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Abstract High dimensional covariance matrices have attracted much atten-

tion of statisticians and econometricians during the past decades. Vast litera-

ture is devoted to the research in high dimensional covariance matrices. How-

ever, most of them are for constant covariance matrices. In many applications,

constant covariance matrices are not appropriate, e.g. in portfolio allocation,

dynamic covariance matrices would make much more sense. Simply assuming

each entry of a covariance matrix is a function of time to introduce a dynamic

structure would not work. In this paper, we are going to introduce a class

of high dimensional dynamic covariance matrices in which a kind of additive

structure is embedded. We will show the proposed high dimensional dynamic

covariance matrices have many advantages in applications. An estimation pro-
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cedure is also proposed to estimate the proposed high dimensional dynamic

covariance matrices. Asymptotic properties are built to justify the proposed

estimation procedure. Intensive simulation studies show the proposed estima-

tion procedure works very well when sample size is finite. Finally, we apply

the proposed high dimensional dynamic covariance matrices, together with the

proposed estimation procedure, to portfolio allocation. The results look very

interesting.

Keywords Additive Structure · B-spline · Factor Models · High Dimensional

Dynamic Covariance Matrices · Portfolio Allocation

Mathematics Subject Classification (2020) MSC 62G05 · MSC 62H12 ·
MSC 62P20

1 Introduction

Covariance matrices are a very important tool in data analysis, their appli-

cations appear in many disciplines such as engineering, psychology, finance,

economics, to name but a few. Traditionally, sample covariance matrices are

used to estimate covariance matrices. However, when the size of a covari-

ance matrix is large, the sample covariance matrix would not work for the

estimation of a function of the covariance matrix, such as the inverse of the

covariance matrix (precision matrix), because the estimation errors would ac-

cumulate quickly to an unacceptable level due to the large size of the ma-

trix. There is much literature about high dimensional covariance matrices,

see, [28, 26, 13, 3, 4, 7, 25, 29, 14, 2, 5, 17, 19, 1, 16], and the references

therein.

Most literature about high dimensional covariance matrices is for constant

covariance matrices. However, in some applications, constant covariance ma-

trices may not be appropriate, e.g. in portfolio allocation. The optimal port-

folio allocation today may not be optimal tomorrow. Therefore, when forming

portfolio allocation, it would make much more sense to use dynamic covariance

matrices. A natural way to introduce dynamic into a covariance matrix is to

assume each entry of the covariance matrix is an unknown function of time,
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and estimate this function by data. However, this approach would not work

very well in the applications relating to prediction, such as portfolio allocation

and risk management, this is because the unknown function can go either up

or down smoothly after the last time point where we have observation, which

means we can not estimate the unknown function well at the future time point

of interest. Another approach to introduce dynamic into a covariance matrix

is to estimate the covariance matrix only based on the observations in a mov-

ing window. This approach is basically the same as assuming each entry of

the covariance matrix is an unknown function of time, and estimating this

unknown function by the local constant estimation, therefore, such approach

is not ideal either. Treating the covariance matrices at different time points as

a time series, and directly applying the concepts in time series to introduce a

dynamic structure into the covariance matrices would not work, this is because

such approach would result in too many unknown parameters and functions

to estimate, especially for high dimensional cases which is what this paper is

about. Besides, the algorithm would be too complicated and the computation

involved would be too expensive.

To estimate high dimensional precision matrices more accurately, [13] pro-

posed a factor model based structure for high dimensional covariance matrices.

Although the covariance matrice there are still constant covariance matrice,

their approach has built a bridge to connect the research in high dimensional

covariance matrices to regression analysis. In this paper, making use of this

bridge and the autoregressive idea, based on an additive structure, we intro-

duce a dynamic structure to the coefficients in the regression models for the

components of the high dimensional random vector to which we are interested

in its covariance matrix, thereby, a dynamic structure is introduced to the co-

variance matrix. Putting it in a generic context, we have therefore introduced

a class of structured high dimensional dynamic covariance matrices. In this

paper, we will show the rationale of this class of structured high dimensional

dynamic covariance matrices, construct an easy to implement estimation pro-

cedure for them, and apply them to portfolio allocation. We will show the
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portfolio allocation based on the proposed dynamic covariance matrices yields

better return than some commonly used approaches.

The rest of this paper is organised as follows. We begin in Section 2 with

a description of the proposed class of structured high dimensional dynamic

covariance matrices. In Section 3, we construct an estimation procedure for

the proposed class of covariance matrices. Asymptotic properties of the pro-

posed estimation procedure are built in Section 4 to justify the proposed es-

timation procedure theoretically. In Section 5, we describe how to apply the

proposed dynamic covariance matrices to portfolio allocation. Intensive sim-

ulation studies are conducted in Section 6 to show how well the proposed

estimation procedure works, and how better the portfolio allocation formed

based on the proposed dynamic covariance matrices is, compared with some

commonly used portfolio allocations. Finally, in Section 7, we apply the port-

folio allocation, formed based on the proposed dynamic covariance matrices,

to a data set which is freely available from

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_

library.html

and compare its returns with that of some commonly used approaches.

2 A class of structured high dimensional dynamic covariance

matrices

In this section, based on the factor models, we are going to introduce a class

of structured high dimensional dynamic covariance matrices. The factor mod-

els in this paper refer to the common factor models where the factors are

observable. See [8, 9] for more details about the common factor models.

Suppose (XT
t ,Y

T
t ), t = 1, · · · , n, is a time series, where Yt is a pn di-

mensional vector and Xt is a q dimensional common factor. An underlying

assumption throughout this paper is that pn −→ ∞ when n −→ ∞, and q is

fixed. In practice, q is often small, e.g. in the Fama-French three factor mod-

els, q is 3. Also, we assume that {Xt, t = 1, · · · , n} is a stationary Markov

process.
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The standard common factor models are

Yt = a+CXt + et

which do not account for any dynamic feature, and the covariance matrices

based on this model would be constant matrices, see [13]. To account for the

dynamic feature, we borrow the autoregressive idea, namely, we assume a and

C depend on the observation at t − 1. To avoid the high dimensionality of

Yt−1, we assume a and C are functions of Xt−1. This is reasonable, because

Xt−1 is the common factor, Yt−1 has been largely accounted for by Xt−1.

This modelling idea takes us to the following models

Yt = a(Xt−1) +C(Xt−1)Xt + ǫt, (2.1)

where Xt = (xt,1, · · · , xt,q)
T,

a(Xt−1) =
(
a1(Xt−1), · · · , apn

(Xt−1)
)T

, C(Xt−1) =
(
cj,k(Xt−1)

)
pn×q

,

ǫts are random errors which are independent of Xts, and

E(ǫt|{ǫl : l < t}) = 0, cov(ǫt|{ǫl : l < t}) = Σ0,t = diag
(
σ2
1,t, · · · , σ2

pn,t

)
.

Under model (2.1), by simple calculation, we have the conditional covariance

matrix

cov(Yt|Ft−1) = C(Xt−1)Σx(Xt−1)C(Xt−1)
T +Σ0,t (2.2)

where Ft is the σ−algebra generated by {(XT
l , ǫTl ) : l ≤ t}, and

Σx(Xt−1) = cov(Xt|Xt−1).

Due to “curse of dimensionality”, we have to impose some kind of structure on

the unknown multivariate functions aj(·)s and cj,k(·)s, in order to get decent

estimators of these functions. Addtive structure is one of the most commonly

assumed structure in multiple nonparametric regression, we therefore assume

the aj(·)s and cj,k(·)s in (2.1) have addtive structure, namely,

aj(Xt−1) = aj,0 +

q∑

l=1

aj,l(xt−1,l), j = 1, · · · , pn.

cj,k(Xt−1) = cj,k,0 +

q∑

l=1

cj,k,l(xt−1,l), j = 1, · · · , pn, k = 1, · · · , q.
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We also assume

E
(
aj,l(xt−1,l)

)
= 0, E

(
cj,k,l(xt−1,l)

)
= 0, (2.3)

j = 1, · · · , pn, k = 1, · · · , q, l = 1, · · · , q, to make the model identifiable.

We don’t impose any condition on the matrix Σx(·) because its size is

q, which is often small in practice. As we are going to apply the proposed

dynamic covariance matrix to portfolio allocation, it is reasonable to assume

the σ2
k,ts in Σ0,t in (2.2) follow GARCH models, that is

σ2
k,t = αk,0 +

m∑

i=1

αk,iǫ
2
k,t−i +

s∑

j=1

γk,jσ
2
k,t−j , t = 2, · · · , n, (2.4)

for each k = 1, · · · , pn and for some integers m and s.

Clearly, (2.2) together with the conditions, imposed on the unknown func-

tions involved or the variances of the random errors, represent a large class of

structured high dimensional dynamic covariance matrices. The main focus of

this paper is on (2.2) in which the cj,k,0s and cj,k,l(·)s involved in C(·), the
αk,0s, αk,is and γk,js involved in Σ0,t, and Σx(·) are unknown and need to

be estimated. The aj,0s and aj,l(·)s involved in a(·) in model (2.1) are also

unknown and need to be estimated.

We conclude this section by two remarks:

Remark 1 Model (2.1) is interesting in its own right, since it combines ad-

ditive modelling [20, 24, 14, 6] and varying coefficient modelling [21, 10, 11,

12, 26, 30, 23, 22, 27]. It is more flexible than either the additive models or

the varying coefficient models, therefore, very useful in the data analysis where

neither the additive models nor the varying coefficient models work.

Remark 2 The dynamic structure in (2.2) is fundamentally different to the

dynamic structure introduced by assuming each entry of a covariance matrix is

an additive function of the common factors. Clearly, the latter would need to

estimate pn(1+pn)/2 additive functions, but (2.2) only needs to estimate qpn,

which is much smaller than pn(1+ pn)/2 when pn is large, additive functions.
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Most crucially, the latter does not allow any interaction of the common fac-

tors on the entries of the covariance matrix, which is unrealistic in real data

analysis, this is because a covariance matrix is a quantity of second moment.

Obviously, (2.2) does allow interactions, which is more reasonable. Finally,

the proposed method has the advantage that it automatically yields a positive-

definite covariance matrix.

3 Estimation procedure

In this section, we introduce an estimation procedure for cov(Yt|Ft−1). We will

first estimate C(·), Σx(·), αk,i and γk,j , and denote the resulting estimators

by Ĉ(·), Σ̂x(·), α̂k,i and γ̂k,j for i = 0, · · · , m and j = 1, · · · , s. Let Σ̂0,t be

Σ0,t with αk,i and γk,j being replaced by α̂k,i and γ̂k,j respectively. We use

ĉov(Yt|Ft−1) = Ĉ(Xt−1)Σ̂x(Xt−1)Ĉ(Xt−1)
T + Σ̂0,t (3.1)

to estimate cov(Yt|Ft−1).

Throughout this paper, for any integers p and q, we use 0p×q to denote a

p × q matrix with each entry being 0, and Ip to denote an identity matrix of

size p.

If the range of xt,l, t = 1, · · · , n, is different for different l, we can first

standardise xt,l, t = 1, · · · , n, for each given l, such that the range of xt,l,

t = 1, · · · , n, is the same for all ls. Therefore, without loss of generality,

throughout this paper, we assume the range of xt,l, t = 1, · · · , n, is the same

for all ls.

3.1 Estimation of C(·) and a(·)

By (2.1), and for j = 1, · · · , pn, we have the following additive varying

coefficient model

yj,t = aj,0 +

q∑

l=1

aj,l(xt−1,l) +

q∑

k=1

xt,k

{
cj,k,0 +

q∑

l=1

cj,k,l(xt−1,l)

}
+ ǫj,t,
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which is

yj,t = aj,0 +

q∑

k=1

xt,kcj,k,0 +

q∑

l=1

{
aj,l(xt−1,l) +

q∑

k=1

cj,k,l(xt−1,l)xt,k

}
+ ǫj,t,

(3.2)

for t = 2, · · · , n.

Applying B-spline decomposition to aj,l(xt−1,l)s and cj,k,l(xt−1,l)s, and

incorporating the identification condition (2.3) into the decomposition, we

have

aj,l(xt−1,l) ≈ (Bt−1,l − B̄l)
Taj,l, cj,k,l(xt−1,l) ≈ (Bt−1,l − B̄l)

Tcj,k,l

where Bt−1,l is the vector of the B-spline basis functions at xt−1,l, and

B̄l =
1

n− 1

n∑

t=2

Bt−1,l, aj,l = (aj,l,1, · · · , aj,l,K)T, cj,k,l = (cj,k,l,1, · · · , cj,k,l,K)T,

where K is selected by cross-validation.

Replacing the aj,l(xt−1,l)s and cj,k,l(xt−1,l)s in (3.2) by their B-spline de-

compositions, we have the following synthetic linear model

yj,t = aj,0+

q∑

k=1

xt,kcj,k,0+

q∑

l=1

{
(Bt−1,l − B̄l)

Taj,l +

q∑

k=1

xt,k(Bt−1,l − B̄l)
Tcj,k,l

}
+ǫj,t.

(3.3)

Let

X =




1 XT
2 (1, XT

2)⊗ (B1,1 − B̄1)
T · · · (1, XT

2)⊗ (B1,q − B̄q)
T

...
...

...
. . .

...

1 XT
n (1, XT

n)⊗ (Bn−1,1 − B̄1)
T · · · (1, XT

n)⊗ (Bn−1,q − B̄q)
T




βj =
(
aj,0, cj,1,0, · · · , cj,q,0, aTj,1, cTj,1,1, · · · , cTj,q,1, · · · , aTj,q, cTj,1,q, · · · , cTj,q,q

)T

yj = (yj,2, · · · , yj,n)
T, ǫj = (ǫj,2, · · · , ǫj,n)

T

(3.3) can be written to

yj = Xβj + ǫj , (3.4)

and the estimator of βj is

β̂j = (XTX )−1XTyj
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The estimators âj,0s, ĉj,k,0s, âj,ls and ĉj,k,ls of aj,0s, cj,k,0s, aj,ls and cj,k,ls

are the corresponding components of β̂j , and for any given u, the estimators

of aj,l(u) and cj,k,l(u) are

âj,l(u) = (B(u)− B̄l)
Tâj,l, ĉj,k,l(u) = (B(u)− B̄l)

Tĉj,k,l

where B(u) is the Bt−1,l with xt−1,l being replaced by u. Therefore, the esti-

mators of aj(Xt−1) and cj,k(Xt−1) are

âj(Xt−1) = âj,0+

q∑

l=1

(Bt−1,l−B̄l)
Tâj,l, ĉj,k(Xt−1) = ĉj,k,0+

q∑

l=1

(Bt−1,l−B̄l)
Tĉj,k,l

for j = 1, · · · , pn, k = 1, · · · , q.

3.2 Estimation of Σx(·)

In order to estimate E(Xt|Xt−1 = u) and E(XtX
T
t |Xt−1 = u), for any given

u, we propose using the local constant estimators

Ê(Xt|Xt−1 = u) =

n∑
t=2

XtKh(‖Xt−1 − u‖)
n∑

t=2
Kh(‖Xt−1 − u‖)

, (3.5)

Ê(XtX
T
t |Xt−1 = u) =

n∑
t=2

XtX
T
tKh(‖Xt−1 − u‖)

n∑
t=2

Kh(‖Xt−1 − u‖)
,

where Kh(·) = K(·/h)/h, K(·) is a kernel function, usually taken to be the

Epanechnikov kernel K(u) = 0.75(1 − u2)+, h is a bandwidth. This gives us

the following estimator of Σx(u)

Σ̂x(u) = Ê(XtX
T
t |Xt−1 = u)− Ê(Xt|Xt−1 = u)

{
Ê(Xt|Xt−1 = u)

}T

= {tr(W)}−2
XT

{
tr(W)W −W11TW

}
X (3.6)

where

X = (X2, · · · , Xn)
T, W = diag(Kh(‖X1 − u‖), · · · , Kh(‖Xn−1 − u‖)).



10 Jin Yang et al.

3.3 Estimation of Σ0,t

For each j (j = 1, · · · , pn), let

rj,t = ǫ̂j,t = yj,t − âj(Xt−1)−
q∑

k=1

ĉj,k(Xt−1)xt,k

By (2.4), for each k, k = 1, · · · , pn, we have the following synthetic GARCH

model

σ2
k,t = αk,0 +

m∑

i=1

αk,ir
2
k,t−i +

s∑

j=1

γk,jσ
2
k,t−j , t = 2, · · · , n (3.7)

which is equivalent to

r2k,t = αk,0 +

max(m,s)∑

i=1

(αk,i + γk,i)r
2
k,t−i + ηkt −

s∑

j=1

γk,jηk,t−j , t = 2, · · · , n

where ηk,t = r2k,t − σ2
k,t, γk,i = 0 when i > s, and αk,i = 0 when i > m. Once

αk,i and γk,j have been estimated, by substituting them into (3.7) and setting

σ2
kl = r2k,l for l ≤ max(m, s), we can obtain an estimator σ̂2

k,t of σ
2
k,t and hence

an estimator Σ̂0,t of Σ0,t.

For each k (k = 1, · · · , pn), let θk = (αk,0, · · · , αk,m, γk,1, · · · , γk,s)
T.

We are going to use a quasi-maximum likelihood approach to estimate θk. We

define the negative quasi log-likelihood function of θk as

Qk,n(θk) = n−1
n∑

t=2

{
r2k,t

σ2
k,t(θk)

+ log σ2
k,t(θk)

}
(3.8)

where σ2
k,t(θk) are recursively defined by (3.7) with initial values being either

r2k,0 = · · · = r2k,1−m = σ2
k,0 = · · · = σ2

k,1−s = αk,0 (3.9)

or

r2k,0 = · · · = r2k,1−m = σ2
k,0 = · · · = σ2

k,1−s = r2k,0. (3.10)

By minimising Qk,n(θk) with respect to θk, we use the minimiser θ̂k to esti-

mate θk, therefore, an estimator Σ̂0,t of Σ0,t is obtained.

Finally, we note that in terms of computation, all three steps of estimation

can be carried out with time complexity linear in n and pn, since the estimation

is carried out for each j ∈ {1, . . . , pn} separately. The final computation of

the covariance matrix in equation (3.1) has a time complexity O(p2n) and

computation of its inverse generally has a complexity of O(p3n).
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4 Asymptotic properties

The main interest of this paper is to estimate cov(Yt|Ft−1). To measure the

accuracy of an estimator M̂ of a matrix M of size pn, we use the entropy loss

norm, proposed by James and Stein (1961),

∥∥∥M̂−M
∥∥∥
Σ

= p−1/2
n

∥∥∥M−1/2
{
M̂−M

}
M−1/2

∥∥∥
F
,

where ‖A‖F is the Frobenius norm of matrix A. To facilitate our presentation,

we focus on the convergence of ĉov(Yn+1|Fn)−cov(Yn+1|Fn), after obtaining

the data
{
(X1,Y1), · · · , (Xn,Yn)

}
.

We impose the following assumptions.

(C1) For i = 1, . . . , pn, (yit,Xt, ǫit), t = 1, . . . , n is stationary and α-mixing with

mixing coefficient αi(l) ≤ ρl for some ρ ∈ (0, 1). ǫit has mean zero and is

independent of {Xt}. The support of xt,j is bounded.

(C2) The functions aj,k,l are twice continuously differentiable.

(C3) E[X⊗2
t ] has eigenvalues bounded and bounded away from zero, where for

any matrix A, A⊗2 = AAT.

(C4) {Xt, t = 1, . . . , n} is a stationary Markov chain. E[xt,j |Xt = u] and

E[xt,jxt,j′ |Xt = u] are twice continuously differentiable in u.

(C5) For each i, (ǫit, σ
2
it) is a strictly stationary and ergodic GARCH process

with supi E[σ2d
it ] < ∞ for some d > 2.

(C6) For each i, the innovations νit = ǫit/σit are i.i.d. with a nondegenerate

distribution, Eν2it = 1 and supi E[ν2dit ] < ∞ with the same d as defined in

(C8).

(C7) Let Ω be a compact subset of (0,∞)m+s+1. sup(αi,γi)∈Ω
∑s

j=1 γi,j < 1,

and (α0i,γ0i) is an interior point of Ω.

(C8) Let A(z) =
∑m

j=1 α0i,jz
j and B(z) = 1−∑s

j=1 γ0i,jz
j . A(z) and B(z) have

no common roots on the complex plane C, A(1) 6= 0, α0i,m + γ0i,s 6= 0.

(C9) The kernel function K(z) is a symmetric density function that is bounded

on a bounded support and satisfies the Lipschitz condition. The bandwidth

h satisfies h ≍ n−c with 0 < c < 1/(q + 1).
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(C10) The number of knots for splines satisfies K ≍ na with 1/8 < a < 1/3,

where K is the number of basis functions in the B-splines construction.

pn ≍ nb with b < d/2− 1.

Remark 3 (C1) contains some mild regularity assumptions. Assuming xt,j to

be bounded is common in estimation with B-splines since the basis functions

are constructed on a compact interval. On the other hand,[13] used the more

stringent assumption that the data are independent and identically distributed.

(C2) contains smoothness condition for the component functions. (C3) is a

mild assumption which should be assumed even for linear models. (C4) and

(C9) are the same as assumed in [19] for the estimation of Σx. (C5)-(C6) are

mild regularity assumptions for the GARCH model. Compared to [13], we need

to use higher-order moments for the noise since we try to model and estimate

the parameters in the noise process. Assumptions (C7) and (C8) implies (2.4)

admits a unique strictly stationary solution, and the parameters are identified,

which are the same as those used in [18]. (C10) restricts the number of spline

knots and the divergence rate of pn. In particular, pn can increase polynomially

with n, and more stringent moment assumption with larger d allows larger pn.

Theorem 1 Under assumptions (C1)-(C10),

‖ĉov(Yn+1|Fn)− cov(Yn+1|Fn)‖2Σ

= Op

(
pn

(K2(log n)2

n2
+K−8

)
+

(K log n

n
+K−4

)
+ p−1

n

(
h4 +

log n

nhq

))
.

Theorem 2 Under assumptions (C1)-(C10), and that

(
pn

(K2(log n)2

n2
+K−8

)
+

(K log n

n
+K−4

)
+ p−1

n

(
h4 +

log n

nhq

))
= o(p−1

n ),

we have

‖ĉov(Yn+1|Fn)
−1 − cov(Yn+1|Fn)

−1‖2Σ

= Op

(
pn

(K2(log n)2

n2
+K−8

)
+

(K log n

n
+K−4

)
+ p−1

n

(
h4 +

log n

nhq

))
.
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Remark 4 Up to the logarithmic term the optimal choice of for the number of

basis K is the standard choice K ≍ n1/5. For the bandwidth, the optimal choice

of h ≍ n− 1
4+q . The first two terms in the rates of Theorem 1 are associated with

the error in estimating the conditional mean of yit while the last term comes

from the errors in estimating Σx(Xt−1). The error in estimating Σ0,t is also

contained in the second term, since the dominating error comes from using the

residuals in place of ǫit in estimating the parameters in the GARCH model.

Although the error in estimating the covariance matrix is most often used in

theoretical results, the inverse of the covariance matrix appears in portfolio

allocation and thus Theorem 2 is more relevant for our application.

5 Application to portfolio allocation

In this section, we briefly describe the construction of an estimated optimal

portfolio allocation based on the proposed additive structure and the associ-

ated estimation procedure. Since the formula for optimal portfolio allocation

contains E(Yt|Ft−1), we shall introduce its estimator Ê(Yt|Ft−1) first. By

taking conditional expectation of (2.1), we have

E(Yt|Ft−1) = a(Xt−1) +C(Xt−1)E(Xt|Xt−1).

Therefore, we use

Ê(Yt|Ft−1) = â(Xt−1) + Ĉ(Xt−1)Ê(Xt|Xt−1) (5.1)

to estiamte E(Yt|Ft−1), where Ê(Xt|Xt−1) is defined in (3.5).

Similar with [19], the estimated optimal portfolio allocation vector ŵ of pn

risky assets, to be held between times t− 1 and t, is defined as the solution to

min
w

wTĉov(Yt|Ft−1)w

subject to wT1pn = 1 and wTÊ(Yt|Ft−1) = δ,
(5.2)

where δ is the target rerurn imposed on the portfolio. The solution ŵ is given

by

ŵ =
c3 − c2δ

c1c3 − c22
ĉov(Yt|Ft−1)

−11pn
+

c1δ − c2
c1c3 − c22

ĉov(Yt|Ft−1)
−1Ê(Yt|Ft−1),

(5.3)
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where

c1 = 1Tpn
ĉov(Yt|Ft−1)

−11pn
, c2 = 1Tpn

ĉov(Yt|Ft−1)
−1,

c3 = Ê(Yt|Ft−1)
Tĉov(Yt|Ft−1)

−1Ê(Yt|Ft−1).

We remark that one can easily impose further constraints to restrict short

selling or limit the gross exposure of the portfolio [see, e.g., 15]. The crucial

point is that one still needs to estimate the covariance matrix of asset returns

to calculate the portfolio allocation. Throughout the numerical examples of

this article, we use (5.2) since it is a natural starting point and frequently

appears in the literature.

6 Simulation studies

In this section, we are going to use a simulated example to show how well the

proposed estimation procedure and portfolio allocation work.

We generate data from model (2.1) together with (2.4). We set n to be

either 1000 or 2000, pn either 50 or 100. We also set

q = 3, m = 1, s = 1, α0,k = 0.001, α1,k = 0.1, γ1,k = 0.1.

For j = 1, · · · , pn, we set

aj(Xt−1) = 1.15+

q∑

l=1

0.25 sin(2πxt−1,l), cj,1(Xt−1) = −0.2+

q∑

l=1

0.2 sin(πxt−1,l),

cj,2(Xt−1) = −0.22+

q∑

l=1

0.2 sin(3πxt−1,l), cj,3(Xt−1) = 0.96+

q∑

l=1

0.2 sin(4πxt−1,l).

For t = 0, · · · , n + 1, we generate Xt independently from a uniform distri-

bution on [−1, 1]q, Zt from pn-variate standard normal distribution, and ǫt

through ǫt = Σ
1/2
0,t Zt recursively. Once both Xt and ǫt have been generated,

Yt can be generated through (2.1) for t = 1, · · · , n+ 1.

We will initially pretend that (XT
n+1, Y

T
n+1) is unknown to us, and this will

not be used in the estimation of cov(Yn+1|Fn). The purpose of generating an

additional data point (XT
n+1, Y

T
n+1) is to enable us to calculate the one-period

simple return

R(ŵ) = ŵTYn+1 (6.1)
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of a portfolio allocation ŵ formed at time n based on data (XT
t , YT

t ), t =

1, · · · , n.

We evaluate the performance of the portfolio allocation ŵ by the Sharpe

ratio

SR(ŵ) =
E {R(ŵ)}
SD {R(ŵ)} ,

where SD {R(ŵ)} is the standard deviation of R(ŵ). A zero risk-free rate is

assumed for simplicity.

To evaluate the performance of an estimator M̂ of matrix M (if M is a

vector of dimension p, we treat it as a p × 1 matrix), we use the following

metric:

∆(M̂,M) =
‖M̂−M‖F

‖M‖F
.

The kernel function in the estimation procedure is taken to be the Epanech-

nikov kernel K(u) = 0.75(1−u2)+, and the proposed bandwidth is based on a

k-nearest neighbors bandwidth with k being selected by cross-validation. We

define the cross-validation statistic by

CV (k) =

n∑

t=n−M

∥∥∥Yt − â(t−1)(Xt−1)− Ĉ
(t−1)

(Xt−1)Xt

∥∥∥ ,

where â(t−1)(·) and Ĉ
(t−1)

(·) are the respective estimators of a(·) and C(·)
using a k-nearest neighbors bandwidth based on (XT

l , YT
l ), l = 1, · · · , t− 1,

and M is a look-back integer parameter such that M < n− 1. For each of the

four cases: (n = 1000, pn = 50), (n = 1000, pn = 100), (n = 2000, pn = 50),

(n = 2000, pn = 100), we do 1000 simulations. The results about the accuracy

of the estimators â, Ĉ, Ê(Yn+1|Fn), Σ̂0,n+1, and Σ̂x(Xn) of a = a(Xn),

C = C(Xn), Σ0,n+1, and Σx(Xn), are presented in Table 1 which shows

these estimators work very well.

We use ĉov(Yn+1|Fn)
−1 to estimate cov(Yn+1|Fn)

−1, the results about

the accuracy of the proposed estimators ĉov(Yn+1|Fn) and ĉov(Yn+1|Fn)
−1

are presented in Table 2, which again shows the proposed estimators work very

well.

To have a more visible idea about how well the proposed estimator of

cov(Yn+1|Fn) or of cov(Yn+1|Fn)
−1 fares, compared with the alternatives, we
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Table 1 Performance of Parameter Estimators

n = 1000 n = 1000 n = 2000 n = 2000
pn = 50 pn = 100 pn = 50 pn = 100

E{∆(â,a)} 0.0109 0.0109 0.0075 0.0075

SD{∆(â,a)} 0.0002 0.0002 0.0001 0.0001

E{∆(Ĉ,C)} 0.0379 0.0379 0.0245 0.0246

SD{∆(Ĉ,C)} 0.0211 0.0210 0.0130 0.0130

E{∆(Ê(Yn+1|Fn), E(Yn+1|Fn))} 0.0255 0.0255 0.0177 0.0178

SD{∆(Ê(Yn+1|Fn), E(Yn+1|Fn))} 0.0223 0.0222 0.0180 0.0179

E{∆(Σ̂0,n+1, Σ0,n+1)} 0.1800 0.1804 0.1107 0.1106

SD{∆(Σ̂0,n+1, Σ0,n+1)} 0.0503 0.0504 0.0355 0.0338

E{∆(Σ̂x(Xn), Σx(Xn))} 0.0747 0.0747 0.0571 0.0571

SD{∆(Σ̂x(Xn), Σx(Xn))} 0.0481 0.0481 0.0417 0.0417

E{·} and SD{·} are sample mean and sample standard deviation. For example,
E{∆(â,a)} and SD{∆(â,a)} are the sample mean and sample standard deviation
of ∆(â,a) over the 1000 replications, respectively.

Table 2 Performances of ĉov(Yn+1|Fn) and ĉov(Yn+1|Fn)−1

n = 1000 n = 1000 n = 2000 n = 2000
pn = 50 pn = 100 pn = 50 pn = 100

E{∆(Ĉovn+1,Covn+1)} 0.069 0.069 0.049 0.050

SD{(∆(Ĉovn+1,Covn+1)} 0.055 0.055 0.042 0.042

E{∆(Ĉov
−1

n+1,Cov−1
n+1)} 0.205 0.190 0.146 0.140

SD{∆(Ĉov
−1

n+1,Cov−1
n+1)} 0.022 0.022 0.018 0.017

In this table, Covn+1 = cov(Yn+1|Fn), and Ĉovn+1 = ĉov(Yn+1|Fn).

produce the histograms, in Figures 1 and 2, of∆ (ĉov(Yn+1|Fn), cov(Yn+1|Fn))

(denoted by ∆cov) or of

∆
(
ĉov(Yn+1|Fn)

−1, cov(Yn+1|Fn)
−1

)
(denoted by ∆cov−1) over the 1000

simualtions conducted for each scenario, ĉov(Yn+1|Fn) is constructed by ei-

ther the proposed method or alternatives. Figures 1 and 2 show the proposed

method outperforms the alternatives regardless for estimating cov(Yn+1|Fn)

or cov(Yn+1|Fn)
−1.
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Fig. 1 The accuracy of the estimators of cov(Yn+1|Fn)
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The histograms for the proposed method are in (red), the sample covariance matrix
in (green), the method proposed by Fan, Fan, and Lv (2008) in (blue).

Using a target return δ = 1%, we now examine the performance of the

proposed portfolio allocation by computing the return as described in (6.1).

To see how much gain can be made by using our proposed structure, we make a

comparison with portfolio allocations based on Markowitzs formula but where

the covariance matrix is estimated using the sample covariance matrix and the

factor model given in [13]. The mean, standard deviation, and Sharpe ratio
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Fig. 2 The accuracy of the estimators of cov(Yn+1|Fn)−1
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The histograms for the proposed method are in (red), the sample covariance matrix
in (green), the method proposed by Fan, Fan, and Lv (2008) in (blue).

of the returns based on the 1000 simulations are presented in Table 3. Table

3 shows, our portfolio allocation performs much better than others, in terms

of Sharpe ratio. This suggests there is significant gain from making use of the

proposed dynamic structure of the covariance matrix.
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Table 3 The Sharpe Ratios for Various Portfolio Allocations

(n = 1000, pn = 50) (n = 1000, pn = 100) (n = 2000, pn = 50) (n = 2000, pn = 100)

E{R(ŵ)} 1.12% 1.13% 1.19% 1.19%

E{R(ŵ1)} 1.16% 1.14% 1.24% 1.21%

E{R(ŵ2)} 1.17% 1.14% 1.25% 1.22%

SD{R(ŵ)} 0.78% 0.73% 0.85% 0.80%

SD{R(ŵ1)} 1.00% 0.86% 1.23% 1.00%

SD{R(ŵ2)} 0.97% 0.82% 1.21% 0.97%

SR(ŵ) 1.43 1.54 1.40 1.49

SR(ŵ1) 1.16 1.32 1.00 1.21

SR(ŵ2) 1.20 1.39 1.03 1.25

In this table, ŵ is the proposed portfolio allocation, ŵ1 and ŵ2 are the portfolio
allocations formed by Markowitzs formula respectively using the sample covariance
matrix and the covariance matrix given in [13].

7 Real data analysis

In this section, we are going to use a real data example to demonstrate the

gain of using the proposed dynamic structure for the covariance matrix in

Markowitz’s formula when forming a portfolio allocation. Except the market

portfolio (denoted by Market, it serves as an important benchmark indicating

whether we are in a bull or bear market), all portfolio allocations in this section

are formed by Markowitz’s formula but with different approaches to deal with

the covariance matrix involved in the formula. The portfolio allocation based

on the proposed dynamic structure and estimation for the covariance matrix is

denoted by Ours, based on the structure and estimation in [19] is denoted by

Face, based on the sample covariance matrix is denoted by Sam, and based

on the structure and estimation in [13] is denoted by Fan.

We are going to compare the returns of Ours, Face, Sam, Fan, and

Market. In all cases, we use the same target return δ = 1%. The kernel func-

tion used in the construction of Ours is still taken to be the Epanechnikov

kernel, and the bandwidths are selected by the method described in Section 6.
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The dataset for us to study is from the Kenneth French’s website, http://

mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html,

it is about the returns of pn = 49 industry portfolios during 2019. The dataset

is used directly and not altered or manipulated in any way. The response vari-

able Yt is chosen to be the vector of the daily simple returns of pn = 49

industry portfolios (value weighted) minus the risk-free rate (one-month Trea-

sury bill rate). The observable factors x1,t, x2,t and x3,t are taken to be the

market, size and value factors, respectively, from the Fama-French three-factor

model.

Fig. 3 Trading Strategies
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We compare the four portfolio allocations (Ours, Face, Sam, and Fan)

along with market during 2019 using a simple trading strategy. We trade on

each trading day, which is T = 252 trading days in this year and we assume we

have initial balance of £100. Besides, we assume no transaction costs, allow for

short selling, and assume that all possible portfolio allocations are attainable.

Our trading strategy consists of forming a portfolio allocation ŵ at the end of

each trading day and holding it until the end of the next trading day. Between

day t− 1 and day t, we obtain the portfolio return

Rt(ŵ) = ŵTYt +Rf,t,

where ŵ is formed based on (XT
t−j , YT

t−j), j = 1, · · · , n for some look-back

integer n and Rf,t is the risk-free rate on day t. With the realized returns

Rt(ŵ), t = 1, · · · , T , we can calculate the annualized Sharpe ratio

SR(ŵ) =
R̄(ŵ)

SD(R)

√
T ,

where

R̄(ŵ) =
1

T

T∑

t=1

{Rt(ŵ)−Rf,t} , SD(R) =

[
1

T

T∑

t=1

{
Rt(ŵ)−Rf,t − R̄(ŵ)

}2

]1/2

.

The annualized Sharpe ratio for each of the five portfolio allocations under

comparison is presented in Table 4 when n = 300 or 500. Meanwhile, we plot

the balance for each portfolio at the end of each trading day in Figure 3. Table

4 and Figure 3 show clearly that Ours performs significantly better than other

four.

We remark that Ours, Face, Sam, and Fan are all constructed based on

Markowitz’s formula, the difference between them lies in the way to estimate

the covariance matrix of returns, which appears in Markowitz’s formula. The

crucial point is that Sam and Fan do not consider the dynamic feature of the

covariance matrix in their estimation. Although Face takes into account the

dynamic feature, it still does not do very well in terms of the balance left on

the final trading day in 2019. Ours employs an additive dynamic structure for

the covariance matrix, such structure seems working very well for this dataset

and yields the best return.
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Table 4 Annualized Sharpe ratios

n = 300 n = 500

Ours 2.443 2.098

Face -0.271 -0.220

Sam 0.339 0.059

Fan 0.203 0.015

Market 1.924 1.924

Appendix: Proofs of the Theorems

We write aj,l as aj,0,l, cj,k,l as aj,k,l, and cj,k as aj,k. We write the model more succinctly

as

yit = X
T
t ai(Xt−1) + ǫit,

where Xt = (1,XT
t )
T, ai(Xt−1) = (ai,0(Xt−1), ai,1(Xt−1), . . . , ai,q(Xt−1))T, ai,k(Xt−1) =

ai,k,0 + ai,k,1(xt−1,1) + · · · + ai,k,q(xt−1,q). Using B-splines, we model the functions as

ai,k,l(xt−1,l) ≈ BT(xt−1,l)θi,k,l where B now denotes the centered basis functions. Let

θi,k = (ai,k,0,θ
T
i,k,1, . . . ,θ

T
i,k,q)

T, Θi = (θi,0, . . . , θi,q), θi = vec(Θi) = (θTi,0, . . . , θ
T
i,q)

T,

and B(Xt−1) = (1,BT(xt−1,1), . . . ,BT(xt−1,q))T. Then the least squares problem is

min
∑

i,t

(yit −XtΘ
T
i B(Xt1 ))

2 = min
∑

i,t

(yit − (Xt ⊗BT(Xt1 ))θi)
2

where ⊗ denotes the Kronecker product.

Below we use C to denote a generic positive constant whose exact value can change even

on the same line. Whenever we use the constant C1 > 0 in 1/nC1 , C1 will denote a constant

that can be chosen to be arbitrarily large. We use ‖.‖op to denote the operator norm of a

matrix (the operator norm is the same as the largest singular value of the matrix) and use ‖.‖
to denote the Frobenius norm of a matrix or the Euclidean norm of a vector. We use ‖.‖L2 to

denote the L2 norm of functions and ‖.‖∞ is the sup-norm for vectors (maximum absolute

value of the components). Since we will very frequently use tail probability, for simplicity of

notation we write P (X > Ca) = O(b) as X = Ot(a; b), where a is possibly random, while

X = ot(a; b) means P (X > δa) = O(b) for any δ > 0. Ov(a), Op,v(a), Ot,v(a; b) denotes

a (possibly random) vector such that its Euclidean norm is of order O(a), Op(a), Ot(a; b),

respectively.

Let θ0,j,k,l be the spline approximation coefficient that satisfies supx |aj,k,l(x)−BT(x)θ0,j,k,l| ≤
CK−2 which is possible under smoothness assumption (C2). Set θ0,i,k = (ai,k,0,θ

T
0,i,k,1, . . . ,θ

T
0,i,k,q)

T,

Θ0i = (θ0,i,0, . . . ,θ0,i,q), and θ0i = vec(Θ0i) = (θT0,i,0, . . . , θ
T
0,i,q)

T.

First we consider the asymptotic property of the initial mean estimator θ̂ = (θ̂
T
1 , . . . ,θ

T
pn

)T.

Although the results are relatively standard, we aim to obtain bounds that hold uniformly
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over different responses i = 1, . . . , pn in order to obtain the rates on the conditional variance

of Yt. To this effect, tail bounds for the estimators are derived.

Proposition 1 Let rn =
√

K/n+K−2 and r′n =
√

K logn/n+K−2. We have maxi ‖θ̂i −
θ0i‖ = Ot(r′n; pnKd(logn)3d/nd−1).

Proof of Proposition 1. We show that

inf
‖θi−θ0i‖=Cr′n

n∑

t=1

(yit −BT(Xt−1)ΘiXt)
2 −

n∑

t=1

(yit −BT(Xt−1)Θ0iXt)
2 > 0

with high probability.

We have

n∑

t=1

(yit −BT(Xt−1)ΘiXt)
2 −

n∑

t=1

(yit −BT(Xt−1)Θ0iXt)
2

=
∑

t

(BT(Xt−1)ΘiXt)−BT(Xt−1)Θ0iXt)
2

−2(ǫit − rit)(B
T(Xt−1)ΘiXt −BT(Xt−1)Θ0iXt),

where rit = BT(Xt−1)Θ0iXt −X
T
t ai(Xt−1) with |rit| = O(K−2).

Furthermore,

∑

t

(BT(Xt−1)ΘiXt)−BT(Xt−1)Θ0iXt)
2 = n(θTi − θT0i)Â(θi − θ0i),

where

Â =
1

n

n∑

t=1

(
Xt ⊗B(Xt−1)

) (
X
T
t ⊗BT(Xt−1)

)
. (A.1)

By Lemma 1, eigenvalues of Â are bounded and bounded away from zero, with proba-

bility at least 1−O(1/nC1 ). Thus

∑

t

(BT(Xt−1)ΘiXt)−BT(Xt−1)Θ0iXt)
2 ≥ Cn‖θi − θ0i‖2, (A.2)

with probability at least 1−O(1/nC1 ).

Next, using the Cauchy-Schwarz inequality, we have

∑

t

rit(B
T(Xt−1)ΘiXt)−BT(Xt−1)Θ0iXt)

= C
√
nK−2 ·Ot(

√
n‖θ − θ‖2; 1/nC1 ). (A.3)

Finally consider the term ǫit(B
T(Xt−1)ΘiXt)−BT(Xt−1)Θ0iXt). We have

∑

t

ǫit(B
T(Xt−1)ΘiXt)−BT(Xt−1)Θ0iXt)

=
∑

t

(θTi − θT0i)
(
Xt ⊗B(Xt−1)

)
ǫit
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≤ ‖θi − θ0i‖
∥∥∥∥∥
∑

t

Xt ⊗B(Xt−1)ǫit

∥∥∥∥∥ .

Lemma 2 bound the second term above in terms of tail probability. By this lemma, we have

∣∣∣∣∣
∑

t

ǫit(B
T(Xt−1)ΘiXt −BT(Xt−1)Θ0iXt)

∣∣∣∣∣

= Ot(
√

nK logn;Kd(logn)3d/nd−1)). (A.4)

Combining (A.2), (A.3) and (A.4),

n∑

t=1

(yit −BT(Xt−1)ΘiXt)
2 −

n∑

t=1

(yit −BT(Xt−1)Θ0iXt)
2 > 0

with probability at least 1−O(Kd(logn)3d/nd−1) uniformly over ‖θi − θ0i‖2 = C(r′n)
2.

Thus ‖θ̂i −θ0i‖ = Ot(r′n;Kd(logn)3d/nd−1) and, as an immediate corollary by Boole’s

inequality, maxi ‖θ̂i − θ0i‖) = Ot(r′n; pnKd(logn)3d/nd−1). �

Now we consider the convergence rate for the parameters in the GARCH model. The

main difference from the standard setting is that the residuals here are estimated. We write

the estimated residual as ǫ̂it. We define

∆

:= max
i,t

|ǫ̂it − ǫit|

= max
i,t

|BT(Xt−1)Θ̂iXt − aTi (Xt−1)Xt|

≤ max
i,t

C‖(Θ̂i −Θ0i)
TB(Xt−1)‖+ CK−2

= Op

(√
K logn

n
+K−2

)
.

Let ϑi = (αi,0, αi,1, . . . , αi,m, γi,1, . . . , γi,s)
T be all the parameters in the GARCH model,

with true parameter value ϑ0i = (α0i,0, α0i,1, . . . , α0i,m, γ0i,1, . . . , γ0i,s)
T.

Proposition 2 Denote our quasi-likelihood estimator of ϑ0i by ϑ̂i, we have maxi ‖ϑ̂i −
ϑ0i‖ = Ot(∆;

pn(logn)3d/2

nd/2−1
), where ∆ := maxi,t |ǫ̂it − ǫit| as is defined above.

Proof of Proposition 2. Let σ̃2
it(ϑi) be defined iteratively by

σ̃2
it(ϑi) = αi,0 +

m∑

j=1

αi,jǫ
2
it−j +

s∑

j=1

γi,j σ̃
2
it−j(ϑi),

and σ̂2
it(ϑi) defined iteratively by

σ̂2
it(ϑi) = αi,0 +

m∑

j=1

αi,j ǫ̂
2
it−j +

s∑

j=1

γi,j σ̂
2
it−j(ϑi),

both with the initial values given by (3.9) or (3.10) . The negative quasi-log-likelihood is

given by L̂i(ϑi) = 1
n

∑n
t=1 L̂it(ϑi) with L̂it(ϑi) = ǫ̂2it/σ̂

2
it(ϑi) + log σ̂2

it(ϑi). Similarly let

L̃i(ϑi) =
1
n

∑n
t=1 L̃it(ϑi) with L̃it(ϑi) = ǫ2it/σ̃

2
it(ϑi) + log σ̃2

it(ϑi).
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In the first part of the proof, we establish consistency of ϑ̂i uniformly over i. By the

proof of Theorem 7.1 in [18], we only need to show that

sup
1≤i≤pn,ϑi∈Ω

|L̂i(ϑi)− L̃i(ϑi)| = op(1).

Let

σ̂it(ϑi) =




σ̂2
it(ϑi)

σ̂2
it−1(ϑi)

.

.

.

σ̂2
it−s+1(ϑi)




, ĉit(ϑi) =




αi,0 +
∑m

j=1 αi,j ǫ̂
2
it−j

0

...

0




, B(ϑi) =




γi,1 γi,2 · · · γi,s
1 0 · · · 0

0 1 · · · 0

.

.

.
.
.
.

.

.

.
.
.
.

0 · · · 1 0




,

and similarly define σ̃it(ϑi) and c̃it(ϑi). In the following the dependence of these quan-

tities on ϑi is often suppressed for simplicity of notation. By assumption (C10), we have

supϑi∈Ω
‖B‖op =: ρ < 1. Using ǫ̂2it − ǫ2it = ∆2

it + 2ǫit∆it and |∆it| ≤ ∆, where ∆it :=

ǫ̂it − ǫit, we have

‖ĉit − c̃it‖ = |
m∑

j=1

αi,j(∆
2
it−j + 2ǫit−j∆it−j)| ≤ C(∆2 +∆

m∑

j=1

αi,j |ǫit−j |),

and using σ̂2
it = ĉit +Bσ̂2

it−1,

‖σ̂2
it − σ̃2

it‖

= ‖(̂cit − c̃it) +B(̂cit−1 − c̃it−1) + · · ·+Bt−1 (̂ci1 − c̃i1)‖

≤ C(∆2 +∆

t−1∑

k=0

ρk
m∑

j=1

αi,j |ǫit−k−j |).

Furthermore,

(1/n)
n∑

t=1

t−1∑

k=0

ρk|ǫit−k−j |

= (1/n)

n−1∑

k=0

ρk
n∑

t=k+1

|ǫit−k−j |

≤ 1

n(1− ρ)
(|ǫi1|+ · · ·+ |ǫin|),

and using Theorem 2.18 (ii) of [12], similar to the arguments used in the proof of Lemma 2

P

(
1

n
(|ǫi1|+ · · ·+ |ǫin|) > C + a

)

≤ C exp

{
−C

a2n/ logn

1/ logn+ bna

}
+O(1/nC1 ) + C

n

b2dn
,

if a > C/b2d−1
n . Choosing a to be a constant and bn ∼ n/(logn)2, the right hand size above

is O(
(logn)4d

n2d−1 ). Thus

1

n

n∑

t=1

‖σ̂2
it − σ̃2

it‖ = Ot(∆;
(logn)4d

n2d−1
).
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Using similar arguments, we can get

1

n

n∑

t=1

ǫ2it|σ̂2
it − σ̃2

it|

≤ ∆2

(
1

n

n∑

t=1

ǫ2it

)
+∆


 1

n

n∑

t=1

ǫ2it

t−2∑

k=0

ρk
m∑

j=1

αi,j |ǫit−k−j |




= Ot(∆;
(logn)d

n
1
2
d−1

).

These bounds lead to, since σ̂2
it and σ̃2

it are bounded away from zero (they are larger than

αi,0),

∣∣∣∣∣
1

n

n∑

t=1

(
ǫ̂2it
σ̂2
it

− ǫ2it
σ̃2
it

)

∣∣∣∣∣

≤ 1

n

n∑

t=1

|ǫ̂2it − ǫ2it|
σ̂2
it

+
1

n

n∑

t=1

ǫ2it

∣∣∣∣
σ̂2
it − σ̃2

it

σ̂2
itσ̃

2
it

∣∣∣∣

≤ C

(
1

n

n∑

t=1

(∆2 +∆|ǫit|) +
1

n

n∑

t=1

ǫ2it|σ̂2
it − σ̃2

it|
)

= Ot(∆;
(logn)d

nd/2−1
),

and using | log(x/y)| ≤ |x− y|/min{x, y},

| 1
n

n∑

t=1

log σ̂2
it −

1

n

n∑

t=1

log σ̃2
it|

=

∣∣∣∣∣
1

n

n∑

t=1

log
σ̂2
it

σ̃2
it

∣∣∣∣∣

≤ C
1

n

n∑

t=1

|σ̂2
it − σ̃2

it|

= Ot(∆;
(logn)4d

n2d−1
).

Thus

sup
1≤i≤pn,ϑi∈Ω

|L̂i(ϑi)− L̃i(ϑi)| = op(1).

Now we proceed to establish the convergence rate. We further define σ2
it(ϑi) to be

the unique strictly stationary solution of the GARCH model (2.4), and define Li(ϑi) =

1
n

∑
t Lit(ϑi) with Lit(ϑi) = ǫ2it/σ

2
it(ϑi)+log σ2

it(ϑi). We also define σ2
it = (σ2

it, . . . , σ
2
it−s+1)

T.

Similar to previous calculations in the proof of consistency of ϑ̃i, it is easy to see that

‖ ∂ĉit
∂αi,j

− ∂c̃it
∂αi,j

‖ ≤ C(∆2 +∆
m∑

j=1

|ǫit−j |).

Taking derivative of the equation

σ̂2
it − σ̃2

it = (̂cit − c̃it) +B(̂cit−1 − c̃it−1) + · · ·+Bt−1 (̂ci1 − c̃i1),
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we get

∥∥∥∥∥
∂σ̂2

it

∂ϑi,j
− ∂σ̃2

it

∂ϑi,j

∥∥∥∥∥ ≤ C(∆2 +∆

t−1∑

k=0

ρk
m∑

j=1

|ǫit−k−j |).

Combined with (7.30) and (7.58) of [18], we get

∥∥σ̂2
it − σ2

it

∥∥ ≤ C(∆2 +∆

t−1∑

k=0

ρk
m∑

j=1

|ǫit−k−j |+ ρt),

and ∥∥∥∥∥
∂σ̂2

it

∂ϑi,j
− ∂σ2

it

∂ϑi,j

∥∥∥∥∥ ≤ C(∆2 +∆

t−1∑

k=0

ρk
m∑

j=1

|ǫit−k−j |+ ρt). (A.5)

We have
∂L̂it(ϑ0i)

∂ϑi
=

(
1− ǫ̂2it

σ̂2
it

)
1

σ̂2
it

∂σ̂2
it

∂ϑi
,

and
∂Lit(ϑ0i)

∂ϑi
=

(
1− ǫ2it

σ2
it

)
1

σ2
it

∂σ2
it

∂ϑi
,

and thus

∥∥∥∥∥
1

n

∑

t

∂L̂it(ϑ0i)

∂ϑi
− 1

n

∑

t

∂Lit(ϑ0i)

∂ϑi

∥∥∥∥∥

≤
∥∥∥∥∥
1

n

∑

t

(
ǫ̂2it
σ̂2
it

− ǫ2it
σ2
it

)
1

σ2
it

∂σ2
it

∂ϑi

∥∥∥∥∥

+

∥∥∥∥∥
1

n

∑

t

ǫ2it
σ2
it

(
1

σ̂2
it

∂σ̂2
it

∂ϑ
− 1

σ2
it

∂σ2
it

∂ϑi

)∥∥∥∥∥

+

∥∥∥∥∥
1

n

∑

t

(
ǫ̂2it
σ̂2
it

− ǫ2it
σ2
it

)(
1

σ̂2
it

∂σ̂2
it

∂ϑi
− 1

σ2
it

∂σ2
it

∂ϑi

)∥∥∥∥∥ . (A.6)

For the first term above, we have

∥∥∥∥∥
1

n

∑

t

(
ǫ̂2it
σ̂2
it

− ǫ2it
σ2
it

)
1

σ2
it

∂σ2
it

∂ϑi

∥∥∥∥∥

≤
∥∥∥∥∥
1

n

∑

t

(
ǫ̂2it − ǫ2it

σ̂2
it

)
1

σ2
it

∂σ2
it

∂ϑi

∥∥∥∥∥+
∥∥∥∥∥
1

n

∑

t

ǫ2it

(
σ̂2
it − σ2

it

σ̂2
itσ

2
it

)
1

σ2
it

∂σ2
it

∂ϑi

∥∥∥∥∥

= Ot(∆;
(logn)d

n
1
2
d−1

),

since by equation (7.54) of [18], all moments of 1
σ2
it

∂σ2
it

∂ϑ
exist. Using (A.5), the second term

of (A.6) is again Ot(∆;
(logn)d

n
1
2
d−1

). Finally the third term of (A.6) is

∥∥∥∥∥
1

n

n∑

t=1

(
ǫ̂2it
σ̂2
it

− ǫ2it
σ2
it

)(
1

σ̂2
it

∂σ̂2
it

∂ϑi
− 1

σ2
it

∂σ2
it

∂ϑi

)∥∥∥∥∥

≤ C

(
1

n

n∑

t=1

(∆2 +∆|ǫit|+ ǫ2it|σ̂2
it − σ2

it|)(
1

σ2
it

∂σ2
it

∂ϑi
|σ̂2

it − σ2
it|+ ‖∂σ̂

2
it

∂ϑi
− ∂σ2

it

∂ϑi
‖)
)
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= Ot(∆
2;

(logn)d

n
1
2
d−1

).

Thus we get

∥∥∥∥∥
1

n

∑

t

∂L̂it(ϑ0i)

∂ϑi
− 1

n

∑

t

∂Lit(ϑ0i)

∂ϑi

∥∥∥∥∥ = Ot(∆;
(logn)d

n
1
2
d−1

). (A.7)

Similarly, using that

∂2L̂it(ϑi)

∂ϑi∂ϑ
T
i

=

(
1− ǫ̂2it

σ̂2
it

)(
1

σ̂2
it

∂2σ̂2
it

∂ϑi∂ϑ
T
i

)
+

(
2
ǫ̂2it
σ̂2
it

− 1

)(
1

σ̂2
it

∂σ̂2
it

∂ϑi

)(
1

σ̂2
it

∂σ̂2
it

∂ϑTi

)
,

∂2Lit(ϑi)

∂ϑi∂ϑ
T
i

=

(
1− ǫ2it

σ2
it

)(
1

σ2
it

∂2σ2
it

∂ϑi∂ϑ
T
i

)
+

(
2
ǫ2it
σ2
it

− 1

)(
1

σ2
it

∂σ2
it

∂ϑi

)(
1

σ2
it

∂σ2
it

∂ϑTi

)
,

and
∥∥∥∥∥

∂2σ̂2
it

∂ϑi,j∂ϑi,j′
− ∂2σ2

it

∂ϑi,j∂ϑi,j′

∥∥∥∥∥

≤ C(∆2 +∆

t−1∑

k=0

ρk
q∑

j=1

|ǫit−k−j |+ ρt),

the last of which can be shown similar to (A.5), we can show that there exists a neighborhood

V(ϑ0i) of ϑ0i such that

sup
ϑi∈V(ϑ0i)

∥∥∥∥∥
1

n

∑

t

∂2L̂it(ϑi)

∂ϑi∂ϑ
T
i

− 1

n

∑

t

∂2Lit(ϑi)

∂ϑi∂ϑ
T
i

∥∥∥∥∥ = Ot(∆;
(logn)d

n
1
2
d−1

). (A.8)

Since
∂Lit(ϑ0i)

∂ϑi
has mean zero, we have easily

∥∥∥∥∥
1

n

∑

t

∂Lit(ϑ0i)

∂ϑi

∥∥∥∥∥ = Op(n
−1/2). (A.9)

Furthermore, using Theorem 2.18 (ii) of [12],

∥∥∥∥∥
1

n

∑

t

∂Lit(ϑ0i)

∂ϑi

∥∥∥∥∥ = Ot

(
√

logn/n;
(logn)3d/2

nd/2−1

)
. (A.10)

Using (7.54) in [18] which stated that supϑi∈V(ϑ0i)

(
1

σ2
it

∂σ2
it

∂ϑi

)
and

supϑi∈V(ϑ0i)

(
1

σ2
it

∂2σ2
it

∂ϑi∂ϑ
T
i

)
has moments of all orders, with again Theorem 2.18 (ii) of

[12] we get ∥∥∥∥∥ sup
ϑi∈V(ϑ0i)

1

n

∑

t

∂2Lit(ϑi)

∂ϑi∂ϑ
T
i

∥∥∥∥∥ = Ot

(
1;

(logn)2d

nd−1

)
. (A.11)
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Finally, since

0 =
1

n

n∑

t=1

∂

∂ϑi
L̂t(ϑ̂i)

=
1

n

n∑

t=1

∂

∂ϑi
L̂t(ϑ0i) +

1

n

n∑

t=1

∂2

∂ϑi∂ϑ
T
i

L̂t(ϑ
∗
i )(ϑ̂i − ϑ0i),

where ϑ∗
i lies between ϑ̂i and ϑ0i, we have, by (A.7)–(A.11),

‖ϑ̂i − ϑ0i‖ = Op(∆+ 1/
√
n),

and

max
i

‖ϑ̂i − ϑ0i‖ = Ot

(
∆+

√
logn/n;

pn(logn)3d/2

nd/2−1

)
.

.1 Proof of Theorem 1 and Theorem 2.

Given the rates obtained for estimators of ai, αi, γi, and Σx (proved in Lemma D.1 of

[19]) the proof of convergence rate for Ĉov(Yn+1|Fn) in Theorem 1 is exactly as the proof

of Theorem 2 in [19] and thus omitted.

For Theorem 2, for simplicity of notation, we denote M := cov(Yn+1|Fn) and M̂ :=

ĉov(Yn+1|Fn). Then

‖M̂−1 −M−1‖2Σ
= p−1

n ‖M1/2(M̂−1 −M−1)M1/2‖2

= p−1
n ‖M1/2M̂−1(M̂−M)M−1/2‖2

≤ p−1
n ‖M1/2M̂−1M1/2‖2op‖M−1/2(M̂−M)M−1/2‖2

= ‖M1/2M̂−1M1/2‖2op‖M̂−M‖2Σ
≤ (2‖M1/2(M̂−1 −M−1)M1/2‖2op + 2)‖M̂−M‖2Σ
= (2pn‖M̂−1 −M−1‖2Σ + 2)‖M̂−M‖2Σ .

Since we assumed pn‖M̂ − M‖2
Σ

= op(1), the term 2pn‖M̂−1 −M−1‖2
Σ

‖M̂ −M‖2
Σ

can

be moved to the left hand side to get ‖M̂−1 − M−1‖2
Σ

= Op(‖M̂ − M‖2
Σ

), which proves

Theorem 2. �

Lemma 1 The eigenvalues of Â are bounded and bounded away from zero, with probability

at least 1−O(1/nC1 ).

Proof of Lemma 1. Define

A = E
[(
Xt ⊗B(Xt−1)

) (
X
T
t ⊗BT(Xt−1)

)]
.

By assumptions (C1) and (C3), the eigenvalues of A are bounded and bounded away from

zero.
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For any 1 ≤ k, k′ ≤ K and 0 ≤ j1, j2, j3, j4 ≤ q, we have

|Bk(xt−1,j1 )Bk′ (xt−1,j2 )xt,j3xt,j4 | ≤ K,

and

E[(Bk(xt−1,j1 )Bk′ (xt−1,j2 )xt,j3xt,j3 )
2] ≤ KE[(Bk(xt−1,j1 ))

2] ≤ CK.

Thus

E[|Bk(xt−1,j1 )Bk′ (xt−1,j2 )xt,j3xt,j4 |r] ≤ CKr−2 · K, r = 3, 4, . . . .

Using Theorem 2.19 of [12] (setting q = n/(C logn) in that theorem with large enough C),

for any a > 0,

P

(∣∣∣∣∣n
−1
∑

t

Bk(xt−1,j1 )Bk′ (xt−1,j2 )xt,j3xt,j4 − E[Bk(xt−1,j1 )Bk′ (xt−1,j2 )xt,j3xt,j4 ]

∣∣∣∣∣ > a

)

≤ C(1 + logn+ µ(a)) exp{−C
n

logn
µ(a)}+ Cn(1 +KC/a)n−C1 ,

where µ(a) = a2/(K +Ka), and the constant C1 can be arbitrarily large. Setting a = δ/K,

we get

P ( max
k,k′,j1,j2,j3,j4

∣∣∣n−1
∑

t

Bk(xt−1,j1 )Bk′ (xt−1,j2 )xt,j3xt,j4 − E[Bk(xt−1,j1 )Bk′ (xt−1,j2 )xt,j3xt,j4 ]
∣∣∣ > δ/K)

= O(1/nC1 ), (A.12)

if K = O(nc) with 0 < c < 1/3. Thus ‖Â−A‖op = ot(1; 1/nC1 ) and the proof is complete.

�

Lemma 2 We show that

∥∥∥∥∥
∑

t

(
Xt ⊗B(Xt−1)

)
ǫit

∥∥∥∥∥ = Ot(
√

nK logn;Kd(logn)3d/nd−1).

Proof of Lemma 2. Denote Vit = xt,jBk(xt−1,j′ )ǫit, V
′
it = VitI{|Vit| ≤ bn} for some

sequence bn to be chosen later and V ′′
it = Vit −V ′

it. We have E[V 2
it] ≤ C. Applying Theorem

2.18 (ii) of [12], with the quantity q in their theorem set to be n/(C logn) with C sufficiently

large (which makes it possible that C1 in the bound below can be arbitrarily large), we get

P (|
∑

t

V ′
it − E[V ′

it]| > na) ≤ C exp

{
−C

a2n/ logn

1/ logn+ bna

}
+O(1/nC1 ).

Furthermore,

P (|
∑

t

V ′′
it | > na) ≤ P (∃t, |Vit| > bn) ≤ nE[|Vit|2d]/b2dn ≤ C

nKd−1

b2dn
.

Since by Hölder’s inequality,

E[|V ′′
it |] ≤ E[|Vit|2d]

1
2d P (|Vit| > bn)

2d−1

2d ≤ C
Kd−1

b2d−1
n

,
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if a > C Kd−1

b2d−1
n

we will have,

P (|
∑

t

EV ′′
it | > na) = 0.

Combining the above bounds, we get that if a > C Kd−1

b2d−1
n

P (|
∑

t

Vit − E[Vit]| > na) ≤ C exp

{
−C

a2n/ logn

1/ logn+ bna

}
+O(1/nC1 ) + C

nKd−1

b2dn
.

In particular, setting a = C
√

logn/n, bn ∼
√

n/ log3 n, we get

P (|
∑

t

xt,jBk(xt−1,j′ )ǫit| > C
√

n logn)

≤ O(1/nC1 ) +O

(Kd−1(logn)3d

nd−1

)
. (A.13)

which implies the statement of the lemma. �

References

1. Avella-Madina M, Battey HS, Fan J, Li Q (2018) Robust estimation of high-dimensional

covariance and precision matrices. Biometrika 105(2):271–284

2. Berthet Q, Rigollet P (2013) Optimal detection of sparse principal components in high

dimension. Ann Statist 41(4):1780–1815

3. Bickel P, Levina E (2008) Covariance regularization by thresholding. Ann Statist

36(6):2577–2604

4. Bickel P, Levina E (2008) Regularized estimation of large covariance matrices. Ann

Statist 36(1):199–227

5. Birnbaum A, Johnstone IM, Nadler B, Paul D (2013) Minimax bounds for sparse pca

with noisy high-dimensional data. Ann Statist 41(3):1055–1084

6. Chen Z, Fan J, Li R (2018) Error variance estimation in ultrahigh dimensional additive

models. J Amer Statist Assoc 113(521):315–327

7. EL Karoui N (2008) Operator norm consistent estimation of large-dimensional sparse

covariance matrices. Ann Statist 36(6):2712–2756

8. Fama EF, French KR (1992) The cross-section of expected stock returns. J Finance

47(2):427–465

9. Fama EF, French KR (1993) Common risk factors in the returns on stocks and bonds.

J Financ Econom 33(1):3–56

10. Fan J, Zhang W (1999) Statistical estimation in varying coefficient models. Ann Statist

27(5):1491–1518

11. Fan J, Zhang W (2000) Simultaneous confidence bands and hypothesis testing in

varying-coefficient models. Scand J Statist 27(4):715–731

12. Fan J, Yao Q, Cai Z (2003) Adaptive varying-coefficient linear models. J R Stat Soc

Ser B 65(1):57–80



32 Jin Yang et al.

13. Fan J, Fan Y, Lv J (2008) High dimensional covariance matrix estimation using a factor

model. J Econometrics 147(1):186–197

14. Fan J, Liao Y, Mincheva M (2011) High-dimensional covariance matrix estimation in

approximate factor models. Ann Statist 39(6):3320–3356

15. Fan J, Zhang J, Yu K (2012) Vast portfolio selection with gross-exposure constraints.

J Amer Statist Assoc 107(498):592–606

16. Fan J, Liu H, Wang W (2018) Large covariance estimation through elliptical factor

models. Ann Statist 46(4):1383–1414

17. Fang Y, Wang B, Feng Y (2016) Tuning-parameter selection in regularized estimations

of large covariance matrices. Journal of Statistical Computation and Simulation 86:494–

509
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