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Real-time battery temperature monitoring using
FBG sensors: a data-driven calibration method
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Abstract— Battery storage has an important role
to play in integrating large scale renewable power
generations and in transport decarbonization. Real-
time monitoring of battery temperature profile is
indispensable for battery safety management. Due to
the advantages of small size, resistance to corrosion,
immunity to electromagnetic interference, and mul-
tiplexing, fiber Bragg-grating (FBG) sensing has re-
ceived substantial interests in recent years for battery
temperature measurement. However, traditional tem-
perature calibration for FBG sensors often requires a
high-standard reference, and cause the sensors fail to
be consistent during the calibration or re-calibration
processes. To tackle the challenges, an ensemble data-
driven calibration method is developed in this paper
for FBG sensors. The calibration model consists of a
linear part and a nonlinear part. First, the fuzzy C-
means (FCM) algorithm is used to extract the linear
relationship between the measured FBG wavelength
shift and temperature variation. Then, the empirical
mode decomposition (EMD) technique is used to
classify the intrinsic mode functions (IMFs) and the
remainder for the unmodeled nonlinear information.
The unmodeled nonlinear information is further com-
pensated using battery state of charge (SOC) and
cycle number information. The experimental results
confirm that the proposed temperature calibration
method achieves desirable accuracy and reliability,
with both the mean absolute error and root mean
square error being around 0.2 ℃ respectively. Com-
pared with the traditional temperature calibration method, the proposed approach can be used online in real-life applications.

Index Terms— Lithium-ion battery, Data-driven method, Temperature calibration, FBG, EMD
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I. INTRODUCTION

L ITHIUM-ION batteries have several distinctive fea-
tures such as high energy density and high power

density, and have been increasingly used in power grids
[1]–[3] and in electric vehicles (EVs) [4]–[6]. Temperature
seriously influences the performance of a lithium-ion
battery such as the usable capacity and internal resis-
tance. It has been widely recognized that inappropriate
operation temperature can accelerate the degradation of
lithium-ion batteries [7], [8]. Furthermore, during the
charging/discharging process, heat may accumulate. In
particular, under abuse conditions such as overcharging, it
may cause overtemperature and even explosion. Therefore,
to guarantee the operational safety, thermal management
plays an essential role in the battery management system
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(BMS).
Thermocouple and thermistor are the most popular

temperature sensors for battery temperature monitoring
[9]. However, they are sensitive to corrosion and elec-
tromagnetic radiation and each temperature measuring
point needs a separate data channel. For an energy storage
system (ESS), this will significantly increase the number
of sensors and other supporting facilities, which makes the
already limited space even more compacted, particularly
in EVs. Therefore, the Fiber Bragg-grating (FBG) sensors
are attracting increasing interests in battery management
due to the advantages of smaller size, mechanical robust-
ness, resistance to corrosion and immune to electromag-
netic interference [10], [11]. Moreover, a single optical fiber
can be inscribed with multiple FBG sensors for tempera-
ture measurements, which can save a lot of cost and space
[12]. In general, the FBG sensors can be placed on specific
locations on the battery shell to monitor the surface
temperature [13], or insert inside the battery to measure
its internal temperature [14]. For the later, encapsulation
needs to be done by battery manufacturers, otherwise
it will damage the cells or change their performances if
the FBG sensors are inserted into existing commercial
cells [15]. The FBG sensors have been successfully used
for surface temperature measurement of commercial cells
[12], [16], and they can be easily scaled up to battery
packs for accurate monitoring of the temperature profile
of cells inside the packs for safe operation of the packages.
This study also focuses on the temperature measurements
with FBGs bonded on the battery shells. In summary,
FBG sensors have been chosen as one of the most suitable
means to allow practical measurements to be taken due to
advanced packing technologies [17], [18] and simultaneous
multi-battery temperature monitoring and estimation as
discussed in this paper.

FBG sensors measure temperature which induces
change in the effective refractive index of the core and the
grating period, thus resulting in a shift of the reflected
spectrum [19]. Meanwhile, any external strain will also
contribute to a peak shift in the reflected wavelength.
The resonant wavelength peak shift is generally created
by the variations of both temperature and strain. To
decouple the impacts of the temperature from the strain,
various methods have been proposed [20]–[22], however
temperature calibration is a prerequisite for all these
methods.

Generally speaking, temperature calibration needs to
be conducted in a controlled environment. For example,
constant specific external temperature environments con-
trolled by a thermal chamber should be applied. The
external temperature should be kept for a long enough
period to ensure the temperature homogeneity in both
the battery specimen and FBG sensor [20]. Although this
temperature calibration method can accurately identify
the relevant parameters, some issues still exist. Firstly,
the calibration method can only be performed offline
and the whole process is extremely demanding and time
consuming. Secondly, the method requires a high-precision

thermal chamber to ensure the reliability of the calibration
results, therefore it is not suitable for online real-time
applications.

To overcome the shortcomings of the traditional temper-
ature calibration method for FBG sensors, a novel data-
driven calibration method is developed in this paper. The
main contributions are summarized as follows:

• FBG sensors are applied to commercial 18650
LiFePO4 lithium-ion battery cells for multi-point
temperature measurements. Since the wavelength
shift are the results of temperature variation, strain
change and other unknown factors, both the state of
charge (SOC) and the aging are taken into account
to estimate the temperature.

• A novel temperature calibration model is developed
which comprises a linear part and a nonlinear
compensation part, where Fuzzy C-means algorithm
is used to establish the linear relationship between
the measured wavelength shift and temperature
variation, and the remaining wavelength information
is decomposed into the intrinsic mode functions
(IMFs) and the residuum using the empirical mode
decomposition (EMD) method. Then the irrelevant
modes are selected from IMFs to represent the effect
by the measurement noise, while the relevant modes
are selected from the IMFs represents the effect of
the SOC and the residuum is used to represent the
aging effect.

• To build nonlinear compensation part of the temper-
ature calibration model, the relevant modes relating
to SOC is represented using a polynomial model,
while the residuum relating to the cycle number is
modeled using a linear function.

• Experimental results confirm that the proposed
approach is capable of producing accurate and com-
parable temperature estimations as the conventional
temperature sensors without resorting to expensive
and laborious offline laboratory calibrations.

The remainder of this paper is organized as follows.
The experimental setup is briefly introduced in Section
II. The framework of the data-drive calibration method is
detailed in Section III. Experimental study is presented
in Section IV to verify efficacy of the developed method,
and a conclusion is made in Section V.

II. EXPERIMENTAL SETUP

Four commercial 18650 LiFePO4 lithium-ion battery
cells (#1, #2, #3, #4) are used, which have a nominal
voltage of 3.2 V and capacity of 1.6 Ah. FBG sensors are
mounted on the surfaces of the battery cells. In this study,
each cell uses three FBG sensors, namely FBG 1, FBG 2
and FBG 3, as shown in Fig. 1.

The FBG sensors are interfaced with a Micron-Optics
interrogator for data logging, and a thermocouple is also
attached to the location close to the FBG sensors as a
reference. The measurement resolution of the thermocou-
ple is 0.1 ℃ and its measurement error is ±1 ℃. As
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Fig. 1: The layout of the FBG sensors

FBG is calibrated against the thermocouple, it is expected
the error of temperature measurement using FBG to be
higher than that of the reference of 1℃, although the
resolution of the interrogator is 1pm, which may give the
FBG sensor the resolution, theoretically, higher than 0.1
℃. The battery experiments are managed by a NEWARE
battery test system to cycle the cells under the room
temperature environment and the current and voltage
signals are collected. The experimental set-up is shown
in Fig. 2.
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Fig. 2: Battery test system

In this study, a standard Constant-Current Constant-
Voltage (CC-CV) charging process and a Constant-
Current (CC) discharging process are applied to the test
cell, where the cell is first charged with constant a 1.6
A current until the terminal voltage reaches the upper
cutoff voltage (3.6 V). Then the cell is charged under the
constant voltage mode until the charging current decreases
to 75 mA. The sampling frequency for all the measurement
equipment is set at 1 Hz. For the CC discharging process,
a 1.6 A constant current is used to discharge the cell
to the lower cutoff voltage of 2.0 V. The resting time
between the charging and consequent discharging phase
is set to 10 minutes. Each FBG length is around 1cm
and the characteristic wavelengths of FBGs 1, 2 and 3
are 1534 nm, 1539 nm and 1544 nm, respectively. The
measurements of cell #1 are shown in Fig. 3.
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Fig. 3: The temperature and peak wavelengths measured
during the charging and discharging process

III. THE PROPOSED DATA-DRIVEN CALIBRATION METHOD

In this section, the temperature measurements by FBG
sensors are calibrated via a linear model combined with
a nonlinear compensation model. The linear correlation
model is built using the fuzzy C-means algorithm, while
the nonlinear compensation model is built using the
EMD method. The data-driven calibration methodology
is elaborated below.

A. Problem formulation
Generally speaking, a FBG sensor will reflect a cer-

tain narrow band of spectrum and the centered peak
wavelength is known as the Bragg wavelength [23], [24]
which will shift due to several factors, such as thermal
and mechanical effects, and this can be expressed as:

λB = 2neΛ (1)

where ne is the effective refractive index at the grating
location and Λ is the grating period [20]. The wavelength
shift (∆λB) due to temperature variation (∆T ) and strain
variation (∆ε) can be expressed as follows:

∆λB

λB

= (α+ ξ)∆T + (1− Pe)∆ε (2)

where Pe is the photo-elastic coefficient, α is the thermal
expansion coefficient and ξ is the thermo-optic coefficient
[24] of the fiber material. Both temperature variation ∆T
and strain change (∆ε) are unknown, hence to estimate
the temperature variation, Eq. (2) can be simplified as
follows:

∆λB = f(∆T ) + Z (3)

where f(∆T ) = λB(α+ ξ)∆T is the effect of temperature
variation on the wavelength shift, while Z represents the
remainder wavelength shift.

It is worth noting that in this paper, FBG wavelength
shift is expressed as a combination of thermal output
and mechanical strain in Eq. (2), where the first term
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represents the lumped thermal effect including the thermo-
optic effect and thermal apparent strain, and the second
term represents the lumped mechanical strain effect. For
the first term, the main contributor is the variation of the
silica refraction index, induced by the thermo-optic effect,
while the effect induced by thermal expansion which alters
the period of the microstructure, is marginal. Since the
wavelength shift due to temperature variation is modelled
as a linear function as elaborated below, hence errors
induced by the linear model is together with mechanical
strains and other factors are lumped into the second term
Z in Eq. (3), which will be modeled using a nonlinear
function elaborated below.

As mentioned earlier, Z represents the lumped contri-
bution of the mechanical strain variation, other captured
factors, and modeling errors on ∆λB . Hence,

∆T = (∆λB − Z)/(α+ ξ) = f−1(∆λB − Z) (4)

It is also worth noting that both the thermal expansion
coefficient and the thermo-optic coefficient vary with the
temperature, hence the FBG wavelength shift response
to the temperature variation is a nonlinear relationship
in general, as reported by some of the co-authors [25]
and in other publications [26], [27]. However when the
temperature range is small, as shown in this paper to be
within 20-30 ℃, the thermal performance of FBG can be
considered accurately as linear and verified in this specific
study. In particular, in an experimental study on temper-
ature measurement using FBG sensors [27], a nonlinear
temperature response model was built where the quadratic
term in the Bragg wavelength shift is approaching to a
constant from 0 ℃ to 40 ℃ at 1549 nm. Therefore, in this
paper the wavelength shift to the temperature variation
is treated as a linear relationship, while the impact of
Z on the wavelength shift is represented by a nonlinear
function.

In this paper, the base temperature (T0) is set at 25 ℃,
the temperature estimated via the FBG sensor, namely
TFBG can be expressed as

TFBG = T0 +∆T = T0 + f−1(∆λB − Z) (5)

where ∆λB = λ − λ0. λ and λ0 represent the measured
peak wavelength and the characteristic wavelength of
the FBG sensor. Note that this temperature estimation
equation is generic and suitable for different batteries
and FBG sensors made of different materials. Here, the
temperature model includes both a linear part f and a
nonlinear part Z which can be constructed below.

B. Fuzzy C-means method to identify the linear model
The relationship between temperature variation and

wavelength shift was investigated in [16], [22], [28], and
their relationship is a linear function. A detailed inves-
tigation of FBG 1 attached on cell #1 is given below.
The measured cell surface temperature variation ∆T and
the measured wavelength shift ∆λB are shown in Fig. 4.

It is clear that the temperature responses of the FBG
wavelength is approximately linear.

Fig. 4: Relationship between ∆T and ∆λB via FBG 1 of
cell #1

In order to extract the temperature effect, clustering
methods are used to extract the relationship between
the temperature variation ∆T and the wavelength shift
∆λB . Among the various clustering methods, Fuzzy C-
means (FCM) is a popular clustering method due to its
robustness to ambiguities and it can extract much more
information than hard clustering methods [29]. FCM is
an iterative process which partitions the input data into
a certain number of clusters with the respect to the
membership value and the distance. The objective function
of FCM can be expressed as

Jm(U,P ) =
N
∑

j=1

c
∑

i=1

(µij)
m(dij)

2 (6)

where N is the number of input data, P is the cluster
center matrix, U is the membership function matrix. µij

is the likelihood value which presents the degree of the
ith input data belonging to the jth cluster, which satisfies
the constraints in Eq. (7). m is the fuzziness parameter
which is used to set the fuzziness of the cluster. dij is the
distance between the ith input data and the jth cluster
center. In this paper, the distance refers to the Euclidean
distance.
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(7)

By applying the Lagrangian multiplier technique, the
membership function can be calculated as follows:

µt
ij =

1
∑c

k=1(
dij

dkj
)

2

m−1

(8)

where t is the number of iterations. The new cluster center
can be calculated as
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P
(t+1)
i =

∑N

j=1 (µ
(t)
ij )

mxj

∑N

j=1(µ
(t)
ij )

m
(9)

The center of each cluster is considered to be the
representative sample of the measurements in each cluster.
Therefore, the relationship between the temperature vari-
ation and wavelength shift can be extracted in term of the
relationship between the cluster centres. Various number
of clustering centres are tested in this study, the results
show that the minimum residual can be obtained when the
number of cluster centres is 5. For the case of FBG 1 on
cell #1 as shown in Fig. 4, the clustering centres obtained
by the FCM are presented as the red circles in Fig. 4, and
the solid line shows the best fit. For each cluster center,
its projection on the y-axis represents the wavelength shift
∆λB caused by the corresponding temperature variation
∆T on the x-axis. Then the linear fitting process using
the clustering centres is repeated 10 times to obtain the
average parameters. Thus, the linear relationship between
∆T and ∆λB is expressed as

f(∆T ) = 0.0255∆T + 8.358 (10)

Obviously, Eq. (10) is equivalent to the first term in
Eq. (2) and the slope of this linear fitting equation can
be regarded as the thermal sensitivity of the FBGs, which
is 25.5 pm/℃. Our previous work [11] has indicated that
the sensitivity to temperature of such the surface mounted
FBG sensor is 21 pm/℃ on average. This slight difference
is largely due to installation process where the cured glue
may change the thermal conductivity.

C. EMD method to construct the nonlinear model
The linear model considers the impact of temperature

on the wavelength shift (∆λB). However, as elaborated
earlier, ∆λB is also affected by the mechanical strain,
uncaptured thermal effect from the linear model, and
some unknown factors, which can be lumped as the model
residual (Z). Generally speaking, the strain variation
represents the dimensional change of the cell. Due to
the coupling of temperature and strain, the strain is also
caused by thermal expansion, which is reflected in the
electrode expansion and hence electrode volume change. In
addition to temperature effects which is already modeled
using the linear function elaborated above, the strain
variation of a lithium-ion battery is caused by the following
factors, such as the electrode expansion and contraction
with lithium intercalation/deintercalation, electrode vol-
ume change with the irreversible reaction deposits, and
the dead volume and pressure change depending on the
cell construction [30].

In this study, the cell structure is fixed, only the
reversible electrode expansion and contraction and irre-
versible electrode volume change are analysed. Hence, Z
can be modelled by using the combination of the short
time effect and the long time effect. The short time effect
considers the electrode change in each cycle due to the

intercalation/deintercalation of lithium ions, which is also
affected by the temperature [31]. Furthermore, the change
of SOC due to the strain variation of the electrodes of the
lithium-ion batteries has been researched [23], [31]–[33].
Thus, SOC is selected as the main contributor to the
short-term strain variation.

In regard to the long time effect, the intercala-
tion/deintercalation of lithium ions, which is increased
or decreased in speed by the temperature. It induced
mechanical stress to the graphite lattice, which causes the
crack and expansion of the electrode [34]. The electrode
induces the irreversible volume change because of the
cycle aging, leading to the strain change of cell shell. The
experimental results [32] also indicated that the maximum
strain of the electrode decreases with the increasing of the
cycle number.

In summary, to compensate the temperature model, Z is
modeled as a function of both the SOC and cycle numbers
which will be elaborated in the following.

1) Decomposition of Z using EMD: Since Z is obtained
by extracting f(∆T ) from ∆λB , the measurement noise
of ∆T from the thermocouple and the measurement noise
of ∆λB from the FBG sensor are introduced. Therefore,
Z will be decomposed into three groups, denoted as Zn,
Zs and Zc and Z = Zn + Zs + Zc, where Zn represents
the measurement noise, Zs represents the effect of the
change of cell SOC, and Zc represents the effect of battery
aging hence is a function of the cycle number respectively.
Empirical mode decomposition (EMD) technique is used
in this study to decompose Z. EMD is an adaptive time-
space analysis method proposed by Huang et al. [35] for
non-stationary and non-linear signals. EMD break down
any signal Z into a number of L components called
intrinsic mode functions (IMFs) without leaving the time
domain. The accumulation of the extracted IMFs with the
residual can restore the decomposed signal, thus, Z can
be expressed as

Z =

L
∑

i=1

hi + r (11)

where hi represents the ith IMF and r is the residual of
the decomposition.

The flow chart of EMD algorithm is shown in Fig.5.
Accordingly, the implementation steps of the EMD algo-
rithm can be summarized as follows.

Step 1 Initialisation: Set i = 1, n = 1, r0 = Z.
Step 2 Set k = 1, hi,0 = rk−1.
Step 3 Identify all local maxima and minima of hi,k−1.
Step 4 Construct the upper envelope, namely Ui,k−1 and

the lower envelope, namely Li,k−1 via the cubic splines
interpolation.

Step 5 Determine the mean, namely mi,k−1 of Ui,k−1

and Li,k−1. mi,k−1 = 1
2 (Ui,k−1 − Li,k−1).

Step 6 Calculate the ith IMF after kth iteration: hi,k =
hi,k−1 −mi,k−1.

1. if hi,k not satisfies the IMF criteria, increase k as
k = k + 1 and repeat Step 3 to 6.
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Fig. 5: The flow chart of EMD algorithm

2. if hi,k satisfies the IMF criteria, then set hi = hi,k

and ri = ri−1 − hi.
Step 7 If ri represents a residuum, set r = ri and stop

the process. If not, increase i as i = i+1 and repeat Step
2 to 6.

For the remainder of Z, the extracted IMFs are illus-
trated in Fig.6.

Among the decomposed modes, the irrelevant modes
can be used to represent Zn and the relevant modes can
be used to represent Zs and the residuum can be used to
represent Zc. The three modes are modelled using different
methods as follows.

2) Modelling Zn: The correlation coefficient (CORR)
based EMD de-noising method [36] is applied to select the
irrelevant modes in this study for the calculation of Zn.
Defines m as the indicator when the correlation coefficient
between Z and Z − Zn starts to decrease sharply, Zn is
thus can be expressed as

Zn =

m
∑

i=1

hi (12)

Then the data of FBG 1 on cell #1 is trained for 10
times under same conditions. The correlation coefficients
between Z and Z −Zn obtained with various values of m
is presented in Fig. 7. It is evident that once m is greater
than 5, the correlation coefficient between Z and Z − Zn

decreases significantly every time. Therefore, m is set to
5 for FBG 1 on cell #1.

3) Modelling Zs: To capture the relationship between
cell SOC and Zs, coulomb counting method is applied
to calculate the SOC value of the cell in both charging
and discharging processes. The distribution of Zs on
each point SOC is presented in Fig. 8. There is a clear
difference between the distributions of Zs in the charging

and discharging processes. Polynomial fitting technique is
then applied to fit the relationships between the cell SOC
and Zs in the charging and discharging processes, named
Zch and Zdis respectively. Therefore, Zs can be expressed
as

Zs(t) =

{

Zch(t), I ≥ 0

Zdis(t), I < 0
(13)

where I represents the current through the cell at time t.
Zch(t) and Zdis(t) can be expressed as

{

Zch(t) = p1s
4 + p2s

3 + p3s
2 + p4s+ p5

Zdis(t) = q1s
4 + q2s

3 + q3s
2 + q4s+ q5

(14)

where s represents the SOC value of the cell at time t, p1
to p5, and q1 to q5 are the fitting coefficients of Zch and
Zdis respectively. The fitting coefficients can be identified
by using the least squares (LS) method. The identification
results of FBG 1 on cell #1 which are the average value
of 10 times repeated training are given in Table I.

4) Modelling Zc: As elaborated earlier, Zc is used to
describe the relationship between Z and the cell cycle
number c. The average distribution of the EMD residual
r is shown in Fig. 9, it is clear that r presents an
almost linear downward trend with the increasing of cycle
number. Therefore, Zc of FBG 1 on cell #1 can be
expressed as follows:

Zc = −0.0014c+ 0.009 (15)

In summary, Zs and Zc can be obtained according to Eq.
(13) to (15). The system compensation Z can be calculated
as the sum of Zs and Zc. Thus, according to Eq. (5), the
estimation of temperature (TFBG) can be calculated as
follows

TFBG = T0 + f−1((λ− λ0)− (Zs + Zc)) (16)

where λ and λ0 represent the measured peak wavelength
and the characteristic wavelength of the FBG sensor. The
identification of Zs and Zc is essential for different FBGs
or different cells with different materials.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

In order to verify the accuracy and reliability of the
proposed temperature calibration method, the data from
the first 11 cycles of cell #1 are used for training, while the
data of another 13 cycles (the 12th to the 24th cycle) of cell
#1 is used for the validation. The reference temperature
value is measured by the thermocouple. Coulomb counting
method is used to calculate the SOC of the cell.

The temperature estimated via FBG 1 using the above
proposed method is shown in Fig. 10. It is evident
that the temperature estimated by the proposed method
matches well with the reference temperature measured
by the thermocouple. The validation of a cycle using the
developed method is shown in Fig. 11. It is clear that
most of the errors are distributed within ± 0.5 ℃, only
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Fig. 6: The decomposed modes and residual via FBG 1 of cell #1

TABLE I: The identified fitting coefficients for Zch and Zdis

Coefficient p1 p2 p3 p4 p5 q1 q2 q3 q4 q5

Value 0.0554 -0.1784 0.1501 -0.0294 -0.0009 -0.0893 0.1205 -0.0134 -0.0352 0.0103
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Fig. 7: Correlation with m repeating 10 times via FBG 1
of cell #1

except for the points at high and low SOC levels where
the errors are almost ± 1 ℃, which is still acceptable for
the thermocouple accuracy tolerance level. Furthermore,
the 1 ℃ error at high or low SOC levels has negligible
impacts on fault diagnose [37] which often uses much larger
temperature differences in setting the fault thresholds.
From Fig. 11, the variation of the estimated temperature
is found to be similar to the variation of the reference
temperature which is often used to estimate SOC or
capacity [38].

Then the proposed method is applied to the signals
obtained from other FBGs attached on cell #1, and the
temperature estimation results via FBGs 2 and 3 are

Fig. 8: The distribution of Zs on SOC via FBG 1 of cell
#1

also analyzed. Similarly, the data collected in Cycles 1
to 11 is used for modelling and the data obtained in
Cycles 12 to 24 is used for validation. The temperature
validation results of FBGs 2 and 3 are shown in Figs.
12-15, respectively. It can be seen that the temperature
estimations obtained via FBGs 1, 2 and 3 are highly
consistent with the temperature data measured via the
thermocouple.

Furthermore, the root mean square error (RMSE), mean
absolute error (MAE), maximum absolute error (MaxAE),
mean error (ME) and variance (Var) of the validation
results are listed in Table II.



8 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2022

Fig. 9: The distribution of EMD residual verses cycle
number via FBG 1 of cell #1
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Fig. 10: Temperature validation via FBG 1 of cell #1

The statistics of the estimation errors also indicates
that the proposed method can accurately estimate the
battery shell temperature via the peak wavelength data
obtained using different FBG sensors. This again confirms
the validity and effectiveness of the proposed method.

To further verify the effectiveness of the proposed
method, FBG 1 of cell #4 is calibrated for the surface
temperature. The data from the first 11 cycles of cell #4
are used for training, while the data from the 15th to the
27th cycle of cell #4 is used for validation. The validation
results are illustrated in Figs. 16 and 17 and the statistics
of the estimated errors are given in Table III.

It is clear that the proposed calibration method once
again achieves better estimation results on cell #4 which
are validated on different cycles. It again confirms the
effectiveness of the proposed method.

V. CONCLUSIONS

This paper has presented a novel data-driven based
FBG sensor temperature calibration method that can
perform FBG temperature calibration online, which will
not interrupt the normal operation of the ESSs. The pro-
posed method does not require high-standard laboratory
equipment and environment, which makes it more friendly
to use in real life applications. In the experiments, it is
shown that the proposed temperature calibration method

12 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9 13

Cycle number

25

26

27

28

29

T
em

pe
ra

tu
re

 (
°
C

)

Validation

Reference

Estimation

12 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9 13

Cycle number

-0.5

0

0.5

1

E
rr

or
 (
°
C

)

Validation Error

Absolute Error

Fig. 11: Validation results of Cycle #12 via FBG 1 of
cell #1
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Fig. 12: Temperature validation via FBG 2 of cell #1

has achieved desirable estimation accuracy and reliability,
with both the mean absolute error and root mean square
error being 0.2 ℃. Due to the unstable electrochemical
reactions inside the cell at high and low SOC levels,
the strain variations of the cell become more difficult to
capture by Zs, resulting in slightly large errors within ±

1 ℃, but it is still acceptable for the sate estimation and
fault diagnoses in BMS, which will be further validated
in our future work. In the study, the proposed method
has been applied to different FBG sensors and different
battery cells made of the same materials, and it will also
be extended to other batteries made of different materials
in the future work.
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