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Abstract. Gaussian process (GP) methods have been widely studied
recently, especially for large-scale systems with big data and even more
extreme cases when data is sparse. Key advantages of these methods
consist in: 1) the ability to provide inherent ways to assess the impact
of uncertainties (especially in the data, and environment) on the solu-
tions, 2) have efficient factorisation based implementations and 3) can
be implemented easily in distributed manners and hence provide scalable
solutions. This paper reviews the recently developed key factorised GP
methods such as the hierarchical off-diagonal low-rank approximation
methods and GP with Kronecker structures. An example illustrates the
performance of these methods with respect to accuracy and computa-
tional complexity.

Keywords: Gaussian process, factorisation, covariance matrix, hierarchical
off-diagonal matrix, low-rank approximation

1 Introduction

Sensors provide huge amounts of data that need autonomous processing and of-
ten in real-time. Uncertainty quantification is also necessary for decision-making
in autonomous systems. Probabilistic machine learning methods can fill this
gap, especially with their data-driven nature and learning capabilities. They can
provide a framework for modelling uncertainty that facilitates robust predic-
tions over different changes. Hence, this paper focuses on recent advances in
machine learning methods, namely Gaussian Process (GP) regression [1, 2]. GP
is a stochastic process which defines a distribution over possible functions that fit
a set of points. This method often produces a fine and precise trade-off between
fitting and smoothing the data. However, like most machine learning methods,
big data can pose challenges to GP methods since it contains much information.
Several scalable GP prediction methods have been developed to improve scala-
bility without compromising prediction quality. This paper will review the latest
developments in the global GP approximation methods, which approximate the
whole probability density function.

Generally, for the global GP approximation, there are two strategies to ap-
proximate the kernel matrix with size n × n through global distillation. The
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first strategy sets a subset of training data or m (m ≪ n) inducing points to
construct a low-rank approximation to the GP covariance matrix with a smaller
kernel matrix in size m ×m [3, 4]. The capacity of these methods relies on the
selection of the inducing point, which requires extra optimisation. Instead of se-
lecting the inducing points, the other strategy uses the low-rank approximation
methods, which are based on the spectrum of the covariance matrix to remove
the uncorrelated entries in covariance matrix [5, 6]. Instead of the cube com-
putation cost, most global approximation GP algorithms scale linearly in the
training set size. They can offer a close result with the full GP(standard GP
without any approximation or factorisation) with enough inducing points [7].
However, the representation of the global patterns (long-term spatial correla-
tions) often excludes local patterns due to their limited global inducing set [1].
Having appealing properties, GPs have been extensively developed, improved
and applied to solve a wide range of artificial intelligence problems.

This paper aims to aid readers in selecting methods appropriate for their
applications and further exploring the literature. We present a thorough review
of popular global approximation methods, including the methodological char-
acteristics, the advantages, the risks and comparisons for better understand-
ing. Specifically, after a short review of GP regression in Section 2, Section
3 reviews the classic inducing point-based approximation methods. Section 4
contains the Kronecker and Toeplitz-based structured approximation and the
structured kernel interpolation (SKI) GP methods. The hierarchical off-diagonal
low-rank (HODLR) matrix-based approximation method, which improves GPs
in terms of scalability and capability, is reviewed in Section 5. Finally, Section 6
shows the simulation results.

2 Gaussian Process Regression Revisited

A Gaussian process (GP) is a collection of random variables, any finite num-
ber of which have a joint Gaussian distribution. Given any finite set of n in-
puts X = {x1, . . . ,xn} and the corresponding set of latent function values
f = {f (x1) , . . . f (xn)}. The relationship between the input data xi and the
observed noisy targets yi are given by [2] as

yi = f(xi) + εi, ε ∼ N
(

0, σ2
)

, (1)

where ε is the zero-mean Gaussian noise and σ2 is the variance of the noise. The
prior distribution over the latent function can be written as

p (f | X) ∼ N
(

f ,K
)

, (2)

where the n× 1 mean vector f is defined by mathematical expectation E[f(X)].
K is a n × n covariance matrix which Kij = k (xi,xj) are based on the kernel
function of GP. The kernel function k controls the smoothness of the GP.

The predictive distribution [3] of the function values f∗ at the test set X∗

can be written as

p (f∗ | X∗,y,X) ∼ N (µ∗,Σ∗) , (3)
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where the mean µ∗ and covariance Σ∗ are calculated respectively as

µ∗ = f̄X∗
+KX∗,X(KX,X + σ2I)−1y, (4)

Σ∗ = KX∗,X∗
−KX∗,X(KX,X + σ2I)−1KX,X∗

, (5)

where the f̄X∗
is the n∗ × 1 mean vector, n∗ represents the number of test data,

and I is the identity matrix. KX∗,X = k(X∗,X) denotes the n∗ × n matrix of
covariances between the GP evaluated at X∗ and X. Also the KX,X is the n×n
covariance matrix evaluated at training inputs X. According to (4) and (5),
the computational bottleneck of GP is the inverse of the covariance matrix. For
this purpose, a standard procedure is to compute the Cholesky decomposition of
KX,X+σ2I, requiring O

(

n3
)

operations and O
(

n2
)

for storage. Afterwards, the

predictive mean and covariance respectively cost O(n) and O
(

n2
)

for a single
test input.

The marginal likelihood as a function of the model hyperparameters θ can
be utilised to learn the hyperparameters. The negative log marginal likelihood
can be written as

log p(y | θ) ∝ −y⊤
(

Kθ + σ2I
)−1

y + log
∣

∣Kθ + σ2I
∣

∣ . (6)

The first term above evaluates the model fit and the second term penalises
the model complexity. By maximising (6), the optimal hyperparameters can be
learned. However, this maximum likelihood estimation (MLE) for parameter-
fitting given noisy observations is a computationally-demanding task since sim-
ilar to the prediction process (4) and (5), the bottleneck of the adaptation of
hyperparameters is the inverse and the determinant of the covariance matrix.

3 Sparse Gaussian Process Approximations

While the GP approach presented above is powerful, it still faces challenges
for large data sets since cubic computing is required. In the last few years,
many sparse approximation approaches have been outputted to overcome this
limitation [1, 4]. For most global approximation methods, first define an extra
data set Z = {z1, z2, . . . , zm} in sizem. The data called inducing points or pseudo
inputs, can be mapped to a set of latent inducing variables fz. These inducing
points are introduced to summarise the dependence of the entire training set
and achieve sparsity of the full kernel matrix KX,X. Based on this, the exact
GP can be realised in two different ways: prior approximation and posterior
approximation.

3.1 Prior Approximation

Due to the consistency (conjugation) of GPs, the prior p (f∗, f) can be recov-
ered by simply marginalizing out fz from the joint GP prior p (f∗, f , fz). Then
a fundamental approximation would be introduced which is used in almost all
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prior sparse approximations. It approximates the joint prior p (f∗, f) by presum-
ing that f∗ and f are conditionally independent given fz, the equation cab be
written as

p (f∗, f) ≃ q (f∗, f) =

∫

q (f∗ | fz) q(f | fz)p(fz)dz, (7)

where p(fz) = N (0,Kz,z) and Kz,z are the covariances between the including
points Z itself. The prediction function f∗ can only connect to f through inducing
points Z. Consequently, there are dependencies between the training and test
cases. In different approaches, there are different additional assumptions between
two approximate inducing conditionals q(f | fz), q (f∗ | fz).

Snelson [8] proposes a new likelihood approximation method to speed up GP
regression called the sparse pseudo input GP (SPGP) method. This model has a
sophisticated likelihood approximation. Based on this SPGP method, the train-
ing conditional can be taken as fully independent data, which leads to the fully
independent training conditional (FITC) approximation method [9]. It removes
all the dependencies between latent variable function values, which means the
values of the latent variable function are conditionally fully independent of given
the inducing points Z. By using a diagonal matrix, the FITC prior based on the
inducing points can be written as

qFITC(f | fz) = N
(

KX,ZK
−1
Z,ZZ, diag [KX,X −QX,X]

)

, (8)

where diag[.] denotes a diagonal matrix and QX,X ≜ KX,ZK
−1
Z,ZKZ,X. The prior

approximations recover the full GP when the size of inducing pointsm = n. How-
ever, this configuration is not the global optimum when maximising log qFITC,
which makes them philosophically troubling. Since the inducing point might be
greedily selected one by one, learning inducing points via optimising (6) may pro-
duce poor predictions. These issues will be addressed by the posterior approx-
imations reviewed below. However, compared to the posterior approximation,
FITC will return better error-bar estimates. This method offers good accuracy
and low computational cost.

3.2 Posterior Approximations

A sparse GP that utilises inducing variables must select the inducing points and
the kernel parameters [10]. Unfortunately, this method has two disadvantages
when searching for hyperparameters and inducing points. Due to the change
in the prior, the continuous optimisation of the maximum likelihood equation
(6) for the location of inducing point z cannot approximate the GP model.
Furthermore, overfitting is possible because the maximum likelihood is highly
parametric in this situation (due to the extra hyperparameters as the locations
of inducing points). When jointly optimising the matrix QX,X, since the prior
has changed, continuous optimisation of maximum likelihood for inducing points
z cannot yield a reliable estimate of the exact GP model.
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Titsias [11] presents a variational free-energy (VFE) method based on set-
ting the variational parameters as inducing inputs rather than training the in-
ducing inputs as new parameters as subset regression GP approaches. Using
the greedy selection rules, the inducing points are chosen by minimising the
Kullback-Leibler divergence between the variational distribution and the exact
posterior distribution over the latent variable function values. It results in the
evidence lower bound:

log p(y) ≥ logN
(

y | 0,KXZK
−1
ZZ

K⊤

XZ
+ σ2I

)

−
1

2σ2
tr (KXX −QXX) . (9)

By including extra variational parameters, a more computationally scalable up-
per bound can be reached [12]. Matthew bridges the gap between the variational
inducing-points framework and the more general KL divergence between stochas-
tic processes and applies a standard variational bound L = Llower +KL(Q∥P).
where Q is a variational GP approximation and P is the true posterior GP.
The sparse variational Gaussian process (SVGP) based on inducing points has
been further enhanced recently. In [13], a new variational inference framework is
proposed. The GP prior is decomposed as the sum of a low-rank approximation
using inducing points and a full-rank residual process. This method reduces the
complexity of SVGP, which still scales cubically with the number of inducing
points. Adam [14] proposes an improvement inference method for 1-dimensional
input space to combine the advantages of both sparse GP approximation and
state-space model representation, which results in a novel representation of in-
ducing features as the state space components. The computational complexity
grows linearly with the number of data and inducing points. Moreover, the vari-
ational parameters that need to be optimised are also reduced. Hensman and
Dutordoir [15, 16] attempt to improve the scalability of SVGP from a different
angle. Instead of reducing the cubic complexity with the number of inducing
points, it generates the inducing variables by projecting the GP onto the Fourier
basis, thus obtaining inducing variables with higher global informativeness on
the predictions and reducing the number of inducing points needed for SVGP.
Furthermore, the diagonal covariance matrices are obtained, which fully bypasses
the need to compute expensive matrix inverses. For choosing the inducing points,
Burt [17] discusses the minimum inducing point number to satisfy the growth
of the data size. Uhrenholt [18] proposes a probabilistic paradigm for balancing
the capacity and complexity of sparse Gaussian processes.

4 Structured Sparse Approximation

The special structure of the covariance matrix can directly accelerate solving the
matrix inversion. It can be achieved through fast matrix-vector multiplication
(MVM). When the covariance matrix has some algebraic structures, such as the
Kronecker structure, the MVMs can provide massive scalability. Here we will
introduce how to use this feature to improve the scalability of the standard GP.
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4.1 Kronecker and Toeplitz Structures

Assume the multi-dimensional input x is on the Cartesian grid namely, x ∈
X1 × · · ·×XD where D is the dimension of the input space. The product kernel
function across grid dimensions can be written as

k (xi,xj) =

D
∏

d=1

k
(

x
(d)
i ,x

(d)
j

)

. (10)

Based on properties of the Kronecker product, the inverse of the covariance
matrix can be efficiently found from K1, . . . ,Kd:

K−1 =
⊗D

d=1
K−1

d . (11)

These properties can be utilised to reduce the computational resources for the
data without noise. The calculation process would be more complex for the data
set with noise. Since

(

K+ σ2I
)

cannot be transferred to Kronecker structure.
Specifically, the covariance matrix K in Kronecker structure can be fast eigende-
composed with low computational cost. For the one-dimensional training input
situation, Toeplitz can be applied, which counteracts Kronecker’s shortcoming.
When the inputs x is on a regularly one-dimensional grid and the covariance ma-
trix K is calculated from the stationary covariance kernel, the covariance matrix
can be written as k (x,x′) = k (x− x′). The Toeplitz matrices have constant di-
agonals: Ki,j = Ki+1,j+1 = k (xi − xj) and can be embedded into the circulant
matrices for the fast MVMs as the Kronecker structure [19]. It can reduce com-
putational complexity to O(n log n) and memory requirements to O(n) through
the exploitation of Toeplitz structure induced in the covariance matrix, for any
stationary kernel.

4.2 Structured Kernel Interpolation Method

The inducing point-based approach combined with a sparse approximation is
popular since it can be applied outside the data set without requiring any knowl-
edge of its structure. However, in a large data set, when the number of inducing

points is m less than O
(

logD n
)

, the predictive accuracy cannot be guaran-

teed [17]. On the other hand, structure exploiting approaches are compelling
because they provide incredible gains in scalability, with essentially no losses in
predictive accuracy. However, this method requires the input data on the grid,
which makes this approach inapplicable.

Wilson [20] outputs a SKI method to solve the limitation where the input
points are not on the girds. This approach allows us to approximate the n ×
m matrix KX,Z by interpolating on the m × m covariance matrix KZ,Z. For
instance, to estimate k (xi, zj) for input point xi and inducing point zj , Then
find two inducing points za and zb which most closely bound xi : za ≤ xi ≤ zb
. The kernel function can be written as

k (xi, zj) = wik (za, zj) + (1− wi)k (zb, zj) , (12)
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where wi denotes the linear interpolation weights and (1− wi) represents the
relative distances from xi to points za and zb. Theoretically, all the interpolation
strategies can be applied in this method, such as bilinear interpolation or cubic
interpolation [20].

After the interpolation, same as the subset of regression, we set KX,Z ≈
WKZ,Z, where W represent a n×m interpolation weights matrix. In this case
the weight matrix W can be extremely sparse. For example if it is a local linear
interpolation, W only contains 2 non-zero entries per row. Substituting this new
expression for KX,Z back to the SoR approximation for KX,X the equation can
be written as KX,X ≈ WKZ,ZW

⊤ where KZ,Z ∈ R
m×m is the kernel matrix

for the set of m points on the dense d-dimensional grid. Plugging this approx-
imation into the GP inference. Then, K−1y can be solved by linear conjugate
gradients, since MVMs only cost O (n). The detailed proof and introduction
are shown in Chapter 5 of Saatchi [9]. Overall, in the Kronecker structure case
this equation only requires O

(

Dm1+1/D
)

(D is the dimension of the input and

D > 1) computations and O
(

n+Dm2/D
)

storage [19], and the Toeplitz re-
quire O(m logm) operations and O(m) storage, where m is the number of grid
data points. However, based on the conjugate gradient method, the SKI method
frame struggles with numerical instabilities in learning kernel hyperparameters
and poor test likelihoods. Flaxman [21] propose a new scalable Kronecker method
for Gaussian processes with non-Gaussian likelihoods. Maddox [22] also raises a
prescription for the conjugate gradient optimises to correct these issues.

5 Hierarchical Matrix-based Approximation

Besides the inducing point-based methods, another GP method based on the
HODLR structure proposed in [6] has shown a very strong potential to solve the
large data. Here we briefly introduce how this structure can be integrated into
GP.

5.1 Structure of the HODLR Matrix

Firstly we will introduce the HODLR matrices [23]. Many mathematicians de-
veloped strategies to rearrange the matrix to handle the big, dense covariance
matrix. The HODLR matrix, as a sparse representation of the matrix, is one of
the appealing structures to solve the covariance matrices. The HODLR matrix
has many versions or variants with different low-rank approximation methods.
However, its main structure remains the same, built via a recursive block parti-
tion [24]. This method aims to do the low-rank approximation to the off-diagonal
blocks and remains the diagonal parts. According to the k-dimensional tree, sort
the data points recursively [25]. Here is an example of a two-level decomposition
in the HODLR matrix. A real symmetric matrix K ∈ R

n×n can be decomposed
into a two-level HODLR matrix:

K =

[

K1 U1V
T
1

V1U
T
1 K2

]

, (13)
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where the K1 and K2 are the n/2j × n/2j diagonal block matrices from the
original matrix K and U(j), V(j) matrices are n/2j × r matrices with r ≪ n. j
is the level of decomposition which are 2 in this example and rank r is depends
on the desired accuracy of the low-rank approximation. A higher rank results in
less precision loss and a higher computational cost. The most significant step in
constructing a HODLR matrix is compressing the off-diagonal blocks into low-
rank small matrices U,V. Moreover, these “tall” and “thin” matrices are the
most time-consuming step in the factorisation of the HODLR method. The most
popular decomposing method is the singular value decomposition (SVD) [26].
However, SVD is a very expensive computation method. For the square matrix
in n×n, the SVD method costs O(n3) since it computes the whole dense matrix.
Although it leads to reliable results, applying this method to accelerate the GP
is meaningless. Recently, in papers [23], more aggressive strategies have been
proposed, such as partially pivoted adaptive cross approximation [27] or some
analytical techniques such as Chebyshev interpolation [28], which can further
reduce computational costs to O(rn). This method allows us to construct the
HODLR matrix in a linear scaling with the size of the training data [29]. Instead
of the block-box inducing point model, the low-rank approximation gives a rea-
sonable approximation based on the spectrum of the covariance matrix. The
flexible choice of the HODLR matrix level and the low-rank approximation’s
precision loss allows the model to be more effective in practical problems.

5.2 Fast Solving Algorithm for Gaussian Process

After constructing the HODLR matrix, there are different strategies to solve the
inverse and determinant by HODLR matrix. The first strategy is the continuous
multiplication method [6, 25]. In the case of a one-level factorization, we can
easily write down the computation. Let the matrix K with the only step in the
decomposition is to factor out the terms K1,K2, giving:

K =

[

K1 0
0 K2

] [

In/2 K−1
1 UVT

K−1
2 VUT In/2

]

. (14)

The needed computational time is proportional to the inverse of the dense block
diagonal matrix to the corresponding rows in the remaining factor. Furthermore,
since the matrix UVT is low-rank, so is K−1

1 UVT . Unfortunately, a one-level
factorization such as this is still quite expensive: it required the direct inversion
of K1 and K2, each of which are n/2 × n/2 matrices. The procedure must be
recursive across log n levels to achieve a nearly optimal algorithm. At first glance,
it may look as though the computation of inverse is still expensive and will scale
as O

(

n3/8
)

. However, if the inverses ofK1,K1 are known andU,V are low-rank
matrices, then the inverse of the full matrix can be computed rapidly using the
Sherman-Morrison-Woodbury formula. By apply this formula to diagonal block
of each level we will have the factorization equation K = KlKl−1 · · ·K1K0,
where the l is the level of the HODLR matrix [6]. Since each term is block
diagonal or a block diagonal low-rank update to the identity matrix, each inverse
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factorization can be computed in O(n log n) time, the total computational to
solve the linear system costs O

(

n log2(n)
)

.

The second method relies on the Cholesky factorisation of the HODLR ma-
trix [30]. Due to low-rank off-diagonal parts, computational costs can be signifi-
cantly reduced. Ballani [31] shows the detailed calculation process for Cholesky
decomposition which only results in O

(

n log2(n)
)

costs. Linear systems Ax = b

with the lower triangular HODLR matrix require additional cost of O(n log(n)).
O(n) to sum the diagonal elements of the determinant. Besides the fast inverse
and determinant, the hyperparameters are learned by maximising the marginal
likelihood. Most optimisation methods, such as gradient estimation, require first
and second-order derivatives. The Cholesky decomposition with such a tractable
structure A = LL⊤ also saves time for the hyperparameters learning [32].

6 Performance Comparison

To verify all these sparse approximate GP methods, we test them based on the
Matlab toolbox GPML and HM-toolbox [33, 25]. Figure 1 gives results from the
sparse approximate GP methods discussed above. A one-dimensional toy exam-
ple with f(x) = 0.02x+sinc(x)+ϵ is used in the comparison where ϵ ∼ N (0, 0.2).
The + symbols represent 100 training points. The top circles represent the initial
locations of 10 inducing points, whereas the bottom triangles denote the opti-
mised locations of inducing points. The dot red curve represents the predicted
mean of the full GP. The red shaded regions visualise the 95% confidence inter-
val of the predictions of a full GP. The blue curves indicate the predicted mean
from the sparse GP algorithms. The black curves represent the 95% confidence
interval for the results from the sparse GP algorithms.

Figure 1 shows that the FITC and VFE methods give results close to the
full GP. However, the FITC method will lead to overfitting due to the greedy
selection of the inducing points. The accuracy of these methods relies on the
number of the inducing points [17]. Figure 1 also shows that the SKI produces
results with some variability due to the interpolation between the insufficient
inducing points. The HCFGP has a result that is very close to the full GP in
most situations because the only part of the approximation is controllable by
the precision loss (rank remained) of the low-rank approximation [6]. The results

Table 1. Computational time of the considered GP methods

Time(s)

Size of data Full GP FITC VFE SKI HCFGP

100 0.018 0.086 0.019 0.126 0.049

1000 0.119 0.099 0.030 0.188 0.124

2500 0.875 0.106 0.042 0.580 0.753

5000 4.976 0.126 0.051 1.424 2.999

8000 17.805 0.319 0.120 3.066 7.556



Chenyi Lyu, Xingchi Liu and Lyudmila Mihaylova

Fig. 1. Estimated state and its confidence intervals

presented in Table 1 are from 100 repeated Monte Carlo runs. Table 1 shows
the computational time of the compared GP methods. For the big data case,
the computation cost of full GP will be cubic growth. FITC and VFE methods
takes the least time, which require a small computation cost with a small number
of inducing points. The SKI and the HODLR with the Cholesky factorisation
Gaussian process (HCFGP) method are slower than other inducing point-based
methods due to the time taken for the interpolation and construction of the
special matrices. The HCFGP takes less time than SKI when the data size is
less than 2500 points.

7 Conclusions

This paper presents recently developed global sparse GP methods, including
the classic inducing point-based, structured approximation and new HODLR-
based methods. Understanding these methods will help solve the practical high-
dimensional big data problems and assess the impact of uncertainties on the
developed solutions. The performance of the considered GP methods is evaluated
over a different number of data and the efficiency of the factorisation based
methods is demonstrated. Factorisation based GP methods can be used in real
time applications.
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Another advantage of the considered sparse approximation GP methods is
that they can still provide trustworthy solutions and assess the impact of uncer-
tainties on the developed solutions.
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