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Objective: This study investigated users’ subjective evaluation of
three highly automated driving styles, in terms of comfort and natu-
ralness, when negotiating a UK road in a high-fidelity, motion-based,
driving simulator.

Background: Comfort and naturalness play an important role in
contributing to users’ acceptance and trust of automated vehicles
(AVs), although not much is understood about the types of driving style
which are considered comfortable or natural.

Method: A driving simulator study, simulating roads with different
road geometries and speed limits, was conducted. Twenty-four par-
ticipants experienced three highly automated driving styles, two of
which were recordings from human drivers, and the other was based on
a machine learning (ML) algorithm, termed Defensive, Aggressive, and
Turner, respectively. Participants evaluated comfort or naturalness of
each driving style, for each road segment, and completed a Sensation
Seeking questionnaire, which assessed their risk-taking propensity.

Results: Participants regarded both human-like driving styles asmore
comfortable and natural, compared with the less human-like, ML-based,
driving controller. Particularly, between the two human-like controllers,
the Defensive style was considered more comfortable, especially for the
more challenging road environments. Differences in preference for
controller by driver trait were also observed, with the Aggressive driving
style evaluated as more natural by the high sensation seekers.

Conclusion: Participants were able to distinguish between hu-
man- and machine-like AV controllers. A range of psychological con-
cepts must be considered for the subjective evaluation of controllers.

Application: Insights into how different driver groups evaluate
automated vehicle controllers are important in designing more ac-
ceptable systems.

Keywords: highly automated driving, driving style, comfort, natural-
ness, sensation seeking

INTRODUCTION

With higher SAE level AVs (SAE
International, 2016), drivers will inevitably
lose the controllability of the vehicle, and the
role of human drivers will shift from active
controllers of the vehicle, towards passive
observers and passengers (Elbanhawi et al.,
2015; Kaber & Endsley, 2004). There are
several subsequent concerns that might hinder
the deployment of these vehicles, such as users’
experience of comfort inside the AV
(Elbanhawi et al., 2015). Comfort is crucial for
an AV’s implementation, as it is found to be
correlated with trust and acceptance (Paddeu
et al., 2020; Siebert et al., 2013), important
elements for encouraging public uptake of
these new forms of mobility (Madigan et al.,
2016).

Although there is currently no commonly
agreed definition for comfort in this context,
some suggestions exist. Under the context of
automated driving, Hartwich et al. (2018)
summarised driving comfort as ‘a sub-
jective, pleasant state of relaxation given by
confidence and an apparently safe vehicle
operation, which is achieved by the removal
or absence of uneasiness and distress’ (p.
1019).

For automated vehicles, however, comfort is
not simply limited to physical aspects of the
vehicle, such as good seat design (Ebe &Griffin,
2001), or acceptable levels of engine noise, and
vehicle vibrations (Qatu, 2012). These features
are mentioned in studies of traditional, manually
operated, road vehicles and also in other
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domains, for example, cabin noise in aircraft
(Pennig et al., 2012). Since the vehicle is no
longer controlled by a human, it is important that
its ‘driving behaviour’, and how it negotiates
different road geometries, and traffic conditions,
is considered pleasant, and rated positively by
the user, ensuring it feels comfortable and safe
(Elbanhawi et al., 2015; Summala, 2007). Other,
more psychological, terms and concepts used in
this context include ensuring the AV is con-
sidered reliable, and familiar, avoiding any
sudden surprise behaviours, which are shown to
enhance the acceptance, satisfaction and per-
ceived safety of AVs (Carsten & Martens, 2018;
Ramm et al., 2014).

One, relatively unexplored, concept in this
context is ‘naturalness’ of the AV’s driving
behaviour, which has been linked to the famil-
iarity of the AV’s manoeuvres, for the user. Here,
the familiarity of AV movements, rendered by
mimicking human-like vehicle controls, is ex-
pected to fulfil human users’ anticipation of an
AV’s behaviours, and result in positive sub-
jective feedback (Butakov & Ioannou, 2015;
Hartwich et al., 2018). Moreover, Elbanhawi
et al. (2015) suggest that naturalness of auto-
mated driving is an important determinant of
comfort. However, some empirical studies have
shown that familiar automated driving ma-
noeuvres do not always lead to higher subjective
comfort (Hartwich et al., 2018), which suggests
that more knowledge is needed on the link
between these two concepts, since they will
likely contribute to acceptance of future AVs.

From a technical perspective, there are a large
number of automated driving styles that could be
generated for such investigations. Taking motion
planning as an example, the generated driving
behaviour of AVs could be robotic, with
algorithm-optimised trajectories, based solely on
sensory information provided by lasers, radars
and cameras, to adapt to the environment (e.g.,
Urmson et al., 2008). Alternatively, these may
mimic a human driver’s average behavioural
patterns, by training models, based on real human
driving data (e.g., Hajiseyedjavadi et al., 2021;
Rehder et al., 2017; Wei et al., 2019). Person-
alisation of driving styles can also be achieved by
using users’ own driving style in the model de-
velopment loop (e.g., Menner et al., 2019).

Studies on manual driving suggest that par-
ticipants’ reported levels of comfort are also
linked to the vehicle’s ‘driving style’ (Bellem
et al., 2018), which is defined as the driving
habits of the driver, such as their preferred speed,
threshold for overtaking, headway distance and
tendency to violate traffic regulations (Elander
et al., 1993). In highly automated vehicles, the use
of such driving styles has been reported to en-
hance driving comfort of passive users (Bellem
et al., 2018).

Research has revealed the existence of sev-
eral driving styles, associated with different
character traits of human drivers, loosely linked
to defensive (less sudden acceleration and de-
celeration) and aggressive (higher acceleration
and more sudden braking) driving behaviours
(Murphey et al., 2009). Results also suggest that
different automated driving styles are sometimes
found to be preferred by different groups of
users, when evaluated in terms of comfort,
safety and pleasantness, although findings are
inconclusive. For example, a more defensive
driving style, with slower lane changing fea-
tures, and lower acceleration, was favoured by
most participants, when compared with a higher
acceleration, more assertive, driving style
(Rossner & Bullinger, 2020). Moreover,
Hartwich et al. (2018) found that familiar
driving styles (a replay of participants’ own
driving) were more favoured by younger drivers
(25–35 years), while faster and unfamiliar au-
tomated driving styles (that of the younger
drivers) were preferred by older drivers (65–
84 years). Therefore, Hartwich et al. (2018)
suggest that solely mimicking drivers’ per-
sonal manual driving habits may not be suitable
for all age groups. Using a more comprehensive
set of vehicle kinematics, Bellem et al. (2018)
manipulated the initiation time and strength of
acceleration and jerk of three manoeuvres on the
highway (i.e., lane changes, accelerations and
decelerations). These authors recommend
a number of configurations for comfortable
driving experiences, such as minimising jerk for
acceleration and deceleration manoeuvres,
lowering acceleration and providing action
feedback, which is when maximum acceleration
is applied at the early stages of a lane change
manoeuvre.
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As outlined above, most of the existing studies
considering users’ responses to different driving
styles of AVs have compared different replays of
drivers’manual driving performance. To date, there
has been little comparison of user preferences for
machine- versus human-like AV-driving styles. An
important consideration here is the balance between
what is expected from users about the acceptable
driving style of an AV, compared to that of a human
driver. For example, studies have shown that an AV
controller that precisely follows the lane centre, is
considered more competent, compared to those
with less accurate lane-tracking and more lateral
drifts from the centre lane (Price et al., 2016).
Therefore, from a human factors perspective, more
research is warranted to understand what types of
driving styles and behaviours of machine- and
human-like driving are considered more comfort-
able and natural, andwhether these are linked to the
particular driving environment being negotiated by
the AV.

Users’ perception of an AV’s driving style is
known to be influenced by both objective and
subjective factors. For example, road furniture
and geometry are known to influence ratings of
safety and comfort (Hajiseyedjavadi et al.,
2021) and physiological response (Beggiato
et al., 2019; Radhakrishnan et al., 2020),
while a number of studies have shown a cor-
relation between personality traits such as
Sensation Seeking (Arnett, 1994) and preferred
driving style. For example, in manual driving;
drivers with high sensation seeking scores are
found to drive in a riskier and more aggressive
manner and at higher speeds, while low sen-
sation seekers have a tendency to drive more
slowly (Louw et al., 2019; Taubman-Ben-Ari
et al., 2004; Zuckerman & Neeb, 1980).
However, results are mixed regarding prefer-
ences for AV-driving styles. For example,
Yusof et al. (2016) reported that both assertive
and defensive drivers, characterised by higher
and lower sensation seeking scores, re-
spectively, showed a consistent preference for
a defensive (and not assertive) AV-driving
style. Therefore, in addition to considering
user response to two human-like and one
machine-like AV controller, this study assessed
the effect of road geometries and users’ sen-
sation seeking scores on such evaluations.

Current Study

This study is based on data collected from
a driving simulator study within the UK-funded
HumanDrive project (TS/P012035/1). The main
purpose of which was to develop, and evaluate,
advanced AV controllers, imitating natural,
human-like, driving styles. Two representative
human-like driving styles were recorded, and
replayed to participants. Response to these was
compared to a machine-like, machine learning
(ML)-built, driving style (Solernou et al., 2020).

The following research questions were ad-
dressed in the present study:

1. Are the three driving styles rated differently in
terms of perceived comfort and naturalness?

2. Do environmental settings influence the comfort
and naturalness of the three driving styles?

3. Do users’ sensation seeking propensities affect
their ratings of comfort and naturalness towards
the three driving styles?

4. Is a natural driving style also a comfortable driving
style?

METHODS

Participants

Twenty-four participants (12 male, 12 fe-
male) aged between 20 and 49 years (M = 35.7,
SD = 7.1) were recruited. All participants held
a valid UK driving licence, with experience
ranging from 2 to 27 years (M = 14.7, SD = 7.8).
Reported annual driving distance ranged from
500 to 18000 miles (M = 7554.2, SD = 3982.7).

All participants were recruited by using the
University of Leeds Driving Simulator database,
and all provided informed consent to take part in
the study. Each participant was compensated
£30 for taking part in the study. This study was
approved by the University of Leeds Ethics
Committee (LTTRAN-086).

Apparatus

The high-fidelity, motion-based University of
Leeds Driving Simulator (UoLDS) was used in
the experiment. The simulator’s vehicle cab is
based around a 2006 Jaguar S-type, housed
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within a 4 m diameter, spherical projection
dome. There are eight visual channels rendered
at 60 frames/s, predominantly at a resolution of
1920 × 1200, providing a horizontal forward
field of view of 270°. The simulator also in-
corporates an eight degree-of-freedom electrical
motion system. The generated range of accel-
eration of the motion system is ±5.0 m/s2

(Jamson et al., 2007)

Experimental Design

A fully within-participant experimental de-
sign was used in this study to investigate par-
ticipants’ subjective evaluation of three different
automated vehicle driving styles, described
below. Participants were asked to use an eleven-
point, Likert-type, scale, to rate how ‘comfort-
able’ and ‘natural’ each automated drive felt, as
it negotiated the same stretch of road, in six
separate drives, completed over 2 days.

Driving Styles. A machine learning (ML)
based controller, and two human-driven con-
trollers were developed for evaluation in this
study. These controllers are described further
below, and a diagram presenting the de-
velopment procedure is shown in Figure 1.

The ML-Built Controller (Turner). The ML
controller was calibrated using a Recurrent
Convolutional Neural Network (RCNN) that was
capable of imitating the human driving behav-
iour, in terms of future yaw rate and speed de-
mands. The RCNN was trained from data of 10
participants, from an earlier experiment of the
project (see Solernou et al., 2020). This controller
will be called the Turner controller from here on.

The Human-Like Controllers (Termed
Aggressive and Defensive controllers). The
two human-like controllers were recorded drives
of human participants, collected before the main
study took place, which were then replayed to
participants of this study. Previous studies have
shown a positive correlation between speed
choice and sensation seeking (Louw et al., 2019)
as well as risk-taking behaviour in manual
driving (Ge et al., 2014; Oppenheim et al., 2016;
Riendeau et al., 2018; Ulleberg & Rundmo,
2003). To ensure that distinct differences in

driving behaviour would arise between the two
human-driven controllers, recruitment of par-
ticipants used for the human-driven controllers
was based on their sensation seeking scores.

Before recruiting participants for these replay
drives, data from a previous study of the project
was used to create clusters of driving behaviour
(see Appendix A). These participants were
clustered into three main groups: defensive,
moderate and aggressive drivers. There was
a moderate, but insignificant, correlation be-
tween participants’ sensation seeking scores,
and cluster membership (r(14) = .429, p < .143).
For example, we found that the aggressive
driving cluster contained participants with
higher sensation seeking scores. The absence of
a significant correlation was likely due to the
small sample size used in this study. Following
this analysis, participants with higher sensation
seeking scores from the aggressive cluster, and
lower sensation seeking scores from the de-
fensive cluster were contacted to participate in
the replay recordings of the current study. In
total, eight participants were recruited, four for
each sensation seeking group (Table 1).

During the recording process, each par-
ticipant drove the experimental route three
times. The process took approximately 1 hour.
After the data collection, the clustering pro-
cess was applied again for the new data, to
confirm the obtained driving behaviours be-
longed to the previously identified defensive
and aggressive driver groups, respectively.
Out of the eight participants recorded, the
manual driving data of two participants (one
per sensation seeking group, with scores of 59
and 43, respectively) which was closest to the
median of the defensive and aggressive
clusters, were selected as the representative
driving styles for our two human-like con-
trollers. It is worth highlighting that the se-
lected drives were also checked to ensure that
no unusual or unexpected manoeuvres existed
along the drive. For the rest of this paper, the
higher sensation seekers’ driving style will be
termed Aggressive, and the lower sensation
seekers’ driving style will be called the De-
fensive driving style.

Road Environment and Scenarios. The sim-
ulated driving scene was modelled from real
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stretches of road around North Bedfordshire in
the UK (Figure 2). Two loops, going North and
South, were simulated, creating a virtual envi-
ronment covering around 12 miles of driving. In
the present work, however, only the North loop
was included for the simulated drive, since it
included the range of scenarios required for
studying driver behaviour in response to
changes in speed and geometry, and shortened
the overall drive. This section of road was ap-
proximately 5 miles long, taking about 15 mi-
nutes to complete.

To understand user preferences for, and in
response to, a wide range of road geometries and
speed profiles, the layout of the North loop
contained a combination of high-speed (60 mph)
rural sections, with varying road curvature and
more built-up, village sections, at a speed limit
of 40 mph (Table 2).

Variables

The dependent variables were comfort and
naturalness of the driving experience, for each

Figure 1. Overview of the development of the three AV controllers.

TABLE 1: Descriptive Statistics of the Participants Used for the Replay Recording Phase

Gender Age AISS Score

Male Female Mean Std. Mean

High sensation seeking 4 0 36.25 9.78 55.75
Low sensation seeking 2 2 52 6.73 45

Note. AISS scores were calculated based on drivers’ responses to Arnett Inventory of Sensation Seeking (AISS; Arnett,
1994), and scores were the sum of all responses to in total of 20 questions, with a higher score means higher sensation
seeking propensities.
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controller. A search of the literature at the time of
study design revealed an absence of a formal,
and universally agreed, description for the two
terms. To ensure that the same term was un-
derstood by all participants, we therefore used
a small expert group within the project team to
define the two terms, and included this in-
formation in the participant briefing sheet:

i. Comfortable driving was defined as ‘a driving
style that does not cause any feeling of uneasiness
or discomfort’;

ii. Natural driving was defined as ‘a driving style that
is closest to your own driving’.

Participants evaluated each controller, in
two ways: (i) after each drive, participants were
asked to provide an overall rating, based on
their entire driving experience and (ii)
throughout the drive, immediately after they
heard a short auditory beep, which was played
via the car’s speakers, corresponding to 24
relevant sections in the drive (Table 2). They
were taught to use a Likert-type scale for
guiding their responses, providing a number
between �5 (Extremely Uncomfortable/
Unnatural) and +5 (Extremely Comfortable/
Natural) (Figure 3).

Participants also completed the Arnett Inventory
of Sensation Seeking questionnaire (Arnett, 1994)
after they finished the last drive. This questionnaire
includes twenty items, and four response options
for each item, ranging from 1 (does not describeme
at all) to 4 (describes me very well). Reverse-
worded items were further reverse-coded. We
used the sum score of these items to characterise
sensation seeking tendency, with a higher score
indicating a higher sensation seeking tendency.

Procedure

To reduce the effect of fatigue on participants,
the study was conducted over two separate days
(M = 6.75 days apart, SD = 2.17), with data
collection lasting about 1.5 hours on each day.
Participants evaluated the three driving styles
twice: once in terms of comfort, and once in
terms of naturalness, with half of the participants
evaluating in terms of comfort on day 1, and the
other half on day 2, (Figure 4).

Upon arrival on the first day, each participant
received a written and verbal briefing of the
study, including how to use the subjective scale,
and provided their written consent to take part in
the experiment. They then started the simulator
experiment with a practice drive in manual
driving, followed by a practice ride in an au-
tomated driving mode. A researcher accompa-
nied participants during the practice session,
which lasted 20–30 minutes. Following the
practice drive, the researcher left the simulator
dome, and the participant started the first of three
experimental drives, one for each controller. The
order of the three automated driving styles was
counterbalanced across participants, and par-
ticipants left the simulator dome after each drive,
to reduce fatigue effects. After the second day’s
experiment, participants were asked to complete
a set of questionnaires, including the sensation
seeking questionnaire. The data from the other
questionnaires is not reported here.

RESULTS

The main aim of the analyses was to assess
users’ evaluation of the three automated con-
trollers, in terms of comfort and naturalness.
Participants’ subjective feedback about the

Figure 2. Example of the simulated (top) and real
(bottom) road environments.
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driving styles adopted by the controllers was
provided in two ways: (i) an overall evaluation
of the controller, after finishing the entire drive
and (ii) 24 responses, based on the 24 auditory
beeps throughout each drive, which prompted
a response for each of the different driving
zones. Two statistical tests were used: the
Wilcoxon signed-rank test was used for the
overall evaluation provided at the end of each
drive, and the Generalised Estimating Equation
(GEE) (Liang & Zeger, 1986) was used for the
24 individual evaluations provided during the

drive (see configurations of GEE in Appendix
B).

Subjective Evaluations of the
Driving Styles

Table 3 shows results of theWilcoxon signed-
ranks test on matched-pairs, and Figure 5 shows
box plots of overall comfort and naturalness
evaluation of the three driving styles.

Regarding overall comfort, the Wilcoxon test
showed significantly higher evaluation for the

TABLE 2: The Speed Limit and Geometrical Details of the Simulated Road

Zone
Curve
Radius

Curve
Direction

Road
Type

Speed
Limit
(mph) Road Context

1 300–800 m Left Rural 60 Kerb + grass and the bridge in the middle of the
area

2 Straight Straight Rural 60 Kerb + grass with hedge far from the road edge
3 <150 m Left Rural 60 Kerb + grass and trees far from the road edge
4 <150 m Left Rural 60 Kerb + grass with hedge quite far from the road

edge
5 300–800 m Right Rural 60 Kerb + grass with hedge quite far from the road

edge
6 <150 m Right Village 40 Kerb + grass and some structures far from the road

edge
7 <150 m Left Village 40 Kerb + grass
8 200–300 m Right Village 40 Kerb + grass and hedge around 1–2m from the road

edge
9 Straight Straight Village 40 Kerb + grass and fence quite close to the road edge
10 150–200 m Right Village 30 Kerb + pavement and village structures far from the

road edge
11 150–200 m Right Village 30 Parked cars zone
12 300–800 m Right Village 30 Kerb + grass and village structures
13 200–300 m Left Rural 40 Grass, bushes and trees not close to the road edge
14 300–800 m Right Rural 40 Grass and hedge far from the road edge
15 <150 m Right Rural 60 Grass and trees far from the road edge
16 <150 m Left Rural 60 Hedge at the road edge
17 150–200 m Right Rural 60 Grass and hedge far from the road edge
18 300–800m Left Rural 60 Grass and bushes around 2 m from the road edge
19 Straight Straight Rural 60 Fence around 1–2 m from the road edge
20 Straight Straight Rural 60 Hedge at the road edge and an intersection at the

end of the section
21 N/A N/A University 30 Mini roundabout and road markings
22 <150 m Left University 30 Parked cars zone
23 300–800 m Left University 30 Kerb + pavement
24 Straight Straight University 30 Kerb + pavement
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Defensive controller, compared to the Aggressive
and the Turner controllers (both p < .001). There
was no significant difference between the Ag-
gressive and Turner controllers (p < .49). Re-
garding overall naturalness, the Wilcoxon test
showed a significantly higher evaluation for the
Defensive controller, compared to the Turner (p <
.001), and a higher evaluation than the Aggressive
controller (p < .02). A significantly lower score for
the Turner than the Aggressive controller (p < .01)
was also revealed.

Figure 5 shows that the evaluation of the
Defensive driving style was relatively consistent
across participants. By contrast, the evaluation
for the Aggressive and Turner controllers was
more variable, with a bimodal pattern observed
in response to naturalness of the Aggressive, and
the comfort and naturalness of the Turner. To
understand this further, we conducted additional
analyses by taking participants’ personality trait
into account.

Table 4 presents the GEE results for the re-
peated ratings of comfort and naturalness. Re-
garding comfort, the probability of reporting
high levels of comfort was significantly higher

for the Defensive controller, compared to both
the Turner (OR = 7.21, p < .001) and Aggressive
controllers (OR = 4.01, p < .001). Comfort
ratings were also slightly higher for the Ag-
gressive, than the Turner, controller (OR = 1.80,
p < .04). Regarding naturalness, both the De-
fensive and Aggressive controllers were more
likely to be rated more natural, when compared
to the Turner controller (OR = 4.98, p < .001;
OR = 2.59, p < .002). The Defensive controller
also had a higher probability of being assessed as
more natural than the Aggressive driving style
(OR = 1.92, p < .01).

To further understand whether subjective
evaluation was due to any differences in the
driving styles of the controllers, the vehicle ki-
nematics, including the speed and lateral offsets
of all three controllers, were inspected (Figures 6
and 7). The interpretations provided in this sec-
tion were based on visual observations of the
controllers’ kinematic characteristics only, and no
formal analyses were conducted. Figure 6 shows
that, overall, speed was higher in the Aggressive
driving style, compared to the other two con-
trollers. The Defensive and Turner controllers had

Figure 3. The comfort and naturalness scales used in the study.
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similar increasing or decreasing trends in speed,
for the same road sections, with smoother patterns
(i.e., less frequent and gentler fluctuations in
speed) seen for the Defensive controller. There
was not much difference in the observed lateral
offset of the three controllers (Figure 7).

The Effect of Road Environment on
Subjective Evaluation

As shown in Table 2, the simulated road
included a range of road environments divided
into five main categories: (i) road type, (ii) speed
limit, (iii) road context, (iv) curve direction and
(v) curve radius. For simplicity, only two cat-
egories were included in this analysis, as
follows:

i. road type (rural and village), which differed by
posted speed limit (60 mph vs 40 mph) and
roadside furniture (see Table 2);

ii. curve radius (five levels, varying from straight
sections to curves of less than 150 m).

Road type was included as the representative of
speed limit and road context, supported by the
strong (r = 0.88, p < .001) and medium (r =�0.05,
p< .001) correlation between road type and the two

Figure 4. The overall experimental procedure, including the order of drives.

TABLE 3: Wilcoxon Signed-Rank Test Results for
Overall Comfort and Naturalness

Driving Style z p r

Comfort (overall)
Defensive vs Turner 4.27 0.000� 0.87
Defensive vs Aggressive 4.11 0.000� 0.84
Aggressive vs Turner 0.70 0.490 0.14

Naturalness (overall)
Defensive vs Turner 3.67 0.001� 0.75
Aggressive vs Turner 2.44 0.010� 0.50
Defensive vs Aggressive 2.25 0.020� 0.46

Note. � p < .05. Orders of paired comparison are based
on z values.
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categories (speed limit, road context), re-
spectively. The University road type was ex-
cluded from analysis, due to the small number
of sections falling into this category. The di-
rection of a curve was also not included as
a factor, as it was not expected to have a sig-
nificant influence on results. It is worth men-
tioning that the number of road sections in each
level outlined above was not equal, since the
road was a replication of the real world.

Figure 8 shows the average comfort and
naturalness ratings for the three driving styles,
for the different road sections. An overall
pattern was observed, such that, with in-
creasing curve radius, there was a mild re-
duction in both comfort and naturalness
ratings for all controllers, especially in the
Rural areas. This pattern was not apparent in
the Village areas, apart from two unexpected
fluctuations. Inspection of the vehicle-based

Figure 5. Evaluation of each controllers’ driving style, in terms of its overall comfort
(left) and overall naturalness (right). Horizontal lines inside each box represent the
median values. Whiskers denote a distance of 1.5 times interquartile range (IQR) above
the upper quantile up to the largest observation, or below the lower quartiles up to the
smallest value. Grey dots represent data points (with small variations added to the
position to avoid overlapping), while black points represent outliers.

TABLE 4: GEE Model Parameter Estimates and Odds Ratios for Repeatedly Reported Comfort and
Naturalness

Driving Style Coefficient SE Wald Sig Odds Ratio (OR)

Comfort
Defensive vs Turner 1.975 0.238 68.847 0.000� 7.206
Defensive vs Aggressive 1.388 0.234 35.111 0.000� 4.007
Aggressive vs Turner 0.587 0.285 4.258 0.039� 1.799

Naturalness
Defensive vs Turner 1.606 0.232 48.113 0.000� 4.980
Aggressive vs Turner 0.953 0.305 9.745 0.002� 2.593
Defensive vs Aggressive 0.653 0.255 6.560 0.010� 1.921

Note. �p < .05. Orders of paired comparison are based on the odds ratios.
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metrics showed a high speed for the Ag-
gressive controller in the 200–300 Curve
Radius section, and a suddenly changing
speed of the Turner in the 300–800 Curve
Radius section (for further evaluation of these,
see Appendix C).

Table 5 shows the results of the GEEmodels,
which showed that the effect of driving style,
on comfort and naturalness ratings, was

significant for both the Rural and Village road
sections (all p < .001). In the Rural sections,
which had a generally higher speed limit than
the Village sections, there was less difference in
odds ratios between the Aggressive and the
Turner controllers for the gentler roads (i.e.,
Straight and Curve Radius 300–800), but this
difference was more prominent for the shaper
road sections (i.e., Curve Radius 150–200, and
200–300). It is also worth highlighting the
preference for the Defensive controller over the
Turner, where the odds ratios are seen to be
larger with increasing road curvatures. How-
ever, these differences in controllers were not
observed for the sharpest Rural section (i.e.,
less than 150).

In the Village sections, where the controllers
negotiated the road at a lower speed, the ob-
served pattern with curvature outlined above,
was not as apparent. This may be because all
controllers negotiated the curves at a relatively
low speed, thus reducing the effect of Curve
Radius. Overall, the Defensive controller re-
mained the most comfortable and natural,
compared to the Aggressive and TurnerFigure 6. The speed profiles of the controllers.

Figure 7. The lateral offset profiles of the controllers.

EVALUATION OF AUTOMATED DRIVING STYLES 11



controllers, indicated by the odds ratios for all
Village sections. In contrast, not much dif-
ference was seen in the evaluation for comfort
and naturalness between the Aggressive and
Turner controllers, for the Village sections.

The Influence of Personality Traits on
Subjective Evaluation

Following data collection, participants were
divided into two sub-samples, based on their
average scores to the 20 AISS items. Evaluation
of the controllers by the two sub-samples,
providing the lowest (mean = 48.54, N = 13),
and highest sensation seeking score (mean =
59.45, N = 11), was then assessed.

Table 6 and Figure 9 show that the Defensive
driving style was regarded as the most com-
fortable, for both the high and low sensation
seekers. Interesting results were observed re-
garding the evaluation of naturalness. Low
sensation seekers evaluated the Defensive as
much more natural than the other two

controllers, whereas high sensation seekers
rated the Aggressive and Defensive driving
styles about the same, in terms of naturalness.
This finding also explains the bimodal pattern
of evaluations on naturalness, shown in Figure
5 (right).

DISCUSSION

This driving simulator study examined users’
subjective evaluation of the driving style of three
AV controllers, in terms of comfort and natural-
ness, when negotiating a range of rural and village
sections of a UK road. The link between partic-
ipants’ sensation seeking scores and their evalu-
ation of these controllers was also investigated.

In terms of human- vs machine-like con-
trollers, results showed that users preferred the
two human-like AV controllers, in terms of both
comfort and naturalness. Contrasting our find-
ings with similar studies is challenging, as, at the
time of writing, there are very few studies which
have explicitly compared participant preferences

Figure 8. Mean evaluation scores for comfort (left) and naturalness (right) for each driving
style, for the different road environments. Error bars indicate standard error of the data.
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for human-like and machine-like automated
vehicle controllers. One exception is a study by
Oliveira et al. (2019), who measured users’ trust
towards a highly automated pod, which showed
either human- or machine-like driving behav-
iours, when crossing a T-junction. In this study,
human-like behaviour was produced by dem-
onstrating a cautious ‘peeking’ behaviour by the
pod, before it crossed the junction, while
machine-like behaviour was produced by an
assertive crossing, as if the road conditions were
known to the automated pod. Oliveira et al.
(2019) showed no difference in trust ratings
for the two behaviours of the pod. There are two
reasons why our study results are in contrast to
those of Oliveira et al. (2019). One may be due
to a difference in the concept used between our
two studies: trust versus comfort and natural-
ness. The other may be because of the lower
operating speed of the AVused in an urban road,
by Oliveira et al, compared to the higher trav-
elling speeds of our vehicle, travelling in rural
road sections. This contrast in results illustrates

the importance of considering the scenarios used
to evaluate AV-driving styles in such studies,
since they vary across different road environ-
ments, based on both geometry and posted speed
limit, which clearly influences any subjective
assessment and evaluation (Hajiseyedjavadi
et al., 2021). Further work on the influence of
different scenarios on subjective appraisals of
human- vs machine-like AV-driving styles,
should clarify this.

Overall, participants rated the Defensive con-
troller more comfortable than the other two con-
trollers, while both the Defensive and Aggressive
controllers were assessed as more natural than the
Turner. This suggests that there may be a distinc-
tion between what human evaluators consider
a comfortable versus natural driving style, which is
perhaps in contrast to the suggestion made by
Elbanhawi et al. (2015), who regarded natural, or
familiar, driving manoeuvres as one contributor to
driving comfort. Our results suggest that comfort
and naturalness of a controller should not be used
interchangeably in such research, and that while

TABLE 6: The GEE Model Parameter Estimates and Odds Ratios Regarding Comfort and Naturalness for
Low and High Sensation Seekers

N Driving Style Coefficient SE Wald Sig
Odds Ratio

(OR)

Comfort
Low sensation
seekers

934a Defensive vs Turner 1.809 0.346 27.305 0.000� 6.102
Defensive vs
Aggressive

1.356 0.378 12.875 0.000� 3.881

Aggressive vs Turner 0.452 0.436 1.075 0.300 1.572
High sensation
seekers

791a Defensive vs Turner 2.153 0.296 53.039 0.000� 8.607
Defensive vs
Aggressive

1.507 0.281 28.865 0.000� 4.515

Aggressive vs Turner 0.645 0.348 3.438 0.064 1.906
Naturalness
Low sensation
seekers

936 Defensive vs Turner 1.593 0.262 37.061 0.000� 4.919
Defensive vs
Aggressive

0.949 0.368 6.666 0.010� 2.583

Aggressive vs Turner 0.644 0.463 1.933 0.164 1.904
High sensation
seekers

789a Defensive vs Turner 1.652 0.379 18.98 0.000� 5.217
Aggressive vs Turner 1.258 0.370 11.584 0.001� 3.518
Defensive vs
Aggressive

0.394 0.334 1.390 0.238 1.483

Note. � p < .05.
aobservations were missing, with the number of 2, 1, and 3, respectively.
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human-like driving styles can be considered as
equally more natural than a ML-based controller,
they are not necessarily as equally comfortable.
Therefore, factors which contribute to the comfort
of a controller are not the same as those that
determine its naturalness.

Regarding how road geometries and vehicle
kinematics affected subjective ratings, our results
show that variations in speed potentially had
a greater influence on evaluation of comfort and
naturalness of the controllers, when compared to
differences in lateral offset. This was especially the
case for the rural sections,which contained roads of
tighter curvature, and higher speed. These results
are in line with the work of Hajiseyedjavadi et al.
(2021), who found that their model-based human-
like AV-driving controllers were assessed as less
pleasant when negotiating narrower curves. These
authors also found that a more rigid controller,
which always followed the centre of the lane, re-
ceived better evaluations. Together, these results
suggest the influence of vehicle kinematics and
road geometry on subjective evaluation of AV
controllers. Moreover, our results showed little
difference in lateral kinematic features of the three
controllers, which was also reflected in the eval-
uations. Therefore, future studies need to examine
the effect of more pronounced lateral offset on
subjective evaluation, especially since maintaining

sufficient and safe distance to road edges is thought
to enhance driving comfort (Summala, 2007).

We found an interesting interaction between
personality trait and evaluation of the controllers,
with high sensation seekers rating the Aggressive
driving style (which was a recording of another
representative high sensation seeker) as natural,
which was not the case for low sensation seekers.
As naturalness in this study was defined as
a driving style that is ‘closest to your own driving’,
it is interesting to see this strong influence of
personality traits on driving style and preference.
The distinction between comfort and naturalness
as concepts is also highlighted here because there
was no difference in the two groups, when eval-
uating the comfort of the Aggressive driving style.
In other words, while the high sensation seekers
thought the Aggressive driving style was natural,
they did not find it comfortable. These results
highlight the value of personalisation of automated
controllers, to benefit the range of preferences by
consumers with varying personality traits, not-
withstanding their safety considerations.

Limitations

One limitation of the present study is the
motion-planning performance of the Turner
controller, which was developed using a small

Figure 9. Overall comfort (left) and naturalness (right) evaluation of the driving styles from
different sensation seekers.
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number of participants. Moreover, although the
motion planner’s output consists of a series of
aim speeds and positions, we only used simple
controllers that were manually calibrated for the
automated vehicle to drive, using this data flow.
Thus, a future study could use more data to train
the motion planner and consider a better ap-
proach for implementing the controllers.

As with all controlled driving simulator
studies, there are caveats regarding the relevance
and generalisability of these findings, and their
implications with respect to real-world AV
controllers. Creating very realistic controllers
was possible in this driving simulator study, due
to its advanced motion-controller capabilities.
However, future studies would benefit from
evaluating these sorts of controllers in more real-
world settings, also assessing how such evalu-
ation is affected by other real-world factors, such
as different road surfaces, or presence of other
roadside objects and road users.

CONCLUSIONS

Participants rated the two human-like driving
styles as more natural, compared with the less
human-like, ML-based, controller. Most par-
ticipants also rated the Defensive driving style
(gentler speed profiles) as more comfortable
than the Aggressive controller (higher accel-
erations and more sudden braking profiles). This
study shows, for the first time, that participants
are able to distinguish between the natural

driving manoeuvres of humans and the more
machine-like negotiations of an artificial con-
troller. In addition, we illustrate that there is
a more complex relationship between concepts
such as comfort and naturalness when evaluat-
ing automated vehicle controllers.

APPENDIX A: CLUSTER ANALYSIS FOR
CATEGORISING DRIVING BEHAVIOUR

From a previous study of the project, driving
behaviours were collected from a sharp curve
(radius < 150 m), a zone with parked cars (length
= 162.68 m), and the entire drive. The variables
used as behavioural indicators for clustering
were: root mean square of speed, standard de-
viation of longitudinal acceleration, and stan-
dard deviation of yaw rate. The k-means
clustering analysis was conducted.

APPENDIX B: CONFIGURATION OF THE
GEE MODEL

The working correlation matrix was specified
as exchangeable, which characterises the cor-
relation structure of multiple observations
within a participant as the same. As the comfort
and naturalness were rated using an ordinal
Eleven-point Likert scale, the distribution of the
dependent variable was specified as a multino-
mial distribution. A link function is used to
characterise the relationship between the mean
of the response (i.e., subjective ratings) and the

Figure 10. Vehicle speed of three controllers in the two village road curves.
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linear predictor (i.e., controllers). The ordered
logit regression was specified as the link
function.

However, in some Village road segments,
including the Straight road sections, the 200–
300 Radius sections, and the 150–200 Radius
sections, the statistical model did not provide
valid results, because the participants’ re-
sponses to the three controllers in these sections
showed very similar patterns, which resulted in
collinearity. For example, in the Curve Radius
150–200 section, most responses clustered
between 2 to 5 for all three driving styles.
Therefore, we treated the data as continuous in
these road sections, to allow statistical com-
parisons. The distribution was specified as
normal in the GEE.

APPENDIX C: VEHICLE KINEMATICS
INSPECTION FOR THE TWO VILLAGE
ROAD SECTIONS WITH UNEXPECTED

ASSESSMENTS

Inspection of the vehicle-based metrics for
these two particular road sections (Figure 10)
showed that the Aggressive controller’s speed
was markedly higher than that of the two other
controllers in the 300–800 Radius section, and
higher than the designated speed limit of
30 mph. A sudden fluctuation of speed for the
Turner controller was also seen in the 200–300
Radius section, although it was within the
speed limit of 40 mph. Further inspection of the
simulated scene did not show the presence of
any unusually placed road furniture, such as
parked cars. A possible explanation here is that
the Turner controller did not look far enough
ahead to smooth out the speed changes, and was
also inadequately sensitive to roadside furni-
ture. Regardless, these results show that the
effect of these kinematic changes were clearly
felt by our users, which can possibly explain
their evaluation of the controllers for these two
sections.
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KEY POINTS

• Human-like driving features were rated as more
comfortable and natural than the ML-based, less
human-like, driving style, under most road con-
texts for users with different sensation seeking
traits.

• Between the two human-like driving controllers, the
slower, milder and more conservative controller
(Defensive) was preferred, in terms of comfort and
naturalness.

• When exposed to more complicated road envi-
ronments (e.g., sharper curves, higher speed limits,
potentially hazardous roadside objects), the De-
fensive driving controller was preferred.

• A natural driving style was not necessarily per-
ceived as comfortable, especially by high sensation
seekers.
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