
This is a repository copy of Measuring When a Music Generation Algorithm Copies Too
Much: The Originality Report, Cardinality Score, and Symbolic Fingerprinting by
Geometric Hashing.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/190005/

Version: Published Version

Article:

Yin, Zongyu, Reuben Paris, Federico orcid.org/0000-0003-1330-7346, Stepney, Susan
orcid.org/0000-0003-3146-5401 et al. (1 more author) (2022) Measuring When a Music
Generation Algorithm Copies Too Much: The Originality Report, Cardinality Score, and
Symbolic Fingerprinting by Geometric Hashing. SN Computer Science. 340. ISSN 2661-
8907

https://doi.org/10.1007/s42979-022-01220-y

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Vol.:(0123456789)

SN Computer Science (2022) 3:340

https://doi.org/10.1007/s42979-022-01220-y

SN Computer Science

ORIGINAL RESEARCH

Measuring When a Music Generation Algorithm Copies Too Much: The
Originality Report, Cardinality Score, and Symbolic Fingerprinting
by Geometric Hashing

Zongyu Yin1 · Federico Reuben2 · Susan Stepney1 · Tom Collins2

Received: 11 September 2021 / Accepted: 19 May 2022

© The Author(s) 2022

Abstract

Research on automatic music generation lacks consideration of the originality of musical outputs, creating risks of plagiarism

and/or copyright infringement. We present the originality report—a set of analyses that is parameterised by a “similarity

score”—for measuring the extent to which an algorithm copies from the input music. First, we construct a baseline, to deter-

mine the extent to which human composers borrow from themselves and each other in some existing music corpus. Second,

we apply a similar analysis to musical outputs of runs of MAIA Markov and Music Transformer generation algorithms,

and compare the results to the baseline. Third, we investigate how originality varies as a function of Transformer’s training

epoch. Fourth, we demonstrate the originality report with a different “similarity score” based on symbolic fingerprinting,

encompassing music with more complex, expressive timing information. Results indicate that the originality of Transfomer’s

output is below the 95% confidence interval of the baseline. Musicological interpretation of the analyses shows that the Trans-

former model obtained via the conventional stopping criteria produces single-note repetition patterns, resulting in outputs of

low quality and originality, while in later training epochs, the model tends to overfit, producing copies of excerpts of input

pieces. Even with a larger data set, the same copying issues still exist. Thus, we recommend the originality report as a new

means of evaluating algorithm training processes and outputs in future, and question the reported success of language-based

deep learning models for music generation. Supporting materials (data sets and code) are available via https:// osf. io/ 96emr/.

Keywords Music generation · Deep learning · Markov model · Originality evaluation

Introduction

A quotation from Igor Stravinsky reads: “A good composer

does not imitate, he steals” [45]. The quotation, while made

in relation to a serial work, reflects Stravinsky’s general

interest in incorporating melodies, harmonic language, and

forms from previous periods into new works such as his Pul-

cinella Suite (1922). Stravinsky uses the term “imitate” with

a negative connotation: he would rather steal, say, a melody

wholesale and rework it in a contemporary piece, than he

would make mere allusions to (imitate) the work of past or

contemporary composers. With respect to the current paper’s

context—the rise of AI music generation algorithms—we

instead use the term “imitate” with a positive connotation

and the term “steal” with a negative connotation. As we

show, some deep learning algorithms for music generation

[19] are copying chunks of original input material in their

output, and we would count it as a success if an algorithm—

from the deep learning literature or otherwise—could

This article is part of the topical collection “Evolutionary Art

and Music” guest edited by Aniko Ekart, Juan Romero and Tiago

Martins.

 * Tom Collins

 tom.collins@york.ac.uk

 https://mstrcyork.org

 Zongyu Yin

 zy728@york.ac.uk; zongyu.yin@outlook.com

 Federico Reuben

 federico.reuben@york.ac.uk

 Susan Stepney

 susan.stepney@york.ac.uk

1 Department of Computer Science, University of York, York,

UK

2 Music, Science and Technology Research Cluster,

Department of Music, University of York, York, UK

http://orcid.org/0000-0001-8709-8829
http://orcid.org/0000-0003-3146-5401
http://orcid.org/0000-0001-7880-5093
https://osf.io/96emr/
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-022-01220-y&domain=pdf

 SN Computer Science (2022) 3:340 340 Page 2 of 18

SN Computer Science

generate output that sounds like (imitates)—but does not

copy from (steal)—pieces in a specific style.

Research on artificial intelligence (AI) has achieved vari-

ous feats of simulating human perception (e.g., [17]) and

production (e.g., [32]). A number of music generation mod-

els have been developed in recent decades, many predating

or outside of deep learning [9, 38] and some espousing a

belief in the superiority of deep learning [14, 33]. We have

observed, with increasing alarm, that deep learning papers

on music generation tend to rely solely or primarily on loss

and accuracy as a means of evaluation [19, 33]. If there are

listening studies, they employ listeners with inadequate

expertise, and there is little or no musicological analysis

of outputs, and no analysis of whether generated material

plagiarises (steals from) the training data. As an increasing

number of musicians are now incorporating AI into their

creative workflows, checking an AI’s output for plagiarism

is now a paramount challenge in this area. To this end, this

paper considers the topic of automatic stylistic composi-

tion—a branch of automatic music generation, where there

is a stated stylistic aim with regards to the algorithm output,

and a corpus of existing pieces in the target style.

In this context, we aim to establish a framework for

checking the originality of auto-generated music with a

specified style. We introduce and exemplify the originality

report as a means of measuring when a music generation

algorithm copies too much. We discuss how to calculate a

distribution for the extent to which human composers bor-

row from themselves or each other in some corpus of pieces

in a specific style; then we discuss how to use this as a base-

line while moving a sliding window across a generated pas-

sage and measuring originality as a function of time in the

generated material. The originality report is parameterised

by a “similarity score”, so the framework is adaptable to

measures that are more appropriate to certain characteristics

of different data sets. We demonstrate the originality report

with case studies of different similarity scores: the cardinal-

ity score and the fingerprinting score. The two measurement

methods are used on different data sets, which differ mainly

in terms of containing expressive timing data or not. The

report is complemented by a musicological analysis of out-

puts from prominent deep [19] and non-deep [9] learning

models. For the deep learning model, we also investigate

how originality varies with training epoch.

Related Work

Music Plagiarism

Music plagiarism is said to have occurred when there is

demonstrable and perceivable similarity between two songs

or pieces of music (hereafter, pieces), and when there is

circumstantial evidence to indicate that the composer(s) of

the latest piece would have been familiar with the existing

piece. Stav [36] describes how the musical dimensions of

melody, harmony, and rhythm contribute to music plagia-

rism, and gives an example-based explanation of how these

dimensions have been used in handling music copyright dis-

putes. Based on the features of melodies involved in selected

plagiarism cases, Müllensiefen and Pendzich [26] derive an

algorithm for predicting the associated court decision, and it

identifies the correct outcome with 90% success rate. Recent

failed or overturned cases also indicate that while music

similarity and circumstantial evidence are necessary for

delivering a verdict in favour of plagiarism having occurred,

they are not sufficient, in that the distinctiveness of the music

with respect to some larger corpus plays an important role

too [6, 11, 28]: melodies that share contours and begin and

end on the same scale steps may well point to potential cases

of plagiarism, but it is likely that other melodies will have

these same characteristics too [28]; drum beats, where the

initial space of possibilities is smaller compared to pitched

material, have been less successful as bases for music pla-

giarism convictions [30].

Recently, discussions on ethical issues surrounding AI

have attracted widespread attention. Collins et al. [10] use

a note-counting approach to show that twenty bars of com-

puter-generated musical output from an algorithm by Cope

[13] have 63% coincidence in pitch-rhythm combinations

with a piece by Frédéric Chopin. In [37], a music generation

algorithm’s output and its tendency to copy original input

pieces motivates the posing of open questions with respect

to AI and music copyright law. As such generative models

learn from existing music data, the copyright status of the

output is unclear. In addition, the evaluation of these mod-

els’ outputs tends to be narrow; it does not involve any kind

of originality analysis with respect to the human-composed

pieces used for training. This creates copyright or plagiarism

infringement risks for musicians who are using these algo-

rithms as part of their creative workflows.

Cognitive–Computational Approaches to Music
Similarity

Largely outside of the role played by similarity in determin-

ing cases of music plagiarism, the systematic study of music

similarity has a relatively long lineage [35] and continues

to be of interest to scholars [41]. One challenging aspect of

studying the phenomenon is that two excerpts of music can

be similar to one another in myriad ways (genre, instrumen-

tation, timbre, tempo, dynamics, texture, form, lyrics, and

mentioned above, melody, harmony, rhythm). This challenge

interacts with variability in use cases too. Take a single para-

digm, such as query-based search in the form of music iden-

tification, which relies on some implementation of music

SN Computer Science (2022) 3:340 Page 3 of 18 340

SN Computer Science

similarity. Even for this one paradigm, there are various use

cases: Shazam addresses the need for exact matching [42],

a variant of SoundHound addresses query-by-humming (the

user sings or hums at the interface and expects “success-

ful” results),1 and Folk Tune Finder allows lyrics or notes

to be input and, as with SoundHound’s query-by-humming

variant, the user’s expectation of Folk Tune Finder is that

the sought-after song will be found, or at least something

relevant or interesting will be returned.2 Of these use cases,

only the one addressed by Shazam is clear cut—the other

two are made more challenging by variation in cognitive

and music-production capabilities of users, and there not

necessarily being one “right answer”.

Here, we are concerned with a more reductive view of

music similarity—the type of note/fingerprint-counting

approaches mentioned above. This is the characterisation

of music similarity that a teacher might employ if a stu-

dent’s composition appears to draw too heavily on or copy

directly from a known piece. For instance, “Why do 90% of

the pitch-rhythm combinations in bars 1–20 of your piece

occur also in this string quartet movement by Haydn?!” The

representations and calculations required to reason this way,

especially in algorithmic fashion, began in [22] and have

been implemented in various forms since [1, 6, 39]. In the

next section, we define two similarity measures based on

the P3 algorithm [39] and the fingerprinting algorithm [1].

The fingerprinting approach in music shares some com-

monalities with image matching [23] and perceptual hashing

[43, 46] in computer vision. Lowe’s [23] involves extracting

distinctive features from images and using them to obtain

the similarity to target images. This matching technique

is shown to be robust to the affinity, noise, and change in

viewpoint. Wang et al. [43] develop a perceptual image hash

method, which generates hash codes based on image features

to address the problem of content authentication (or, simi-

larly, copyright infringement in images and videos). Zauner

[46] proposes a benchmark framework for perceptual image

hash functions, implemented in open-source software called

pHash.3

We finish this section of the review with some remarks

about choices of music representation and comparison meth-

ods. In general, researchers take sequential (e.g., [11, 12])

or geometric (e.g., [6, 25]) approaches to the representa-

tion and comparison of music. There are pros and cons to

each approach. With the sequential approach, if one chooses

to focus on MIDI note numbers (MNNs) alone and two

melodies have the same MIDI notes (up to transposition)

but different rhythms, a sequential representation (specifi-

cally, difference calculations between consecutive notes)

will recognise these melodies as similar, whereas a geo-

metric representation may not. However, with a sequential

representation, it is less obvious how to handle polyphony

(multiple notes beginning and ending at possibly different

Fig. 1 Examples of symbolic music representations, starting from

the same excerpt. a Half a bar of music; b the so-called piano-roll

representation indicating some of the music’s numeric properties; c a

four-dimensional representation of the music as a set of points; d one

sequential representation that handles polyphony; e another sequential

representation that handles polyphony

1 https:// www. midomi. com/.
2 https:// www. folkt unefi nder. com/. 3 https:// www. phash. org/.

https://www.midomi.com/
https://www.folktunefinder.com/
https://www.phash.org/

 SN Computer Science (2022) 3:340 340 Page 4 of 18

SN Computer Science

times), whereas a geometric representation can encode

a polyphonic piece as easily as it encodes a monophonic

piece. For instance, in the sequential representation shown

in Fig. 1d (which is Music Transformer’s [19] chosen input

representation, see next section), the tokens encoding the

occurrence of the F ♯ 4 and second F ♯ 5 are ten indices apart,

even though the notes sound together. Therefore, any param-

eter that allows these events to be recognised as related has

to be large enough to span this gap in indices. Moreover,

an embellished (or, on the other hand, reduced) variation

of some melody may not be recognised by the sequential

representation as similar, because the relationships between

adjacent notes will be altered by the added or removed notes,

even though the “melodic scaffold” remains intact. A geo-

metric representation may be more robust to this kind of

variation.

Music Generation Models

Recently, a large number of deep learning models have been

proposed for symbolic music generation [15, 19, 33]. Several

of them regard music as a sequence of tokens, where genera-

tion involves predicting the next token based on previous

tokens [19, 33]. Oore et al. [29] introduce a way to serial-

ise polyphonic music and apply recurrent neural networks

(RNNs) to generate output with expressive timing and veloc-

ity (loudness) levels. Huang et al. [19] use this same seriali-

sation to adapt a transformer model [40] to generating music.

Benefiting from the self-attention mechanism, it achieved

lower validation loss compared to the RNN of [29] and also

longer term stylistic consistency than previous RNNs-based

approaches. In other work, based on the assumption that

each musical output can be sampled from a normal distri-

bution, [33] use variational autoencoders (VAEs) combined

with long short-term memory networks (LSTMs). The appli-

cation of generative adversarial networks (GANs) and con-

volutional neural networks (CNNs) to music generation has

been explored also [15], using the piano-roll representation

as in Fig. 1(b) and treating music as images that can be gen-

erated in a hierarchical manner.

An issue with all the above deep learning approaches to

music generation is that there has been inadequate consid-

eration of music plagiarism in the algorithms’ outputs. One

user of the Music Transformer algorithm, Ruiz, writes:

The thing is that I ran the code on my machine and it

overfits. It needs a way to check that it isn’t stealing

from the data set say no more than 6 or 8 continuous

notes. If it can’t do that it’s useless. I mean your piano

data set is huge but after running the program for 20

times I found it composes note by note music of well

known classical melodies. That’s not OK. That should

be avoided [34].

Simon, a member of the Google Magenta team, replies:

In the checkpoints we’ve released, we tried hard to

reduce the ability of the model to perform pieces

from the train set. In addition, in the samples we

released, we tried hard to remove any samples that

are too similar to an existing piece of music. But

it’s difficult to get to 100% on these for a number of

reasons, including the lack of a clear definition for

“too similar” [34].

Members of the general public can make use of Music

Transformer for laudable reasons—Google Magenta have

open-sourced the code—but their attempt to guard against

music plagiarism appears problematic, and whatever con-

stitutes “trying hard” in the above quotation has not been

open-sourced, leaving general musicians who use Magenta

algorithms in their creative workflows at risk of copyright

infringement.

A non-deep learning approach to music generation that

uses Markov models, pattern discovery, and pattern inherit-

ance to ensure that generated material evidences long-term,

hierarchical repetitive structure, also constitutes the first use

of an originality or creativity analysis to assess the extent

to which the model plagiarises human-composed works

by Bach and Chopin on which it is based [9]. This algo-

rithm, called MAIA Markov, uses the representation given

in Fig. 1e, where each state consists of a beat of the bar and

the MNNs relative to tonal centre occurring on that beat.

The remainder of this paper studies two of the most

promising models for music generation, Music Trans-

former [19] and MAIA Markov [9], and focuses on the

concept of originality, and methodologies for measuring

it, which are then implemented and discussed.

Methods

This section introduces the method we use to analyse

the originality of one set of symbolically encoded music

excerpts relative to another. We begin by defining the two

sets of excerpts: the queries (the excerpts we are testing for

originality), Q , and the targets (the excerpts we are testing

against), R . Depending on the use case, Q may contain

one or more excerpts from one or more pieces of music,

and R usually contains overlapping excerpts from multiple

pieces of music. The use cases for wanting to produce an

originality report, which we explore further and exemplify,

are as follows:

1. The user wants to determine the “baseline” level of orig-

inality within a corpus C . In this instance, the queries

SN Computer Science (2022) 3:340 Page 5 of 18 340

SN Computer Science

Q are a (pseudo-)random sample from C , drawn from

pieces Q∗ , and the targets R are the set complement,

R = C ⧵ Q
∗.4 The outcome is a sample of N originality

scores, from which estimates of the underlying distribu-

tion can be made, such as mean originality and confi-

dence intervals about this mean.

2. The user wants to determine the level of originality of an

algorithm’s output relative to a corpus whose contents

the algorithm is designed to imitate. In this instance, the

queries Q would be overlapping excerpts of the algo-

rithm’s output, and we plot the originality of elements of

Q as a function of time in the output, relative to elements

of the target corpus R . As well as plotting, we could also

compare the mean or minimum originality found for the

algorithm output to the distribution mentioned in the

previous point, in which case the distribution acts as a

“baseline” and can be used to address the question, “Is

this algorithm’s output sufficiently original?”.

3. The user wants to incorporate originality reports into

the modelling process itself, to analyse or steer/halt that

process. The details are similar to the previous point,

but the deployment of the method is during training or

generation rather than after the fact.

Originality, Similarity, and Set of Points

To implement the originality reports that are associ-

ated with each of the use cases, it is necessary to employ

at least one similarity measure—that is, some function

c ∶ Q × R → [0, 1] , which takes two symbolically encoded

music excerpts q and r and returns a value in the range [0, 1],

indicating q and r are relatively similar (value near one) or

dissimilar (value near zero). The measure ought to be com-

mutative, c(q, r) = c(r, q) , and have a identity-like property

that c(q, q) = 1 . The choice of similarity measure influences

subsequent decisions with respect to addressing questions,

such as “Is this algorithm’s output sufficiently original?”

Here we define the ideas of use cases and the originality

report, and illustrate them in the context of two particular

similarity measures: the cardinality score and the finger-

printing score.

Each originality report centres on calculating an origi-

nality score, OS, for some query q in relation to the set of

targets R . In particular, we find the element r ∈ R that max-

imises the similarity measure c(q, r), and subtract it from 1:

So the originality score OS ∶ Q × ℙR → [0, 1] , where ℙR

is the power set of R , is also a measure in the range [0, 1].

A value near one indicates query q is original relative to set

R ; a value near zero indicates it is unoriginal. If q is an exact

copy of something that occurs in R , then OS(q, R) = 0.

Cardinality Score

One particular similarity measure is the cardinality score, cs

[7, 20, 39]. Its strength is its simplicity and minimal param-

eter choices; its weakness is that if two sets of points (rep-

resenting two note collections) differ from one another only

by small but non-rigid amounts in one or more dimensions,

cs will be near-zero, contrary to perception of the similarity

between the two note collections still being high. The next

section, on symbolic fingerprinting by geometric hashing,

introduces an alternative similarity measure that addresses

this weakness, but entails a larger number of parameter

choices.

To calculate cs, we represent each music excerpt as a

set of points containing the ontime5 (in crotchet beats) and

numeric pitch representation (morphetic pitch number [24])

of each note.6 So an element of the query set Q ∶ ℙ(N × N)

is represented as

and an element of the target set R ∶ ℙ(N × N) is represented

as

An example of this representation is provided in

Fig. 2c and d. The bottom-left point in (c) has the value

(x1 = 468, y1 = 53) , representing an ontime at the begin-

ning of the excerpt (x
1
= 468) and the morphetic pitch for

C3 (y
1
= 53). The viola and cello have coincident notes

at this moment, which project to a single point in our

representation.

Letting t be the translation vector that gives rise to the

maximum cardinality of the intersection (q + t) ∩ r , we

define the cardinality score as

where |q| is the size of the set of points q. We demonstrate

calculations of the cardinality score with reference to the

(1)OS(q, R) = 1 − max{c(q, r) ∣ r ∈ R}

(2)q = {(x1, y1), (x2, y2),… , (x
n
, y

n
)}

(3)r = {(x�
1
, y

�
1
), (x�

2
, y

�
2
),… , (x�

n�
, y

�
n�
)}

(4)cs(q, r) = |(q + t) ∩ r|∕max{|q|, |r|}

4 We distinguish between Q and Q∗ , because if some excerpt q ∈ Q

repeats or substantially recurs elsewhere in the piece Q∗ from which

it is drawn, and we leave this repetition in the set of targets R , then q

would be considered trivially unoriginal. Therefore, it is sensible to

hold out entire pieces from which queries are selected.

5 Ontime is the start time of a note counting in crotchet beats, with 0

for bar 1 beat 1 [5].
6 We use morphetic pitch in preference to MNNs here, because the

former is robust to major/minor alterations.

 SN Computer Science (2022) 3:340 340 Page 6 of 18

SN Computer Science

examples in Fig. 2. In the top half of this figure, there are

two excerpts of string quartets: (a) is by Mozart and (b) is by

Haydn. Considering the set of points corresponding to bars

119 of the Mozart and 155 of the Haydn (second bars in both

Fig. 2a, b, with corresponding points shown as triangles), the

vector t = (−144,−2) translates 15 points from the Mozart

excerpt to points in the Haydn, and the more numerous of

the two sets is the Haydn excerpt, with 19 points, so the

cardinality score is cs(q, r) = 15∕19 ≈ 0.7895 . As a second

example, considering larger point sets corresponding to

bars 118–119 of the Mozart and 154–155 of the Haydn, the

vector t = (−144,−2) translates 18 points from the Mozart

excerpt to points in the Haydn, and the more numerous of

the two sets is the Mozart excerpt, with 52 points, so the

cardinality score is cs(q, r) = 18∕52 ≈ 0.3462.

Symbolic Fingerprinting Using Geometric Hashing

Another approach for similarity measuring is symbolic fin-

gerprinting [1, 6, 42]. Unlike the cardinality score above,

where the similarity is measured notewise allowing for one

rigid transformation vector corresponding to time and/or

pitch shifts, the symbolic fingerprinting approach generates

hash entries from triples of notes that satisfy various con-

straints of pitch and time differences, and then measures

the similarity via matching query entries to those in lookup

table, when both are encountered at the corresponding start

time (refer to hereafter the start timing counting in seconds).

The selection of triples, hash construction, and matching

process each confer robustness to non-rigid differences

between two note collections, as we describe and demon-

strate below, and which helps increase the perceptual valid-

ity of symbolic fingerprinting using geometric hashing as a

similarity measure compared to cardinality score.

For geometric hashing, we again represent music excerpts

as sets of points (see section “Cardinality Score”), and store

the ratio (as similarity) of the number of matching hashes

across a data set of pieces to the number of hashes generated

by a query.7 Entries in the lookup table are constructed from

target excerpts in advance. We first prepare each excerpt as

a set of (start time, pitch) pairs (sorted by ascending start

time), and then we generate hash entries of “valid triples”

searched via Algorithm 1. A valid triple contains three pairs

of start times and pitches that satisfy time/pitch-difference

constraints. For example, the triple V is denoted as:

Fig. 2 Visualisation of the cardinality score between two excerpts.

a A 2-bar excerpt from Mozart; b a 2-bar excerpt from Haydn;

c mapping notes in the excerpt a to a set of points; d mapping notes

in the excerpt b to a set of points. For clarity, notes in the first/second

bars are shown as circles/triangles

7 The implementation of fingerprinting algorithm is contributed by

[8].

SN Computer Science (2022) 3:340 Page 7 of 18 340

SN Computer Science

where each v has two attributes start and pitch. Regarding

the pitch dimension, we obtain the pitch difference between

two adjacent points, denoted as pd
0
 and pd

1
:

We also calculate the intervals between start times, and

obtain the ratio tdr instead of time difference, as tdr sup-

ports tempo-independent search (in other words, as per [22],

the effect of scaling up/down the start time values can be

mitigated or factored out entirely):

We define a triple being valid as its pd
0
 , pd

1
 and tdr being in

a certain range. We then encode pd
0
 , pd

1
 and tdr into a string

as the hash entry, with the following steps:

1. For each of pd
0
 and pd

1
 , insert a + or − sign indicating

a positive and negative relationship, and the absolute

value of the pitch difference (e.g., +02, −10);

(5)V = {v0, v1, v2}

(6)pd
0
= v

1
.pitch − v

0
.pitch

(7)pd
1
= v

2
.pitch − v

1
.pitch

(8)td
0
= v

1
.start − v

0
.start

(9)td
1
= v

2
.start − v

1
.start

(10)tdr =

{

td
0
∕td

1
if td

0
≥ td

1

td
1
∕td

0
if td

1
> td

0

2. And then insert + if td
0
≥ td

1
 and − if td

1
> td

0
 , preced-

ing the float number of the tdr rounded to one decimal

place.

For example, the entry string shown at the first item in

Fig. 3c is +7 + 10 + 4.0 , because the interval from D3 to

D4 is +7 MPNs, and the interval from D4 to G5 is +10

MPNs; the time difference between the D3 and D4 is 1

crotchet beat, and the time difference between the D4 and

G5 is 0.25 crotchet beats, which yields tdr = +4.0 as the

time difference ratio.

Algorithm 1 consists of nested loops aiming to find

valid triples, which are then encoded into an entry and

inserted into a lookup table. The outer loop iterates

through each point, denoted as v
0
 . The nearest inner loop

iterates through the points after v
0
 , during which we apply

the following constraints to find the second point v
1
 : pitch

difference between v
0
 and v

1
 , pd

0
 , is in the range between

pMin (minimum pitch difference, e.g., 1) and pMax (maxi-

mum pitch difference, e.g., 6); the start time difference

between v
0
 and v

1
 , td

0
 is in the range between tMin (mini-

mum time difference, e.g., 0.5) and tMax (maximum time

difference, e.g., 2). If the conditions fail, the loop skips

to the next iteration. The most inner loop further iterates

through points after v
1
 , and then applies the same con-

straints to find v
2
 to obtain pd

1
 and td

1
.

Fig. 3 Entries generated for two excerpts. a A 2-bar excerpt from Mozart; b a 2-bar excerpt from Haydn; c and d a list of entries generated fol-

lowing the corresponding triples of (start time, pitch)-pairs in the excerpt (a) and (b)

 SN Computer Science (2022) 3:340 340 Page 8 of 18

SN Computer Science

With a query q, we take the point-set representation and

apply the same method as above to obtain entries. Each query

entry is then used to match with the target entries saved

in the lookup table, returning a point set {(a1, b1), (a2, b2),

… , (a
M

, b
M
)} of (target start time, query start time)-pairs. In

a scatter plot of such data, true positives appear as (approxi-

mately) diagonal lines. Thus, we apply a simple transforma-

tion (e.g., (a
i
, b

i
) → (a

i
, a

i
− b

i
)) and calculate a histogram

over this transformed data. Supposing there are k unique

entries generated from a query, we calculate the similarity

ratio to a certain target by dividing the number of unique

matches h in a histogram bin by k.

Originality Reports

The data sets we use in this paper are:
8 See https:// osf. io/ 96emr/ for the data sets, algorithms, and analyses.
9 The difference between Classical and classical is meaningful. The

large-“c” “Classical” period refers to Western art music composed in

the period 1750–1830, wherease the small-“c” “classical” period sub-

sumes this, comprising the period between 1650–1920.

1. 71 MIDI encodings of Classical string quartet scores

(sheet music) from the website KernScores.8 This data

set was prepared according to the following filters and

constraints:

– string quartet composed by Haydn, Mozart, or Bee-

thoven;

– first movement;

– fast tempo, e.g., one of Moderato, Allegretto, Alle-

gro, Vivace, or Presto.

2. 1276 MIDI encodings of performances on Yamaha

Disklaviers by professional pianists of classical works

from J.S. Bach to Alban Berg, from the MAESTRO data

set version 3 [18].9 This data set is as follows:

https://osf.io/96emr/

SN Computer Science (2022) 3:340 Page 9 of 18 340

SN Computer Science

– the annotated train set consists of 962 performances,

the annotated validation set of 137 performances,

and test set of 177 performances;

– if there is a performance of piece A in the train set,

no other performances of piece A appears in the

validation or test sets. Vice versa, if there is a per-

formance of piece B in the validation or test set, no

other performance of piece B appears in the train set.

The difference in the provenance of these two data sets

(scores and performances) is important: a music score con-

tains note start times and durations only up to some small

integer subdivision of the main beat; a music performance

captured via the MIDI format contains start times and dura-

tions in seconds (i.e., greater timing granularity).10 In other

words, the MAESTRO data set contains the trace of human

expressivity present in a performance, whereas the Kern-

Scores data set does not. It is not necessarily the case that

having the expressive note start and duration timing data is

advantageous, compared to the reduced set of values avail-

able in a score representation, however. Ideally, one would

have access to both types of timing data, and the mapping

between the two. The MAESTRO data set does not contain

such a map, but we can still make use of it in this paper to

address two questions:

1. How does the originality of output from the Music

Transformer algorithm change as a function of data

set, moving from a smaller data set to the larger one on

which its original publication was based [19]?

2. Does the concept of the originality report stand up to

scrutiny when we switch from a straightforward similar-

ity measure that assumes score-like note start times (car-

dinality score, section “Cardinality Score”), to a more

complex similarity measure that works also with expres-

sive note start times (geometric hashing, section “Sym-

bolic Fingerprinting Using Geometric Hashing”)?

Sections “Determining the Baseline Level of Originality

Within a Corpus”–“Incorporating Originality Reports into

an Algorithmic Process:Originality Decreases as Epoch

Increases” focus on originality reports obtained using car-

dinality score, and comparing performance of two algo-

rithms in terms of the originality of their outputs. Then sec-

tion “Geometric Hashing: Producing Another Originality

ReportWith a Different Similarity Measure, and Exploring

AssociatedParameters” provides analyses that address the

two questions stated above.

Determining the Baseline Level of Originality Within
a Corpus

To form the query and target sets for Classical string quartets

data set, we divide the 71 excerpts into two sets: 50 queries

Q were drawn from 7 pieces Q∗ , and the targets R consisted

of the remaining 64 pieces. The selection of the 7 pieces was

pseudo-random to reflect the representation of composers

and time signatures in the overall data set. We use a fixed

window size of 16 beats for each query.

To demonstrate the robustness of geometric hashing to

music with expressive timing, the same approach is applied

to the MAESTRO data set [18], using the 962 performances

in the train set as the targets R , and 50 queries Q drawn from

314 performances Q∗ consisting of the amalgamation of the

137 validation and 177 test performances. We use a fixed

window size of 8 s for each query.

We ran the code outlined in Algorithm 2 to obtain the

baseline for both approaches using the corresponding simi-

larity function c.

10 There are also differences in dynamic level (loudness) and indica-

tions of which notes should be played by which instrument or hand,

but they are not relevant to the current paper, so we will not elaborate

on these further.

 SN Computer Science (2022) 3:340 340 Page 10 of 18

SN Computer Science

For our sample of N∶=50 excerpts from Haydn, Mozart,

and Beethoven string quartets (KernScores), the mean origi-

nality is mean(OS) = 0.699 , with bootstrap 95%-confidence

interval 0.672 and 0.725. We interpret this to mean that for

the current corpus and sample (space of fast, first-movement

Classical string quartets), composers wrote music that is

69.9% original, at least according to the note-counting music

similarity measure employed here. For the sample of N∶=50

excerpts from classical piano performances (MAESTRO),

the mean originality is mean(OS) = 0.562 , with bootstrap

95%-confidence interval 0.546 and 0.579. As both the data

set and similarity metric have changed, it is not meaning-

ful to compare the two confidence intervals to one another.

However, when music-generation algorithms are trained on

one or the other corpus, it is meaningful to compare the

originality of their outputs to their respective training cor-

pus’ self-originality, addressing the question of whether the

music-generation algorithm’s output is sufficiently original.

With the parameters tMin ← 0.5 , tMax ← 2 , pMin ← 1 ,

pMax ← 6 , the lookup table has a maximum 8, 928

unique hashes. This is because there are 31 possible tdr’s,

1.0, 1.1,… , 4.0 , as well as 2 possible signs for each (see

Eq. 8). There are 2 pitch differences encoded in a hash (see

Eq. 6), covering 6 possibilities 1, 2,… , 6 , again with 2 pos-

sible signs for each. This gives 8, 928 = (31 ⋅ 2) ⋅ (6 ⋅ 2)2

unique hashes in total. During the building of the lookup

table across the MAESTRO train set, each of these pos-

sible hash codes was encountered, and we list the ten top

and bottom ten entries ordered descending by frequency of

occurrence in Fig. 4. From a musical point of view, the pitch

content of the ten most common hashes are not surprising:

they articulate rising and falling (or falling and rising) per-

fect fourths, (± 5 difference in MNNs), major seconds (± 2

difference in MNNs), and minor thirds (± 3 difference in

MNNs). It has also been found previously that time differ-

ence ratios of close to 1 (e.g., ± 1.1) are more common than

time difference ratios of exactly 1, suggesting that it is more

desirable for pianists not to play such sequences absolutely

isochronously, but to play one of the two time differences

slightly longer than the other [44]. As for the least common

hashes, it is not surprising to find extremely imbalanced

time-difference pairs (± 4.0) are rare, and include intervals

of the tritone (± 6 difference in MNNs) and minor second

(± 1 difference in MNNs).

Is This Algorithm’s Output Sufficiently Original?

We can use the mean and confidence interval calculated

above to help address the question of whether an algorithm’s

output is sufficiently original. Let us suppose we have a pas-

sage generated by an algorithm, and we traverse that out-

put, collecting n-beat excerpts with 50% overlap, say, into a

query set Q . In this paper, we use n∶=8, 16 beats, which cor-

responds to 2- and 4-bar excerpts in 4–4 time, respectively.

It is advisable to use at least two different window sizes, to

probe the assumption that originality should increase with

window size. In other words, different window sizes can be

used to determine whether a worrisome-looking instance of

low originality at the 2-bar level increases—and so becomes

less worrisome—at a longer 4-bar window size.

We ran the MAIA Markov [9] and Music Transformer

algorithms [19] to explore this question of sufficient

Fig. 4 Top 10 and last 10 hash

entries that are generated as

lookup table keys, with the

descending order of occurrence

count

Fig. 5 Rain cloud plot of originality scores for both model generated

excerpts and human composed excerpts, with the dashed lines show-

ing mean values

SN Computer Science (2022) 3:340 Page 11 of 18 340

SN Computer Science

originality, based on the training data of 64 string quartet

movements described above. Markov model was built on

the representation shown in Fig. 1e. The Music Transformer

model’s training data was augmented by transposing the

original pieces in the range [− 5, 6] MIDI notes, and then we

sliced these into subsequences of fixed size 2048 for batch

training, giving a train set of 4128 and a validation data

set of 564 subsequences. The model, with six layers, eight

heads, and hidden size of 512, was trained with smoothed

cross entropy loss [27] and the Adam optimiser [21] with

custom learning rate schedule [3]. In keeping with the stand-

ard approach, the training process was stopped at epoch

(checkpoint) 3, where the validation loss reached a minimum

value of 1.183. Afterwards, 30 excerpts were generated by

MAIA Markov and Music Transformer to form the query set

Q , based on which the mean value of originality scores were

obtained by following the same method in section “Original-

ity, Similarity, and Set of Points”, now for each time window

as the excerpt is traversed.

Figure 5 aims to provide insight into how the originality

scores distributed for both human composed excerpts and

model generated excerpts, we obtained originality scores

from 7 query pieces (human composed), and 30 pieces gen-

erated by the model at epoch 3 (the “best” model, see sec-

tion “Incorporating Originality Reports into an Algorith-

mic Process:Originality Decreases as Epoch Increases”).

Fig. 6 Originality report for the MAIA Markov and Music Trans-

former algorithms. a and b Show the change in originality scores

over the course of the excerpts obtained for MAIA Markov and

Music Transformer, respectively, at 2- and 4-bar levels compared to

the baseline mean and 95%-confidence interval; c–e show worst-case

examples of copying by MAIA Markov and Music Transformer at

checkpoints 3 and 15, respectively, where the generated outputs are

on the left and the human-composed excerpts are on the right

 SN Computer Science (2022) 3:340 340 Page 12 of 18

SN Computer Science

It shows that the originality scores of human composed

excerpts have higher kurtosis, which implies that the model

is less likely to generate excerpts within an narrow range of

originality. The mean values denoted by the dashed lines

also indicate the overall originality of generated excerpts is

lower than the human composed excerpts.

For both algorithms, we see in Fig. 6a, b that the orig-

inality at the 2-bar level is low relative to the mean and

95%-confidence interval for the baseline, but this is to be

expected, because the baseline was calculated at the 4-bar

level. What we expect to see is the solid line—indicating

algorithm originality at the 4-bar level—lie entirely inside

that confidence interval. This is the case for MAIA Markov

[9], but Music Transformer’s [19] mean originality level

is entirely below this confidence interval, indicating it has

issues with borrowing too heavily from the input on which

it is trained.

Three typical worst case examples of copying are shown

in Fig. 6c–e, with generated outputs on the left and origi-

nal excerpts on the right. Figure 6c shows one from MAIA

Markov having 42.9% originality associated with Bee-

thoven’s String quartet no.6 in B-flat major, op.18, mvt.1,

bars 61–64. And then, Fig. 6d shows one generated by

the “best” checkpoint (checkpoint 3 with the minimum

validation loss) of Music Transformer having 48.8% origi-

nality associated with Mozart’s String quartet no.13 in D

minor, K.173, mvt.1, bars 125–128. We found most of the

generated outputs in this stage with less than 50% original-

ity are due to repeating the same note, which is also fre-

quently found in Classical string quartets, and the model

tends to start by reproducing this simple kind of pattern.

Finally, Fig. 6e shows one generated by checkpoint 15 of

Music Transformer having 9.9% originality associated

with Beethoven’s String quartet no. 1 in F major, op.18,

mvt.1, bars 233–234. In general, the model appears to be

over-fit at this checkpoint. We infer from these originality

reports and basic musicological interpretations that the

results generated by Music Transformer gradually morph

during training from reproduction of simple patterns (e.g.,

repeated notes) to verbatim use of more distinctive note

sequences.

Incorporating Originality Reports
into an Algorithmic Process: Originality Decreases
as Epoch Increases

Here, we demonstrate the use of an originality report in the

modelling process itself, as a means of analysing changes

in originality as a function of model training or validation

epoch. Music Transformer was used as an example of a

deep learning model, with the train/validation set as in sec-

tion “Determining the Baseline Level of Originality Within

a Corpus”. To monitor the originality change along with the

training process, 10 checkpoints including the initial point

Fig. 7 a Loss curve of train and validation; b accuracy curve of train and validation; c mean originality curve for 64-target and 7-target sets;

d minimum originality score curve for 64-target and 7-target sets

SN Computer Science (2022) 3:340 Page 13 of 18 340

SN Computer Science

were saved. Again, we used each of them to generate 30

excerpts, to which the aforementioned originality report was

applied. Afterwards, we calculated the mean value of those

30 originality scores for each checkpoint.

Figure 7a, b shows the change of loss and accuracy, respec-

tively, over training. As mentioned previously, the standard

training process would stop at epoch (checkpoint) 3, where

the validation loss reaches a minimum, but we extended the

training process further to more fully investigate the effect

of training on originality. Figure 7c, d contains a dashed line

indicating the baseline originality level of 0.699 for the string

quartet data set. It is worth noting that Fig. 7c, d starts with

epoch 1, instead of epoch 0, where the weights of networks

were randomly initialised. Such difference is due to the near

impossibility of forming notes from randomly generated

sequences, because the serialisation method used by Music

Transformer requires a matched pair of events to construct

a note [19]. Thus, applying originality report for epoch 0 is

unconsidered here. In Fig. 7c, mean originality score decreases

as a function of model training epoch, but remains largely in

the 95%-confidence interval of the baseline originality level

of the corpus. Figure 7d shows more concerning, indicating

that minimum originality score decreases to well below the

95%-confidence interval of the baseline originality level of the

corpus. Originality decreases until epoch 3, and then it stays

relatively flat afterwards. However, as with the discussion of

Fig. 6c, d in the previous subsection, we found that the mod-

el’s borrowing still becomes more verbatim (or distinctive)

after epoch 3, thus originality in a more general sense is still

decreasing, a fact that is not immediately evident from Fig. 6,

because the cardinality score does not consider distinctiveness,

discussed further below.

Geometric Hashing: Producing Another Originality
Report with a Different Similarity Measure,
and Exploring Associated Parameters

In this section, we demonstrate the originality report with

a similarity measure based on geometric hashing, and its

adaptability to music with expressive timing.

This time, we use the trained version of Music Trans-

former from the original publication [19] (which used the

MAESTRO train set), and generate 30 passages of “new”

music. We then traverse each of these passages and collect

8-s excerpts with 4-s overlap. To adapt with expressive tim-

ing, the time difference calculated in this case is in seconds

instead of crotchet beats. As shown in Fig. 8, Music Trans-

former’s [19] mean originality level is again entirely below

the self-originality confidence interval of the corpus, again

indicating it has issues with borrowing too heavily from the

input on which it is trained.

The adaptability of our geometric hashing approach to

data with expressive timing is already implicit in the results

shown in Fig. 8, but we need to verify that: (1) when we

define a query based on an excerpt of music that is drawn

from (known to be in) the train set itself, we get a near-1

similarity score when the timing data in the query is per-

turbed by or subject to minimal jitter; (2) there is some

reduction in similarity score as a function of jitter being

increased from barely noticeable (around 1 msec) to barely

recognisable as the same query (around 100 msec).

For each (time, pitch)-pair in a randomly selected query,

we add random, uniform jitter with range ±x sec to the start

time. In this case, we sample queries from the train set

itself, and match to the lookup table calculated previously

without jitter. We also verified that for no jitter and a bin

size of 0.1 s (fixed for this analysis), each query is able to

Fig. 8 Originality report based on geometric hashing for the Music

Transformer algorithm, which shows the change in originality scores

over the course of the excerpts obtained for Music Transformer at 8-s

levels compared to the baseline mean and 95%-confidence interval

Fig. 9 Similarity changing with artificially added start time jitter. The

similarity level generally decreases as jitter increases

 SN Computer Science (2022) 3:340 340 Page 14 of 18

SN Computer Science

produce maximal similarity 1 to the same piece from which

is sampled.

As shown in Fig. 9, the similarity values decrease as the

jitter increases, which is what we expected. It is worth not-

ing that there is a slight increase in similiarity score moving

from 0.05 sec jitter to 0.1 s. This is because when we obtain

the top m similarity scores and their associated pieces, we

use m = 100 and look for the similarity score associated with

the piece from which the query was drawn. However, as jit-

ter increases to 0.05 sec and beyond, we noticed that often

this piece is not among the top 100 matches. In such cases,

we report the maximal similarity that was found (to some

Fig. 10 Similarity changing with a set of bin sizes [0.1, 0.5, 1, 5], and for each with a set of scale factors [0.75, 0.9, 1.1, 1.25]

Fig. 11 Two line plots of runtime in seconds against number in millions of notes and entries created during lookup table building

SN Computer Science (2022) 3:340 Page 15 of 18 340

SN Computer Science

other piece), and hence the right-hand two entries in this plot

might be slightly inflated, compared to one another and/or

to the left-hand three entries.

To investigate the effect of bin size and scale factor on

similarity, we run the same self-querying process with

pieces in the train set. Here, we dependently test with bin

sizes [0.1, 0.5, 1, 5] (seconds) and scale factors [0.75, 0.9,

1.1, 1.25]. The musical effect of applying a scale factor is

that the query is slowed down (scale factor < 1) or sped up

(scale factor > 1). The scale factor is applied to the start time

of all notes in a query, for every bin size above. Maximal

similarity 1 can be obtained without applying scale factor

(i.e., multiplying by scale factor 1). As Fig. 10 shows, a dif-

ference in scale factor has little effect on similarity, whereas

increasing bin size increases the similarity.11 The latter result

is an expected phenomenon, because with larger bin size, the

approach is more likely to count as a false-positive a hash

entry that is located further away from the precise start time.

Finally, we conduct a runtime test on building the lookup

table, with ten data sets of increasing sizes. There are a total

of 962 pieces in MAESTRO train set, the size of the subset

ranges from 1 to 10 in multiples of 96.2 (ceiling function is

applied). This test is run on Intel(R) Core(TM) i9-9920X

CPU @ 3.50GHz and the runtime is recorded for plotting

Fig. 11, which contains two line plots for runtime against

number of notes and number of hash entries created. The

plot on the left shows that the runtime increases linearly

as the number of notes increases. Although, according to

the Algorithm 1, the time complexity for searching triples

is O(n3) , the actual runtime is linear to the size of input.

We deduce the difference is because the runtime for each

piece is roughly the same, so the relation becomes linear in

this practical case. The plot on the right shows the runtime

increases as the number of created entries increases, and

combined with the plot on left, it indicates the space com-

plexity is also linear.

Discussion

This paper puts forward the notion that AI for music genera-

tion should result in outputs that imitate instead of merely

copying original pieces, and highlights that checks of

whether this is the case—what we refer to as the original-

ity report—are often omitted. We introduce the methodol-

ogy of the originality report for baselining and evaluating

the extent to which a generative model copies from training

data. This originality report is parameterised by a particular

similarity measure. Here we illustrate two similarity meas-

ures: a relatively straightforward note-counting approach

based on the cardinality score [7, 39], and one based on

fingerprinting score [1, 6, 42]. By designing other similarity

measures, it becomes possible to adapt the methodology to

have emphases on different musical dimensions or aspects

of those dimensions. We first use a relatively small data set

with rigid ontime information, and analyse outputs from two

example models, one deep learning algorithm called Music

Transformer [19] and one non-deep learning model called

MAIA Markov [9]. For Music Transformer, we additionally

analyse its output with the MAESTRO data set [18], which

contains a larger amount of pieces and all with expressive

timing information. The analyses illustrate the use of this

methodology and the existence of music plagiarism in recent

research.

We recognise Google Magenta for making their source

code (e.g., for Music Transformer) publicly available,

because it enables a level of scrutiny that has not always

been possible for previous work in this field [31]. That said,

the results indicate a phenomenon, wherein this type of

deep learning language model gradually copies increasingly

distinctive chunks from pieces in the train set, calling into

question whether it really learns to generate. Deep learning

often requires large data sets with a wide variety to increase

the model generalisation ability [2]. However, this does not

necessarily increase the likelihood of generating outputs

with a wide variety. Particularly here, these results highlight

that the Music Transformer model’s [19] is not sufficiently

original compared to the self-originality of the corpus on

which it is trained. Stepping back somewhat from these spe-

cific results, we see several findings in this paper (e.g., those

associated with Figs. 6b, d, e, 7, and 8) as evidence that

current deep learning models for music generation might

be good “data memorisers and regurgitators”, but fall short

of being “original” or “creative”—not just qualitatively but

as measured quantitatively by our originality report. More

recent research found the information in training data can

be retrieved from large language models, which highlights

various issues of memorization [4]. Furthermore, using the

conventional stopping criteria for the training process, the

“best” model not only has a low level of originality, but also

the quality of generated excerpts is low in the sense that

the same note is repeated most of time (see Fig. 6d). Going

forward, the field of deep learning needs to reconsider in

what situations the conventional stopping criteria are appro-

priate: perhaps loss and accuracy should no longer be the

only criteria when evaluating the model, because we need

to prevent these models copying training data, especially

when they are used increasingly in a “black-box” manner

by practising musicians.

11 Even if scale factor had a larger impact, it would be possible to

iterate over several different likely scale factors during the matching

process to take this into account, but the current analysis suggests this

is not necessary, at least for the range of scale factors considered here.

 SN Computer Science (2022) 3:340 340 Page 16 of 18

SN Computer Science

Limitations

The size of the Classical string quartet data set used above is

smaller than that used for the original work on Music Trans-

former [19]—MAESTRO [18]— and it is also quantised

to a smaller set of time values. We address this issue using

MAESTRO also, but another potential solution is to pretrain a

generative model with a large data set to gain “general musi-

cal knowledge” and then finetune with a smaller style-specific

data set [12, 14]. However, our first data set still represents a

substantial amount of Classical music, and certainly enough

to give a human music student an idea of the intended style,

so if deep learning algorithms cannot operate on data sets of

this size, then it should be considered a weakness of the deep

learning approach rather than a limitation of our methodology.

The simplicity of the cardinality score has some appeal,

but as noted in the review of existing work, it can mean that

subtle variations along some musical dimension destroy any

translational equivalence, giving a low cardinality score that

is at odds with high perceived similarity. For instance, the

expressive timing in the MAESTRO data set [18] constitutes

such subtle variations along the dimension of start time, and

make it ill-advised to use the cardinality score to assess the

originality of an algorithm trained on these data. In addition,

the cardinality score shares some general advantages of the

geometric approach. However, in its current use, it is also

not able to take into account the distinctiveness of excerpts

being compared [6, 11]. For instance, Fig. 2 indicated an

instance of similarity between Mozart and Haydn, but when

we take into account how many Classical pieces end in this

way, it is not a particularly distinctive or interesting example.

As mentioned, cardinality score does not work properly

with subtle variations (e.g., expressive timing), while the

symbolic fingerprinting using geometric hashing is able to

detect similarities with such data. However, this complex

approach also requires configuration of parameters (e.g.,

pitch/time difference range, bin size) to balance the effi-

ciency and effectiveness. For instance, increasing the pitch/

time difference range extends the coverage of distinctive

fingerprints, but this also exponentially increases space and

time complexity. In terms of distinctiveness, we observe

some fingerprints have higher frequencies than others in

a data set, which implies that highly frequent fingerprints

correlate with the style of a music corpus, while infrequent

ones make pieces distinctive from one another. However, the

current version of similarity calculation, ratio of unique fin-

gerprints, does not reflect these distributional characteristics.

Future Work

We would like to see the originality report method that we

have developed be embedded into the training processes of

various music generation algorithms, to play a role as an

advanced stopping criterion. Meanwhile, we will need to

ensure that this criterion can still maintain the generalis-

ability asserted by standard stopping criteria.

We will investigate the compatibility of the originality

report method with model selection, which is often con-

ducted as an outer loop of model training. Loss function

engineering is a topic addressed in recent novel generating

strategies (e.g., [16]), so it should be possible to merge

high/low originality scores as rewards/penalties in training

loss, to further investigate the problem that we have identi-

fied of language-based deep learning models appearing to

be little more than powerful memorisers.

We will also explore further alternative similarity meas-

ures. Weighting of shift errors [7] and consideration of dis-

tinctiveness [11] could both address limitations mentioned

above arising from the simplicity of the cardinality score.

We will optimise the time performance of our geometric

hashing approach [1], and investigate whether weighting

the fingerprints based on their distribution in a data set can

make the fingerprinting score reflect distinctiveness. This

should mean originality reports can be generated for an

algorithm trained on any music data, taking into account

distinctiveness with respect to an underlying corpus.

Author Contributions All authors contributed to the study conception

and design. Material preparation, data collection and analysis were

performed by Zongyu Yin and Tom Collins. The first draft of the manu-

script was written by Zongyu Yin, with the results section being devel-

oped by Tom Collins. All authors commented on previous versions of

the manuscript. All authors read and approved the final manuscript.

Funding The authors did not receive support from any organisation

for the submitted work.

Availability of Data and Materials Data and materials used and col-

lected from the study can be accessed via https:// osf. io/ 96emr/.

Code Availability Code for running experiments and analyses can be

accessed via https:// osf. io/ 96emr/.

Declarations

Conflict of Interest The last author is a co-founder of the music col-

lective Music Artificial Intelligence Algorithms, Inc. As such, he has

an interest in the strong performance of the MAIA Markov algorithm.

However, such interest does not affect using the introduced method to

produce objective results. Apart from this, the authors have no relevant

financial or non-financial interests to disclose.

Ethics Approval Not applicable.

Consent for Publication All authors consent to the publication of this

work.

Consent to Participate Not applicable

https://osf.io/96emr/
https://osf.io/96emr/

SN Computer Science (2022) 3:340 Page 17 of 18 340

SN Computer Science

Open Access This article is licensed under a Creative Commons Attri-

bution 4.0 International License, which permits use, sharing, adapta-

tion, distribution and reproduction in any medium or format, as long

as you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons licence, and indicate if changes

were made. The images or other third party material in this article are

included in the article’s Creative Commons licence, unless indicated

otherwise in a credit line to the material. If material is not included in

the article’s Creative Commons licence and your intended use is not

permitted by statutory regulation or exceeds the permitted use, you will

need to obtain permission directly from the copyright holder. To view a

copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

 1. Arzt A, Böck S, Widmer G. Fast identification of piece and score

position via symbolic fingerprinting. In: ISMIR; 2012. pp. 433–8.

 2. Barbedo JGA. Impact of dataset size and variety on the effective-

ness of deep learning and transfer learning for plant disease clas-

sification. Comput Electron Agric. 2018;153:46–53.

 3. Bengio Y. Practical recommendations for gradient-based training

of deep architectures. In: Neural networks: tricks of the trade.

Berlin: Springer; 2012. pp. 437–78.

 4. Carlini N, Tramer F, Wallace E, Jagielski M, Herbert-Voss A,

Lee K, Roberts A, Brown T, Song D, Erlingsson U, et al. Extract-

ing training data from large language models. 2020. arXiv: 2012.

07805.

 5. Collins T. Improved methods for pattern discovery in music, with

applications in automated stylistic composition. Ph.D. thesis, The

Open University. 2011.

 6. Collins T, Arzt A, Frostel H, Widmer G. Using geometric sym-

bolic fingerprinting to discover distinctive patterns in polyphonic

music corpora. In: Computational music analysis, pp. 445–74.

Springer. 2016.

 7. Collins T, Böck S, Krebs F, Widmer G. Bridging the audio-sym-

bolic gap: the discovery of repeated note content directly from

polyphonic music audio. In: 53rd international conference: seman-

tic audio. Audio Engineering Society. 2014.

 8. Collins T, Coulon C. MAIA Util: an NPM package for bridging

web audio with music-theoretic concepts. In: Proceedings of the

web audio conference, pp. 47–52. Trondheim, Norway. 2019.

 9. Collins T, Laney R. Computer-generated stylistic compositions

with long-term repetitive and phrasal structure. J Creative Music

Syst. 2017;1:2. https:// doi. org/ 10. 5920/ JCMS. 2017. 02.

 10. Collins T, Laney R, Willis A, Garthwaite PH. Developing and

evaluating computational models of musical style. AI EDAM.

2016;30(1):16–43.

 11. Conklin D. Discovery of distinctive patterns in music. Intell Data

Anal. 2010;14(5):547–54.

 12. Conklin D, Witten IH. Multiple viewpoint systems for music pre-

diction. J New Music Res. 1995;24(1):51–73.

 13. Cope D. Computer models of musical creativity. Cambridge: MIT

Press; 2005.

 14. Donahue C, Mao HH, Li YE, Cottrell GW, McAuley J. LakhNES:

improving multi-instrumental music generation with cross-domain

pre-training. In: ISMIR; 2019. pp. 685–92.

 15. Dong HW, Hsiao WY, Yang LC, Yang YH. Musegan: multi-track

sequential generative adversarial networks for symbolic music

generation and accompaniment. In: Thirty-Second AAAI confer-

ence on artificial intelligence. 2018.

 16. Elgammal A, Liu B, Elhoseiny M, Mazzone M. Can: creative

adversarial networks generating “art” by learning about styles and

deviating from style norms. In: 8th international conference on

computational creativity, ICCC 2017. Georgia Institute of Tech-

nology. 2017.

 17. Graves A, Mohamed Ar, Hinton G, Speech recognition with deep

recurrent neural networks. In: 2013 IEEE international confer-

ence on acoustics, speech and signal processing, IEEE; 2013. pp.

6645–49.

 18. Hawthorne C, Stasyuk A, Roberts A, Simon I, Huang CZA, Diele-

man S, Elsen E, Engel J, Eck D. Enabling factorized piano music

modeling and generation with the MAESTRO dataset. In: inter-

national conference on learning representations. 2019.

 19. Huang CZA, Vaswani A, Uszkoreit J, Simon I, Hawthorne C,

Shazeer N, Dai AM, Hoffman MD, Dinculescu M, Eck D. Music

transformer: generating music with long-term structure. In: ICLR.

2018.

 20. Janssen B, Collins T, Ren IY. Algorithmic ability to predict the

musical future: Datasets and evaluation. In: ISMIR; 2019. pp.

208–15.

 21. Kingma DP, Ba J, Adam: A method for stochastic optimization.

2014. arXiv: 1412. 6980.

 22. Lewin D. Generalized musical intervals and transformations.

Oxford: Oxford University Press; 2007. (originally published

by Yale University Press, New Haven, 1987).

 23. Lowe DG. Distinctive image features from scale-invariant key-

points. Int J Comput Vis. 2004;60(2):91–110.

 24. Meredith D. The ps13 pitch spelling algorithm. J New Music Res.

2006;35(2):121–59.

 25. Meredith D, Lemström K, Wiggins GA. Algorithms for discov-

ering repeated patterns in multidimensional representations of

polyphonic music. J New Music Res. 2002;31(4):321–45.

 26. Müllensiefen D, Pendzich M. Court decisions on music plagiarism

and the predictive value of similarity algorithms. Musicae Sci.

2009;13(1):257–95.

 27. Müller R, Kornblith S, Hinton GE. When does label smoothing

help? In: Advances in neural information processing systems;

2019. pp. 4694–703.

 28. Neely A. Why the Katy Perry/Flame lawsuit makes no sense.

2020. https:// www. youtu be. com/ watch?v= 0ytoU uO- qvg.

Accessed 30 Oct 2020.

 29. Oore S, Simon I, Dieleman S, Eck D, Simonyan K. This time with

feeling: learning expressive musical performance. Neural Comput

Appl. 2018;2018:1–13.

 30. Otzen E. Six seconds that shaped 1500 songs. 2020. https:// www.

bbc. co. uk/ news/ magaz ine- 32087 287. Accessed 30 Oct 2020.

 31. Pachet F, Papadopoulos A, Roy P. Sampling variations of

sequences for structured music generation. In: ISMIR; 2017. pp.

167–73.

 32. Radford A, Metz L, Chintala S. Unsupervised representation

learning with deep convolutional generative adversarial networks.

2015. arXiv: 1511. 06434.

 33. Roberts A, Engel J, Raffel C, Hawthorne C, Eck D. A hierarchical

latent vector model for learning long-term structure in music. In:

International conference on machine learning. PMLR; 2018. pp.

4364–73.

 34. Ruiz A, Simon I. My only problem with Magenta’s Transformer.

Magenta Discuss Google Group. 2020. https:// groups. google.

com/a/ tenso rflow. org/g/ magen ta- discu ss/c/ Oxiq- Gdaavk/ m/ uHIsQ

ZKtBw AJ. Accessed 30 Oct 2020.

 35. Selfridge-Field E. Conceptual and representational issues in

melodic comparison. Comput Musicol. 1999;40:93.

 36. Stav I. Musical plagiarism: a true challenge for the copyright law.

DePaul J Art Tech Intell Prop L. 2014;25:1.

 37. Sturm BL, Iglesias M, Ben-Tal O, Miron M, Gómez E. Artifi-

cial intelligence and music: open questions of copyright law and

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2012.07805
http://arxiv.org/abs/2012.07805
https://doi.org/10.5920/JCMS.2017.02
http://arxiv.org/abs/1412.6980
https://www.youtube.com/watch?v=0ytoUuO-qvg
https://www.bbc.co.uk/news/magazine-32087287
https://www.bbc.co.uk/news/magazine-32087287
http://arxiv.org/abs/1511.06434
https://groups.google.com/a/tensorflow.org/g/magenta-discuss/c/Oxiq-Gdaavk/m/uHIsQZKtBwAJ
https://groups.google.com/a/tensorflow.org/g/magenta-discuss/c/Oxiq-Gdaavk/m/uHIsQZKtBwAJ
https://groups.google.com/a/tensorflow.org/g/magenta-discuss/c/Oxiq-Gdaavk/m/uHIsQZKtBwAJ

 SN Computer Science (2022) 3:340 340 Page 18 of 18

SN Computer Science

engineering praxis. In: Arts, vol. 8, p. 115. Multidisciplinary Digi-

tal Publishing Institute. 2019.

 38. Todd PM. A connectionist approach to algorithmic composition.

Comput Music J. 1989;13(4):27–43.

 39. Ukkonen E, Lemström K, Mäkinen V, Geometric algorithms for

transposition invariant content-based music retrieval. In: Pro-

ceedings of the international symposium on music information

retrieval; 2003. pp. 193–9.

 40. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez

AN, Kaiser Ł, Polosukhin I. Attention is all you need. In:

Advances in neural information processing systems; 2017. pp.

5998–6008.

 41. Volk A, Chew E, Margulis EH, Anagnostopoulou C. Music simi-

larity: concepts, cognition and computation. J New Music Res.

2016;45(3):207–9.

 42. Wang ALC, Smith III JO. System and methods for recognizing

sound and music signals in high noise and distortion (2012), pat-

ent US 8,190,435 B2. Continuation of provisional application

from 2000. 2012.

 43. Wang X, Pang K, Zhou X, Zhou Y, Li L, Xue J. A visual model-

based perceptual image hash for content authentication. IEEE

Trans Inf Forensics Secur. 2015;10(7):1336–49.

 44. Widmer G. Discovering simple rules in complex data: A meta-

learning algorithm and some surprising musical discoveries. Artif

Intell. 2003;146(2):129–48.

 45. Yates P. Twentieth century music: its evolution from the end of

the harmonic era into the present era of sound. New York: Allen

& Unwin; 1968.

 46. Zauner C. Implementation and benchmarking of perceptual image

hash functions. In: Master’s thesis, Upper Austria University of

Applied Sciences. 2010.

Publisher's Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

	Measuring When a Music Generation Algorithm Copies Too Much: The Originality Report, Cardinality Score, and Symbolic Fingerprinting by Geometric Hashing
	Abstract
	Introduction
	Related Work
	Music Plagiarism
	Cognitive–Computational Approaches to Music Similarity
	Music Generation Models

	Methods
	Originality, Similarity, and Set of Points
	Cardinality Score
	Symbolic Fingerprinting Using Geometric Hashing

	Originality Reports
	Determining the Baseline Level of Originality Within a Corpus
	Is This Algorithm’s Output Sufficiently Original?
	Incorporating Originality Reports into an Algorithmic Process: Originality Decreases as Epoch Increases
	Geometric Hashing: Producing Another Originality Report with a Different Similarity Measure, and Exploring Associated Parameters

	Discussion
	Limitations
	Future Work

	References

