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Abstract

Research on automatic music generation lacks consideration of the originality of musical outputs, creating risks of plagiarism 

and/or copyright infringement. We present the originality report—a set of analyses that is parameterised by a “similarity 

score”—for measuring the extent to which an algorithm copies from the input music. First, we construct a baseline, to deter-

mine the extent to which human composers borrow from themselves and each other in some existing music corpus. Second, 

we apply a similar analysis to musical outputs of runs of MAIA Markov and Music Transformer generation algorithms, 

and compare the results to the baseline. Third, we investigate how originality varies as a function of Transformer’s training 

epoch. Fourth, we demonstrate the originality report with a different “similarity score” based on symbolic fingerprinting, 

encompassing music with more complex, expressive timing information. Results indicate that the originality of Transfomer’s 

output is below the 95% confidence interval of the baseline. Musicological interpretation of the analyses shows that the Trans-

former model obtained via the conventional stopping criteria produces single-note repetition patterns, resulting in outputs of 

low quality and originality, while in later training epochs, the model tends to overfit, producing copies of excerpts of input 

pieces. Even with a larger data set, the same copying issues still exist. Thus, we recommend the originality report as a new 

means of evaluating algorithm training processes and outputs in future, and question the reported success of language-based 

deep learning models for music generation. Supporting materials (data sets and code) are available via https:// osf. io/ 96emr/.

Keywords Music generation · Deep learning · Markov model · Originality evaluation

Introduction

A quotation from Igor Stravinsky reads: “A good composer 

does not imitate, he steals” [45]. The quotation, while made 

in relation to a serial work, reflects Stravinsky’s general 

interest in incorporating melodies, harmonic language, and 

forms from previous periods into new works such as his Pul-

cinella Suite (1922). Stravinsky uses the term “imitate” with 

a negative connotation: he would rather steal, say, a melody 

wholesale and rework it in a contemporary piece, than he 

would make mere allusions to (imitate) the work of past or 

contemporary composers. With respect to the current paper’s 

context—the rise of AI music generation algorithms—we 

instead use the term “imitate” with a positive connotation 

and the term “steal” with a negative connotation. As we 

show, some deep learning algorithms for music generation 

[19] are copying chunks of original input material in their 

output, and we would count it as a success if an algorithm—

from the deep learning literature or otherwise—could 
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generate output that sounds like (imitates)—but does not 

copy from (steal)—pieces in a specific style.

Research on artificial intelligence (AI) has achieved vari-

ous feats of simulating human perception (e.g., [17]) and 

production (e.g., [32]). A number of music generation mod-

els have been developed in recent decades, many predating 

or outside of deep learning [9, 38] and some espousing a 

belief in the superiority of deep learning [14, 33]. We have 

observed, with increasing alarm, that deep learning papers 

on music generation tend to rely solely or primarily on loss 

and accuracy as a means of evaluation [19, 33]. If there are 

listening studies, they employ listeners with inadequate 

expertise, and there is little or no musicological analysis 

of outputs, and no analysis of whether generated material 

plagiarises (steals from) the training data. As an increasing 

number of musicians are now incorporating AI into their 

creative workflows, checking an AI’s output for plagiarism 

is now a paramount challenge in this area. To this end, this 

paper considers the topic of automatic stylistic composi-

tion—a branch of automatic music generation, where there 

is a stated stylistic aim with regards to the algorithm output, 

and a corpus of existing pieces in the target style.

In this context, we aim to establish a framework for 

checking the originality of auto-generated music with a 

specified style. We introduce and exemplify the originality 

report as a means of measuring when a music generation 

algorithm copies too much. We discuss how to calculate a 

distribution for the extent to which human composers bor-

row from themselves or each other in some corpus of pieces 

in a specific style; then we discuss how to use this as a base-

line while moving a sliding window across a generated pas-

sage and measuring originality as a function of time in the 

generated material. The originality report is parameterised 

by a “similarity score”, so the framework is adaptable to 

measures that are more appropriate to certain characteristics 

of different data sets. We demonstrate the originality report 

with case studies of different similarity scores: the cardinal-

ity score and the fingerprinting score. The two measurement 

methods are used on different data sets, which differ mainly 

in terms of containing expressive timing data or not. The 

report is complemented by a musicological analysis of out-

puts from prominent deep [19] and non-deep [9] learning 

models. For the deep learning model, we also investigate 

how originality varies with training epoch.

Related Work

Music Plagiarism

Music plagiarism is said to have occurred when there is 

demonstrable and perceivable similarity between two songs 

or pieces of music (hereafter, pieces), and when there is 

circumstantial evidence to indicate that the composer(s) of 

the latest piece would have been familiar with the existing 

piece. Stav [36] describes how the musical dimensions of 

melody, harmony, and rhythm contribute to music plagia-

rism, and gives an example-based explanation of how these 

dimensions have been used in handling music copyright dis-

putes. Based on the features of melodies involved in selected 

plagiarism cases, Müllensiefen and Pendzich [26] derive an 

algorithm for predicting the associated court decision, and it 

identifies the correct outcome with 90% success rate. Recent 

failed or overturned cases also indicate that while music 

similarity and circumstantial evidence are necessary for 

delivering a verdict in favour of plagiarism having occurred, 

they are not sufficient, in that the distinctiveness of the music 

with respect to some larger corpus plays an important role 

too [6, 11, 28]: melodies that share contours and begin and 

end on the same scale steps may well point to potential cases 

of plagiarism, but it is likely that other melodies will have 

these same characteristics too [28]; drum beats, where the 

initial space of possibilities is smaller compared to pitched 

material, have been less successful as bases for music pla-

giarism convictions [30].

Recently, discussions on ethical issues surrounding AI 

have attracted widespread attention. Collins et al. [10] use 

a note-counting approach to show that twenty bars of com-

puter-generated musical output from an algorithm by Cope 

[13] have 63% coincidence in pitch-rhythm combinations 

with a piece by Frédéric Chopin. In [37], a music generation 

algorithm’s output and its tendency to copy original input 

pieces motivates the posing of open questions with respect 

to AI and music copyright law. As such generative models 

learn from existing music data, the copyright status of the 

output is unclear. In addition, the evaluation of these mod-

els’ outputs tends to be narrow; it does not involve any kind 

of originality analysis with respect to the human-composed 

pieces used for training. This creates copyright or plagiarism 

infringement risks for musicians who are using these algo-

rithms as part of their creative workflows.

Cognitive–Computational Approaches to Music 
Similarity

Largely outside of the role played by similarity in determin-

ing cases of music plagiarism, the systematic study of music 

similarity has a relatively long lineage [35] and continues 

to be of interest to scholars [41]. One challenging aspect of 

studying the phenomenon is that two excerpts of music can 

be similar to one another in myriad ways (genre, instrumen-

tation, timbre, tempo, dynamics, texture, form, lyrics, and 

mentioned above, melody, harmony, rhythm). This challenge 

interacts with variability in use cases too. Take a single para-

digm, such as query-based search in the form of music iden-

tification, which relies on some implementation of music 
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similarity. Even for this one paradigm, there are various use 

cases: Shazam addresses the need for exact matching [42], 

a variant of SoundHound addresses query-by-humming (the 

user sings or hums at the interface and expects “success-

ful” results),1 and Folk Tune Finder allows lyrics or notes 

to be input and, as with SoundHound’s query-by-humming 

variant, the user’s expectation of Folk Tune Finder is that 

the sought-after song will be found, or at least something 

relevant or interesting will be returned.2 Of these use cases, 

only the one addressed by Shazam is clear cut—the other 

two are made more challenging by variation in cognitive 

and music-production capabilities of users, and there not 

necessarily being one “right answer”.

Here, we are concerned with a more reductive view of 

music similarity—the type of note/fingerprint-counting 

approaches mentioned above. This is the characterisation 

of music similarity that a teacher might employ if a stu-

dent’s composition appears to draw too heavily on or copy 

directly from a known piece. For instance, “Why do 90% of 

the pitch-rhythm combinations in bars 1–20 of your piece 

occur also in this string quartet movement by Haydn?!” The 

representations and calculations required to reason this way, 

especially in algorithmic fashion, began in [22] and have 

been implemented in various forms since [1, 6, 39]. In the 

next section, we define two similarity measures based on 

the P3 algorithm [39] and the fingerprinting algorithm [1].

The fingerprinting approach in music shares some com-

monalities with image matching [23] and perceptual hashing 

[43, 46] in computer vision. Lowe’s [23] involves extracting 

distinctive features from images and using them to obtain 

the similarity to target images. This matching technique 

is shown to be robust to the affinity, noise, and change in 

viewpoint. Wang et al. [43] develop a perceptual image hash 

method, which generates hash codes based on image features 

to address the problem of content authentication (or, simi-

larly, copyright infringement in images and videos). Zauner 

[46] proposes a benchmark framework for perceptual image 

hash functions, implemented in open-source software called 

pHash.3

We finish this section of the review with some remarks 

about choices of music representation and comparison meth-

ods. In general, researchers take sequential (e.g., [11, 12]) 

or geometric (e.g., [6, 25]) approaches to the representa-

tion and comparison of music. There are pros and cons to 

each approach. With the sequential approach, if one chooses 

to focus on MIDI note numbers (MNNs) alone and two 

melodies have the same MIDI notes (up to transposition) 

but different rhythms, a sequential representation (specifi-

cally, difference calculations between consecutive notes) 

will recognise these melodies as similar, whereas a geo-

metric representation may not. However, with a sequential 

representation, it is less obvious how to handle polyphony 

(multiple notes beginning and ending at possibly different 

Fig. 1  Examples of symbolic music representations, starting from 

the same excerpt. a  Half a bar of music; b  the so-called piano-roll 

representation indicating some of the music’s numeric properties; c a 

four-dimensional representation of the music as a set of points; d one 

sequential representation that handles polyphony; e another sequential 

representation that handles polyphony

1 https:// www. midomi. com/.
2 https:// www. folkt unefi nder. com/. 3 https:// www. phash. org/.

https://www.midomi.com/
https://www.folktunefinder.com/
https://www.phash.org/
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times), whereas a geometric representation can encode 

a polyphonic piece as easily as it encodes a monophonic 

piece. For instance, in the sequential representation shown 

in Fig. 1d (which is Music Transformer’s [19] chosen input 

representation, see next section), the tokens encoding the 

occurrence of the F ♯ 4 and second F ♯ 5 are ten indices apart, 

even though the notes sound together. Therefore, any param-

eter that allows these events to be recognised as related has 

to be large enough to span this gap in indices. Moreover, 

an embellished (or, on the other hand, reduced) variation 

of some melody may not be recognised by the sequential 

representation as similar, because the relationships between 

adjacent notes will be altered by the added or removed notes, 

even though the “melodic scaffold” remains intact. A geo-

metric representation may be more robust to this kind of 

variation.

Music Generation Models

Recently, a large number of deep learning models have been 

proposed for symbolic music generation [15, 19, 33]. Several 

of them regard music as a sequence of tokens, where genera-

tion involves predicting the next token based on previous 

tokens [19, 33]. Oore et al. [29] introduce a way to serial-

ise polyphonic music and apply recurrent neural networks 

(RNNs) to generate output with expressive timing and veloc-

ity (loudness) levels. Huang et al. [19] use this same seriali-

sation to adapt a transformer model [40] to generating music. 

Benefiting from the self-attention mechanism, it achieved 

lower validation loss compared to the RNN of [29] and also 

longer term stylistic consistency than previous RNNs-based 

approaches. In other work, based on the assumption that 

each musical output can be sampled from a normal distri-

bution, [33] use variational autoencoders (VAEs) combined 

with long short-term memory networks (LSTMs). The appli-

cation of generative adversarial networks (GANs) and con-

volutional neural networks (CNNs) to music generation has 

been explored also [15], using the piano-roll representation 

as in Fig. 1(b) and treating music as images that can be gen-

erated in a hierarchical manner.

An issue with all the above deep learning approaches to 

music generation is that there has been inadequate consid-

eration of music plagiarism in the algorithms’ outputs. One 

user of the Music Transformer algorithm, Ruiz, writes:

The thing is that I ran the code on my machine and it 

overfits. It needs a way to check that it isn’t stealing 

from the data set say no more than 6 or 8 continuous 

notes. If it can’t do that it’s useless. I mean your piano 

data set is huge but after running the program for 20 

times I found it composes note by note music of well 

known classical melodies. That’s not OK. That should 

be avoided [34].

Simon, a member of the Google Magenta team, replies:

In the checkpoints we’ve released, we tried hard to 

reduce the ability of the model to perform pieces 

from the train set. In addition, in the samples we 

released, we tried hard to remove any samples that 

are too similar to an existing piece of music. But 

it’s difficult to get to 100% on these for a number of 

reasons, including the lack of a clear definition for 

“too similar” [34].

Members of the general public can make use of Music 

Transformer for laudable reasons—Google Magenta have 

open-sourced the code—but their attempt to guard against 

music plagiarism appears problematic, and whatever con-

stitutes “trying hard” in the above quotation has not been 

open-sourced, leaving general musicians who use Magenta 

algorithms in their creative workflows at risk of copyright 

infringement.

A non-deep learning approach to music generation that 

uses Markov models, pattern discovery, and pattern inherit-

ance to ensure that generated material evidences long-term, 

hierarchical repetitive structure, also constitutes the first use 

of an originality or creativity analysis to assess the extent 

to which the model plagiarises human-composed works 

by Bach and Chopin on which it is based [9]. This algo-

rithm, called MAIA Markov, uses the representation given 

in Fig. 1e, where each state consists of a beat of the bar and 

the MNNs relative to tonal centre occurring on that beat.

The remainder of this paper studies two of the most 

promising models for music generation, Music Trans-

former [19] and MAIA Markov [9], and focuses on the 

concept of originality, and methodologies for measuring 

it, which are then implemented and discussed.

Methods

This section introduces the method we use to analyse 

the originality of one set of symbolically encoded music 

excerpts relative to another. We begin by defining the two 

sets of excerpts: the queries (the excerpts we are testing for 

originality), Q , and the targets (the excerpts we are testing 

against), R . Depending on the use case, Q may contain 

one or more excerpts from one or more pieces of music, 

and R usually contains overlapping excerpts from multiple 

pieces of music. The use cases for wanting to produce an 

originality report, which we explore further and exemplify, 

are as follows: 

1. The user wants to determine the “baseline” level of orig-

inality within a corpus C . In this instance, the queries 
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Q are a (pseudo-)random sample from C , drawn from 

pieces Q∗ , and the targets R are the set complement, 

R = C ⧵ Q
∗.4 The outcome is a sample of N originality 

scores, from which estimates of the underlying distribu-

tion can be made, such as mean originality and confi-

dence intervals about this mean.

2. The user wants to determine the level of originality of an 

algorithm’s output relative to a corpus whose contents 

the algorithm is designed to imitate. In this instance, the 

queries Q would be overlapping excerpts of the algo-

rithm’s output, and we plot the originality of elements of 

Q as a function of time in the output, relative to elements 

of the target corpus R . As well as plotting, we could also 

compare the mean or minimum originality found for the 

algorithm output to the distribution mentioned in the 

previous point, in which case the distribution acts as a 

“baseline” and can be used to address the question, “Is 

this algorithm’s output sufficiently original?”.

3. The user wants to incorporate originality reports into 

the modelling process itself, to analyse or steer/halt that 

process. The details are similar to the previous point, 

but the deployment of the method is during training or 

generation rather than after the fact.

Originality, Similarity, and Set of Points

To implement the originality reports that are associ-

ated with each of the use cases, it is necessary to employ 

at least one similarity measure—that is, some function 

c ∶ Q × R → [0, 1] , which takes two symbolically encoded 

music excerpts q and r and returns a value in the range [0, 1], 

indicating q and r are relatively similar (value near one) or 

dissimilar (value near zero). The measure ought to be com-

mutative, c(q, r) = c(r, q) , and have a identity-like property 

that c(q, q) = 1 . The choice of similarity measure influences 

subsequent decisions with respect to addressing questions, 

such as “Is this algorithm’s output sufficiently original?” 

Here we define the ideas of use cases and the originality 

report, and illustrate them in the context of two particular 

similarity measures: the cardinality score and the finger-

printing score.

Each originality report centres on calculating an origi-

nality score, OS, for some query q in relation to the set of 

targets R . In particular, we find the element r ∈ R that max-

imises the similarity measure c(q, r), and subtract it from 1:

So the originality score OS ∶ Q × ℙR → [0, 1] , where ℙR 

is the power set of R , is also a measure in the range [0, 1]. 

A value near one indicates query q is original relative to set 

R ; a value near zero indicates it is unoriginal. If q is an exact 

copy of something that occurs in R , then OS(q, R) = 0.

Cardinality Score

One particular similarity measure is the cardinality score, cs 

[7, 20, 39]. Its strength is its simplicity and minimal param-

eter choices; its weakness is that if two sets of points (rep-

resenting two note collections) differ from one another only 

by small but non-rigid amounts in one or more dimensions, 

cs will be near-zero, contrary to perception of the similarity 

between the two note collections still being high. The next 

section, on symbolic fingerprinting by geometric hashing, 

introduces an alternative similarity measure that addresses 

this weakness, but entails a larger number of parameter 

choices.

To calculate cs, we represent each music excerpt as a 

set of points containing the ontime5 (in crotchet beats) and 

numeric pitch representation (morphetic pitch number [24]) 

of each note.6 So an element of the query set Q ∶ ℙ(N × N) 

is represented as

and an element of the target set R ∶ ℙ(N × N) is represented 

as

An example of this representation is provided in 

Fig. 2c and d. The bottom-left point in (c) has the value 

(x1 = 468, y1 = 53) , representing an ontime at the begin-

ning of the excerpt ( x
1
= 468 ) and the morphetic pitch for 

C3 ( y
1
= 53 ). The viola and cello have coincident notes 

at this moment, which project to a single point in our 

representation.

Letting t be the translation vector that gives rise to the 

maximum cardinality of the intersection (q + t) ∩ r , we 

define the cardinality score as

where |q| is the size of the set of points q. We demonstrate 

calculations of the cardinality score with reference to the 

(1)OS(q, R) = 1 − max{c(q, r) ∣ r ∈ R}

(2)q = {(x1, y1), (x2, y2),… , (x
n
, y

n
)}

(3)r = {(x�
1
, y

�
1
), (x�

2
, y

�
2
),… , (x�

n�
, y

�
n�
)}

(4)cs(q, r) = |(q + t) ∩ r|∕max{|q|, |r|}

4 We distinguish between Q and Q∗ , because if some excerpt q ∈ Q 

repeats or substantially recurs elsewhere in the piece Q∗ from which 

it is drawn, and we leave this repetition in the set of targets R , then q 

would be considered trivially unoriginal. Therefore, it is sensible to 

hold out entire pieces from which queries are selected.

5 Ontime is the start time of a note counting in crotchet beats, with 0 

for bar 1 beat 1 [5].
6 We use morphetic pitch in preference to MNNs here, because the 

former is robust to major/minor alterations.
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examples in Fig. 2. In the top half of this figure, there are 

two excerpts of string quartets: (a) is by Mozart and (b) is by 

Haydn. Considering the set of points corresponding to bars 

119 of the Mozart and 155 of the Haydn (second bars in both 

Fig. 2a, b, with corresponding points shown as triangles), the 

vector t = (−144,−2) translates 15 points from the Mozart 

excerpt to points in the Haydn, and the more numerous of 

the two sets is the Haydn excerpt, with 19 points, so the 

cardinality score is cs(q, r) = 15∕19 ≈ 0.7895 . As a second 

example, considering larger point sets corresponding to 

bars 118–119 of the Mozart and 154–155 of the Haydn, the 

vector t = (−144,−2) translates 18 points from the Mozart 

excerpt to points in the Haydn, and the more numerous of 

the two sets is the Mozart excerpt, with 52 points, so the 

cardinality score is cs(q, r) = 18∕52 ≈ 0.3462.

Symbolic Fingerprinting Using Geometric Hashing

Another approach for similarity measuring is symbolic fin-

gerprinting [1, 6, 42]. Unlike the cardinality score above, 

where the similarity is measured notewise allowing for one 

rigid transformation vector corresponding to time and/or 

pitch shifts, the symbolic fingerprinting approach generates 

hash entries from triples of notes that satisfy various con-

straints of pitch and time differences, and then measures 

the similarity via matching query entries to those in lookup 

table, when both are encountered at the corresponding start 

time (refer to hereafter the start timing counting in seconds). 

The selection of triples, hash construction, and matching 

process each confer robustness to non-rigid differences 

between two note collections, as we describe and demon-

strate below, and which helps increase the perceptual valid-

ity of symbolic fingerprinting using geometric hashing as a 

similarity measure compared to cardinality score.

For geometric hashing, we again represent music excerpts 

as sets of points (see section “Cardinality Score”), and store 

the ratio (as similarity) of the number of matching hashes 

across a data set of pieces to the number of hashes generated 

by a query.7 Entries in the lookup table are constructed from 

target excerpts in advance. We first prepare each excerpt as 

a set of (start time, pitch) pairs (sorted by ascending start 

time), and then we generate hash entries of “valid triples” 

searched via Algorithm 1. A valid triple contains three pairs 

of start times and pitches that satisfy time/pitch-difference 

constraints. For example, the triple V is denoted as:

Fig. 2  Visualisation of the cardinality score between two excerpts. 

a  A 2-bar excerpt from Mozart; b  a 2-bar excerpt from Haydn; 

c mapping notes in the excerpt a to a set of points; d mapping notes 

in the excerpt b to a set of points. For clarity, notes in the first/second 

bars are shown as circles/triangles

7 The implementation of fingerprinting algorithm is contributed by 

[8].
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where each v has two attributes start and pitch. Regarding 

the pitch dimension, we obtain the pitch difference between 

two adjacent points, denoted as pd
0
 and pd

1
:

We also calculate the intervals between start times, and 

obtain the ratio tdr instead of time difference, as tdr sup-

ports tempo-independent search (in other words, as per [22], 

the effect of scaling up/down the start time values can be 

mitigated or factored out entirely):

We define a triple being valid as its pd
0
 , pd

1
 and tdr being in 

a certain range. We then encode pd
0
 , pd

1
 and tdr into a string 

as the hash entry, with the following steps: 

1. For each of pd
0
 and pd

1
 , insert a + or − sign indicating 

a positive and negative relationship, and the absolute 

value of the pitch difference (e.g., +02, −10);

(5)V = {v0, v1, v2}

(6)pd
0
= v

1
.pitch − v

0
.pitch

(7)pd
1
= v

2
.pitch − v

1
.pitch

(8)td
0
= v

1
.start − v

0
.start

(9)td
1
= v

2
.start − v

1
.start

(10)tdr =

{

td
0
∕td

1
if td

0
≥ td

1

td
1
∕td

0
if td

1
> td

0

2. And then insert + if td
0
≥ td

1
 and − if td

1
> td

0
 , preced-

ing the float number of the tdr rounded to one decimal 

place.

For example, the entry string shown at the first item in 

Fig. 3c is +7 + 10 + 4.0 , because the interval from D3 to 

D4 is +7 MPNs, and the interval from D4 to G5 is +10 

MPNs; the time difference between the D3 and D4 is 1 

crotchet beat, and the time difference between the D4 and 

G5 is 0.25 crotchet beats, which yields tdr = +4.0 as the 

time difference ratio.

Algorithm 1 consists of nested loops aiming to find 

valid triples, which are then encoded into an entry and 

inserted into a lookup table. The outer loop iterates 

through each point, denoted as v
0
 . The nearest inner loop 

iterates through the points after v
0
 , during which we apply 

the following constraints to find the second point v
1
 : pitch 

difference between v
0
 and v

1
 , pd

0
 , is in the range between 

pMin (minimum pitch difference, e.g., 1) and pMax (maxi-

mum pitch difference, e.g., 6); the start time difference 

between v
0
 and v

1
 , td

0
 is in the range between tMin (mini-

mum time difference, e.g., 0.5) and tMax (maximum time 

difference, e.g., 2). If the conditions fail, the loop skips 

to the next iteration. The most inner loop further iterates 

through points after v
1
 , and then applies the same con-

straints to find v
2
 to obtain pd

1
 and td

1
.

Fig. 3  Entries generated for two excerpts. a A 2-bar excerpt from Mozart; b a 2-bar excerpt from Haydn; c and d a list of entries generated fol-

lowing the corresponding triples of (start time, pitch)-pairs in the excerpt (a) and (b)
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With a query q, we take the point-set representation and 

apply the same method as above to obtain entries. Each query 

entry is then used to match with the target entries saved 

in the lookup table, returning a point set {(a1, b1), (a2, b2), 

… , (a
M

, b
M
)} of (target start time, query start time)-pairs. In 

a scatter plot of such data, true positives appear as (approxi-

mately) diagonal lines. Thus, we apply a simple transforma-

tion (e.g., (a
i
, b

i
) → (a

i
, a

i
− b

i
) ) and calculate a histogram 

over this transformed data. Supposing there are k unique 

entries generated from a query, we calculate the similarity 

ratio to a certain target by dividing the number of unique 

matches h in a histogram bin by k.

Originality Reports

The data sets we use in this paper are: 
8 See https:// osf. io/ 96emr/ for the data sets, algorithms, and analyses.
9 The difference between Classical and classical is meaningful. The 

large-“c” “Classical” period refers to Western art music composed in 

the period 1750–1830, wherease the small-“c” “classical” period sub-

sumes this, comprising the period between 1650–1920.

1. 71 MIDI encodings of Classical string quartet scores 

(sheet music) from the website KernScores.8 This data 

set was prepared according to the following filters and 

constraints:

– string quartet composed by Haydn, Mozart, or Bee-

thoven;

– first movement;

– fast tempo, e.g., one of Moderato, Allegretto, Alle-

gro, Vivace, or Presto.

2. 1276 MIDI encodings of performances on Yamaha 

Disklaviers by professional pianists of classical works 

from J.S. Bach to Alban Berg, from the MAESTRO data 

set version 3 [18].9 This data set is as follows:

https://osf.io/96emr/
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– the annotated train set consists of 962 performances, 

the annotated validation set of 137 performances, 

and test set of 177 performances;

– if there is a performance of piece A in the train set, 

no other performances of piece A appears in the 

validation or test sets. Vice versa, if there is a per-

formance of piece B in the validation or test set, no 

other performance of piece B appears in the train set.

The difference in the provenance of these two data sets 

(scores and performances) is important: a music score con-

tains note start times and durations only up to some small 

integer subdivision of the main beat; a music performance 

captured via the MIDI format contains start times and dura-

tions in seconds (i.e., greater timing granularity).10 In other 

words, the MAESTRO data set contains the trace of human 

expressivity present in a performance, whereas the Kern-

Scores data set does not. It is not necessarily the case that 

having the expressive note start and duration timing data is 

advantageous, compared to the reduced set of values avail-

able in a score representation, however. Ideally, one would 

have access to both types of timing data, and the mapping 

between the two. The MAESTRO data set does not contain 

such a map, but we can still make use of it in this paper to 

address two questions: 

1. How does the originality of output from the Music 

Transformer algorithm change as a function of data 

set, moving from a smaller data set to the larger one on 

which its original publication was based [19]?

2. Does the concept of the originality report stand up to 

scrutiny when we switch from a straightforward similar-

ity measure that assumes score-like note start times (car-

dinality score, section “Cardinality Score”), to a more 

complex similarity measure that works also with expres-

sive note start times (geometric hashing, section “Sym-

bolic Fingerprinting Using Geometric Hashing”)?

Sections “Determining the Baseline Level of Originality 

Within a Corpus”–“Incorporating Originality Reports into 

an Algorithmic Process:Originality Decreases as Epoch 

Increases” focus on originality reports obtained using car-

dinality score, and comparing performance of two algo-

rithms in terms of the originality of their outputs. Then sec-

tion “Geometric Hashing: Producing Another Originality 

ReportWith a Different Similarity Measure, and Exploring 

AssociatedParameters” provides analyses that address the 

two questions stated above.

Determining the Baseline Level of Originality Within 
a Corpus

To form the query and target sets for Classical string quartets 

data set, we divide the 71 excerpts into two sets: 50 queries 

Q were drawn from 7 pieces Q∗ , and the targets R consisted 

of the remaining 64 pieces. The selection of the 7 pieces was 

pseudo-random to reflect the representation of composers 

and time signatures in the overall data set. We use a fixed 

window size of 16 beats for each query.

To demonstrate the robustness of geometric hashing to 

music with expressive timing, the same approach is applied 

to the MAESTRO data set [18], using the 962 performances 

in the train set as the targets R , and 50 queries Q drawn from 

314 performances Q∗ consisting of the amalgamation of the 

137 validation and 177 test performances. We use a fixed 

window size of 8 s for each query.

We ran the code outlined in Algorithm 2 to obtain the 

baseline for both approaches using the corresponding simi-

larity function c.

10 There are also differences in dynamic level (loudness) and indica-

tions of which notes should be played by which instrument or hand, 

but they are not relevant to the current paper, so we will not elaborate 

on these further.
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For our sample of N∶=50 excerpts from Haydn, Mozart, 

and Beethoven string quartets (KernScores), the mean origi-

nality is mean(OS) = 0.699 , with bootstrap 95%-confidence 

interval 0.672 and 0.725. We interpret this to mean that for 

the current corpus and sample (space of fast, first-movement 

Classical string quartets), composers wrote music that is 

69.9% original, at least according to the note-counting music 

similarity measure employed here. For the sample of N∶=50 

excerpts from classical piano performances (MAESTRO), 

the mean originality is mean(OS) = 0.562 , with bootstrap 

95%-confidence interval 0.546 and 0.579. As both the data 

set and similarity metric have changed, it is not meaning-

ful to compare the two confidence intervals to one another. 

However, when music-generation algorithms are trained on 

one or the other corpus, it is meaningful to compare the 

originality of their outputs to their respective training cor-

pus’ self-originality, addressing the question of whether the 

music-generation algorithm’s output is sufficiently original.

With the parameters tMin ← 0.5 , tMax ← 2 , pMin ← 1 , 

pMax ← 6 , the lookup table has a maximum 8,  928 

unique hashes. This is because there are 31 possible tdr’s, 

1.0, 1.1,… , 4.0 , as well as 2 possible signs for each (see 

Eq. 8). There are 2 pitch differences encoded in a hash (see 

Eq. 6), covering 6 possibilities 1, 2,… , 6 , again with 2 pos-

sible signs for each. This gives 8, 928 = (31 ⋅ 2) ⋅ (6 ⋅ 2)2 

unique hashes in total. During the building of the lookup 

table across the MAESTRO train set, each of these pos-

sible hash codes was encountered, and we list the ten top 

and bottom ten entries ordered descending by frequency of 

occurrence in Fig. 4. From a musical point of view, the pitch 

content of the ten most common hashes are not surprising: 

they articulate rising and falling (or falling and rising) per-

fect fourths, ( ± 5 difference in MNNs), major seconds ( ± 2 

difference in MNNs), and minor thirds ( ± 3 difference in 

MNNs). It has also been found previously that time differ-

ence ratios of close to 1 (e.g., ± 1.1 ) are more common than 

time difference ratios of exactly 1, suggesting that it is more 

desirable for pianists not to play such sequences absolutely 

isochronously, but to play one of the two time differences 

slightly longer than the other [44]. As for the least common 

hashes, it is not surprising to find extremely imbalanced 

time-difference pairs ( ± 4.0 ) are rare, and include intervals 

of the tritone ( ± 6 difference in MNNs) and minor second 

( ± 1 difference in MNNs).

Is This Algorithm’s Output Sufficiently Original?

We can use the mean and confidence interval calculated 

above to help address the question of whether an algorithm’s 

output is sufficiently original. Let us suppose we have a pas-

sage generated by an algorithm, and we traverse that out-

put, collecting n-beat excerpts with 50% overlap, say, into a 

query set Q . In this paper, we use n∶=8, 16 beats, which cor-

responds to 2- and 4-bar excerpts in 4–4 time, respectively. 

It is advisable to use at least two different window sizes, to 

probe the assumption that originality should increase with 

window size. In other words, different window sizes can be 

used to determine whether a worrisome-looking instance of 

low originality at the 2-bar level increases—and so becomes 

less worrisome—at a longer 4-bar window size.

We ran the MAIA Markov [9] and Music Transformer 

algorithms [19] to explore this question of sufficient 

Fig. 4  Top 10 and last 10 hash 

entries that are generated as 

lookup table keys, with the 

descending order of occurrence 

count

Fig. 5  Rain cloud plot of originality scores for both model generated 

excerpts and human composed excerpts, with the dashed lines show-

ing mean values
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originality, based on the training data of 64 string quartet 

movements described above. Markov model was built on 

the representation shown in Fig. 1e. The Music Transformer 

model’s training data was augmented by transposing the 

original pieces in the range [− 5, 6] MIDI notes, and then we 

sliced these into subsequences of fixed size 2048 for batch 

training, giving a train set of 4128 and a validation data 

set of 564 subsequences. The model, with six layers, eight 

heads, and hidden size of 512, was trained with smoothed 

cross entropy loss [27] and the Adam optimiser [21] with 

custom learning rate schedule [3]. In keeping with the stand-

ard approach, the training process was stopped at epoch 

(checkpoint) 3, where the validation loss reached a minimum 

value of 1.183. Afterwards, 30 excerpts were generated by 

MAIA Markov and Music Transformer to form the query set 

Q , based on which the mean value of originality scores were 

obtained by following the same method in section “Original-

ity, Similarity, and Set of Points”, now for each time window 

as the excerpt is traversed.

Figure 5 aims to provide insight into how the originality 

scores distributed for both human composed excerpts and 

model generated excerpts, we obtained originality scores 

from 7 query pieces (human composed), and 30 pieces gen-

erated by the model at epoch 3 (the “best” model, see sec-

tion “Incorporating Originality Reports into an Algorith-

mic Process:Originality Decreases as Epoch Increases”). 

Fig. 6  Originality report for the MAIA Markov and Music Trans-

former algorithms. a  and b  Show the change in originality scores 

over the course of the excerpts obtained for MAIA Markov and 

Music Transformer, respectively, at 2- and 4-bar levels compared to 

the baseline mean and 95%-confidence interval; c–e show worst-case 

examples of copying by MAIA Markov and Music Transformer at 

checkpoints 3 and 15, respectively, where the generated outputs are 

on the left and the human-composed excerpts are on the right
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It shows that the originality scores of human composed 

excerpts have higher kurtosis, which implies that the model 

is less likely to generate excerpts within an narrow range of 

originality. The mean values denoted by the dashed lines 

also indicate the overall originality of generated excerpts is 

lower than the human composed excerpts.

For both algorithms, we see in Fig. 6a, b that the orig-

inality at the 2-bar level is low relative to the mean and 

95%-confidence interval for the baseline, but this is to be 

expected, because the baseline was calculated at the 4-bar 

level. What we expect to see is the solid line—indicating 

algorithm originality at the 4-bar level—lie entirely inside 

that confidence interval. This is the case for MAIA Markov 

[9], but Music Transformer’s [19] mean originality level 

is entirely below this confidence interval, indicating it has 

issues with borrowing too heavily from the input on which 

it is trained.

Three typical worst case examples of copying are shown 

in Fig. 6c–e, with generated outputs on the left and origi-

nal excerpts on the right. Figure 6c shows one from MAIA 

Markov having 42.9% originality associated with Bee-

thoven’s String quartet no.6 in B-flat major, op.18, mvt.1, 

bars 61–64. And then, Fig. 6d shows one generated by 

the “best” checkpoint (checkpoint 3 with the minimum 

validation loss) of Music Transformer having 48.8% origi-

nality associated with Mozart’s String quartet no.13 in D 

minor, K.173, mvt.1, bars 125–128. We found most of the 

generated outputs in this stage with less than 50% original-

ity are due to repeating the same note, which is also fre-

quently found in Classical string quartets, and the model 

tends to start by reproducing this simple kind of pattern. 

Finally, Fig. 6e shows one generated by checkpoint 15 of 

Music Transformer having 9.9% originality associated 

with Beethoven’s String quartet no. 1 in F major, op.18, 

mvt.1, bars 233–234. In general, the model appears to be 

over-fit at this checkpoint. We infer from these originality 

reports and basic musicological interpretations that the 

results generated by Music Transformer gradually morph 

during training from reproduction of simple patterns (e.g., 

repeated notes) to verbatim use of more distinctive note 

sequences.

Incorporating Originality Reports 
into an Algorithmic Process: Originality Decreases 
as Epoch Increases

Here, we demonstrate the use of an originality report in the 

modelling process itself, as a means of analysing changes 

in originality as a function of model training or validation 

epoch. Music Transformer was used as an example of a 

deep learning model, with the train/validation set as in sec-

tion “Determining the Baseline Level of Originality Within 

a Corpus”. To monitor the originality change along with the 

training process, 10 checkpoints including the initial point 

Fig. 7  a Loss curve of train and validation; b   accuracy curve of train and validation; c mean originality curve for 64-target and 7-target sets; 

d minimum originality score curve for 64-target and 7-target sets
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were saved. Again, we used each of them to generate 30 

excerpts, to which the aforementioned originality report was 

applied. Afterwards, we calculated the mean value of those 

30 originality scores for each checkpoint.

Figure 7a, b shows the change of loss and accuracy, respec-

tively, over training. As mentioned previously, the standard 

training process would stop at epoch (checkpoint) 3, where 

the validation loss reaches a minimum, but we extended the 

training process further to more fully investigate the effect 

of training on originality. Figure 7c, d contains a dashed line 

indicating the baseline originality level of 0.699 for the string 

quartet data set. It is worth noting that Fig. 7c, d starts with 

epoch 1, instead of epoch 0, where the weights of networks 

were randomly initialised. Such difference is due to the near 

impossibility of forming notes from randomly generated 

sequences, because the serialisation method used by Music 

Transformer requires a matched pair of events to construct 

a note [19]. Thus, applying originality report for epoch 0 is 

unconsidered here. In Fig. 7c, mean originality score decreases 

as a function of model training epoch, but remains largely in 

the 95%-confidence interval of the baseline originality level 

of the corpus. Figure 7d shows more concerning, indicating 

that minimum originality score decreases to well below the 

95%-confidence interval of the baseline originality level of the 

corpus. Originality decreases until epoch 3, and then it stays 

relatively flat afterwards. However, as with the discussion of 

Fig. 6c, d in the previous subsection, we found that the mod-

el’s borrowing still becomes more verbatim (or distinctive) 

after epoch 3, thus originality in a more general sense is still 

decreasing, a fact that is not immediately evident from Fig. 6, 

because the cardinality score does not consider distinctiveness, 

discussed further below.

Geometric Hashing: Producing Another Originality 
Report with a Different Similarity Measure, 
and Exploring Associated Parameters

In this section, we demonstrate the originality report with 

a similarity measure based on geometric hashing, and its 

adaptability to music with expressive timing.

This time, we use the trained version of Music Trans-

former from the original publication [19] (which used the 

MAESTRO train set), and generate 30 passages of “new” 

music. We then traverse each of these passages and collect 

8-s excerpts with 4-s overlap. To adapt with expressive tim-

ing, the time difference calculated in this case is in seconds 

instead of crotchet beats. As shown in Fig. 8, Music Trans-

former’s [19] mean originality level is again entirely below 

the self-originality confidence interval of the corpus, again 

indicating it has issues with borrowing too heavily from the 

input on which it is trained.

The adaptability of our geometric hashing approach to 

data with expressive timing is already implicit in the results 

shown in Fig. 8, but we need to verify that: (1) when we 

define a query based on an excerpt of music that is drawn 

from (known to be in) the train set itself, we get a near-1 

similarity score when the timing data in the query is per-

turbed by or subject to minimal jitter; (2)  there is some 

reduction in similarity score as a function of jitter being 

increased from barely noticeable (around 1 msec) to barely 

recognisable as the same query (around 100 msec).

For each (time, pitch)-pair in a randomly selected query, 

we add random, uniform jitter with range ±x sec to the start 

time. In this case, we sample queries from the train set 

itself, and match to the lookup table calculated previously 

without jitter. We also verified that for no jitter and a bin 

size of 0.1 s (fixed for this analysis), each query is able to 

Fig. 8  Originality report based on geometric hashing for the Music 

Transformer algorithm, which shows the change in originality scores 

over the course of the excerpts obtained for Music Transformer at 8-s 

levels compared to the baseline mean and 95%-confidence interval

Fig. 9  Similarity changing with artificially added start time jitter. The 

similarity level generally decreases as jitter increases
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produce maximal similarity 1 to the same piece from which 

is sampled.

As shown in Fig. 9, the similarity values decrease as the 

jitter increases, which is what we expected. It is worth not-

ing that there is a slight increase in similiarity score moving 

from 0.05 sec jitter to 0.1 s. This is because when we obtain 

the top m similarity scores and their associated pieces, we 

use m = 100 and look for the similarity score associated with 

the piece from which the query was drawn. However, as jit-

ter increases to 0.05 sec and beyond, we noticed that often 

this piece is not among the top 100 matches. In such cases, 

we report the maximal similarity that was found (to some 

Fig. 10  Similarity changing with a set of bin sizes [0.1, 0.5, 1, 5], and for each with a set of scale factors [0.75, 0.9, 1.1, 1.25]

Fig. 11  Two line plots of runtime in seconds against number in millions of notes and entries created during lookup table building
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other piece), and hence the right-hand two entries in this plot 

might be slightly inflated, compared to one another and/or 

to the left-hand three entries.

To investigate the effect of bin size and scale factor on 

similarity, we run the same self-querying process with 

pieces in the train set. Here, we dependently test with bin 

sizes [0.1, 0.5, 1, 5] (seconds) and scale factors [0.75, 0.9, 

1.1, 1.25]. The musical effect of applying a scale factor is 

that the query is slowed down (scale factor < 1 ) or sped up 

(scale factor > 1 ). The scale factor is applied to the start time 

of all notes in a query, for every bin size above. Maximal 

similarity 1 can be obtained without applying scale factor 

(i.e., multiplying by scale factor 1). As Fig. 10 shows, a dif-

ference in scale factor has little effect on similarity, whereas 

increasing bin size increases the similarity.11 The latter result 

is an expected phenomenon, because with larger bin size, the 

approach is more likely to count as a false-positive a hash 

entry that is located further away from the precise start time.

Finally, we conduct a runtime test on building the lookup 

table, with ten data sets of increasing sizes. There are a total 

of 962 pieces in MAESTRO train set, the size of the subset 

ranges from 1 to 10 in multiples of 96.2 (ceiling function is 

applied). This test is run on Intel(R) Core(TM) i9-9920X 

CPU @ 3.50GHz and the runtime is recorded for plotting 

Fig. 11, which contains two line plots for runtime against 

number of notes and number of hash entries created. The 

plot on the left shows that the runtime increases linearly 

as the number of notes increases. Although, according to 

the Algorithm 1, the time complexity for searching triples 

is O(n3) , the actual runtime is linear to the size of input. 

We deduce the difference is because the runtime for each 

piece is roughly the same, so the relation becomes linear in 

this practical case. The plot on the right shows the runtime 

increases as the number of created entries increases, and 

combined with the plot on left, it indicates the space com-

plexity is also linear.

Discussion

This paper puts forward the notion that AI for music genera-

tion should result in outputs that imitate instead of merely 

copying original pieces, and highlights that checks of 

whether this is the case—what we refer to as the original-

ity report—are often omitted. We introduce the methodol-

ogy of the originality report for baselining and evaluating 

the extent to which a generative model copies from training 

data. This originality report is parameterised by a particular 

similarity measure. Here we illustrate two similarity meas-

ures: a relatively straightforward note-counting approach 

based on the cardinality score [7, 39], and one based on 

fingerprinting score [1, 6, 42]. By designing other similarity 

measures, it becomes possible to adapt the methodology to 

have emphases on different musical dimensions or aspects 

of those dimensions. We first use a relatively small data set 

with rigid ontime information, and analyse outputs from two 

example models, one deep learning algorithm called Music 

Transformer [19] and one non-deep learning model called 

MAIA Markov [9]. For Music Transformer, we additionally 

analyse its output with the MAESTRO data set [18], which 

contains a larger amount of pieces and all with expressive 

timing information. The analyses illustrate the use of this 

methodology and the existence of music plagiarism in recent 

research.

We recognise Google Magenta for making their source 

code (e.g., for Music Transformer) publicly available, 

because it enables a level of scrutiny that has not always 

been possible for previous work in this field [31]. That said, 

the results indicate a phenomenon, wherein this type of 

deep learning language model gradually copies increasingly 

distinctive chunks from pieces in the train set, calling into 

question whether it really learns to generate. Deep learning 

often requires large data sets with a wide variety to increase 

the model generalisation ability [2]. However, this does not 

necessarily increase the likelihood of generating outputs 

with a wide variety. Particularly here, these results highlight 

that the Music Transformer model’s [19] is not sufficiently 

original compared to the self-originality of the corpus on 

which it is trained. Stepping back somewhat from these spe-

cific results, we see several findings in this paper (e.g., those 

associated with Figs. 6b, d, e, 7, and 8) as evidence that 

current deep learning models for music generation might 

be good “data memorisers and regurgitators”, but fall short 

of being “original” or “creative”—not just qualitatively but 

as measured quantitatively by our originality report. More 

recent research found the information in training data can 

be retrieved from large language models, which highlights 

various issues of memorization [4]. Furthermore, using the 

conventional stopping criteria for the training process, the 

“best” model not only has a low level of originality, but also 

the quality of generated excerpts is low in the sense that 

the same note is repeated most of time (see Fig. 6d). Going 

forward, the field of deep learning needs to reconsider in 

what situations the conventional stopping criteria are appro-

priate: perhaps loss and accuracy should no longer be the 

only criteria when evaluating the model, because we need 

to prevent these models copying training data, especially 

when they are used increasingly in a “black-box” manner 

by practising musicians.

11 Even if scale factor had a larger impact, it would be possible to 

iterate over several different likely scale factors during the matching 

process to take this into account, but the current analysis suggests this 

is not necessary, at least for the range of scale factors considered here.
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Limitations

The size of the Classical string quartet data set used above is 

smaller than that used for the original work on Music Trans-

former [19]—MAESTRO [18]— and it is also quantised 

to a smaller set of time values. We address this issue using 

MAESTRO also, but another potential solution is to pretrain a 

generative model with a large data set to gain “general musi-

cal knowledge” and then finetune with a smaller style-specific 

data set [12, 14]. However, our first data set still represents a 

substantial amount of Classical music, and certainly enough 

to give a human music student an idea of the intended style, 

so if deep learning algorithms cannot operate on data sets of 

this size, then it should be considered a weakness of the deep 

learning approach rather than a limitation of our methodology.

The simplicity of the cardinality score has some appeal, 

but as noted in the review of existing work, it can mean that 

subtle variations along some musical dimension destroy any 

translational equivalence, giving a low cardinality score that 

is at odds with high perceived similarity. For instance, the 

expressive timing in the MAESTRO data set [18] constitutes 

such subtle variations along the dimension of start time, and 

make it ill-advised to use the cardinality score to assess the 

originality of an algorithm trained on these data. In addition, 

the cardinality score shares some general advantages of the 

geometric approach. However, in its current use, it is also 

not able to take into account the distinctiveness of excerpts 

being compared [6, 11]. For instance, Fig. 2 indicated an 

instance of similarity between Mozart and Haydn, but when 

we take into account how many Classical pieces end in this 

way, it is not a particularly distinctive or interesting example.

As mentioned, cardinality score does not work properly 

with subtle variations (e.g., expressive timing), while the 

symbolic fingerprinting using geometric hashing is able to 

detect similarities with such data. However, this complex 

approach also requires configuration of parameters (e.g., 

pitch/time difference range, bin size) to balance the effi-

ciency and effectiveness. For instance, increasing the pitch/

time difference range extends the coverage of distinctive 

fingerprints, but this also exponentially increases space and 

time complexity. In terms of distinctiveness, we observe 

some fingerprints have higher frequencies than others in 

a data set, which implies that highly frequent fingerprints 

correlate with the style of a music corpus, while infrequent 

ones make pieces distinctive from one another. However, the 

current version of similarity calculation, ratio of unique fin-

gerprints, does not reflect these distributional characteristics.

Future Work

We would like to see the originality report method that we 

have developed be embedded into the training processes of 

various music generation algorithms, to play a role as an 

advanced stopping criterion. Meanwhile, we will need to 

ensure that this criterion can still maintain the generalis-

ability asserted by standard stopping criteria.

We will investigate the compatibility of the originality 

report method with model selection, which is often con-

ducted as an outer loop of model training. Loss function 

engineering is a topic addressed in recent novel generating 

strategies (e.g., [16]), so it should be possible to merge 

high/low originality scores as rewards/penalties in training 

loss, to further investigate the problem that we have identi-

fied of language-based deep learning models appearing to 

be little more than powerful memorisers.

We will also explore further alternative similarity meas-

ures. Weighting of shift errors [7] and consideration of dis-

tinctiveness [11] could both address limitations mentioned 

above arising from the simplicity of the cardinality score. 

We will optimise the time performance of our geometric 

hashing approach [1], and investigate whether weighting 

the fingerprints based on their distribution in a data set can 

make the fingerprinting score reflect distinctiveness. This 

should mean originality reports can be generated for an 

algorithm trained on any music data, taking into account 

distinctiveness with respect to an underlying corpus.
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