution core line-scan images, 187 

Gamma Ray Attenuation (GRA) bulk density (Wetzel and Balson, 1992; Goldfinger et 188 

al. 2012), computed tomography (CT) numbers (Mees et al. 2003; Reilly et al. 2017; 189 

Vandekerkhove et al. 2020) and laser grain-size measurements (Shorrock, 2021). We use 190 

these data to identify sedimentary structures and bed types (Figs. S1 and S2), allowing us 191 

to develop bed thickness and frequency statistics (see SI).  192 
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We conducted high resolution (~0.01 m spacing) laser grain-size measurements 193 

of two short (<50 cm) u-channel sub-cores, using a Beckman Coulter LS 13 320 Laser 194 

Diffraction Particle Size Analyser at the National Institute of Water and Atmospheric 195 

Research (NIWA) (see SI; Table S2; Fig. S2). These grain-size data were calibrated 196 

against GRA bulk densities, so that grain-size could be inferred using GRA as a proxy. 197 

Bedforms are characterised following Ashley (1990) and Baas et al. (2016). 198 

Tephra Analysis 199 

Bulk sediment samples of tephra were wet sieved, isolating the 63-250 µm size 200 

fraction to concentrate glass shards. These were then mounted on acrylic tablets, polished 201 

to reveal fresh shard faces, and carbon coated for geochemical analysis at GEOMAR with 202 

the JEOL JXA 8200 Electron Microprobe Analyser (SI; Figs. S3 and S4). The tephra 203 

deposits were correlated geochemically to known marker horizons using reference 204 

material from the TephraNZ database (Hopkins et al. 2021a, b). 205 

Foraminiferal Analyses  206 

Samples from close to volcanic tephra and from fine-grained muddy facies were 207 

selected for radiocarbon dating (14C).  At least 200 specimens per sample of planktonic 208 

foraminifera (Globoconella inflata) were handpicked from the 212-500 µm size fraction, 209 

cleaned, and assessed under light microscope for preservation quality (e.g., Sexton et al. 210 

2006; Edgar et al. 2015). These were analysed for 14C using the modified compact 211 

Accelerator Mass Spectrometer at the Rafter Radiocarbon Laboratory, GNS Science 212 

(Table S3; see SI for calibration details). For assemblage analysis, sediments were sieved 213 

to >150 µm and split to fractions containing 300-600 foraminifera specimens for 214 

identification. Planktonic and benthic foraminiferal assemblages were identified to 215 

provide information on biostratigraphy, paleoceanography (Crundwell et al. 2008; 216 
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Crundwell and Woodhouse, 2022, Submitted), oceanicity (greater planktonic % 217 

corresponds to greater oceanicity; Hayward et al. 1999, 2001), and paleo-water depth (key 218 

benthic species; Crundwell et al. 1994; Hayward et al. 2010; 2019) (Table S4). For stable 219 

δ18O and δ13C isotope analysis, where present, well-preserved planktonic 220 

(Neogloboquadrina incompta) and benthic foraminifera (Uvigerina peregrina) were 221 

picked from the >212 µm fraction and analysed using the Isoprime Dual-Inlet Isotope 222 

Ratio Mass Spectrometer at the University of Leeds, UK (Table S4).  223 

Age Modelling 224 

An age-depth model with 1 and 2 sigma uncertainties was constructed from 225 

calibrated radiocarbon dates and tephra ages (see SI for details, Fig. S5; Table S5) using 226 

the software “Undatable”, which is well suited for Unit I deposits (Lougheed and 227 

Obrochta, 2019). Based on the median age model we calculated the sediment 228 

accumulation rate (SAR) and the bed recurrence interval (RI, number of beds/age 229 

interval).  230 

Numerical Modelling of Bottom Currents  231 

Bottom currents and their variance at Site U1520 were extracted from an existing 232 

eddy resolving (1/20 degree) ocean model hindcast (Behrens et al. 2021, SI for details) 233 

over the New Zealand region, to assess the influence of currents on sedimentation. 234 

Results and Interpretations 235 

Core Lithostratigraphy 236 

The Unit I succession is dominantly siliciclastic, composed of silt, with variable 237 

mixtures of accompanying sand and clay (Figs. S1 and S2). Unit I is also intercalated 238 

with rare centimetre- to decimetre-thick tephras (e.g., Fig. 3; see SI). 239 
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A wide variety of well-defined bed types were observed with sharp upper and 240 

lower contacts that often truncate physical and biogenic sedimentary structures 241 

(Shorrock, 2021), along with thin laminae. Many follow a similar vertical grain-size 242 

motif, broadly defined as normally graded bi-partite silt-rich beds (sensu Stevenson et al. 243 

2014) with a lower, coarser-grained, well-sorted interval (dominantly silty and including 244 

rare pebbly sand and sands) overlain by a finer grained, moderately- to poorly-sorted 245 

upper interval (silts and clays; Fig. 3, Fig. S2). Other vertical grain-size profiles are 246 

observed, including inverse-graded, non-graded, and complex grading patterns (Fig. 3; 247 

see Strachan et al. 2016). The lower intervals of beds are commonly black or grey, except 248 

in the upper 0-10 mbsf where they are dark olive green (Fig. 3). Lower intervals preserve 249 

a diverse range of structures including parallel laminae, wavy laminae with well-250 

preserved ripple-forms as well as low-angle and dune-scale cross-beds, mesoscale 251 

banding (sensu Lowe and Guy, 2000), scours, convolutions, soft-sediment folding, 252 

dewatering structures, and sub-angular silt clasts (Fig. 3). The upper silt-clay intervals of 253 

beds are light olive green, and either non-graded or normally graded. Upper intervals have 254 

a range of observed sedimentary structures including parallel and inclined laminae, intra-255 

laminae flame and load casts, and laminated convolutions. Well defined macroscale 256 

bioturbation is commonly observed in the upper parts of beds in the upper interval from 257 

0-10 mbsf, (Fig. 3A), becoming less common below 10 mbsf.  258 

We identify 605 beds within Unit I, with a mean bed thickness of 0.16 m, and 259 

minimum and maximum values of 0.01 and 6.39 m, respectively. These figures differ 260 

slightly from the shipboard bed statistics of Barnes et al. (2019) (see SI). Bed frequency 261 

varies down core with 4-6 beds per m (bpm) in the 0-6.5 mbsf interval, 4-10 bpm from 262 

6.5-10 mbsf, 1-13 bpm between 10-56 mbsf, 0-10 bpm from 56-92 mbsf, and 3-15 bpm 263 

between 92-106 mbsf (Fig. 4). 264 
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Interpretation: 265 

The dominant stacked bi-partite beds bounded by distinct truncating upper and 266 

lower contacts are interpreted as deposits of single depositional events due to: 1) the 267 

gradational transition between lower and upper intervals; 2) the continuity of laminae and 268 

bands across intervals; and 3) the lack of evidence for erosion or depositional hiatuses 269 

across internal boundaries (Fig. 3). The wide range of physical sedimentary structures in 270 

lower and upper bed intervals indicate that the dominant mode of deposition was via 271 

grain-by-grain aggradation associated with unidirectional, tractional turbidity currents 272 

(sensu Kneller and Buckee, 2000). The bi-partite event beds are interpreted as being 273 

deposited from flows with variable rheologies and particle support mechanisms including 274 

high to low-density fine-grained turbidity currents (sensu Piper, 1978; Stow and 275 

Shanmugam, 1980; Stow and Piper, 1984; Strachan et al. 2016) and transitional flows 276 

(sensu Haughton et al. 2009; Baas et al. 2011; 2016). Vertical grading profiles in lower 277 

intervals imply a range of temporal behaviours including dominantly waning flows 278 

(normally graded), and less common waxing (inverse-graded), steady (non-graded), and 279 

unsteady flows (variably graded) (e.g., Kneller, 1995; Ho et al. 2018). The presence of 280 

parallel and inclined laminae in upper intervals indicates deposition of upper stage plane 281 

beds and ripples, and therefore implies that flows had a high velocity, but became muddier 282 

with time (e.g., Stevenson et al. 2020). In addition, common dewatering structures imply 283 

either syn-depositional loading by rapidly deposited flow tails, or dewatering triggered 284 

by the next event. These observations reveal a succession dominated by stacked gravity 285 

flow deposits including turbidites (sensu Bouma, 1962; Piper, 1978; Lowe, 1982; Stow 286 

and Shanmugam, 1980; Talling et al. 2012), hybrid event beds (sensu Haughton et al. 287 

2009), potential hyperpycnites (sensu Mulder et al. 2003), debrites (sensu Iverson, 2005), 288 

and slumps (Stow, 1982) (see SI for details). Based on the preserved physical sedimentary 289 
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structures and bedding contacts in the upper bed throughout Unit I, they are considered 290 

here to be primarily associated with tractional deposition from muddy gravity flows or 291 

modified mixed turbidite-contourite deposition (Gong et al. 2018), and not from pure 292 

hemipelagic deposition. This interpretation contrasts with Pouderoux et al. (2012a), 293 

Barnes et al. (2019), and Noda et al. (Submitted), who inferred the preservation of 294 

significant hemipelagic deposition between gravity flow deposits. 295 

Bioturbation in the upper parts of beds, between 0-10 mbsf, indicates that 296 

prevailing seafloor conditions had sufficient oxygen, nutrients, and heat (Kao et al. 2010) 297 

for organisms to colonise and live within the upper seafloor substrate, suggesting 298 

consistent re-colonization following turbidity current deposition. Similar bioturbation 299 

patterns have been observed elsewhere on the HSM in Holocene strata (Carter et al. 2002; 300 

Manighetti et al. 2003; Campbell et al. 2010; Pouderoux et al. 2012a), including following 301 

the 2016 Kaikōura co-seismic turbidite, which showed evidence of recolonization ~8 302 

months after emplacement (Howarth et al. 2021). The source of oxygen-rich bottom 303 

waters with abundant food is open to debate and may be attributed to the turbidity currents 304 

themselves (e.g., Kane et al. 2007) or moving regional water masses (Carter et al. 2002; 305 

Chiswell et al. 2015). The dramatic reduction of biogenic traces beneath 10 mbsf implies 306 

a deterioration in suitable conditions during deposition.  307 

Radiocarbon and Tephra Chronology  308 

We measured eight AMS-14C radiocarbon ages from Unit I (Table 1). The 309 

shallowest 14C sample from 5.25 mbsf produced a calibrated median age of 8695 yrs BP, 310 

and the deepest from 106.26 mbsf, an age of 42,440 yrs BP (Table 1; Fig. 4). 311 

Seventeen macroscopic tephras were identified and sampled from Unit I, 312 

positioned between ~0-30 mbsf (Fig. 4). All tephra samples show discrete, homogenous 313 

glass chemistries, representing eight eruptions, five of which are correlated 314 
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geochemically and stratigraphically to well-known large rhyolitic marker horizons from 315 

the reference material from the TephraNZ database (Table 2; Figs. S3 and S4; Hopkins 316 

et al. 2021a, b). For the andesitic, dacitic, and trachytic samples, the geochemical 317 

correlation is more complicated due to the homogeneity of potential source material, and 318 

the lack of suitable reference data (Figs. S3 and S4). As a result of these ambiguities, 319 

these tephras were not used in the construction of the integrated age model.  320 

Interpretations: 321 

Whilst foraminifera were picked from fine-grained lithofacies, some of the dated 322 

material is likely to be reworked in turbidites and may therefore provide upper 323 

depositional ages. Nevertheless, the radiocarbon dates show an increase in age down core 324 

with no age reversals. Furthermore, the dates agree with the rhyolitic tephra ages, 325 

correlated to their terrestrial counterparts including the Taupō (1.7 ka), Waimihia (3.4 326 

ka), Whakatane (5.5 ka), Rotoma (9.4 ka), and Opepe eruptions (9.9 ka; Table 2).  327 

Age Modelling, Sediment Accumulation Rates, and Bed Recurrence Intervals 328 

Age models were developed using the tephrochronology and radiocarbon ages, to 329 

provide chronostratigraphy for Unit I (Fig. 4). Unit I shows a continuous age model down 330 

to ~45 ka (Tables 1 and 2). Calculated age confidence ranges increase with depth from 331 

<2 kyrs in the upper few metres to ~12 kyrs towards the base of the Unit I (see SI). The 332 

good agreement between radiocarbon dates and rhyolitic tephra ages indicates that dating 333 

of reworked foraminifera in muddy turbidites has not had a significant impact on the age 334 

model. 335 

The age model reveals a median sediment accumulation rate (SAR) and median 336 

recurrence interval (RI) for emplacement of event beds averaged across the entire Unit I 337 

thickness at Site U1520 of ~2.4 m/kyr and 184 yrs, respectively. The mean SAR in the 338 
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top ~10 mbsf (~14.5 ka) is ~0.86 m/kyr (Fig. 4). This rate increases down-core to ~5 339 

m/kyr from 10-32 mbsf (~14.5-20 ka), and subsequently to ~9 m/kyr between ~32-48 340 

mbsf (~20-21 ka), with a peak of 9.95 m/kyr at 41 mbsf (~20.5 ka). Continuing down 341 

core, from ~48-56 mbsf (~21-24 ka), the SAR reduces to ~3 m/kyr, and then increases to 342 

~8 m/kyr from 56-95 mbsf (~24-29 ka). Between 95-106 mbsf (~29-45 ka), the SAR 343 

reduces to ~0.8 m/kyr (Fig. 4). Decompaction could potentially increase these linear SAR 344 

values by up to 10% (Fig. S6; see SI). 345 

Mean RI from <10 mbsf (<14.5 ka) is ~322 yrs, showing a distinct peak of ~1000 346 

yrs at ~3.6 mbsf (~5 ka). Down-core, from 10-95 mbsf (~14.5-29 ka), the mean RI is 347 

substantially reduced to ~49 yrs, remaining low throughout this interval. Values then 348 

increase slightly from 95-106 mbsf (~29-45 ka) to ~172 yrs, with a minor peak at ~105 349 

mbsf (~42 ka) of ~500 yrs (Fig. 5). 350 

Interpretation:  351 

The “Undatable” age model provides a chronology of the core dating to ~45 ka, 352 

indicating that the core covers MIS1-3. The age model errors increase down core due to 353 

limited tephra and radiocarbon dates deeper in Unit I, and the likelihood of reworking of 354 

dated sediments, particularly in MIS2 (Fig. 6). SARs and RIs are highly variable at Site 355 

U1520. SARs range from 0.86 m/kyr during MIS1, and peak at 9.95 m/kyr in the LGM 356 

during MIS2, when mean RIs were lowest, whilst MIS3 SARs are similar to MIS1 at 0.8 357 

m/kyr (Fig. 4). This indicates different conditions during the LGM versus deglaciation, 358 

resulting in significantly higher SARs and lower RIs.  359 

Foraminiferal Assemblage Data  360 

Planktonic foraminiferal biogeographic groups are dominated by a high 361 

abundance of tropical-subtropical taxa at depths of <15 mbsf, whilst through the rest of 362 

Unit I (~15-106 mbsf) they are highly variable (Fig. 6). The percentage of planktonic 363 
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foraminifera from 0-15 mbsf (60-100%) indicate suboceanic-oceanic settings (Fig. 4). 364 

They then fluctuate significantly between outer neritic-suboceanic (30-60%) to open 365 

oceanic (>90%) at ~15-95 mbsf, below which, suboceanic-oceanic (60-100%) settings 366 

are re-established. 367 

Benthic foraminifers indicate sedimentary input from paleo-water depths of 600-368 

1000 mbsl from 0-15 mbsf, 0-200 mbsl from 15-56 mbsf, and large fluctuations between 369 

0-1000 mbsl from 56-106 mbsf (Fig. 4). Sediments from ~15-92 mbsf also show 370 

markedly heightened occurrences of Miocene/Pliocene planktonic foraminifera within 371 

gravity flow deposits (Crundwell and Woodhouse, Submitted), sometimes accounting for 372 

>50% of the total assemblage (Fig. 6).  373 

Interpretations:  374 

Increasing abundances of warm-water taxa at depths of <10 mbsf are consistent 375 

with regional deglaciation (Figs. 4 and 6) (Crundwell et al. 2008; Crundwell and 376 

Woodhouse, 2022, Submitted). Fluctuating planktonic foraminiferal biogeographic group 377 

abundances and ubiquitous Miocene and Pliocene specimens in gravity flows from 15-92 378 

mbsf (Fig. 6; Crundwell and Woodhouse, Submitted) suggest reworking of uplifted 379 

sediments on land, or erosion of slope sediments during sea level lowstand (Fig. 2A). 380 

This is further supported by the presence of shallow water benthic foraminifera (shelfal 381 

to mid-bathyal, 0-1000 m; Hayward et al. 2010, 2019) at Site U1520 (3520 mbsf) 382 

providing evidence for the allochthonous nature and downslope transport of the sediment 383 

at Site U1520. These data support the above suggestion that some radiocarbon dates 384 

provide upper depositional ages. 385 
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Foraminifera Isotope Data  386 

Planktonic foraminifera exhibit excellent preservation, where stable isotope δ18O 387 

(δ18OPlanktonic) values from ~5-15 mbsf consistently track ~3 ‰ lighter than benthic δ18O 388 

(δ18OBenthic) values (Fig. 4). However, from ~12-15 mbsf, the δ18OBenthic values become 389 

slightly out of phase (Fig. 4). From ~15-95 mbsf, planktonic foraminifera continue to be 390 

well-preserved, with δ18OPlanktonic values consistently ~2 ‰. In contrast, benthic 391 

foraminifera are rare between ~15-95 mbsf, and when present, exhibit poor preservation 392 

with significant deviations from the consistent δ18OPlanktonic signal (Fig. 4). The 393 

δ18OPlanktonic signal records a +0.7 ‰ shift at ~93-101 mbsf, stabilizing for the remainder 394 

of Unit I (Fig. 4).  395 

Interpretations: 396 

The δ18OPlanktonic values support age modelling data showing a typical oxygen 397 

isotope trend for the last glacial to interglacial (Fig. 4). However, δ18OBenthic values (SI) 398 

are inconsistent with the expected Holocene regional water depth signal from LCDW 399 

(>2500 mbsl, ~3.1‰) bathing Site U1520 (~3520 mbsl) (Table S4) (McCave et al. 2008), 400 

and more comparable to Uvigerina spp. bathed by North Pacific Deep Water/Upper 401 

Circumpolar Deep Water (~1500-2500 mbsl, ~3.4‰) suggesting transport from 402 

shallower bathyal waters (McCave et al. 2008; Lorrey and Bostock, 2017).  403 

Numerical Modelling of Bottom Currents in the Northern Hikurangi Trough 404 

The modelled simulation (see Behrens et al. 2021) produces the strongest bottom 405 

currents with largest variance on the continental shelf and upper slope in water depths of 406 

<500 m, and over localised ridges on the continental slope in water depths of <1500 m, 407 

in the path of the ECC (Figs. 2 and S8). Increased bottom current flows are also simulated 408 

around the flanks of seamounts on the subducting northern Hikurangi Plateau, which 409 

protrude above the Hikurangi Trough into the path of the DWBC (Figs. S8 and S9). At 410 
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Site U1520 the simulation produces mean and maximum bottom flow velocities at 3200 411 

m of ~0.06 ms-1 and 0.35 ms-1, respectively, in the path of LCDW (Chiswell et al. 2015).  412 

Interpretations: 413 

The threshold for cohesionless sediment transport and deposition (e.g., critical 414 

Shields parameter) is a function of current velocity and specific grain, cohesion and 415 

turbulence variables (see review by Yang et al. 2019), but is not well established for 416 

cohesive silt and clay particles at grain-sizes of <10-20 µm in which aggregation and 417 

flocculation is important (e.g., McCave 1984a, b). Simplified thresholds based on bottom-418 

current velocities and grain-size indicate that currents below 0.10-0.15 ms-1 are likely to 419 

be associated with deposition of sand and silt, whilst velocities >0.15-0.20 ms-1 are 420 

required for transport of fine sand (Postma, 1967). The mean simulated current velocity 421 

at 3200 mbsl at Site U1520 (~0.06 ms-1; Fig. S9) is therefore unlikely to erode in situ silt 422 

and fine sand, or to significantly transport silt introduced in the tail of gravity flows. High 423 

energy events, and periods of maximum flow velocities of 0.35 ms-1 however, may be 424 

associated with re- or ongoing- suspension in the benthic boundary layer and erosion of 425 

the in-situ basin floor cannot be ruled out (e.g., McCave and Hall, 2006). Furthermore, 426 

there is no discernible moat around the western flank of Tūranganui Knoll within the 427 

vicinity of Site U1520 (Fig. 2B), though drifts and moats have been observed on top of 428 

the seamount (Wallace et al. 2019b).  429 

Discussion 430 

Integrated Age Model - IODP Site 1520 Unit I 431 

The sedimentological and paleontological record at Site U1520 allow for the 432 

construction of an integrated age model with consistent agreement between dating 433 

methodologies (Fig. 4). Despite increasing age confidence ranges with depth (up to ~12 434 
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kyr), cross correlation with δ18OPlanktonic values has allowed us to constrain the key MIS 435 

boundaries (Fig. 4). 436 

Our age model indicates Unit I comprises Holocene to Late Pleistocene strata, 437 

providing a highly expanded ~110 m succession representing the last 45 kyrs (Fig. 4). 438 

Despite being dominated by gravity flow deposits containing reworked material (e.g., 439 

Toucanne et al. 2008), the core and δ18OPlanktonic record are consistent with tephra 440 

chronology and preserve a paleoceanographic record of MIS1 and 2, and the latter part of 441 

MIS3 (Fig. 4; Lisiecki and Raymo, 2005). 442 

Trench-floor depositional response to glacio-eustatic change 443 

Here, we discuss changes in lithological character and provenance, sedimentary 444 

processes, and sedimentation rates at Site U1520 in relation to glacio-eustatic climatic 445 

changes through MIS1-3. 446 

Marine Isotope Stage 1: 447 

The dominance of normally graded, bipartite beds that contain remobilised slope 448 

benthic foraminifera in MIS1 strata reveal a depositional system dominated by downslope 449 

gravity flows sourced from 600-1000 mbsl (Fig. 4). A total of 59 beds, with typical 450 

thicknesses of 15-25 cm, are identified within the MIS1 interval. 451 

MIS1 strata are unique within Unit I for two reasons: first, lower bed intervals are 452 

distinctly dark olive green compared to older strata (>10 mbsf) that are black or grey. 453 

Second, beds commonly preserve bioturbation in upper bed intervals (Fig. 3), suggesting 454 

that the basin floor was bathed in oxygenated, food-rich waters that promoted 455 

recolonization after the emplacement of turbidites, and resumption of hemipelagic 456 

deposition during MIS1 (Howarth et al. 2021). Similar characteristics have been 457 

described from MIS1-aged sediment cores to the north (Fig. 2A; core MD3008, 458 
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Pouderoux et al. 2012a) and east (Fig. 1; cores Q858-861, Fenner et al. 1992) of Site 459 

U1520, as well as across the eastern margin of the South Island, attributed to changes in 460 

productivity and terrigenous sediment input (Griggs et al. 1983). 461 

Previous work has suggested that extensive contourite drifts along the upper 462 

Hikurangi margin were developed under the ECC, and that channel-overbank sediment 463 

waves in the Hikurangi Trough were modified by the East Cape and Deep Western 464 

Boundary currents (Bailey et al. 2021). However, more recent detailed quantitative 465 

geomorphological and seismic reflection studies of the proximal axial Hikurangi Channel 466 

by Tek et al. (2021a, b) do not support the latter interpretation. The average near bottom 467 

velocities modelled at Site U1520 (0.06 ms-1) appear insufficient to erode the silt 468 

dominated sediments observed (e.g., Postma, 1967), though further analysis is required 469 

to determine if mean flow-speeds could sustain transportation of suspended silt-clay 470 

introduced via gravity-flows within the near-bottom nepheloid layer. The maximum 471 

modelled near-bottom flow velocities (0.35 ms-1) however, are more significant and likely 472 

exceed the threshold for fine sediment erosion and entrainment (Figs. S8 and S9; Hollister 473 

and McCave, 1984; McCave and Hall, 2006). Thus, despite the absence of a moat and/or 474 

sediment drift architecture at Site U1520 (Fig. 2B), discrete erosional events, bottom 475 

current reworking, and deposition of mixed and combined turbidite-contourite beds 476 

(sensu Miramontes et al. 2020. 2021) cannot be ruled out.   477 

Our age model reveals an interesting SAR distribution through the 59 stacked 478 

gravity flow beds of MIS1 (Fig. 4). Despite the mean rate of 0.86 m/kyr, SARs down-479 

core begin with an initial peak of 1.28 m/kyr at ~2.4 ka, decreasing to ~0.3 m/kyr at ~3.4 480 

ka, and followed by a steady increase which plateaus at ~1 m/kyr from 11.2-14.5 ka (Fig. 481 

4). Similarly-aged SAR peaks are observed within proximal cores from nearby lower 482 

slope basins (MD06-3002, MD06-3003, and MD06-3009), though not on the basin floor 483 
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to the north (MD06-3008) (Figs. 7 and S7) (Pouderoux et al. 2012a). This suggests that 484 

sediment flux to the margin was highly variable through MIS1, possibly driven by 485 

changes in sediment supply, sediment source and routing direction (e.g., Kuehl et al. 486 

2016; Bostock et al. 2019a, b), or gravity flow triggering frequencies along different 487 

sections of the subduction zone. This is supported by the bed recurrence interval (RI), 488 

which is highly variable through MIS1 with a minimum of 143 years (2-3 ka), maximum 489 

of ~1000 years (4-5 ka), and mean value of ~322 yrs (Fig. 5). These values are in general 490 

agreement with the range of reported mid and late Holocene RIs across the margin (e.g., 491 

MD3003, ~270 yrs, Pouderoux et al. 2012b; ~140 yrs Kaikōura Canyon, Mountjoy et al. 492 

2018).  493 

Planktonic foraminiferal assemblages (Table S4) show high oceanicity and 494 

regional SSTs steadily increasing up-section from 14.5-11.7 ka (10-6.5 mbsf), likely 495 

representing the increased influence of the Tasman Front resulting in a greater inflow of 496 

warm ECC from the north (Bostock et al. 2006), and reduced flow of cool Subantarctic 497 

Water (SAW) in the Wairarapa Coastal Current (WCC) from the south (Carter et al. 498 

2008). Sea level rise would have also allowed greater flow of STW through Cook Strait, 499 

influencing the WCC (Carter et al. 2008) and potentially increasing sediment influx 500 

through Cook Strait.  501 

Furthermore, this eustatic change had a profound effect on sediment transport and 502 

deposition across the northern Hikurangi margin, in particular by shifting primary 503 

depocenters from the slope to the shelf (Lewis 1973, Foster and Carter, 1997; Barnes et 504 

al. 2002; Carter et al. 2002; Orpin, 2004; Paquet et al. 2009; 2011; Gerber et al. 2010) 505 

and reducing regional along-shore sediment delivery to canyon heads (Fig. 2; e.g., Herzer, 506 

1981; Mountjoy et al 2009; Pouderoux et al. 2012a, b).  507 
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Marine Isotope Stage 2:  508 

Sand-silt gravity flow deposits dominate MIS2, with a total of 437 beds identified 509 

through this interval. The upper core section between 10-56 mbsf (14.5-24 ka) has beds 510 

0.01-1.7 m thick (Fig. 5). These relatively dark-coloured bi-partite beds likely formed 511 

primarily via mud-rich gravity flows (Piper, 1978; Stow and Shanmugam, 1980; Stow 512 

and Piper, 1984; Talling et al. 2012; Strachan et al. 2016). In contrast, the lower section 513 

spanning 56-95 mbsf (~24-29 ka) is dominated by sandier beds of up 6.39 m in thickness 514 

that resulted in reduced core recovery during drilling (Fig. 4; Barnes et al. 2019). These 515 

beds display characteristics, such as massive and laminated sands, that are consistent with 516 

bedforms expected to be formed via incremental deposition within higher-density 517 

turbidity currents and en masse deposition of debris flow portions of transitional flows 518 

(see SI; Baas et al. 2009; Haughton et al. 2009; Talling et al. 2012; Postma and Cartigny, 519 

2014).  520 

Planktonic foraminiferal assemblages are highly variable, with reduced oceanicity 521 

due to the presence of shelfal faunas (Figs. 4 and 6). From 14.5-24 ka (10-56 mbsf) 522 

benthic foraminifera indicate sediment sources from shelf environments (0-200 mbsl), 523 

whereas down-core, from ~24-29 ka (56-95 mbsf), they were sourced from depths 524 

ranging from 0-1000 mbsl (Fig. 4). Throughout this time (14.5-29 ka) there was also a 525 

marked increase in Miocene/Pliocene planktonic species in gravity flow deposits (Fig. 6; 526 

Crundwell and Woodhouse, Submitted), interpreted to have resulted from enhanced 527 

fluvial and coastal erosion of terrestrial outcrops, and submarine erosion of canyon flanks 528 

and structural ridges driven by low glacio-eustatic sea level (Barnes et al. 2002, 2018; 529 

Paquet et al. 2009; Mountjoy and Barnes, 2011). 530 

The SARs at Site U1520 increase abruptly down-core from the base of MIS1 into 531 

MIS2 (Fig. 4). The SAR is 5-6 m/kyr between 14.5-20 ka (~10-33 mbsf), increasing 532 

abruptly to 8-10 m/kyr between ~20-22 ka (33-49 mbsf). The staggering maximum rate 533 
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of ~10 m/kyr occurs at ~21 ka (41 mbsf) during the peak of the LGM (Fig. 4; Barrell et 534 

al. 2013; Lambeck et al. 2014; Williams et al. 2015). The SAR reduces to 3.5 m/kyr 535 

between 22-24 ka (49-57 mbsf) and returns to very high values of 8-9 m/kyr through the 536 

sandy interval between 24-29 ka (57-95 mbsf). These data reveal that peak LGM 537 

sedimentation rates were an order of magnitude greater than those documented during 538 

MIS1 (Figs. 4 and 7, SI), prior to anthropogenic landscape alterations (McGlone et al. 539 

1994; McGlone and Wilmshurst, 1999; Paquet et al. 2009; Pouderoux et al. 2012a; Kuehl 540 

et al. 2016).  541 

A six-fold decrease in mean bed RI occurs down-core from MIS1 (~322 yrs) to 542 

MIS2 (~49 yrs). The median RI varies with age in MIS2, decreasing from about 90 yrs at 543 

14.5 ka (~10 mbsf) to its minima of ~14 yrs at the peak of the LGM (~21 ka) (Fig. 5). 544 

Peaks of increased median RI are notable at ~18 and 26 ka, the latter of which coincides 545 

with the maximum achieved bed thickness through MIS2.  546 

The very short RIs between gravity flows during MIS2 may explain the relative 547 

absence of hemipelagic sediment accumulation between gravity flow deposits. However, 548 

these SARs and RIs do not account for the lack of bioturbation prior to MIS1, recorded 549 

~8 months after the emplacement of modern turbidites (Howarth et al. 2021). More likely 550 

explanations for the lack of bioturbation during MIS2 include insufficient organic carbon 551 

content within sandy sediments, a change in the oxygen levels at the seafloor caused by 552 

an alteration in the LCDW/DWBC (Hall et al. 2001; McCave et al. 2008), an increase in 553 

the dominance of the oxygen deficient Pacific Deep Water (McCave et al. 2008); or a 554 

substantial switch in the nature of seafloor environments triggered by the distinct 555 

sedimentary processes associated with MIS2.  556 

The significant changes in SAR and bed RI appear to have been strongly 557 

influenced by changes in climatic and eustatic conditions. Fluvial systems of both the 558 
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North and South islands aggraded significantly during MIS2 (e.g., Litchfield, 2003; 559 

Litchfield and Berryman, 2005, 2006; Alloway et al. 2007). In the North Island, cooler, 560 

drier conditions, reduced vegetation cover, and increased catchment erosion (McGlone et 561 

al. 1993; McGlone, 2001; Turney et al. 2003; Gomez et al. 2004; Paquet et al. 2009; 562 

Newnham et al. 2013; Upton et al. 2013) likely doubled the present-day terrigenous load 563 

of east coast rivers (Gomez et al. 2004; Paquet et al. 2009; Upton et al. 2013; Kuehl et al. 564 

2016), whilst an intensified glacial circumpolar wind system caused greater aeolian 565 

deposition (Stewart and Neall, 1984). With LGM sea level ~120 m below present day 566 

(e.g., Gibb, 1986; Pillans et al. 1998; Spratt and Lisiecki, 2016), direct tapping of nearshore 567 

sediment transport systems by shelf-indenting gullies and canyon heads promoted 568 

increased sediment supply to the Hikurangi Trough (Fig. 2A; Herzer 1981; Lewis and 569 

Barnes, 1999; Orpin 2004; Mountjoy et al. 2009, 2013; Pouderoux et al. 2012a, b; 570 

McArthur and McCaffrey, 2019; Fisher et al. 2021). Major canyons on the southern HSM 571 

increased sediment volumes to the Hikurangi Channel (e.g., Herzer 1981), while northern 572 

Hikurangi rivers supplied increased sediment to the trough floor via Māhia Canyon and 573 

the Ruatoria re-entrant (e.g., Orpin 2004; Lewis et al. 2004; Carter et al. 2010; Culver et 574 

al. 2012; Pouderoux et al. 2012a, b; Upton et al. 2013; Kuehl et al. 2016). Additionally, 575 

major Hawke Bay rivers drained to the LGM shoreline on the edge of the shelf, where 576 

waves and currents moved sediment alongshore to be redistributed to slope basins (Fig. 577 

2) (Paquet et al. 2009; Hopkins et al. 2020). The LGM WCC was likely intensified by 578 

stronger northeastward inflow of SAW and may have contributed to increased 579 

northeastward transport of suspended sediment on the upper slope (Foster and Carter, 580 

1997; Nelson et al. 2000b; Chiswell, 2000; Carter et al. 2002; Orpin, 2004; Carter and 581 

Manighetti, 2006), however further detailed provenance work is required. 582 
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A comparison of sea-level (Spratt and Lisiecki, 2016) with the SAR at Site U1520 583 

suggests that the abrupt increase in median SAR at the base of MIS2 coincides with a sea-584 

level fall from -80 m to -120 m (Fig. 8). We suggest that the initiation of MIS2, and onset 585 

of thick sandy beds at Site U1520, marks a critical sea-level threshold at -110±10 m. At 586 

this sea level the upper reaches of Māhia Canyon and numerous others along the length 587 

of the margin (Figs. 1 and 2) became strongly connected to the shelf sediment supply, 588 

were rapidly fluxed with sediment, and changed from silty to sandy staging areas (Figs 589 

2A, 4 and 8). Furthermore, large storm waves and major fluvial flood events could have 590 

triggered turbidity currents in addition to earthquakes (McGlone et al. 1993; Mulder et 591 

al. 2003; Turney et al. 2003; Gomez et al. 2004; Alloway et al. 2007; Paquet et al. 2009; 592 

Carter et al. 2010; Newnham et al. 2013; Paull et al. 2014; Kuehl et al. 2016). Moreover, 593 

whereas the MIS1 average turbidite frequency at Site U1520 is close to the regional 594 

paleoearthquake recurrence (Pouderoux et al. 2012a, b), the shorter turbidite RI through 595 

MIS2 (<50 yrs) is suggestive of additional triggers of turbidity currents, assuming no 596 

change in paleoearthquake occurrence. 597 

Interestingly, the thickest sandy beds at Site U1520 were emplaced between 24-598 

29 ka (57-95 mbsf), relatively early in MIS2, and prior to the peak LGM (~21 ka, ~41 599 

mbsf), when global sea levels were lowest. This discrepancy may indicate that: (1) the 600 

hypothesized sea level threshold is active in the interval leading up to the lowstand, but 601 

not during the LGM itself, (2) the activated sandy staging areas were totally depleted 602 

between the initiation of MIS2 (~29 ka, ~95 mbsf) and the peak LGM (~21 ka, ~41 mbsf), 603 

or (3) the depocenter for thick sandy beds at Site U1520 migrated elsewhere after 24 ka 604 

(Shorrock, 2021). 605 
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Marine Isotope Stage 3: 606 

 The 109 MIS3 beds are similar to those documented during the upper section (10-607 

56 mbsf) of MIS2, measuring 0.01-0.9 m thick with dark-coloured lower sections, and 608 

formed via gravity flows. The MIS2/3 boundary is evident from a marked up-core 609 

increase in δ18OPlanktonic at ~29 ka (~95 mbsf; Fig. 4). Planktonic foraminifera show that 610 

ocean temperatures were cool during late MIS3, similar to MIS2, likely with a strong 611 

influence of SAW coming through the Mernoo Gap at the western end of Chatham Rise 612 

(Nelson et al. 2000b) (Fig. 1). The lithology and benthic foraminiferal paleo-water depth 613 

signal present within MIS3 share affinity with those within the upper MIS2 sediments 614 

(~10-56 mbsf; Fig. 4); contrastingly however, there are little to no reworked 615 

Miocene/Pliocene foraminifera (Fig. 6).  616 

The MIS2/3 transition at Site U1520 marks a dramatic down-core reduction in 617 

SARs to a mean value of 0.78 m/kyr in MIS3 (Figs. 4 and 7), comparable with MIS1 618 

(mean 0.86 m/kyr). The bed RI ranges from ~100-200 yrs between 30-40 ka, increasing 619 

to 1000 yrs prior to 40 ka (Fig. 5). The mean bed RI increases to ~231 yrs (cf. 322 yrs in 620 

MIS1 and 49 yrs in MIS2). Figures 5 and 8 illustrate that sea level in MIS3 ranged from 621 

about -80 m below present at 40 ka to about -110 m below present at the MIS2/3 622 

transition. These sea levels during MIS3 appear to have been favourable for silty sediment 623 

supply to the Hikurangi Trough floor.  624 

Global Context and Implications of SARs in Subduction Margins  625 

We compiled SAR data at core sites from global subduction trenches for 626 

comparison with Site U1520 in the northern Hikurangi Trough (Fig. S10 and Table S6). 627 

Numerous gravity core studies over timeframes of <17 ka report mean SARs of <2 m/kyr, 628 

which show a decrease in rates to <0.2 m/kyr into the Holocene (e.g., Nelson, 1976; 629 

Stanley et al. 1978; Blumberg et al. 2008; Ratzov et al. 2010; Goldfinger et al. 2012, 630 
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2017; Pouderoux et al. 2012a, b; Polonia et al. 2013; Paull et al. 2014; Patton et al. 2015; 631 

Ikehara et al. 2016; Hsiung et al. 2021). Notably however, Bourget et al. (2010) reported 632 

little change in the bulk SAR off Makran where rates of mainly clastic and minor 633 

carbonate sedimentation have remained between 1.0-1.7 m/kyr from 0-35 ka. However, 634 

very few studies have presented high-resolution (103-104 yrs) assessments of SARs 635 

spanning MIS1-3 with notable exceptions from Knudson and Hendy (2009) who 636 

demonstrated a 6-fold increase in SAR on the distal Nitinat Fan, Cascadia (~0.3 m/kyr 637 

<10 ka to 1.9 m/kyr 16-74 ka), and Blumberg et al. (2008) who suggested a 15-fold 638 

increase in SAR (~0.1 m/kyr <18 ka to 1.5 m/kyr 18-35 ka) from the Chilean Trench. 639 

These studies demonstrate that despite regional and site-specific differences in absolute 640 

SARs, the order of magnitude increase in SAR during the LGM at Site U1520 is not 641 

unique.  642 

SARs documented at core sites in trenches comparable to the ~10 m/kyr MIS2 rate 643 

determined at northern Hikurangi IODP Site U1520 (Table S6) are unusual. It appears 644 

that specific environmental factors are required to deliver this high volume of sediment 645 

to the trench (e.g., Bernhardt et al. 2017; McArthur and Tek, 2021). Zuffa et al. (2000) 646 

reported exceptional SARs of up to 15 m/kyr between 19-35 ka on the outer Astoria Fan 647 

off Cascadia. These rates result from the emplacement of extremely thick (up to 60 m) 648 

beds on the incoming plate due to Jökulhlaups (glacial outbursts) of glacial lakes in the 649 

western United States. SARs of up to 16 m/kyr during the interval 8-13 ka on the Eel Fan 650 

off southern Cascadia were reported by Paull et al. (2014). They demonstrated that: (1) 651 

these rates reflect the former direct connection of the Eel River with the Eel Canyon head, 652 

enhancing the role of the canyon as an efficient source to sink conduit, and (2) the sub-653 

decadal (7 yrs) average turbidite frequency indicates triggers other than earthquakes, 654 

likely including river flood-discharge hyperpycnal flows.  655 
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In contrast, the long-term average SARs at northern Hikurangi Site U1520 (2.4 656 

m/kyr over 45 ka, this study; ~0.7 m/kyr over ~500 ka, and ~0.5 m/kyr over ~780 ka, 657 

Barnes et al. 2019) (Table S6) appear to be comparable to several other trenches (Fig. 658 

S10) (e.g., von Huene and Kulm, 1973; Westbrook et al. 1994; Harris et al. 2013; Hsiung 659 

et al. 2015; McNeill et al. 2017; Underwood and Pickering, 2018; Pickering et al. 2020). 660 

Collectively, these data indicate that: (1) SARs over long-term timeframes of 105-106 661 

years do not capture high variability of climatic-eustatic cyclicity at 103-104 years, (2) 662 

maximum SARs of ~ 10 m/kyr in MIS2 recorded at Site U1520 are very high, and (3) 663 

recent SARs at Site U1520 over 45 ka exceed longer term averages over ~800 ka 664 

(Crundwell and Woodhouse, Submitted; Noda et al. Submitted). 665 

Conclusions 666 

Dating and age modelling reveals the upper 110 m of siliciclastic sediments in the 667 

northern Hikurangi Trough at IODP Site U1520 spans the entirety of MIS1, 2, and the 668 

latter part of MIS3 (0-45 ka). The sedimentary succession is dominated by stacked sand-669 

silt gravity flow deposits up to ~6.4 m thick, comprising abundant reworked material, 670 

interspersed with minor macroscopic volcanic tephra. The mean bed RI varies from ~322 671 

yrs in MIS1, ~49 yrs in MIS2, and ~231 yrs in MIS3. Large (6-fold) and abrupt variations 672 

in SAR are recorded across MIS transitions, with peak rates of ~10 m/kyr during the 673 

LGM, and <1m/kyr during MIS1 and 3.  674 

We infer that the very high glacial SARs at northern Hikurangi Site U1520 675 

resulted primarily from a combination of (1) increased erosion in some terrestrial 676 

catchments and associated increase in fluvial sediment supply, (2) a critical lowering of 677 

eustatic sea level that was accompanied by increased charging of submarine canyons and 678 

gully systems (including the local Māhia Canyon and regional Cook Strait,  Kaikōura and 679 

Pegasus canyons feeding the southern Hikurangi Channel), and (3) increased frequency 680 
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of margin-bypassing (e.g., Stevenson et al. 2015) turbidity currents as suggested by 681 

minimum RI values. The balance among different point sources and routing directions 682 

may have changed over time, but the Hikurangi Trough floor is a good example of a 683 

sustained system (Covault and Graham, 2010), characterized by frequent gravity-flow 684 

events occurring during both highstand and lowstand conditions. 685 

A global comparison of trench settings indicates that the northern Hikurangi LGM 686 

SARs at IODP Site U1520 are equivalent to the highest recorded linear rates from core 687 

sites in other trenches, and that average SARs determined over long-term timeframes of 688 

105-106 years may not capture potential high variability at climatic-eustatic cyclicity over 689 

103-104 years.  690 
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Sample ID Core 

Sampling range 

(m) 

14C age 

(yr) 

2σ error 

(yr) 

Cal. age 

(median in 

yr BP) 

2σ range (cal. 

yr) 

Upper Lower 

NZA68060 1H4W 5.21 5.29 8464 38 8695 8452 – 8966 

NZA68061 2H1W 6.48 6.56 10,085 45 10,828 10,549 – 10,995 

NZA68062 2H4W 10.82 10.9 13,513 67 15,283 14,973 – 15,607 

NZA68063 4H6W 33.01 33.05 17,148 105 19,650 19,267 – 20,046 

NZA68790 6H4W 49.095 49.145 18,532 124 21,347 20,902 – 21,811 

NZA68791 7H3W 57.08 57.12 20,944 168 24,038 23,647 – 24,565 

NZA69011 11H4W 96.2 96.26 25,652 328 28,901 28,154 – 29,722 

NZA69516 12HCC 106.2 106.32 39,185 1679 42,440 39,932 – 45,971 

Table 1. Radiocarbon datums used to construct the U1520 age model. 1534 

 1535 

Core 

Sampling range (m) 

Tephra 

Cal. age 

(median in yr 

BP) 

2σ error 

(cal. yr) Upper Lower 

1H1A 1.19 1.21 Taupo 1718 10 

1H3A 3.17 3.33 Waimihia 3382 50 

1H3A 3.7 3.72 Whakatane 5542 48 

1H4A 5.41 5.44 Rotoma 9472 40 

2H1A 6.12 6.17 Opepe 10,004 122 

Table 2. Primary tephra datums and depths used to construct the U1520 age model. 1536 

 1537 

 1538 
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1539 

Figure 1. Map and cross section of the Hikurangi Subduction Margin. TVZ = Taupo 1540 

Volcanic Zone, NIDFB = North Island Dextral Fault Belt. Adapted from Lewis et al. 1541 

(1998), Barnes et al. (2010), and Pedley et al. (2010). Shaded pink polygon with orange 1542 

arrows denote the East Auckland Current (EAUC) and East Cape Current (ECC). Grey 1543 

arrows denote D’urville Current (dUC) and Wairarapa Coastal Current (WCC). Light 1544 

grey polygon with northward arrow denotes the Lower Circumpolar Deep Waters 1545 
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(LCDW), part of the Deep Western Boundary Current. Bold black arrows are relative 1546 

Pacific-Australian plate motion rates. 1547 

 1548 
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1549 

Figure 2. A. Regional bathymetric map of north eastern HSM showing major canyons 1550 
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and channels, surface-circulation oceanographic currents, IODP Expedition 372-375 1551 

sites, and Marion Dufresne core locations denoted by MD. LGM = Last Glacial 1552 

Maximum. B. Regional seismic section 05CM-04 (Bell et al. 2010; Barker et al. 2018; 1553 

Barnes et al. 2020) crossing the northern Hikurangi Trough over IODP Site U1520, 1554 

showing the distribution of the studied Unit I sequence and other major lithological 1555 

horizons.  1556 

 1557 

1558 

Figure 3. Example core photographs. CT scans and sedimentary logs from cores A. 375-1559 

U1520D-1H-1A from 0-1.51 mbsf, B. 375-U1520D-3H-5A from 21.53-23.06 mbsf, and 1560 

C. 375-U1520D-7H-2A from 55.01-56.52 mbsf. Bed boundaries are highlighted on core 1561 

photographs as blue lines. 1562 

 1563 
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1564 

Figure 4. Log of lithology showing CT scanned intervals, u-channel intervals, AMS-14C 1565 

dates, tephras, age-depth, sedimentation rates, beds per metre, stable isotopes with 1566 

interpreted LGM (Lorrey and Bostock, 2017), relative sea level (Spratt and Lisiecki, 1567 

2016), isotope stages (Lisiecki and Raymo, 2005), % planktonic foraminifera as an 1568 

indicator of oceanicity (Hayward et al. 1999), and paleo-water depth from benthic 1569 

foraminifera indicator species (Hayward et al. 2019).  1570 

 1571 
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1572 

Figure 5. Log of marine isotopes stages, relative sea level (Spratt and Lisiecki, 2016), bed 1573 

recurrence interval (RI), beds per kyr, and bed thickness (cm). LGM = last glacial 1574 

maximum, datum colours, red = tephra, blue = AMS-14C.  1575 

 1576 
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1577 

Figure 6. Log of down-core MIS and LGM extent, % Miocene/Pliocene reworking, and 1578 

abundance profiles of selected planktonic foraminiferal assemblage categories of 1579 

Crundwell et al. (2008) in Unit I.  1580 

 1581 
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1582 

Figure 7. Comparative age-depth plots of A. sites U1520D, MD06-3002, MD06-3003, 1583 

MD06-3008, and MD06-3009, and B. sites U1520D and MD97-2121. Data from this 1584 

study and Pouderoux et al. (2012a). 1585 

 1586 
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1587 

Figure 8. Comparative plot of relative sea level (Spratt and Lisiecki, 2016) and sediment 1588 

accumulation rate demonstrating the possible positioning of the regional sea level 1589 

threshold (modified from Shorrock, 2021). 1590 


