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Abstract. This paper introduces a testbed to study distributed sensing
problems of Unmanned Aerial Vehicles (UAVs) exhibiting swarm intel-
ligence. Several Smart City applications, such as transport and disaster
response, require efficient collection of sensor data by a swarm of in-
telligent and cooperative UAVs. This often proves to be too complex
and costly to study systematically and rigorously without compromis-
ing scale, realism and external validity. With the proposed testbed, this
paper sets a stepping stone to emulate, within small laboratory spaces,
large sensing areas of interest originated from empirical data and sim-
ulation models. Over this sensing map, a swarm of low-cost drones can
fly allowing the study of a large spectrum of problems such as energy
consumption, charging control, navigation and collision avoidance. The
applicability of a decentralized multi-agent collective learning algorithm
(EPOS) for UAV swarm intelligence along with the assessment of power
consumption measurements provide a proof-of-concept and validate the
accuracy of the proposed testbed.

Keywords: distributed sensing, swarm intelligence, optimization, drones,
UAVs, autonomous search, testbed, smart city

1 Introduction

Distributed sensing by swarms of drones becomes transformational for Smart
Cities. From traffic monitoring, to early detection of forest fires, support of res-
cue missions under physical disasters and more effective smart farm operations,
cooperative drones can deliver at high speed and low cost, high quality data
with remarkable resilience to unanticipated environmental and operational con-
ditions [1]. While working with a single high-profile drone is costly and comes
with a limited flight range due to power consumption constraints, multiple low-
cost cooperative drones distributed over the broader sensing area of interest are
a flexible alternative: they can complete a sensing mission in parallel at a shorter
period of time during which they are versatile to (re)charge their battery.

To benefit from this flexibility, drones require coordinated actions with a sig-
nificant level of autonomy and computational intelligence. Recent decentralized



optimization and multi-agent learning algorithms show remarkable scalability
and efficiency (low communication and computational cost) [2–4], while preserv-
ing the privacy and autonomy of software agents. However, designing, prototyp-
ing, deploying, testing, and evaluating distributed sensing solutions exhibiting
swarm intelligence is a highly complex and interdisciplinary research endeavor.
On the one hand, simulation environments reduce the complexity and the num-
ber of influential environmental variables, allowing in this way a more targeted
study of swarm intelligence algorithms. One the other hand, experimenting with
real drones in indoor and even outdoor environments increases realism and ex-
ternal validity [5].

To bridge this gap, this paper introduces a testbed to study swarm intel-
ligence of Unmanned Aerial Vehicles (UAVs) for distributed sensing problems.
The testbed consists of a 2D area of interest (sensing map). For instance, consider
image/video capturing. Such an area can be simply implemented by one large or
several smaller interconnected monitors lying on the floor in an indoor lab envi-
ronment, a projector or another visual medium. These means can project images,
videos and more sophisticated visual content of simulation models (e.g. traffic
flows [6]) to emulate the sensing environment. Low-cost drones can traverse the
map and hover to “scan” points of interest from a certain height. These points
form a grid overlay with each cell representing the origin of the collected data
(see Fig. 2(c)). As such, different cells may have different sensing requirements
encoding in this way a large spectrum of sensing missions and applications. In
this simple and generic context, the proposed testbed allows the study of high
Technology Readiness Level (TRL) solutions for a plethora of problems includ-
ing: charging control of drones, collision avoidance, sensor fusion, autonomous
search and navigation, optimization, learning and swarm intelligence algorithms,
among others.

As a proof-of-concept, a multi-agent collective learning approach [2] is ap-
plied to this testbed to coordinate and optimize in a fully decentralized way
the navigation and sensing of drones. The optimization cost function minimizes
the mismatch between the actual total sensor data collected by drones and the
required sensor data, inspired by a real-world scenario of monitoring cycling
safety in the city of Zurich [7]. To validate the realism and applicability of the
testbed, the actual energy consumption of the executed navigation and sensing
is compared to the estimated energy consumption of the planned navigation and
sensing. This estimation is made with a physical model [8]. Results show a sig-
nificantly low error, demonstrating the capacity of the testbed to move complex
swarm intelligence algorithms for UAVs to real-world.

The contributions of this paper are outlined as follows:

– A generic testbed model to study UAV swarm intelligence for distributed
sensing.

– A first working prototype of the testbed model with a proof-of-concept on
accurate estimates of energy consumption in coordinated navigation and
sensing.



– A new application domain of multi-agent collective learning [2] on UAV
distributed sensing.

– An open dataset [9] collected during experimentation with the testbed. It
is generated as a future reference and benchmark to encourage the further
development of the testbed by the broader community.

– A rigorous evaluation of the prototyped testbed in an indoor lab environment
using real data to demonstrate its applicability and realism.

This paper is organized as follows: Section 2 positions this work in litera-
ture. Section 3 introduces the key elements of the proposed testbed model and
Section 4 illustrates a first instantiation of this model. Section 5 evaluates the
proposed testbed and Section 6 discusses its limitation and future extensions.
Finally, Section 7 concludes this paper.

2 Comparison to Related Work

Distributed sensing exhibiting swarm intelligence has been studied in the context
of Internet of Things for information sharing and intelligent decision-making [10].
It is used to perform system-wide (global) optimization and solve nonlinear com-
plex problems for the purpose of improving resilience, scalability, flexibility, and
privacy (i.e., lower amount but higher quality of data). Swarm intelligence algo-
rithms include particle swarm optimization, flocking, and bio-inspired method.

Swarm intelligence also finds applicability to multi-robot systems to coordi-
nate the actions of large groups of relatively simple robots [11]. Recently, UAV
systems have become more autonomic and intelligent due to complex missions
and dynamic environments. Various swarm intelligence algorithms are applied to
the strategic deployment and task execution of a group of autonomous drones,
e.g., traffic monitoring, detection of forests, mapping of physical disasters and
others [12]. The sensing quality and energy constraints are key factors to assess
swarm intelligence for distributed sensing.

However, existing swarm intelligence approaches for drones [13–15] are chal-
lenging to implement and assess in real-world. Distributed sensing by a swarm
of drones is complex and very expensive to prototype, deploy, test and debug.
Licensing is required to operate large drones outdoors. Often promising algo-
rithms are assessed in simulation environments that lack realism and external
validity.

The proposed testbed overcomes this barrier as it can bring together open
energy-aware swarm intelligence algorithms, indoor UAVs hardware and abstract
sensing maps that can adapt to different application scenarios and context. This
comes in sharp contrast to existing testbed solutions [16,17] that do not address
the energy impact and are limited to an exclusive software-based simulation.

3 Testbed Design

This paper introduces a first prototype of an indoor UAV testbed with the aim
to support inter-disciplinary research on distributed sensing including: energy-



aware distributed learning and optimization algorithms for swarm intelligence,
control and communication problems of different UAVs as well as spatio-temporal
sensing scenarios for different applications of Smart Cities. The proposed testbed
relies on a model, which can be implemented in different lab environments. At
an abstract level, the testbed is modeled by the elements presented in the rest
of this section.

3.1 UAVs

They communicate to interact with each other directly or via proxies. They
run software that implements swarm intelligence for distributed sensing. This
software can be customized and configured to serve different sensing applica-
tions. Each drone can run its swarm intelligence software within the following
continuum [18]: (i) offline/online, remote, centralized computations (server de-
ployment), (ii) offline/online, remote, distributed computations (edge-to-cloud
deployment scenario [19]), (iii) online, locally on drones, distributed computa-
tions.

3.2 Sensing map

It is the area that UAVs sense at multiple resolutions determined by the height
of hovering or flight. At each resolution (height), the map is split into cells,
each defining the sensing area of interest. The higher the height, the larger the
cell and the lower the sensing quality are likely to be, e.g., image recognition,
sound sensitivity, etc. In the context of a sensing mission, each cell has specific
sensing requirements that determine the hovering duration and data acquisition
of UAVs. For instance, areas with high traffic may also have higher sensing
requirements to accurately capture the traffic flows with drones. In an indoor
lab environment, a sensing map can be emulated with one or more monitors or
a projector illustrating images, videos and visual outputs of simulations models,
e.g. a traffic flow simulation with SUMO [6]. In this way, distributed sensing
algorithms can be assessed at low-cost, with ease and safety in a wide range of
what-if scenarios.

3.3 Swarm intelligence

It plans in a coordinated way the navigation and sensing of multiple UAVs such
that the total sensing by the swarm matches well the sensing requirements of
all cells. This matching represents the relative approximation between the total
sensed values per cell and the actual sensing requirements per cell. Error and
correlation metrics such as the root mean squared error, cross-correlation or
residuals of summed squares can estimate this matching [3]. The sensing quality
by the swarm is influenced by several factors such as the number of UAVs and
their energy consumption as well as the resolution and sensing requirements of
the map.



4 Testbed Prototyping

Fig. 1 illustrates an overview of the testbed architecture. The core of the proto-
type is the decentralized multi-agent collective learning method of the Economic

Planning and Optimized Selections (EPOS) [2, 3]. It generates for each agent
a finite number of discrete navigation and sensing options, each with an esti-
mated power consumption: the possible plans and their cost respectively. Plan
generation is performed using the UAVs specifications (weight, propeller and
battery parameters), grid information about the sensing map and several opti-
mization parameters [2]. Then the agents interact iteratively in a bottom-up and
top-down fashion over a tree communication structure to make a selection such
that all choices together add up to maximize the sensing quality (matching).
This is shown earlier to be an NP-hard combinatorial optimization problem [2].
The selected plans contain the X/Y cell coordinates and the sensing (hovering)
duration at each cell. They are executed by the UAVs, which record the bat-
tery consumption, the total sensing time and the sensor data during the sensing
mission.

Fig. 1. An overview of the prototyped testbed architecture.

EPOS is made available as an open-source software [20]. The collected data
are made openly available as a benchmark for the further development of the
testbed by the broader community [9].

4.1 UAVs and sensing scenario

The DJI Tello EDU UAV is used because of its size, weight, and accessibility [21–
23]. This drone can be programmed in Python, Swift or Scratch, and multiple
DJI Tello UAVs can fly for swarm applications. It has 7 min flight time and
precise hovering mode. The drone has 0.1kg weight, 7.26cm propeller length, a
battery capacity of 1100mA·h and it is configured to fly with an average ground
speed of 0.1m/s. Based on this information, both the hovering and maneuvering



power can be estimated. DJI Tello UAV has a semi-open-source structure, i.e.,
the UAV cameras can be accessed by sending commands code, but its internal
structure cannot be changed. This drone has 2 different cameras: forward and
downward as shown in Fig. 2(a). The forward camera can record RGB 5 mega-
pixel and 1280 × 720 videos, whereas the downward camera, which is used to
capture images, can only record gray-scale and 320 × 240 video (see the cell in
Fig. 2(b).

(a) Drone specification. (b) Camera image cell. (c) Test sensing map.

Fig. 2. The DJI Tello EDU drone that flies and hovers to capture images of cells in
the sensing map.

4.2 Setting up an indoor sensing map

A sensing map of size 168 × 118 centimeters is tested consisting of 4 × 4 = 16
cells as shown in Fig. 2(c). Each cell can be sensed effectively from a height of
40cm based on the field of view that the camera of the drone has (see Fig. 3(a)).
The map is made by A3 printouts (one per cell) that when put together they
show a 2D map of an area in Zurich (see Fig.4 in earlier work [7]). The cell with
index 0 (see Fig. 2(c)) is the departure/landing cell.

The map is augmented by another layer depicting a continuous kernel density
estimation of cycling risk calculated by past bike accident data and other infor-
mation [7]. This overlay map can determine the sensing requirements (hovering
time) as follows:

t(n) =
fR(n)

∑
N−1

n=0
fR(n)

· T, (1)

where n (0 ≤ n ≤ N−1) denotes the index of a cell on the map (see Fig. 2(c)) out
of a total of N cells, fR(n) is the kernel density estimate and T is the maximum
total operating time of all drones. This means that more data are collected from
cells with higher cycling risk, emulating in this way a cycling safety application
scenario. For testing, the sensing requirements are simplified by setting each cell
with a value of 60 when it contains cycling/road infrastructure, and with 0 when
it is does not, see Fig. 2(c) and Fig. 3(b).



(a) Sensing specification and map. (b) Sensing require-
ments.

Fig. 3. Test environment for distributed sensing.

4.3 Swarm intelligence using the EPOS collective learning

A number of 10 agents, each one mapping to a drone of the same type, au-
tonomously generate 16 plans that are sequences of 16 real values representing
the sensing duration at each cell of the sensing map. The generated plans are
random samples of alternative routes with 5 or 6 sensing points that respect bat-
tery constraints. The data sampling duration while hovering over a cell is fixed
to 13 sec to provide a wide range of alternative routing paths. The plans come
with a cost calculated by the total power consumption of flying and hovering [8].

The plan selection is made in a coordinated way using EPOS [2]. For this,
agents connect into a balanced binary tree topology within which they interact
with their children and parent to improve iteratively their plan selection. The
goal of the agents is to minimize the residual of sum squares (RSS) between the
following unit-length scaled signals: sensing values per cell summed up over all
agents and the sensing requirements per cell. Against this (β = 0), the agents
can make a choice that minimizes the power consumption of their drone (base-
line, β = 1). Both scenarios are shown to demonstrate the effect of optimizing
the sensing quality. The agents perform 40 bottom-up and top-down learning
iterations. More information about the collective learning algorithm of EPOS is
out of the scope of this paper and can be found in earlier work [2, 3].

Table 1 summarizes the optimization parameters of EPOS. For this first
testbed prototype, the optimization process is performed offline and remotely,
however deployments of EPOS for online optimization are already available for
future extensions [18].

5 Experimental Evaluation

This section illustrates the measurements performed for the sensing quality as
well as the accuracy of energy consumption estimation made during the planning
phase.

Table 2 shows the measurements made for the optimized navigation and
sensing of each drone. The visited cells (see Fig.3(b)) are extracted from the
selected plans (non-zero values). The actual power consumption of the mission



Table 1. The test parameters for the optimization of distributed sensing.

Parameter Value

Number of agents/drones 10
Network topology balanced binary tree
Number of plans per agent 16
Size of possible plans 16
Number of repetitions 40
Preference of agent β = 0
Non-linear cost function RSS (unit-length)

is influenced by the start and end battery level as voltage varies with the LiPo
battery capacity [22,24]. The hovering and maneuvering power consumption are
calculated based on the earlier power consumption model [8] and that is why it
remains constant across the drones with the same specification.

Table 2. Results of optimizing distributed sensing for each drone: Battery consumption
level, visited cells extracted from the selected plan, total traveling time (second), actual
power consumption as well as the estimated hovering and maneuvering power (watt).

UAV

Index

Battery

Level (%)
Visited Cells Indices Total

Time (s)
Actual

Power (w)
Hovering

Power (w)
Maneuvering

Power (w)
Start End Diff. 1st 2nd 3rd 4th 5th 6th

1 75 47 28 0 7 10 12 14 15 143.35 30.80 31.80 31.92
2 86 69 17 0 4 6 7 11 12 135.37 30.98 31.80 31.92
3 99 62 37 7 9 10 12 14 15 159.32 31.42 31.80 31.92
4 100 77 23 4 9 11 12 13 - 135.31 31.59 31.80 31.92
5 80 55 25 4 6 7 9 10 12 150.70 30.36 31.80 31.92
6 100 68 32 4 6 7 8 9 11 152.95 31.50 31.80 31.92
7 88 75 13 0 4 8 13 14 15 130.91 30.89 31.80 31.92
8 100 76 24 0 8 13 14 15 - 125.50 31.59 31.80 31.92
9 100 74 26 0 6 8 10 11 13 136.22 31.59 31.80 31.92
10 100 63 37 8 9 10 11 14 15 153.29 31.42 31.80 31.92

Fig. 4(a) illustrates a series of sensing maps depicting how drones meet the
target sensing requirements after each trip by minimizing the mismatch between
the total actual collected data and the required ones. This strategy (β = 0)
is the one implemented in the indoor lab environment. To clearly show the ef-
fect of optimized sensing, a greedy strategy (β = 1) is shown in Fig. 4(b) in
which drones select the plan with the lowest energy consumption without any
coordination. With coordination, the total energy consumption is 35.53kJ with
a mismatch (RSS) of 0.0057 and a mission inefficiency of 2.22%. The latter is
defined by the ratio of required values in all cells that are not sensed by the
drones during their mission over the total required values in all cells. In con-
trast, without coordination, the greedy strategy lowers energy consumption to
27.61kJ at a cost of higher mismatch (0.265) and mission inefficiency (26.11%).



As can be observed in the series of sensing maps, coordination results in routing
paths that expand further away from the departure/landing cell, while avoiding
oversensing/undersensing that is likely to happen without coordination.

(a) Coordinated optimized sensing with EPOS that minimizes sensing mismatch.

(b) Greedy sensing strategy that minimizes energy consumption.

Fig. 4. Coordinated vs. greedy sensing by a swarm of drones. The numbers over the
series of sensing maps show how the drones meet the target sensing requirements.

Fig. 5 compares, for each drone, the actual energy consumption with the
model-based estimated one calculated during the planning phase. The actual
energy consumption is initially found higher than the estimated one. This is
because the drones spend some additional flying time to calibrate between de-
parture and landing. To account for this additional energy consumption, the
calibration time is recorded and added up to the original estimated energy con-



sumption, resulting is a highly accurate estimation for all drones. A low error
range from 37.41 to 255.52 Joule is attributed to the variable power consumption
of the battery.
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Fig. 5. Comparison between the estimated and actual energy consumption, with and
without calibration.

6 Discussion and Limitations

The experimental results collected from this first testbed prototype demonstrate
its significant applicability and realism to study UAV swarm intelligence for dis-
tributed sensing. This is shown by the high sensing quality and accuracy in
energy consumption estimation as well as by the testbed flexibility to record
complex measurements in an indoor lab environment that emulate several com-
plex outdoor sensing scenarios.

Nevertheless, the testbed can be further improved towards several exciting re-
search avenues: (i) Use of advanced hardware and multimedia to emulate several
and more complex sensing maps originated from empirical data and simulation
models. (ii) Use of different UAVs with different sensors and data collection
capabilities. (iii) Integration of (wireless) charging stations to the testbed to
allow the study of longer and more complex sensing missions. (iv) Use of colli-
sion avoidance to allow multiple drones to fly in a limited lab space. (v) Use of
other swarm intelligence algorithms as well as their integration in online testbed
operations.

7 Conclusion and Future Work

In conclusion, this paper illustrates a new testbed to study a broad spectrum
of research problems on distributed sensing using UAV swarm intelligence. The



proposed testbed, setup for indoor lab environments with low-cost drones, sim-
plifies experimentation with complex distributed sensing scenarios that would
otherwise require expensive drone equipment, licensing and more uncertainties
to handle in unknown outdoor environments. As a proof-of-concept, this pa-
per demonstrates the applicability of a fully decentralized multi-agent collective
learning algorithm [2] to coordinate the navigation and sensing of drones in an
emulated scenario of monitoring cycling safety in the city of Zurich. Using the
testbed, the accuracy of estimating the energy consumption of drones during
navigation and sensing using a physical model is verified. These results show the
strong potential of this testbed and opportunities for the broader community
to ‘take off’ UAV swarm intelligence research in impactful distributed sensing
scenarios of Smart Cities.
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