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Position of the AI for Health Imaging
(AI4HI) network on metadata models for
imaging biobanks
Haridimos Kondylakis1, Esther Ciarrocchi2* , Leonor Cerda-Alberich3, Ioanna Chouvarda4, Lauren A. Fromont5,
Jose Manuel Garcia-Aznar6, Varvara Kalokyri2, Alexandra Kosvyra4, Dawn Walker7, Guang Yang8,
Emanuele Neri2 and the AI4HealthImaging Working Group on metadata models**

Abstract

A huge amount of imaging data is becoming available worldwide and an incredible range of possible
improvements can be provided by artificial intelligence algorithms in clinical care for diagnosis and decision
support. In this context, it has become essential to properly manage and handle these medical images and to
define which metadata have to be considered, in order for the images to provide their full potential. Metadata are
additional data associated with the images, which provide a complete description of the image acquisition,
curation, analysis, and of the relevant clinical variables associated with the images. Currently, several data models
are available to describe one or more subcategories of metadata, but a unique, common, and standard data model
capable of fully representing the heterogeneity of medical metadata has not been yet developed. This paper
reports the state of the art on metadata models for medical imaging, the current limitations and further
developments, and describes the strategy adopted by the Horizon 2020 “AI for Health Imaging” projects, which are
all dedicated to the creation of imaging biobanks.
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Key points

� Metadata are essential for the correct use and

interpretation of medical images.

� An appropriate and possibly standardised data

model is necessary to represent these data and their

correlations.

� We report the state of the art of metadata models

and the position of Horizon 2020 “AI for Health

Imaging” projects.

Background
Metadata, as the word suggests, are data about the data,

i.e., additional information about the data themselves.

For medical imaging, these include data generated from

an imaging modality, exam prescription codes, descrip-

tion data based on an order, and annotations indicating

the content and/or anatomy of a particular image [1].

Other essential metadata are imaging biomarkers and

clinical variables, i.e., complementary non-imaging data

related to the patient’s medical history that are necessary

for a correct diagnosis and decision.

In order to efficiently use the medical data, it is crucial

to properly combine the actual imaging data with their

associated metadata [2]. For this, the appropriate models

need to be available to enable homogeneous data access
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and analysis. Another aspect worth mentioning is that,

depending on the specific imaging biobank and its focus,

the metadata to be collected may vary, as it will be

shown later on in this paper. Up to date, several models

exist that allow to describe and sometimes standardise

one or more subdomains of medical imaging metadata.

What is still missing is the definition of a unified,

complete, and standardised model that is able to fully

represent this new type of metadata.

To this purpose, this paper provides an overview on

the metadata for medical imaging, on the currently avail-

able dedicated models and their problems and limita-

tions, and presents the modeling strategy adopted by the

Horizon 2020 Artificial Intelligence In Health Imaging

(AI4HI) Network, comprising the PRIMAGE [3, 4],

EuCanImage [5], CHAIMELEON [6, 7], INCISIVE [8],

and ProCancer-I [9] Horizon 2020 projects.

State-of-the-art of metadata models for medical imaging

In this section, we describe in detail what are the rele-

vant metadata for an imaging biobank, and we report on

the current approaches available to establish common

metadata models for medical imaging. In the field of da-

tabases, a data model is an abstract scheme that orga-

nises the data, their properties, and how they are related

to one another. As it will be shown, for medical images

currently there are several available models, which are

able to represent a subset of the metadata contained in

an imaging biobank with different levels of accuracy.

What is missing so far is a unification and a

standardisation of these models, i.e., one common and

comprehensive model able to fully describe the content

on an imaging biobank and properly link the different

domains (e.g., images, clinical variables, radiomics).

Metadata in imaging biobanks

Imaging data and clinical data The core of metadata

in medical imaging is represented by the Digital Imaging

and Communications in Medicine (DICOM) standard

that defines the acquisition, the exchange, and the pro-

cessing of images and associated metadata in the med-

ical domain. The DICOM file includes metadata that

describe the patient's demographic, the modality and ac-

quisition parameters, and other imaging-related parame-

ters. An example is shown in Fig. 1, presenting a

DICOM magnetic resonance (MR) image of the prostate

and the relevant DICOM metadata describing patient

demographics, acquisition, and image-related

parameters.

Other imaging metadata might also include radiology re-

ports, which can be in a free-text format or a structured

format (structured reporting). A radiology report is gen-

erated by the human interpretation of images associated

Fig. 1 An example of a Digital Imaging and Communications in Medicine (DICOM) contrast-enhanced magnetic resonance image (T1-weighted
sequence) of the prostate and DICOM metadata about patient demographics, acquisition-related parameters and image-related parameters

Kondylakis et al. European Radiology Experimental            (2022) 6:29 Page 2 of 15



with clinical data and contains intrinsic information that

can be transformed into metadata. Many natural lan-

guage processing applications to extract quantitative in-

formation from free-text reports are already available

[10]. However, initiatives promoted by national and

international radiological scientific societies (e.g., the

Radiological Society of North America [11] and the

European Society of Radiology (ESR) [12]) are speeding

up the adoption of structured reports in clinical practice.

In fact, structured reports already have the appropriate

format and content for metadata extraction, and there-

fore represent an important source of metadata for

large-scale analysis of patient cohorts, for artificial

intelligence training and multiscale simulations, which

can be developed incorporating mechanistic biological

and physical processes at the scale of the protein, cell,

tissue, and organ. The models can generate predictions

such as tumour growth or shrinkage under specific che-

motherapeutic treatment, which can then be validated

against image-based data.

Imaging biomarkers

Imaging biomarkers can be considered as well as a subset

of metadata, objectively measured and evaluated as an in-

dicator of normal biological processes, pathogenic pro-

cesses, or biological responses to therapeutic interventions

[13]. Imaging biomarkers can be either quantitative (e.g.,

lesion diameter or volume, computed tomography-based

density, MR signal intensity, radiomics features, and any

other biomarker whose magnitude can be expressed as a

quantity value) or qualitative (e.g., pathological grading

systems that can be expressed as ordinal rather than con-

tinuous quantitative data, such as clinical TNM staging,

diagnostic categories defined according to “reporting and

data systems” such as BI-RADS, LI-RADS, PI-RADS, C-

RADS, etc.) [14, 15]. A number of international initiatives

have been launched to promote the development and clin-

ical implementation of image biomarkers. In 2007, the

Radiological Society of North America organised the

Quantitative Imaging Biomarkers Alliance®, with the aim

of promoting collaboration between researchers and in-

dustry players. Quantitative Imaging Biomarkers Alliance

initiatives include collaborating to identify needs, barriers

and solutions to the creation of quantitative biomarkers,

and accelerating the development of hardware and soft-

ware to obtain accurate and reproducible quantitative bio-

markers. In addition, the ESR has set up a subcommittee

called European Imaging Biomarkers Alliance (EIBALL),

aimed at coordinating all the ESR activities related to

image biomarkers. EIBALL recently provided recommen-

dations and examples of biomarkers validated and used in

clinical practice [16]. Finally, the Image Biomarker

Standardization Initiative (IBSI) is an independent inter-

national collaboration dedicated to standardising the

extraction of image biomarkers from images to perform

quantitative image analysis (radiomics) [17].

Link between metadata domains

As imaging biomarkers express biological phenomena,

they can be considered the imaging phenotypes of such

processes, and therefore it is reasonable to search for a

link/correlation between imaging and non-imaging meta-

data. The rationale of this link has distant origins in what

is defined as radiological-pathological correlation, where

the histopathological type of a tissue or a biological

process has a counterpart in the visual radiological semei-

otics of the radiologist. Anyway, this is a phenotype-

phenotype correlation. Modern imaging is evolving from

visual (subjective image-based) interpretation to quantita-

tive interpretation, based on quantitative imaging bio-

markers that express biological, pathological processes

and the response of pathology to treatment. In this trans-

formation, the quantitative biomarkers of the images be-

come metadata that can be correlated with the metadata

of other “omics” sciences, such as genomics, proteomics,

etc., and are therefore at the basis of the so-called

genotype-phenotype correlation [18]. As an extension to

this, such diverse metadata and associated data might be

key to informing computational simulation models, as is

the case of the PRIMAGE project (see below). Given the

importance of this link, in 2016 the ESR set up a specific

DICOM-Minimum Information About BIobank data

Sharing (DICOM-MIABIS) working group with the goal

of linking non-imaging to imaging data [19]. Of note, im-

aging biomarkers can be simple biomarkers, such as lesion

diameter, or more complicated biomarkers, such as the

grey level co-occurrence matrix (GLCM), which is one of

the most commonly used texture features in radiomics.

However, these biomarkers not only express biological

properties, but are also influenced by the technical set-

tings, such as scanning protocols, this being the main rea-

son underlying the necessity of data harmonisation.

Currently available metadata models

DICOM extensions to the clinical domains

Many working groups have been established by the

DICOM Standard Committee to develop standards for a

particular modality, clinical domain, or technical area.

To date, the DICOM standard has set up 34 working

groups, which include the radiology modalities and other

non-radiological domains as imaging in dentistry,

dermatology, pathology. For example, the dermatology

working group aims to develop supplements to the

DICOM standard for dermoscopy, total body photog-

raphy, and reflectance confocal microscopy imaging

[20–22].
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Semantic DICOM

Another model that focuses on providing a metadata

model on top of the DICOM images is the Semantic

DICOM (SEDI) [23]. The objective of SEDI is “to support

the real-time translation of semantic queries into DICOM

queries” while targeting radiotherapy PACS. In this direc-

tion, data using the SEDI ontology are added to the

DICOM file as metadata. Those metadata can then be

stored and searched effectively using semantic web tech-

nologies. SEDI enables search through a structured query

language, such as the SPARQL Protocol and Resource De-

scription Framework (RDF) Query Language, over data

available in DICOM files. The ontology offers a rich set of

terms, but it has not been updated since 2015 [24].

MIABIS

The Minimum Information About BIobank data Sharing

(MIABIS) was initiated in 2012 [25], as a recommendation

about what information should be stored in biobanks to

facilitate the exchange of sample information and data.

The MIABIS Core version 2.0 was developed in 2016 [26]

and is currently used in several biobank registers and cata-

logs. In the MIABIS Core 2.0, three main entities are iden-

tified, namely “Biobank,” “Sample Collection,” and

“Study,” and a minimum number of attributes for each en-

tity is reported. In 2020, three new modules called “Sam-

ple,” “Sample donor,” and “Event” were added to the

MIABIS Core to describe samples and sample donors at

an individual level [27]. The “Event” module, in particular,

seems relevant also for imaging data, as it allows reporting

of events such as a disease diagnosis or death. What is

missing so far in MIABIS is the link/extension to DICOM

imaging data and associated metadata. To this aim, a

DICOM-MIABIS linking model has been proposed in a

recent paper, as an extension of the MIABIS core, mostly

with DICOM metadata [28]. The proposed conceptual

model is based on the three-module original MIABIS

Core 2.0, and suggests replacing the “Sample Collection”

module with a more general one called “Sample”. This

“Sample” module is linked on the one side to the rest of

the MIABIS Core for tissue metadata, and on the other

side to newly added modules, specific for images. These

modules not only report a minimal set of DICOM meta-

data, describing heterogeneous information across data-

sets, such as imaging protocols, modalities, sequences,

scanners, and labels, but also additional information re-

garding the image processing and analysis for radiomic

feature extraction.

Observational Medical Outcomes Partnership (OMOP)

Common Data Model (CDM)

The OMOP CDM allows for the systematic analysis of

different and heterogeneous observational databases. Its

approach is to transform data contained within the

source databases into a common format (data model)

with a common representation (terminologies, vocabu-

laries, coding schemes), and then perform systematic

analyses using standard methods based on the common

format [29]. Just recently, an Oncology Extension [30]

and a Radiology Extension [31] for the OMOP CDM

have been proposed. The work is still ongoing, but the

extensions will allow to represent and standardise con-

cepts and procedures that are specific to the fields of on-

cology and radiology.

HL7 FHIR and OHDSI OMOP alliance

Health Level Seven International (HL7) and Observa-

tional Health Data Sciences and Informatics (OHDSI)

have recently announced a collaboration to provide a

single Common Data Model for Sharing Information in

Clinical Care and Observational Research, which will ad-

dress the sharing and tracking of data in the healthcare

and research industries [32]. This will be done by align-

ing and integrating HL7 Fast Healthcare Interoperability

Resources (FHIR) and OHDSI’s OMOP CDM, allowing

clinicians as well as researchers to pull data from mul-

tiple sources and compile it in the same structure with-

out degradation of the information, benefiting from the

analytics and predictive modeling capabilities of OMOP

and the information retrieving from FHIR due to its

patient-level processes orientation. Extensive work has

been done on this issue prior to the agreement, generat-

ing projects with a certain maturity on which the first

designs of the collaboration could be based. One of the

most relevant examples of this work is the OMOP on

FHIR initiative [33]. OMOP on FHIR is an open-source

platform that provides bidirectional mapping processes

between OMOP CDM and FHIR. It also allows turning

any data analytics process into a service (“analytics-as-a-

service”) for delivery at the point of care. It acts as an

FHIR wrapper for an OMOP database using a data con-

verter (backbone) between OMOP and FHIR.

ICGC-ARGO

The International Cancer Genome Consortium-

Accelerate Research in Genomic Oncology ICG-ARGO

Data Dictionary expresses the details of a cancer-focused

data model and describes the attributes and permissible

values for all of the fields within the model [34]. It is

used to analyse data in the ICGC platform, which con-

tains specimens from 100,000 cancer patients with high-

quality clinical data. In addition, several funded projects

are using the model, including EuCanCan, an Horizon

2020 project in cancer research in Canada and Europe.

Besides the aforementioned data models, whose main

features are summarised in Table 1, it is worth mention-

ing the possibility of adopting a model based on common

data elements (CDEs). A CDE describes a specific data
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item, its specific attributes, and all their possible values

according to a vocabulary that is both human and

machine-readable. The use of CDEs has already been

adopted in several medical fields, including radiology,

where a CDE model has been defined based on existing

international standards [35]. In addition, several ontol-

ogies have also been developed specifically for capturing

medical imaging metadata, and, although they have not

been used by the projects presented in the sequel, we

mention them for reasons of completeness. First, the

Radiomics Ontology [36] models the radiomics feature

domain, includes computational details, and has tools

that generate template tables for standardised reporting

and scripts/tools for publishing the modeled data as

linked open data. Second, the Radiation Oncology Ontol-

ogy [37] aims to cover the radiation oncology domain,

including cancer diseases, cancer-staging systems, and

oncology treatments, with a strong focus on reusing

existing ontologies. Third, the Ontology-guided radio-

mics analysis workflow [38] is an open-source software

package that deploys a standard lexicon to uniquely de-

scribe radiomics features in common usage, and it pro-

vides methods to publish radiomic features as a

semantically interoperable data graph object complying

with Findability, Accessibility, Interoperability, and Re-

use (FAIR) data principles, using metalabels attached

from the Radiation Oncology Ontology and the IBSI

compliant Radiomics Ontology. Fourth, the Dependency

Layered Ontology for Radiation Oncology [39] was built

in an effort to capture the knowledge in radiation oncol-

ogy, including the dependency semantics among the

identified terms. The ontology reuses other standard on-

tologies and terminologies, such as the International

Classification of Disease 10 from the World Health

Organization [40], the National Cancer Institute The-

saurus [41], the Systematized Nomenclature of Medicine

Clinical Terms (SNOMED-CT) [42], and MOSAIQ on-

cology information system [43], and is exploited as input

for building Bayesian networks for the domain of

radiation oncology. Finally, Radiation Oncology Struc-

tures Ontology [44] describes commonly contoured (ana-

tomical and treatment planning) structures for radiation

treatment planning. It includes more than 22,000 struc-

ture labels (created over a 16-year period in a radiation

department) which were extracted, classified and cate-

gorised to produce this ontology. This ontology was cre-

ated to ease and standardise the integration of radiation

oncology data into clinical data warehouses for multi-

centric studies. As stated in Ref. [44], the ontology is

aligned to external ontologies like the Model of Anat-

omy [45] and Unified Medical Language System

/SNOMED-CT [42].

Problems with existing metadata models and approaches

Although in the previous section we presented multiple

approaches and metadata models developed for medical

imaging, still many problems are left unsolved. In this sec-

tion, we elaborate on the problems with existing metadata

models and the corresponding approaches focusing on

three key dimensions, i.e., the diversity of the available

data to be modeled, the diversity of existing models, and

the diversity of homogenisation efforts that further com-

plicate the selection of the appropriate workflow.

Diversity of data The data generated by different disci-

plines (such as genomic, metabolomic, proteomic, radio-

mics) have differences in format and structure that make

correlation difficult. The problem of correlation between

data of different nature is certainly in the domain of sta-

tistics, which provides various tools and solutions. At

the same time, the large amount of data available from

the different omics sciences requires a high computa-

tional capacity for their efficient correlation [46]. It is

therefore necessary to group the data by creating meta-

data models that can facilitate correlation. An example

to better understand the topic is the correlation between

gene mutations and a tumour progression index, as

could be an imaging biomarker [47].

Table 1 Summary of the most relevant metadata models currently available, the type of metadata they represent, and the scope of
the model

Model Type of metadata Scope

DICOM extensions Clinical variables Extend DICOM metadata to other domains

SEDI DICOM tags Enable semantic search over DICOM tags

MIABIS Biological samples and tissues Standard for traditional biobanks and Biobanking and Biomolecular
Resources Research Infrastructure–European Research Infrastructure Consortium Directory

OMOP CDM Clinical variables Standardise observational medical outcomes

FHIR Clinical variables Standard for health care data exchange

OMOP on FHIR Clinical variables Bidirectional mapping

ICGC-ARGO Cancer-focused clinical variables Standardise variables, attributes, and permissive values in the cancer domain

DICOM Digital Imaging and Communications in Medicine, FHIR Fast Healthcare Interoperability Resources, ICGC-ARGO International Cancer Genome Consortium-

Accelerating Research in Genomic Oncology, MIABIS Minimum Information About BIobank data Sharing, OMOP CDM Observational Medical Outcomes Partnership

Common Data Model, SEDI Semantic DICOM
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Diversity of ontologies

Besides the diversity of data, there is also a wide variety in

the models built for homogenising and storing these data,

leading to ontology “silos.” As such, ontologies and data

models are usually developed for describing limited sets of

data and cannot scale when other types of data need to be

stored using the same model. More than this, various

groups are performing extensions to ontologies that are

not synchronised and compatible with each other, thus

leading to several variations of the same ontology, which

complicates the ontology selection and its reuse. Cur-

rently, no single ontology is sufficient, and usually, mul-

tiple ones have to be combined to fully perform project-

specific data integration and homogenisation, as usually

the needs of each project differ from the exact ones that

the existing models try to cover.

Data harmonisation

The variation of multicentre data is caused by the het-

erogeneity of acquisition equipment, which may be seen

in biomedical signals, computed tomography, MR im-

aging, and pathology images. Vendor-specific detector

systems, coil sensitivity, positional and physiologic fluc-

tuations during acquisition, and magnetic field variations

in MR imaging, among other factors, all contribute to

this variability. Some radiomics properties are non-

reproducible even when utilising a fixed acquisition

methodology for multiple scanner manufacturers, ac-

cording to studies. Berenguer et al. [48], for example, in-

vestigated the repeatability of radiomics features on five

different scanners using the same acquisition method-

ology and found significant variances, with 16% to 85%

of radiomics features being repeatable. As such, it is ob-

vious that in large-scale digital healthcare research, re-

moving the bias and variation of multicentre data has

always been a challenge, requiring the capacity to com-

bine clinical characteristics retrieved from data gathered

by diverse scanners and protocols, to increase stability

and robustness. Data harmonisation, in particular com-

putational data harmonisation, provides an effective so-

lution for analysing multicentre and multiscanner

acquired medical imaging data along with metadata. By

changing data formats, terminologies, and measurement

units, data harmonisation refers to merging data from

several sources into a single coherent data set. It is

mostly used to resolve difficulties produced by non-

identical annotations or records between operators or

imaging systems, when downstream clinical tasks neces-

sitate the usage of a consistent methodology. Besides,

the harmonisation of data collected from data providers

participating in the research and existing data from open

databases is a necessary step for their use in data-driven

research. The harmonisation process includes the

evaluation and management of the compatibility of data

acquired by various sites and heterogeneous sources

[49].

In this scope, a number of existing harmonisation

methods exist [50]. As far as DICOM metadata, curation

workflows have been defined for all DICOM-defined ob-

jects. The Perl Open Source DICOM Archive (POSDA)

incorporates DICOM validation rules and guides de-

identification processes, including validation and correc-

tion of linkages, inconsistencies at DICOM series/study/

patient level, encoding errors, and more [51]. Other

tools are mentioned in [52]. With respect to automating

data analysis, an extract-transform-load (ETL) procedure

has been proposed by Godinho et al. [53], as the Rule-

Based Data Cleansing, based on the Dicoogle [54], an

open source PACS archive. However, a more generic

and standard-based solution, not bound to a PACS sys-

tem or a legacy system, would be preferable. When it

comes to calculated features, harmonisation methods

refer to mathematical transformations applied to the fea-

tures, to account for the different vendors’ raw data, as

in the ComBat system [55].

Concerning imaging biomarkers, the issue of standard-

isation relates to both simple and more complicated bio-

markers pertaining to radiomics. Imaging biomarkers

refer to features that are relevant to a patient’s diagnosis

or prognosis. These biomarkers are usually extracted

through calculating image intensities or distributions,

given by machine learning and mathematical modeling

algorithms. For instance, the GLCM can be used as an

independent prognostic factor in patients with surgically

treated rectal cancer [56]. However, while the IBSI initia-

tive standardises which data to extract, technical and hu-

man segmentation parameters may still induce

variability in such outputs. For example, images acquired

with different acquisition protocols alter the absolute

values of biomarkers without reflecting any actual bio-

logical variance. This can lead to the weak reproducibil-

ity of quantitative biomarkers and limit the time-series

studies based on multi-source datasets. Data harmonisa-

tion is a solution that can be adapted to both images

and image features to eliminate the non-biological

variances.

FAIR principles

Although FAIR principles do not necessarily require

harmonisation, current practices for health data man-

agement, with respect to data reuse for research and

new knowledge extraction, suggest data FAIRification

as part of the integration and harmonisation of multi-

site health data [57]. FAIR principles provide guide-

lines to improve the Findability, Accessibility,

Interoperability and Reuse of digital assets. Findability

is related to making the data easy to find for both
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computers and humans, by providing appropriate,

rich, clear, and unambiguous metadata for automatic

discovery. Accessibility has to do with the ways that

data can be accessed using a standardised, open, free

and universally implementable communication proto-

col. Interoperability on the other hand has to do with

using an appropriate language for knowledge repre-

sentation, the exploitation of standard vocabularies

enabling the data to interoperate with applications, or

workflows for analysis, storage, and processing. Reuse

has to do with optimising the reuse of data. To

achieve this, metadata and data should be well-

described so that they can be replicated and/or com-

bined in different settings. This procedure includes as

crucial steps the semantic definition, the definition of

access rights coupled with data de-identification and

pseudonymisation, the definition of metadata, the data

curation and validation, the data versioning, indexing,

and linking. These mainly refer to the raw medical

data (imaging data accompanied by non-imaging data:

clinical status, laboratory exams, and therapeutic pro-

cedures/outcomes), whose secondary use is crucial in

research, as well as to derived data, i.e., features pro-

duced from raw data with some computational pro-

cedure. Of note, regarding data-driven AI research,

the role of metadata is crucial in supporting not only

the generation of models, but also AI trustworthiness,

analysis of bias, etc.

Legal framework

Legal, ethical, privacy, and security requirements emerging

from, among others, the charter of Fundamental Rights of

the European Union [58], the Clinical Trials Regulation

[59], the General Data Protection Regulation [60], the

World Medical Association Declaration of Helsinki [61],

are essential prerequisites when harmonising sensitive data

for developing AI for disease management and research

purposes. Health data are obviously sensitive data and as

such each integration/harmonisation approach should be

done on the basis of the following principles: data

minimization (including anonymisation and pseudonymi-

sation) and accuracy; informed consent, lawfulness and

further processing of personal data; transparency and com-

munication objectives; privacy data protection by design

and default; continuous risk assessment; data security (in-

tegrity and confidentiality) and storage limitation; patient’s

rights and data subject’s rights; anonymised collection of

essential personal data; accountability for data processing;

data ownership and intellectual property rights.

All these principles should be met by any harmonisa-

tion approach, which in many cases can make the whole

process more difficult, however always ensuring that the

legal and ethical framework is respected.

The approach of European Union projects focusing on

health imaging

In this section we report on the strategies and the meta-

data models adopted by the five projects of the Artificial

Intelligence In Health Imaging (AI4HI) network, trying

to identify common elements and workflows. The main

information about these projects is summarised in Table

2. In addition, Table 3 presents the key points on the

metadata management of the AI4HI projects.

PRIMAGE: PRedictive In-silico Multiscale Analytics to

support cancer personalized diaGnosis and prognosis,

Empowered by imaging biomarkers

PRIMAGE is a Horizon 2020 funded project (grant

agreement number 826494) aimed at building an im-

aging biobank of two types of paediatric tumours:

Table 2 Summary of the AI4HI projects, listing their goals, use-cases, types of metadata identified so far

Project Goal Considered use cases Types of metadata Adopted models

PRIMAGE To build an imaging biobank for the
training and validation of machine
learning and multiscale simulation
algorithms

Paediatric neuroblastoma and
diffuse intrinsic pontine glioma

DICOM tags
Image analysis metadata
(registration, denoising, radiomics)
Clinical variables

DICOM-MIABIS
OMOP CDM

EuCanImage To build a European cancer imaging
platform for enhanced AI in oncology

Eight use cases regarding liver,
breast, and colorectal cancer

Imaging data
Clinical variables

DICOM-MIABIS
ICGC-ARGO

INCISIVE To improve cancer diagnosis and
prediction with AI and big data

Lung, breast, colorectal, and
prostate cancer

Imaging data
Clinical and biological data

FHIR

CHAIMELEON To develop a structured repository
of health images and related clinical
and molecular data

Lung, breast, prostate, and
colorectal cancer

Imaging data
Clinical variables

DICOM-MIABIS
OMOP CDM

ProCancer-I To develop an AI Platform integrating
imaging data and models

Prostate cancer Imaging data
Clinical variables

DICOM-Radiation
therapy
OMOP CDM with
Oncology Extension

AI Artificial intelligence, AI4HI Artificial Intelligence for Health Imaging, DICOM Digital Imaging and Communications in Medicine, FHIR Fast Healthcare

Interoperability Resources, ICGC-ARGO International Cancer Genome Consortium-Accelerating Research in Genomic Oncology, MIABIS Minimum Information About

BIobank data Sharing, OMOP CDM Observational Medical Outcomes Partnership Common Data Model, SEDI Semantic DICOM
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neuroblastoma and diffuse intrinsic pontine glioma [3,

4]. The project is constructed as an observational in

silico study involving high-quality anonymised datasets

(imaging, clinical, molecular, and genetics) for the train-

ing and validation of machine learning and multiscale

simulation algorithms.

In PRIMAGE data repositories, for each patient im-

aging data is linked to their available pseudonymised

biological, pathological, and genetics data. All metadata

of the PRIMAGE platform are grouped into a so-called

“e-form”, which represents the multiomics data collec-

tion interface. The fully web-based PRIMAGE platform

allows the centralised management of medical images

and their analysis through the extraction of imaging bio-

markers and the development of multi-scale models.

Therefore, we can identify three categories of metadata

that are relevant for this platform: image metadata, clin-

ical variables, and metadata relative to the image radio-

mics analysis. The DICOM-MIABIS model described

earlier was developed within the PRIMAGE framework

to facilitate linkage and harmonisation of these three

types of data inside the platform, as well as to allow the

link of the PRIMAGE metadata with other types of bior-

epositories. The choice of unifying the two standards,

DICOM for imaging metadata and MIABIS for bio-

logical samples and tissue, was mainly led by the ESR

long-term goal of creating a network of imaging bio-

banks integrated with the already-existing biobanking

network [19]. In addition, work is ongoing to map the

clinical variables collected in the platform for the two

types of paediatric tumours to the OMOP CDM to en-

sure their harmonisation.

An interesting research development in PRIMAGE is

represented by the metadata model that captures the

biomechanical/signalling behaviour of tumours. A multi-

scale patient-specific model has been proposed to pre-

dict the spatiotemporal evolution of the tumour after

simulating the individualised clinical treatment. The

multiscale approach has allowed the integration of vari-

ous length scales from molecules to whole tumours on

different time scales. Starting from the image geometry

of the tumour, a macroscopic Finite Element model re-

producing the exact tumour geometry was created. In

addition, image biomarkers from the patient (DCE-MR

imaging maps) are also being integrated into the same

personalised Finite Element model, taking into account

heterogeneous spatial distribution of cellularity and vas-

cularisation. Both tumours, neuroblastoma, and diffuse

intrinsic pontine glioma are characterised by high het-

erogeneity. In particular, the ANSYS commercial Finite

Element software is used. This macroscopic biomechan-

ics finite element-based model allows the evaluation of

the non-uniform growth and the residual stresses char-

acteristics of tumours [62]. This macroscopic approach

is fed by a multicellular model that regulates the spatio-

temporal evolution of the tumour. In PRIMAGE, the

critical behaviours of cells within the tumour are cap-

tured using a hybrid model, where individual cells are

represented by equivalent virtual entities known as “soft-

ware agents.” The latter are embedded in virtual lattice

Table 3 Metadata management approaches of the AI4HI projects

Project Metadata
collection

Metadata types Models used Unique characteristics

PRIMAGE Structured
e-forms

Imaging, clinical,
image radiomic
analysis

DICOM for imaging metadata
MIABIS for biological samples and
tissue
OMOP-CDM for clinical

Integration of the DICOM and MIABIS standards, and metadata
model that captures the biomechanical/signalling behaviour of
tumours

EuCanImage Structured
e-forms

Imaging, clinical DICOM-MIABIS for imaging data
Extension of ICGC-ARGO for clinical
variables

Link between imaging and non-imaging data

INCISIVE Structured
e-forms

Clinical,
biological,
imaging

Multiple terminologies for clinical
data (e.g., SNOMED-CT, ICD10, ATC
classification)
FHIR for communication

Data Integration Quality Check Tool employed to identify
whether data follow the harmonisation requirements defined

CHAIMELEON Structured
e-forms

Imaging, clinical DICOM for imaging metadata
MIABIS for biological samples and
tissue
OMOP-CDM for clinical

A multimodal analytical data engine will facilitate interpretation,
extraction, data harmonisation, and exploitation of the stored
information. The CHAIMELEON repository will ensure the
usability and performance of the repository as a tool fostering
AI experimentation

ProCancer-I Data
upload
tool (e-
forms)

Imaging, clinical DICOM-Radiation therapy for
imaging data
OMOP-CDM for clinical data

Provides an extension to OMOP-CDM going beyond radiology/
oncology extensions and introduces another model (AI pass-
port) for modeling analysis workflows and AI development

AI Artificial intelligence, AI4HI Artificial Intelligence for Health Imaging, ATC Anatomical Therapeutic Chemical Classification (World Health Organization), DICOM

Digital Imaging and Communications in Medicine, FHIR Fast Healthcare Interoperability Resources, ICD 10 International Classification of Diseases 10, ICGC-ARGO

International Cancer Genome Consortium-Accelerating Research in Genomic Oncology, MIABIS Minimum Information About BIobank data Sharing, OMOP CDM

Observational Medical Outcomes Partnership Common Data Model, SEDI Semantic DICOM, SNOMED-CT Systematized Nomenclature of Medicine Clinical Terms
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(a “continuous automaton”) which represents the distri-

bution of non-cellular material in the microenvironment

and interacts physically via a cell-centred method of dis-

placement resulting from repulsive forces, as described

[63]. Cell agents, which represent different cell types are

iteratively updated and permitted to divide, differentiate,

or die according to rules relating to their current in-

ternal state (representing the mutation profile/activa-

tion/expression level of a subset of key proteins

including MYCN, Alk, TERT), and signals from the local

microenvironment (local cell density, oxygen level, pres-

ence of particular chemotherapeutic drugs). The imple-

mentation of this multiscale strategy is computationally

intensive and is currently intractable for whole-tumour

scale simulations. For this reason, a particularisation

approach has been adopted, whereas 20 elements of the

organ scale simulation have been selected for cellular

scale modeling at each time step. Cellular scale models

are then initiated and executed for a period representing

14 days using the parallelised FLAMEGPU framework,

which permits the simulation of millions of cells in

tractable timescales [64, 65].

EuCanImage: towards a European cancer imaging platform

for enhanced AI in oncology

EuCanImage is a Horizon 2020 project (grant agreement

number 952103) that aims to build a federated large-

scale European cancer imaging platform, with capabil-

ities that will allow the development of multi-scale AI

solutions that integrate clinical predictors into dense,

patient-specific cancer fingerprints [5]. From a clinical

perspective, EuCanImage is divided into eight use cases,

tackling liver, breast, and colorectal cancer types. For

each individual in each use case, there are a series of MR

images of the tumour and around 80 non-imaging pa-

rameters ranging from age at diagnosis and gender to in-

formation about treatment, comorbidities, etc. As many

hospitals and clinical centres participate in this project,

the source and format of these data are highly

heterogeneous.

To deal with heterogeneous sources of imaging data,

the data model for imaging data will be based on the in-

tegrated DICOM-MIABIS structure described before, be-

cause it features tables and attributes to describe image

metadata that are particularly suited to EuCanImage’s

needs. The ICGC-ARGO dictionary was selected as a basis

for the EuCanImage data model of clinical variables, be-

cause it is used to analyse data in the ICGC platform,

which contains specimens from 100,000 cancer patients

with high-quality clinical data. In addition, several funded

projects are using the model, including EuCanCan [66], an

Horizon 2020 project in cancer research in Canada and

Europe. A dedicated EuCanImage working group, includ-

ing the ICGC model curator, reviewed all data types/

variables individually based on the eight clinical use cases

that are part of the EuCanImage project. The extent to

which the parameters can be mapped onto the ARGO dic-

tionary was assessed, the potential gaps were identified

based on feedback from the clinical partners and clinical

data, and the ARGO schema was extended accordingly to

obtain a comprehensive data model taking into account

heterogeneity between sites. From this qualitative analysis,

descriptive statistics reflecting the proportion of variables

that are already represented in the ARGO dictionary was

derived (Fig. 2). Based on the eight clinical use cases (liver,

colorectal, and breast tumours), the dictionary already has

implemented 64% of the parameters, ranging from 44 to

80% across use cases. The ARGO dictionary is being ex-

tended to account for an additional 9% of the missing pa-

rameters, while other parameters are currently under

discussion.

CHAIMELEON: accelerating the lab to market transition of

AI tools for cancer management

The CHAIMELEON project (grant agreement number

952172) aims to develop a structured repository of

health images and related clinical and molecular data on

the most prevalent cancers in Europe: lung, breast, pros-

tate, and colorectal [6]. The key objectives of CHAIME-

LEON are to establish a European Union-wide

interoperable repository with quality-checked imaging

data as a resource for developing and testing AI tools for

cancer management; to set up a distributed infrastruc-

ture building on existing initiatives; to ensure the sus-

tainability of the repository beyond the project runtime;

and to develop novel data harmonisation technologies

for handling multicentre, multimodal, and multiscanner

data. The project involves the collection of images of

over 40,000 patients but also has the ambition to include

clinical data associated with the images. In order to rep-

resent such data within the repository, the strategy

already tested in the PRIMAGE project, of which many

CHAIMELEON researchers are partners, will be used. A

specific CHAIMELEON work package is dedicated to

the sustainability of the biobank. The work package fore-

sees that the imaging biomarkers, which will be devel-

oped within the biobank, are correctly represented and

encoded to be linked to the non-imaging data.

Data acquired at multiple centres with different scan-

ners (cross-vendor/cross-institution image datasets) will

be used to access a vast amount of health imaging data-

sets. Due to a lack of consistency of source medical im-

ages generated from different equipment vendors,

models, and releases, as well as the lack of an appropri-

ate framework in terms of image acquisition/reconstruc-

tion, the quantitative image features and parameters

values and ranges extracted from images acquired at one
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centre may not be reproducible from images acquired at

another centre.

In the context of secondary use of health imaging data,

the reproducibility of quantitative imaging biomarkers in

radiomics is critical. One of the major aims of CHAIME-

LEON project is to contribute to imaging data

harmonisation. Various harmonisation approaches based

on image preprocessing and postprocessing will be pro-

posed, including a disruptive approach based on the use

of AI models to generate synthetic images adjusted to a

common harmonisation framework, harmonising the

quantitative imaging biomarkers results, and ensuring

that the authenticity and integrity of each synthetic co-

herent image is properly secured.

INCISIVE: a multimodal AI-based toolbox and an interoperable

health imaging repository for the empowerment of imaging

analysis related to the diagnosis, prediction, and follow-up of

cancer

The INCISIVE project [8] is a Horizon 2020 funded pro-

ject (grant agreement number 826494) focusing on im-

proving cancer diagnosis and prediction with AI and big

data. Its aims are to develop, deploy, and validate: (a) an

AI-based toolbox that enhances the accuracy, specificity,

sensitivity, interpretability, and cost-effectiveness of exist-

ing cancer imaging methods; and (b) an interoperable

pan-European federated repository of medical images that

enables secure donation and sharing of data in compliance

with ethical, legal, and privacy requirements. The long-

term vision of INCISIVE is, by increasing accessibility and

enabling experimentation of AI-based solutions, to show-

case its impact, towards their large-scale adoption in can-

cer diagnosis, prediction, treatment, and follow-up.

Four important cancer types are considered (lung,

breast, colorectal, and prostate cancer), and different

challenges are recognised in each cancer type, seeking

leverage via data-driven AI solutions, based on imaging

and other clinical and biological data. Retrospective and

prospective studies are set up in five countries (Cyprus,

Greece, Italy, Serbia, and Spain), to collect and share a

multitude of data towards enabling both the AI toolbox

and the federated repository. These data are divided into

two categories: (a) clinical and biological data; and (b)

imaging data. The first category, provided in structured

text form, includes demographic and medical history

data, histological and blood markers, treatment and

tumour details, as well as the imaging acquisition proto-

col. The second category includes body scans in different

modalities DICOM format and histopathological images

in png or tiff format. These data include distinct time

points during the patients’ treatment: (1) diagnosis; (2)

after first treatment (surgery or therapy); (3) first follow-

up; (4) second follow-up.

To construct a model for storing the non-imaging data

a template per cancer type was formulated along with

the experts, standardising the used fields and adopting

terminologies based on medical standards such as the

International Classification of Diseases 10 [40] and the

Anatomical Therapeutic Chemical (ATC) classification

[67]. This structure, presented in Fig. 3, was the basis for

the formation of the INCISIVE data model. To that end,

the fields of the structured templates were linked to

standardised terminologies using the SNOMED-CT vo-

cabulary. To ensure interoperability, an FHIR-based

model was created for the communication between the

various components of the INCISIVE infrastructure. The

data are classified in 3 levels: (i) demographics, patient’s

personal information, and medical history; (ii) time-

points, including the baseline and follow-ups, and for

each one of them, tumour characteristics resulting from

scan examinations, the progression, and status of the

disease linked with the actual scan examinations; and

(iii) information about histopathology findings, treat-

ment, and blood tests connected to each timepoint.

Fig. 2 Level of EuCanImage variable mapping into the Accelerating Research in Genomic Oncology (ARGO) model based on the clinical use
cases, at the time of assessment (July 2021). TBC To be confirmed
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With regard to the imaging data, the integration proced-

ure included as a first step the analysis of the imaging data

from all the sites. The metadata of all DICOM files were

processed to investigate harmonisation and de-

identification issues and a list with all the attributes for

each data provider was created. Furthermore, the same

procedure was applied in open datasets and compared

with the mock-ups to conclude in an anonymisation

standard. Additional attributes related to the image, such

as field of view and slice thickness was also analysed for

harmonisation purposes. Eventually, the protocol and data

collection procedure for a harmonised data storage was

defined. After the data collection and the images de-

identification step, which is implemented via the CTP

DICOM Anonymizer [68] and a configuration following

the DICOM PS3.15 [69] standard, and before data upload-

ing to the repository, a quality check takes place at the

local level using Data Integration Quality Check Tool [70],

a rule-based engine, implementing domain knowledge,

and aims to identify whether data follow the data

harmonisation requirements defined within the project, as

well as the integrity and consistency of the data.

ProCancer-I: an AI platform integrating imaging data and

models, supporting precision care through prostate cancer

continuum

ProCancer-I (Horizon 2020 grant agreement number

952159) aspires to develop an AI platform integrating

imaging data and models, supporting precision care

through prostate cancer continuum [9]. The ProCAncer-

I project brings together 20 partners, including prostate

cancer centres of reference, world leaders in AI and in-

novative small and medium-sized enterprises, with

recognised expertise in their respective domains, with

the objective to design, develop and sustain a cloud-

based, secure European image infrastructure with tools

and services for data handling. The platform will host

the largest collection of prostate cancer multiparametric

MR imaging, anonymised image data worldwide (>

17,000 cases), based on data donorship, in line with

European Union General Data Protection Regulation.

Exploiting the available data, robust AI models will be

developed, based on novel ensemble learning method-

ologies, leading to vendor-specific and -neutral AI

models for addressing eight prostate cancer clinical

scenarios.

The data that will be collected through the lifetime

of the project are imaging data and clinical data. The

imaging data will be prostate multiparametric MR im-

aging data and histopathologic (whole-slide pathology

images). The clinical data include clinical, prostate

specific antigen, prostate specific antigen density,

Gleason group, the status of resection margins, pres-

ence of extraprostatic invasion, nodal status, post-

prostatectomy prostate specific antigen, nodal status,

Fig. 3 The design of the INCISIVE data model
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follow-up measurements of prostate specific antigen,

toxicity, and quality of life.

Imaging data adopt DICOM-Radiation Therapy and

are accompanied with the relevant metadata for captur-

ing the related information. All imaging metadata are

currently stored in a metadata catalog, developed expli-

citly for this purpose. The metadata catalog adopts the

OMOP-CDM v6.0 model. However, as the model has

limited support for oncological data, the Oncology CDM

Extension of the OMOP-CDM is also used for repre-

senting the prostate cancer data at the levels of granular-

ity and abstraction required by the project. For radiology

exams, although those can be currently registered using

the OMOP-CDM, the model does not enable the storage

of the subsequent curation process. As such, the

ProCancer-I has already introduced a custom radiology

extension and is currently working on it in collaboration

with the OHDSI Medical Imaging Working Group, fo-

cusing on including annotation, segmentation, and cur-

ation data as radiomics features that need to be stored

as well. Terms found in the source data are also mapped

to concepts in the OMOP standard vocabularies to

achieve semantic interoperability, whereas in the case

that such a mapping cannot be made, non-standard con-

cepts are introduced by the ProCancer-I project.

Conclusions and future directions
Developing high-quality AI models for health imaging

requires access to large amounts of imaging data along

with their metadata. However, those datasets might have

been produced by different vendors and workflows and

use different terminologies and data models to be repre-

sented. Many different common data models, ontologies,

and terminologies have been developed in order to en-

able homogeneous representation of the available data.

However, despite the plethora of models, typically the

specific requirements set by each individual project ne-

cessitate the use of multiple models and terminologies in

order to appropriately describe the available data. And

even that is usually not enough, as extensions are also

often required. Recent projects participating in the

AI4HI network adopt mostly DICOM-MIABIS struc-

tures, the OMOP-CDM along with its extensions, and

ICGC-ARGO for modeling imaging and clinical data

along with relevant clinical terminologies.

Experiences from all projects should guide future de-

velopments in the aforementioned models. For example,

already the projects adopting OMOP-CDM joined forces

with the Radiology OHDSI working group in order to

promote extensions that cover not only the basic radi-

ology information, but also information required for

tracking the various curation steps, and for AI subse-

quent development. The authors believe that standard-

isation is the road to go. However, this is a long and

time-consuming process. On the other hand, it is com-

mon that different groups might have different interests,

and as such modular, well-defined, and properly de-

scribed standards are essential so that the appropriate

modules can be selected by the appropriate group ac-

cording to the specific needs. The adoption of common

such standards will enable the easier integration and

harmonisation of the collected datasets.

Direct application of one data harmonisation method

from one project to another may not be straightforward.

This is because different data resources (e.g., different

scanning modalities) and different clinical questions may

require specialised design of the data harmonisation. For

example, data harmonisation of tabular data could be

different from that of imaging data. To address this

issue, transfer learning could be used to enhance the ro-

bustness of data harmonisation models by holding a

priori knowledge on the way data can vary, and the suc-

cessful application in-between projects may also be de-

termined by extra training samples in a different project

to reduce the uncertainty with respect to the variability

of data that models can cope with. However, there is

growing evidence that integrating data harmonisation

with AI methods allows for robust and accurate predic-

tions on multicentre datasets.

Effectively integrating all these datasets beyond indi-

vidual project boundaries by specifying a common data

model will facilitate the establishment of a common data

model for oncology, paving the way for a patient-centric,

federated, multi-source, and interoperable data-sharing

ecosystem, where healthcare providers, clinical experts,

citizens, and researchers contribute, access, and reuse

multimodal health data, thereby making a significant

contribution to the creation of the European Health

Data Space.

However, in that direction, several obstacles should be

overcome. At individual project level, the necessary

FAIR services should be implemented and be available,

enabling regulated, federated access to the data available

in each own project infrastructure. The various data

sources might use different models for storing data and

the corresponding metadata, however exposing a com-

mon interface on top for data/metadata access will fur-

ther promote and ease the integration of the available

data. A problem is that most of the projects develop

their FAIR services towards the end of the project, when

the whole infrastructure is ready, as usually the focus is

on the AI tools that each project is delivering and FAIRi-

fication is only a minor side project. However, this usu-

ally has as a result that no proper time is left for

integration with external projects and for promoting

such activities. Incorporating FAIR-by-design principles

in the first stages of the infrastructure development and

producing early in project lifetime relevant services,

Kondylakis et al. European Radiology Experimental            (2022) 6:29 Page 12 of 15



could boost cooperation opportunities among different

projects.

Finally, to ensure a smooth translation from basic sci-

ence AI research into the clinical arena, explainable AI,

XAI, provides a ploy that tries to give rationale, trans-

parency, and traceability of frequently black-box AI algo-

rithms, as well as testability of causal assumptions. In

biomedical signal and image processing, especially appli-

cations in digital healthcare, determining causation is es-

pecially important to justify why a decision is taken and

why one intervention or treatment option is preferred

over others. Explainable AI is a step toward realising the

FATE (Fairness, Accountability, Transparency, and Eth-

ics) and FAIR (Findable, Accessible, Interoperable, Re-

usable) principles.
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