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The (partially) massless spin-3/2 and spin-5/2
fields in de Sitter spacetime as unitary and
non-unitary representations of the de Sitter algebra

Vasileios A. Letsios?®

@ Department of Mathematics, University of York
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E-mail: vasileios.letsios@york.ac.uk

ABSTRACT: The divergence-free and gamma-traceless vector-spinor eigenfunctions, as well
as the divergence-free and gamma-traceless rank-2 symmetric tensor-spinor eigenfunctions,
of the Dirac operator on the N-sphere (SV) are written down explicitly for N > 3. The
spin-3/2 and spin-5/2 eigenmodes of the Dirac operator with arbitrary imaginary mass
parameter on N-dimensional (N > 3) de Sitter spacetime (dSy) are obtained by analytic
continuation. Their transformation properties under the de Sitter algebra spin(N,1) are
studied. For N odd, we show that there is no de Sitter (dS) invariant scalar product for these
eigenmodes. For N even, although dS invariant scalar products exist, positive-definiteness
of the norm occurs only for the strictly and partially massless theories in N = 4 dimensions.
For N = 4, the way in which the eigenmodes form unitary strictly and partially massless
representations of spin(4,1) is emphasised. The analysis presented in this paper reveals
previously unknown features of the gauge-invariant theories with spin 3/2 and 5/2 on dSy
(N > 3): the strictly massless spin-3/2 field theory, as well as the strictly and partially
massless spin-5/2 field theories, are unitary only for N = 4. In particular, a unitary theory
for the gravitino field on dSy does not exist unless N = 4.
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1 Introduction

1.1 Background

The de Sitter spacetime, apart from its relevance to inflationary cosmology, is also thought
to be a good model for the asymptotic future of our Universe, as suggested by current ex-
perimental evidence in favour of a positive cosmological constant [1-3]. The N-dimensional
de Sitter spacetime (dSy) is the maximally symmetric solution of the vacuum Einstein field
equations with positive cosmological constant A [4]

1
Rp,l/ - ig,uyR + Agm/ = 07 <11)

where g,,,, is the metric tensor, R, is the Ricci tensor, R is the Ricci scalar and

R (1.2)

while & is the de Sitter radius. Throughout this paper we use units in which #Z = 1.

Unlike Minkowskian field theories, possible field theories of spin s on dSy are not
restricted to the two usual cases of massive and strictly massless theories, where for N = 4
the former has 2s 4+ 1 propagating degrees of freedom (DoF), while the latter has only 2
helicity DoF (+s) due to the gauge invariance of the theory [5]. On dSy there also exist
intermediate gauge-invariant theories for s > 2, known as partially massless ! theories [6—
10]. For a given spin s > 1, there exists one strictly massless theory and [s] — 1 different
partially massless theories, where [s] = s if the spin s is an integer and [s] = s —1/2 if s is
a half-odd integer. Partial masslessness was first observed for the spin-2 field by Deser and
Nepomechie [11, 12| and for higher integer-spin fields by Higuchi [13]|. Partially massless
theories with various spins have been discussed further in a series of papers by Deser and
Waldron [6-10, 14]|. From now on, we use the term ‘massless theory’ in order to refer to a
gauge-invariant theory that is either strictly or partially massless.

Each massless theory is conveniently labelled by a distinct value of the ‘depth’ T =
1,2,...,[s] (where the value T = 1 corresponds to strict masslessness) and in 4 dimensions
there are 2T propagating helicities, namely: (+s,+(s —1),...,+(s —t+ 1)) [6, 8, 9]. For
given spin s and depth T, each of these gauge-invariant theories corresponds to a distinct
tuning of the mass parameter to the cosmological constant A [6, 8, 9, 13, 14]. Higuchi
classified the tunings of the mass parameter for massless theories with arbitrary integer
spin by studying the group-theoretic properties of the eigenmodes of the Laplace-Beltrami
(LB) operator on dSy [13, 15]. Deser and Waldron gave an analogous classification for
arbitrary integer and half-odd-integer spins by using group representation methods based
on the dS/CFT correspondence [14].

A field theory on dSy is unitary only if it corresponds to a unitary representation of
the de Sitter algebra spin(N,1). Unitarity is very important for physical problems since
it ensures the positivity of probabilities. The unitarity of massless totally symmetric field

!Partially massless theories exist also in anti-de Sitter spacetime. Partially and strictly massless theories
on both de Sitter and anti-de Sitter spacetimes are discussed in Ref. [8].



representations with arbitrary integer spin on dSy has been studied in detail by Higuchi [13,
15]. More specifically, by applying analytic continuation to the totally symmetric, traceless
and divergence-free tensor-eigenfunctions of the LB operator on the N-sphere (SVV), he
obtained the totally symmetric, traceless and divergence-free tensor eigenmodes of the LB
operator on dSpy. Then, by calculating the norm of these eigenmodes explicitly, he showed
that all massless theories with arbitrary integer spin s on dSy are unitary (due to the
positivity of the norm). However, such an analysis for half-odd-integer spins is still absent
from the literature. It is the purpose of the present article to start filling this gap in
the literature for the vector-spinor and symmetric rank-2 tensor-spinor fields on dSy, by
working along the lines of Higuchi’s analysis [13, 15].

Particles with arbitrary half-odd-integer spin s = r 4+ 1/2 on dSx can be described by
totally symmetric ? tensor-spinors ¥, . satisfying [6, 14]

(V+M)9yyp =0
vawauz...ur = 0, ’Ya‘l]a,ug...ur = 0,

where ¥ = 7V, is the Dirac operator on dSy. (See Subsection 2.2 for our convention
for the gamma matrices.) From now on, we will refer to the divergence-free and gamma-
tracelessness conditions in eq. (1.4) as the TT conditions. For each value of the mass
parameter M, the TT eigenmodes ¥, in eq. (1.3) form a representation of the de Sitter
algebra spin(N,1). The half-odd-integer-spin theories described by egs. (1.3) and (1.4)
become gauge-invariant (i.e. massless) for the following imaginary values ® of the mass
parameter M = iM [14]:

N N —2\2
M? = -M? = <r — T+ 2) (t=1,..,7) (1.5)

for r > 1%, Real values of M (including M = 0) correspond to non-gauge-invariant theories
and they are discussed in Appendix A.

1.2 Main aim and strategy

The main aim of this paper is to study the unitarity of three different representations of
spin(N, 1), corresponding to: the strictly massless spin-3/2 field (i.e. the gravitino field),
the strictly massless spin-5/2 field and the partially massless spin-5/2 field on dSy (N > 3).
Since all these massless theories occur for the imaginary values (1.5) of the mass parameter,

2Note that not all possible half-odd-integer-spin representations of spin(N, 1) can be formed by totally
symmetric tensor-spinors. Similarly, not all possible integer-spin representations of spin(N, 1) can be formed
by totally symmetric tensors. Mixed-symmetry fields on dSn and the corresponding representations of the
de Sitter algebra have been discussed in Ref. [16].

3The imaginary values of M in eq. (1.5) imply that the action functional for massless half-odd-integer-
spin theories on dSy is not hermitian. The fact that the gauge-invariant spin-3/2 field theory in de Sitter
spacetime has an imaginary mass parameter had been already observed in cosmological supergravity [17].

4In the case of the spin-1 /2 field, where » = 0, there is no gauge-invariance for any value of M. However,
for N even, the spin-1/2 theory with M = 0 behaves as a massless theory since the spin(N, 1) representation
formed by the eigenmodes is reducible. Note also that for N even, the non-gauge-invariant M = 0 theories
with r > 1 are “massless” in the sense of reducibility of the representation - see Appendix A.



we will focus our group-theoretic analysis on the case where M is an arbitrary imaginary
number M = iM (M # 0) and we will specialise to the massless values (1.5) when necessary.
The basic steps of our analysis are as follows:

e We obtain the TT vector-spinor eigenmodes ¥, (spin-3/2 modes) and the TT sym-
metric tensor-spinor eigenmodes W, ,, (spin-5/2 modes) of eq. (1.3) with arbitrary
imaginary mass parameter M = iM (M # 0). (The case with M = 0, as well as the
cases with any real mass parameter M, are discussed in Appendix A.)

e We study the transformation properties of the eigenmodes under a spin(N, 1) boost.

e By exploiting the transformation properties of the eigenmodes under the spin(N, 1)
boost, we examine when their norm with respect to a de Sitter (dS) invariant scalar
product is positive-definite.

As in the relevant study of integer-spin fields [13, 15|, in order to obtain the TT eigen-
modes of eq. (1.3) we will take advantage of the well-known fact that S™ can be analytically
continued to dSn (see Section 7). Motivated by this, we will write down explicitly the mode
solutions of the following eigenvalue equation on S¥:

Ww,ul...ur = Z'C%Ll...#r (1'6)
vadja;@...ur = 07 ’Yawaug...ur = O’ (17)

where 1, ., is a totally symmetric tensor-spinor of rank 7 on SN which also satisfies the
TT conditions (1.7) and Y is the Dirac operator on SV. The eigenvalue in eq. (1.6) is
imaginary, i.e. { € R, since - as is well known - W2 is negative semidefinite on compact
spin manifolds. We call the eigenmodes satisfying eqgs. (1.6) and (1.7) the symmetric
tensor-spinor spherical harmonics (STSSH’s). In the present work we study only
the STSSH’s with ranks » = 1 and » = 2 on S¥ (N > 3), where we are also going
to normalise them, as well as study their transformation properties under a spin(N + 1)
transformation (spin(N + 1) is the Lie algebra of the isometry group of S™V). Note that
the unnormalised STSSH’s of rank » = 1 - i.e. the TT vector-spinor eigenmodes of the
Dirac operator ¥ on SV - have been already constructed in Ref. [18], but no emphasis was
given on their group-theoretic properties. To our knowledge, the STSSH’s of rank r = 2
are constructed in the present paper for the first time (see Section 5 and Appendix E). By
applying analytic continuation techniques to egs. (1.6) and (1.7), one can obtain egs. (1.3)
and (1.4), respectively, on dSy.

1.3 Main result
Our main result is:

e The strictly massless spin-3/2 field and the strictly and partially massless spin-5/2
fields on dSy (N > 3) are unitary only for N = 4.

(In this paper we do not discuss the vector-spinor field and the symmetric tensor-spinor
field on dSs.) In particular, a unitary theory for the gravitino (corresponding to the strictly



massless spin-3/2 field) on dSy (N >3) does not exist unless N = 4. In order to arrive at
our main result, we study the group-theoretic properties of the spin-3/2 and spin-5/2 TT
eigenmodes of eq. (1.3) with arbitrary imaginary mass parameter M = iM (M # 0) and
we show:

1. For even N > 4: all dS invariant scalar products for these eigenmodes must be
indefinite for all imaginary M = iM (M # 0). This is demonstrated by showing that
both positive-norm and negative-norm mode solutions exist and they mix with each
other under spin(V, 1) for all M #0 [including the strictly and partially massless
values (1.5)].

2. For N = 4: all dS invariant scalar products for these eigenmodes must be indefinite
unless M is tuned to the massless values (1.5). The solution space of the massless
theories is divided into two spin(4,1) invariant subspaces, denoted as %~ and 7%,
where all mode solutions in J#Z have ‘negative helicity’, while all mode solutions in
¢ have ‘positive helicity’. Then, we introduce a specific dS invariant scalar product
leq. (8.19)] in #77- and 7. For this choice of scalar product, it happens that the norm
is positive-definite in J#_ and negative-definite in ;. However, group-theoretically,
we are allowed to have a different scalar product for each invariant subspace (since
they correspond to different irreducible representations). Thus, by a redefinition of
the scalar product in %, we can change the sign of the associated norm and make it
positive-definite. This shows that s~ and .7} form a direct sum of unitary irreducible
representations of spin(4, 1).

3. For N odd: For all M = iM # 0 [including the strictly and partially massless
values (1.5)], there does not exist any dS invariant scalar product for these eigenmodes.
Thus, by definition, the corresponding spin(/N, 1) representations are not unitary.

To our knowledge, all these features of the strictly massless spin-3/2 field and of the strictly
and partially massless spin-5/2 fields on dSy are unknown in the mathematical physics
community. In Appendix A, we verify our results by making use of the known classification
of the Unitary Irreducible Representations (UIR’s) of spin(V, 1) [19, 20]. Our analysis in
Appendix A suggests that partially or strictly massless unitary theories with any half-odd-
integer spin exist only in 4 dimensions. Also, for the sake of completeness, in Appendix A
we provide a detailed correspondence between all unitary spin s € {3/2,5/2 } theories with
real and imaginary mass parameter on dSy (N > 3) and UIR’s of spin(N, 1), where we
also give the explicit values for the labels of the UIR’s for each unitary theory. We believe
that the exact correspondence between half-odd-integer-spin theories on dSy (N > 3) and
UIR’s given in Appendix A is absent from the literature.

Our main result stands in contrast to the claims made in Refs. [14, 16]. The non-
unitarity of the massless spin-3/2 and spin-5/2 fields on dSy for N # 4 was missed in
Refs. [14, 16], apparently because the norm of the corresponding eigenmodes was not ex-
amined. We note that the positivity of the norm in the Hilbert space of the massless
theories for N = 4 had been emphasised in the relevant works by Deser and Waldron - see
e.g. Ref. [6].



1.4 Outline of the paper, notation and conventions

The paper is organised as follows. In Section 2, we begin by presenting the Christoffel sym-
bols, vielbein fields and spin connection components on S in geodesic polar coordinates.
Then, we present the basics about gamma-matrices and tensor-spinor fields on SY. We

SN=1 Tn Section 3, we present the

also review the eigenspinors of the Dirac operator on
functions that describe the dependence of the STSSH’s on the geodesic distance (6y) from
the North Pole of S™V. In Section 4, we write down explicitly the unnormalised STSSH’s
of rank 1 on SV (which have been constructed in Ref. [18]). In Section 5, we write down
explicitly the unnormalised STSSH’s of rank 2 on SV (which we construct in Appendix E).
In Section 6, we use the Lie-Lorentz derivative [27] in order to study the transformation
properties of the STSSH’s of rank » (r € {1,2}) on S¥ under a spin(N + 1) transfor-
mation and we give their normalisation factors. In Section 7, we begin by obtaining the
vector-spinor and rank-2 symmetric tensor-spinor TT eigenmodes of the Dirac operator
with arbitrary imaginary mass parameter on dSy by analytically continuing the STSSH’s
of rank 1 and rank 2, respectively, on SY¥. Then, we identify the ‘pure gauge’ modes of
the massless spin-3/2 and spin-5/2 theories on dSy. In Section 8, we derive the main
result of this paper (i.e. we prove statements 1, 2 and 3 listed above), by studying the
transformation properties of the TT eigenmodes of eq. (1.3) with arbitrary imaginary mass
parameter under a spin(N, 1) boost. More specifically, in Subsection 8.1, we show that all
dS invariant scalar products must be indefinite for even N > 4 (i.e. we prove statement 1).
Also, for even N > 4, we show that the ‘pure gauge’ modes in the massless theories with
spin s € {3/2,5/2 } have zero norm with respect to any dS invariant scalar product. Then,
for N = 4, we show that the requirement for dS invariance of the scalar product does not
imply the indefiniteness of the norm if and only if the imaginary mass parameter M = iM
(with M # 0) takes the massless values (1.5). We also find that for the massless theories
with spin s € {3/2,5/2} on dS4, the eigenmodes with negative helicity and the ones with
positive helicity separately form irreducible representations of spin(4,1) (the unitarity of
these irreducible representations is proved in Subsection 8.2). In Subsection 8.2, we cal-
culate the norms of the eigenmodes on dSy (for even N > 4) with respect to a specific
dS invariant scalar product and we verify statement 1 (which was proved in the previous
Subsection) and we also prove statement 2. Subsection 8.3 concerns the case with N odd
and we prove statement 3. Finally, in Section 9, we give a summary of our results. We also
discuss the possible generalisation of our results to higher half-odd-integer spins, as well as
to other vacuum spacetimes with positive cosmological constant.

There are seven Appendices. In Appendix A, we first verify our main result (presented
in Subsection 1.3 of the Introduction) by using the known classification of the UIR’s of
spin(N, 1). Then, for the sake of completeness, we identify the unitary field theories with
spin s € {3/2,5/2} and real mass parameter on dSy with known UIR’s of spin(V,1). In
Appendix E, we construct the STSSH’s of rank 2 on SV by making use of the method of
separation of variables. In this method, the STSSH’s of rank 2 on S™ are expressed in terms
of STSSH’s of rank 7 (0 < # < 2) on SN~1. In Appendix F, we present technical details
omitted in Section 6. To be specific, we first give a detailed derivation of the formulae for the



spin(N + 1) transformation of the rank-1 STSSH’s and we determine their normalisation
factors. Then, we discuss briefly the derivation of the transformation formulae and the
normalisation factors for the rank-2 STSSH’s on S™V. The rest of the Appendices concern
other technical details that were omitted in the main text.

Notation and conventions. We use the mostly plus metric sign convention for dSy.
Lowercase Greek tensor indices refer to components with respect to the “coordinate basis”.
Lowercase Latin tensor indices refer to components with respect to the vielbein basis.
Summation over repeated indices is understood. We denote the symmetrisation of a pair of
indices as A,,) = (Auw + Ayy)/2 and the anti-symmetrisation as Ay, = (A — Auy)/2.
Spinor indices are always suppressed throughout this paper. We use the term ‘massless field’
of spin s € {3/2,5/2} to refer to either one of the following three cases (unless otherwise
stated): the strictly massless spin-3/2 field (r = T = 1), the strictly massless spin-5/2 field
(r =1+ 1 = 2), the partially massless spin-5/2 field (r = T = 2). The complex conjugate
of the complex number 2z is denoted as z*.

2 Geometry of the N-sphere and tensor-spinor fields

2.1 Coordinate system, Christoffel symbols and spin connection

The N-sphere (S”V) embedded in the Euclidean space RV*! is described by
Sup X X" =1, (2.1)

(a,b =1,2,...,N + 1) where 6, is the Kronecker delta symbol and X', X2, ..., XN+ are
the standard coordinates for RV*1. The geodesic polar coordinates are given by

XNFL = xN+L(g) = cos by

X' = X'On,0n_1) =sinfy X'(Oy_1), i=1,..,N, (2.2)
where 0 < 0x < 7 is the geodesic distance from the North Pole and Oy_1 = (On—-1,...,01)
(where 0 < #; < 2rand 0 < 0; <« for i = 2,3,..., N — 1). The X"s in eq. (2.2) are the

geodesic polar coordinates for SV ~! in N-dimensional Euclidean space.
The line element for SV is expressed in coordinates (2.2) as

ds% = db3; + sin” Oyds%_q, (2.3)

where ds%,_; is the line element for SV~1. (Note that we define ds? = df?.) The non-zero

Christoffel symbols in geodesic polar coordinates are

9 . ~ 0; _ ~0;
Fe%j = —sinfy cos Oy 96.0; 5 FGJ-GN = cot Oy 9o,
O O
1—‘91‘9]' - Feioj’ (24)

where gg,9, and fzfﬁj are the metric tensor and the Christoffel symbols, respectively, on
SN=1 The vielbein fields e, = et 40y (where a = 1,...,N and p = 01, ...,0y), determining
an orthonormal frame, satisfy

eua eub(sab = Guv, elq e,ub = 527 (2'5)



where the co-vielbein fields e* = e, dz" define the dual coframe. The co-vielbein trans-
forms under local rotations A : SV — SO(N) as

e’ — A(z)%, e’. (2.6)
In geodesic polar coordinates the non-zero components of the vielbein fields are given by
. 1 .
€6NN =1, 69%’ = — eoli, 1=1,..,.N—1, (27)
sin O
where €% ; are the vielbein fields on SV~1. The spin connection wgpe = Walbd = (Wabe —
Waeh)/2 1s given by
Wabe = —e“(Z(@#e’\b + Fﬁye”b) €xc (2.8)
and its only non-zero components are
Wik .
Wijk = — ,  WiNk = —WijkN = — Cot 9]\/ 5ika Za]ak = 17 7N - 17 (29)
sin O

where @;j;, are the spin connection components on SN=1 (Note that the sign convention
we use for the spin connection is the opposite of the one used in Refs. [21, 22].)
2.2 Gamma matrices and tensor-spinor fields on the N-sphere

A Clifford algebra representation in N dimensions is generated by N gamma matrices.
These are matrices of dimension 2(N/2 - where [N/2] = N/2 if N is even and [N/2] =
(N —1)/2if N is odd - satisfying the anti-commutation relations

{’Ya,’)/b} _ 25111717 a, b= 1,2,..., N, (210)

where 1 is the identity matrix. We adopt the representation of gamma matrices used in
Ref. [21], where gamma matrices in N dimensions are expressed in terms of gamma matrices
in N — 1 dimensions (3%) as follows:

01 , 0 iy’
N J = ‘ 2.11
v (1 0) — (ﬁj 0 ) , (2.11)

(j =1,..., N — 1) where the lower-dimensional gamma matrices satisfy the Euclidean

e For N even

Clifford algebra anti-commutation relations
{379, 7%y = 26%1, jk=1,.,N—1. (2.12)

By using the vielbein fields (2.7) we can express the gamma matrices (2.11) in the

“coordinate basis” as y(x) = e, (x) v*. Note that one can construct the extra gamma

N+1which is given by the product ¥Vt = ey142..4", where € is a phase

N+1

matrix y
factor. The matrix anti-commutes with each of the v*’s in eq. (2.11). As in

Ref. [21], we choose the phase factor € such that

YV = (3 _01> : (2.13)



e For N odd

]

N =T = ( Q:j ”), j=1,..,N—2. (2.14)
-y 0

The double-tilde is used to denote gamma matrices in N — 2 dimensions. In N =1

dimension the only (one-dimensional) gamma matrix is equal to 1. The gamma

matrices (2.14) are expressed in the “coordinate basis” by using the vielbein fields (2.7),

as in the case with IV even.

Note that all gamma matrices in eqgs. (2.11)-(2.14) are hermitian.

th_rank tensors where each

The tensor-spinor fields v, .. ,, of rank r are defined as r
one of the tensorial components transforms as a 2/V/2-dimensional spinor under Spin(NV)
(double cover of SO(N)). Tensor-spinors transform under the local rotation of the co-

vielbein in eq. (2.6) as

Uy ooy (1) = M) 1 A) 7 S(A()) Yoy, (), (2.15)

where the matrix A(z) € SO(N) acts on the tensor indices of 1, .. ,,, while the matrix
S(A(x)) € Spin(N) acts on the spinor indices of ),,. ., (the spinor indices have been
suppressed for convenience). For any A(z) € SO(N) we have |23]

S(A(@) 71" S(A(2)) = Az)" ", (2.16)

where S(A(z)) is either one of the two matrices in Spin(V) that correspond to A(z). (See,
e.g., Ref. [21] and Appendix D of Ref. [23] for more detailed discussions on spinor repre-
sentations of orthogonal groups.)

The covariant derivative for a vector-spinor field is given by

1
vuwp = lei + §Wubczbcwu - F)\z/,ﬂ/})n (217)

while the covariant derivative for a rank-2 tensor-spinor field is given by

1
Vuwul,ug :&/w,ulug + §Wubczbcwu1,u2 - FAV,“%M - FA}/M2¢M1M (2-18)

where wyp. = eydwdbc [see eq. (2.9)]. The matrices Y are the generators of the 2[N/2].

dimensional spinor representation of Spin(/V) and they are given by

a 1 a
£ = Z[ ") (2.19)
1 a.b 1 ab
=377 - 55 , a,b=1,..., N. (2.20)



They satisfy the Spin(/N) algebra commutation relations
[Eab’ ECd] — 5bczad _ 5aczbd + 5ad2bc _ 5bd2ac‘ (2.21)

(The gamma matrices are covariantly constant, i.e. V,7* = 0 - see e.g. Appendix D of
Ref. [23].)

For later convenience, let us introduce the spinor eigenmodes x+¢5(6n—1) of the Dirac
operator on SV~ (see also Ref. [21] and Appendix C of the present paper). These spinor
eigenmodes satisfy [21]

N -1

Y~7Xﬂﬁ = £i (5 + 2) X+055 (2.22)

where ¥ = 72V, is the Dirac operator on SV~1, V, is the spinor covariant derivative on

SN=1 and ¢ is the angular momentum quantum number on SY~!. The symbol j represents

labels other than £. The requirement for regularity of the spinor eigenmodes (2.22) on SN—1
restricts £ to take the values £ = 0,1, 2, ... [21]. We suppose that the spinor eigenmodes (2.22)

are normalised as
/SNl \/EdaNfl X:I:fﬁ(aNfl)Jr X:I:E’ﬁ’(eNfl) = (5&/5@3/, (223)

where dOny_1 = dOn_1dON_5...df1. The square root of the determinant of the metric on
SN=1 ig

Vi =sinV"20y5_ 1 sinV 30y ... sinby (2.24)
=sinV % 0y_1 \/; (2.25)

where § is the determinant of the metric on SV—=2. All the y eigenspinors are orthogonal
to all the y_ eigenspinors in eq. (2.23) [21].

3 The functions describing the dependence of STSSH’s on 6y

Before writing down the explicit form of the STSSH’s of rank r (= 1,2) on S¥, it is
useful to introduce the functions gbffz) (On) leq. (3.1)] and 1/17(;2)(91\/) leq. (3.2)] that describe
the dependence of the STSSH’s on the geodesic distance from the North Pole, 0y, since
they are going to be used extensively in the rest of the paper. The properties of these
functions play a crucial role in the normalisation of the STSSH’s and in the derivation
of the formulae for the spin(N + 1) transformation of the STSSH’s (see Section 6 and
Appendix F). Most importantly, in view of the analytic continuation of our STSSH’s to
dSpn, the properties of the functions <Z>£Za£)(0 ~) and wr(;) (0n) will play a very important role
in studying the unitarity /non-unitarity of the spin(N,1) representations formed by the
analytically continued STSSH’s.

~10 -



As we will see in Sections 4 and 5, the 8 -dependence of the STSSH’s on S is described
by functions of the following form:

l+l-a l—a
¢1(1(?(9N) = Kg(n, ) <Cos 0;) (sin 05)

N
><F<—n+f,n+£—l—N;€—|—2;Sin29§), (3.1)

N l—a l+1—a
(a) . n -+ o 9]\[ . 9]\[
W) = rolm 0 (cos ) ()

N +2 0
><F<—n+€,n—|—€—|—N;€+;;sin2;v>, (3.2)

where the normalisation factor sy (n,f) is given by

(.0 = T'(n+ N/2)
R T P e OO0+ NJ2)

(3.3)

while F(A, B; C; z) is the Gauss hypergeometric function [24]. The number a in egs. (3.1)
and (3.2) is taken to be an integer for the purposes of this paper. The functions in egs. (3.1)
and (3.2) can be expressed in terms of the Jacobi polynomials [24], where kg4(n,¥) plays
the role of the conventional normalisation factor for the Jacobi polynomials [24]. (These
functions with @ = 0 were used to describe spinors on S [21].) As we will discuss in
Section 4 and 5, the integer n is the angular momentum quantum number of the STSSH’s
on SV and it labels the representation of spin(/N + 1) formed by the STSSH’s. The angular
momentum quantum number on SN~ ¢, is initially assumed to be a positive integer or
zero (this requirement is motivated naturally in the recursive construction of the STSSH’s
on SV in terms of STSSH’s on S™V~! - see Appendix E). Furthermore, the requirement for
absence of singularity in the STSSH’s on SV will give rise to the condition

n—4{f €Ny (3.4)

or equivalently n > ¢, where Ny is the set of positive integers including zero. Equation (3.4)

is obtained in Appendix E, by requiring the regularity of qbf;? (0n) and wffz) (An) in the limit
0 N — T.

The functions ¢£:2) (On) and ¢r(§z) (0N ) are related to each other by the following formulae:

< d N+2a—-1 £+(N—1)/2>¢(a)

_ N @
T + 5 cot Oy + Sl ol (ON) = <n + 5 > ¢,0 (ON) (3.5)

d N +2a—1 (+(N=-1)/2\ (@ B NY
(d@ﬂ 5 Ot g ) O == (nt 5 Y On)- (36)

Equations (3.5) and (3.6) are proved using the raising and lowering operators for the Gauss
hypergeometric function in Appendix B. Note also the relation

WD (0n) = (—1)" 4% (x — ). (3.7)

— 11 —



4 The STSSH’s of rank 1 on the N-sphere

In this Section we write down explicitly the unnormalised STSSH’s of rank 1 [i.e. the TT
vector-spinor eigenmodes of eq. (1.6)], by following Ref. [18] where these eigenmodes have
been constructed. However, we will present the results of Ref. [18] in a slightly modified
manner that is more suitable for studying the group-theoretic properties of the eigenmodes.

4.1 STSSH’s of rank 1 for N even

The equations (1.6) and (1.7) for the TT vector-spinor eigenmodes on SV (N > 4) are
written as

tomts) o N\ (o
Yyl = i (” * 2> v, (1)
vaw:(é\)za;nf;ﬁ) _ fyawz(‘ijﬂ;nf%ﬁ) =0. (4.2)

We have denoted the TT vector-spinor eigenmodes with eigenvalue =i(n+ & ) as 1/1(’4 i3ntip)

where n = 1,2,... and ¢ = 1,...,n are the angular momentum quantum numbers on SN
and SN~1 respectively. (The angular momentum quantum numbers for our STSSH’s of
rank 7 € {1,2} on SV satisfy n > ¢ > r. The condition n > ¢ was discussed in the
previous Section - see eq. (3.4). However, as we will see below, the condition ¢ > r is
obtained by using the explicit expressions of the STSSH’s.) The index o takes the values
“4” or “—” and is called the spin projection index on SV. The symbol j stands for angular

SN=2 gN=3 82 S! and spin projection indices on the

momentum quantum numbers on
even-dimensional spheres SV—2, §N=4  §25

Equations (4.1) and (4.2) have two different types of mode solutions, namely, the type-
I modes and the type-IT modes [18]. We assign to the label A the value ‘I’ in order to

indicate the type-I modes (d) (Loiné; p)) and the value ‘II-A’ in order to indicate the type-IT

modes (@bgiA oind p)), where the label A on SN~ corresponds to A on SV (the label A is
discussed further in the passage after eq. (4.15)).

For each value of n we have a representation of spin(N +1) (i.e. algebra of Spin(N +1))
acting on the space of the eigenmodes 1JJ(AUM 2 (or w(jjome;ﬁ)). The highest weight A =
(A1, s Any2) for this representation is given by

131 1
= = =y ey = =1,2,.. 4.
A= (nt 5 5gmg). (=120 (4.3)

which can be determined using the branching rules for spin(N + 1) D spin(N) %. Note
that for N = 4 we have A = (n +1/2, 3/2) (n = 1,2,...). The two sets of eigenmodes,
{ zp (Aiointip) } and { w(A;U;n&p ) }, form equivalent representations and they are related to each

other by 1/;1[“‘7 nbip) _ N+1¢(_ﬁa;né;ﬁ)'
Type-I modes. The type-I modes are expressed in their vector components as

Liomt;p Lo (I;oml;p
e (O ERT ) (4.4)

5Note that spin projection indices exist only on even-dimensional spheres - see e.g. Ref. [22].
6See, e.g., Refs. [21, 25, 26, as well as Appendix A.

- 12 —



(j=1,...,N —1), where w (Loinlip) 4o spinor on SV~ while w (Loinlip) 4 vector-spinor

on SN=1[18]. The type-I modes with negative spin projection (U = —) on SV are given
by [18]
1)
— G (ON)X—05(ON—
dj:l: ) (9 0 ) 2(1() ) P( 1) (45)
iy, ) (ON)X—05(ON-1)

o CVO8) Vo, x—15(On-1) + D5V (On) o, x0(On 1)
s P O, Ox 1) =
iiC&)(l) (ON) Vo, Xx—5(0N-1) £ iD,(jg)(l) (ON) Yo, X—e5(ON-1)
(4.6)

The type-I modes with positive spin projection (¢ = +) on SV are given by [18]

. (1)
Ustntin) g 1) — i, (ON)X+05(ON—1) A7
wieN ( N>UN 1) <i¢£llz)(9N)X+Zﬁ(9N—l) ( )

e 10N (O8) Vo, x145(0n 1) — iDS) ™M (0x) o, X 145(On 1)
) (G Oy 1) =
+C DM (05) Vo, x1050n-1) F iD M (08) 7o, x105(On—1)
(4.8)

The eigenspinors on SN~1, Xig/}, satisfy eq (2.22) and they are written down explicitly
in Appendix C. The functions (b( and 1/)( o/ are given by eqs (3.1) and (3.2), respectively.
The functions C’y(;)(a), C’fi)( 9 are expressed in terms of gi) e and T/J( i as follows [18]:

07(1';)(@) (GN)

N a
sin [N 1cos9N+€+2] ¢( )( N)

1
(+N—1)

N —
N -2

Loy g)sinQ On zpf;;)(eN)}, (4.9)

. 1 . N-1 N a
C’( )( )(QN) m {sm@N [ 2 costly — £ — 2] w( )( N)
N -1

+N—2

(n+

%)Sm2 9N¢£L‘;)(9N)}, (4.10)

(M@ 4pq L@

while the functions D, , are given by:

a —1 N - 1 a . a
DSK)( )(QN) ] _Z . [— (6 + 2) C’,(IZ)( )(9N) +sinfy ¢£Lg)(9N)} (4.11)
and
. i N-1 . . o
DY (0x) = [— <£ + 2) CY @ (6y) —sinby wﬁ}wm} , (4.12)
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respectively. The appearance of ¢ in the denominator in egs. (4.9) and (4.10) reflects the
fact that there is no type-I eigenmode if the §y-component (4.5) [or (4.7)] has £ = 0 (i.e.
¢ has to satisfy £ > r = 1). The condition n > ¢ and the quantisation of the eigenvalue in
eq. (4.1) follow from the requirement of regularity of the functions gbg? (0n) and wg? (On)
(see Appendix E). Thus, we have verified that the allowed values for the angular momentum
quantum numbers are n = 1,2,... and £ =1,...,n

Type-II modes. The vector components of the type-II modes are expressed as [1§]

w([[ Aiombip) (O ¢(II Asoin; p)) ’ (4.13)

(j = 1,...,N — 1) where w(IIAaM ) = 0. The type-II modes (4.13) are TT vector-
spinors on S N=1_ Thus, they can be constructed in terms of T'T vector-spinor eigenmodes

wiA P (@y_1) on SN! that satisfy

Be <£+ N - > P (4.14)
A0 w"“ ) — i ”p — 0, (4.15)

7(A fp)

where the label A indicates the type of the eigenmode (AW (The TT vector-spinor

eigenmodes and the corresponding types of modes on odd- dlmensmnal spheres are presented

Aép ) on SN-1 gives the allowed

in Subsection 4.2.) The requirement for regularity of w

values for ¢, i.e. £ = 1,2,.... This requirement for ¢ follows naturally from the recursive

construction of the STSSH’s of rank 1 in Ref. [18]. We suppose that the eigenmodes 1/} (4 Zp)
are normalised on SV~ a

= 7 (Asp T(A )0,

SN_l\/Z;deN_l P On-1) P Oy 1) = 685054, (4.16)

= . . . 7 (Asp) T(ALER) r

where /g is given by eq. (2.24). Any two TT eigenmodes, Vg, and ¥y (0,0 =

+), with different signs for the eigenvalue and/or with different labels are orthogonal to

each other since they are eigenmodes of the hermitian operator i¥. The type-II modes

¢ (1T-Asointsp) on SV with negative (¢ = —) and positive (¢ = +) spin projections are given
by [18]
TP 0y, 6y 1) = 0
(-1 7(4; 0
wilé A,f,nép)(g 0N ) ¢n€( ( ) —~? ( N— 1) (417)
+ipl, (0 Wf '(Ox-1)
and

R OO

W) (0355 By -1)

WGP O 0y -) = | T
ARG WG >¢AM< )

, (4.18)
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(j =1,....,N — 1) respectively. The functions qbglzl) and w,(lzl) are given by egs. (3.1) and
(3.2), respectively. As in the case of type-I modes, we find the allowed values n = 1,2, ...
and /=1,...,n

4.2 STSSH’s of rank 1 for N odd

The eigenvalue equation and the TT conditions are given again by eqgs. (4.1) and (4.2),

respectively, while the gamma matrices are now given by eq. (2.14). The TT eigenmodes

on SV are denoted as w(A;nﬁ;ﬁ ). As in the even-dimensional case, the label A denotes

the type of the mode, where the type-I modes (1/1(IMM P )) on SV are constructed in terms
of eigenspinors on SN~1, while the type-II modes (w(H Antsp )) on SV are constructed in

terms of TT eigenvector-spinors of type-A on SV~1. The allowed values for the angular
momentum quantum numbers are n = 1,2,... and £ = 1, ...,n. However, for N odd there is
no spin projection index on SN.” Here, the label p stands for angular momentum quantum
numbers on all lower-dimensional spheres S™V=2, ..., 5%, S! and spin projection indices on
the even-dimensional spheres SV—1, N3 . §2 Note that TT eigenvector-spinor modes
of any type on SV (with arbitrary N) exist only for N > 3, while type-II modes exist only
for N > 4 - see Ref. [18|.

For each value of n we have a representation of spin(/N + 1) acting on the space of the

(A;nd;
) The highest weights A\* = (Ali, o AE

eigenmodes ¢ (N+1)/2

) for these representations

are given by

31 1 1

P T =1,2,.. 4.19
3peyEy)s (=120 (4.19)

which can be determined using the branching rules for spin(/N +1) D spin(N). ® Unlike the

case with IV even, for N odd there does not exist any spinorial matrix that relates w (Asnéip)

and ¢ 757
(In general, for N odd there does not exist any spinorial matrix that relates two STSSH’s

, since the two sets of modes form inequivalent representations of Spln(N +1).

of arbitrary rank r with different sign for the eigenvalue.) Note that for N = 3 we have
M= (n+1/2,£3/2) (n=1,2,...).
Type-I modes. The type-I modes are given by [18]

W8P (O, Oy 1) =

=) {60 0w £ 0OV PxosOn) (120)

%\

P (O, O 1) = —= (1 + i >{ (5D 0n) £iC P Ox)7 ) Vo, x-45(On-1)

.
#(

Sz ) & ZDim)( )(GN)7N> ﬁer—zﬁ(aNl)}, (4.21)

"See also Ref. [22].
8The branching rules for spin(N + 1) D spin(N) with N odd are different from the branching rules with
N even. See, e.g., Refs. [21, 25, 26|, as well as Appendix A.
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SNfl

(j = 1,...,N — 1) where x_4; are the eigenspinors on satisfying eq. (2.22). (Since

N anti-commutes with ¥ we have vV x_s5 = X4¢5 [21].) As in the case with N even, the
functions qﬁg}[) and 1/1 () are given by egs. (3.1) and (3.2), respectively, while the functions
CT(L;)(I),CT%)(I),DQ@)( ) and D( D are given by eqgs. (4.9), (4.10), (4.11) and (4.12), respec-
tively. As in the even- dlmensmnal case, one finds that the angular momentum quantum
numbers are allowed to take the valuesn=1,2,...and £ =1,....,n

Type-II modes. The type-II modes are given by [18]
Anl;p
U O, O —) =0

wffA”fp(eN,eN_l)—\;5(1+MN){¢ (0n) 9500 B Oy 1), (4.22)

where the functions qb?(il) and ¢,(1;1) are given by egs. (3.1) and (3.2), respectively, while the
rank-1 STSSH’s of type-A on SN, zﬂ(f;fﬁ), satisfy eqgs. (4.14)-(4.16) (where nyqﬂ(f;fﬁ) =

w (4 Ep ). As in the case with NV even, we find that the angular momentum quantum numbers
are allowed to take the values: n =1,2,...and £ =1,....,n

5 The STSSH’s of rank 2 on the N-sphere

In this Section we write down explicitly the STSSH’s of rank 2 on S by using the method
of separation of variables. In this method the STSSH’s of rank 2 on SV are expressed
in terms of STSSH’s of rank # (where # < 7) on SN¥~!. (The Oth rank STSSH’s are the
eigenspinors of the Dirac operator constructed in Ref. [21].) We present the details of the
calculations in Appendix E.

5.1 STSSH’s of rank 2 for NV even

The equations for the STSSH’s of rank 2 are given by:

(B;oint; (B;oin¥;
Yoo = il | w0, (5.1)
a1 (B;ont; B ;oind;
\ ¢ioa/ P) IJZJ ) = 07 (52)
g PP = g, (5.3)

[see egs. (1.6) and (1.7)] where the labels o,n, ¢, p have the same meaning as in the case
of STSSH’s of rank 1 [see the passage after egs. (4.1) and (4.2)]. Note that eq. (5.3) arises
just by contracting the gamma-tracelessness condition in (5.2) with v”. As demonstrated
in Appendix E, by requiring our eigenmodes to be non-singular, we find the quantisation
condition for the eigenvalue in eq. (5.1),

|Co.N| =1 n € Ny, (5.4)

+ bR
(Np is the set of positive integers including zero), while the allowed values for the angular

momentum quantum numbers are found to be n = 2,3,... and ¢ = 2,...,.n. As we will
discuss below, egs. (5.1)-(5.3) have three different types of mode solutions, namely, the
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type-I modes, the type-II modes and the type-III modes. The label B is used in

order to indicate the type of the STSSH 1/}:5/,5 ) on SN

For each value of n we have a representation of spin(/N + 1) acting on the space of

the eigenmodes ¢+]i5 intip) (or 1/1(_%5;”&@). The highest weight A = (A1, ..., An/q) for this

representation is given by

151 1
= S =2,3,... .
A ( 535 ,2>, (n } 3y .), (5.5)

which can be determined using the branching rules for spin(N + 1) D spin(N) [21, 25, 26].

Note that for N = 4 we have A = (n + 1/2,5/2). As in the case of STSSH’s of rank 1,
(B;o;nt;p)
—Hw g
and they are related to each other by v

}and {2 B;am&'& }, form equivalent representations

Banép) N+11/}B0'n€p)
+uv :

In analogy with the rank-1 STSSH’s discussed in Section 4, the rank-2 type-I modes

the two sets of eigenmodes, {1/1

are constructed using the eigenspinors x1¢5 on SV7! [eq. (2.22)], while the type-II modes
are constructed using the TT eigenvector-spinors 1/;(’4;(’3 ) on SN-1 legs. (4.14) and (4.15)].

The rank-2 type-IIT modes are constructed using the STSSH’s of rank 2 on SNV —1 (wﬁ, Eep ),
satisfying

“(Bitp N -1\ Bt
50 w(B Zp) _ w(tzlfefj) —0, (5.7)
geiewg,{eﬁ) — 0, (5.8)

where the label B indicates the type of the STSSH wi]z 29’0 on SN~ (The rank-2 STSSH’s
on odd-dimensional spheres are presented in Subsectlon 5.2.) We require ¢ = 2,3, ... in
order for @fefi ) to be non-singular on S™V~!. This requirement for ¢ is motivated naturally
in the recursive construction of the STSSH’s of rank 2 in Appendix E. We suppose that the
STSSH’s on SN—1, @Dilz gp , are normalised as

N \[dON 1 ¢i9 (ON 1)T ﬂ;(iB ;K ﬁ )Hiej (9]\[_1) = 5&/5ﬁﬁ/533€/, (59)
SN—

where all the 1;+91,9j modes are orthogonal to all the 1/;,91,9]. modes (see also the passage
after eq. (4.16)). Now let us present the explicit form of the STSSH’s of rank 2 on SV (see
Appendix E for the derivation).

Type-I modes. The type-I modes with negative spin projection (¢ = —) on SV are given
by
2) N
i3 (ON)X—15(On-1)

D (0) Vo, x-e5(0n-1) + DV (0x) Fo, x—e5(On—1)
I - n[,p) —
wiew (HNvON—l) = B
iiCr(i)(z)(HN) Vo, X—05(On-1) £ iDSg)(z)(@N) Yo; X—e5(ON-1)
(5.11)
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I;—int;p
wiejek ? (O, 0x-1)

Kr(z? (ON) G;0,X—e5(ON—-1)

:l:ZKfL\Il?) (GN) §9j0k X*fﬁ(el\f—l)
W (0n) Hoyo, X150 1) + T3 (0x) Hp 5 X—15(0x-1)
* . (5.12)
WD (On) Hoyo,x—05(On—1) £ T (6) H} g X—15(0n-1)

(4,k =1,..., N — 1) where x5 are the eigenspinors on SN=1 [see eq. (5.8)] and we have
defined

Hy,5, =V (,Vo,) — G, (5.13)

f{éﬁk = 77(9]'@91@) — 96,0, N_1 (5.14)

These differential operators satisfy g‘)ﬂkﬁgjgk = g"j‘)kﬁgﬂk = 0. Note that Y~7Xﬂ[~, =
+i (f—l— %) X+¢p leq. (2.22)], while ixﬂﬁ = @ekﬁgkxﬂﬁ is given by eq. (D.7). The
function qST(fE) is given by eq. (3.1), the function wffe) is given by eq. (3.2), the functions
C’y(;)@) and 07%)(2) are given by eqgs. (4.9) and (4.10), respectively, while the functions DS;)@)
and DSZ)(Q) are given by eqs. (4.11) and (4.12), respectively. The functions describing the
dependence on 6y in eq. (5.12) are given by

K (0n) = —S;12_0]1V¢22¢)(9N), (5.15)

K (On) = —S;liejlvwii)(ﬁzv), (5.16)

105 = o {sm o CD® (0x) — (e + N2‘1) WD (0x) } , (5.17)

T (05) = N_—kal {—sin on CDP (0y) — (6 + N2_1> W (6y) } : (5.18)
OSE nOx

(0 =1+ N)N-1)
X{ [N(N—3)(€+N;1) +N(N+1)

(2
N-1 cos 9N] )P on)

N N+1
—(n+ )N + 1)sinfy cO® gy + ¥ * Csinfy e, (eN)} (5.19)
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and
sin&N
-1+ N)N-1)

{ [ N3 () N+

W(i) (QN)

D@
N1 cos HN} 07(12)( )(GN)

N N+1
+(n+ ) (N +1)sinfy cD® gy + Nt [ sinfy wffg(eN)}. (5.20)

The type-I modes with positive spin projection, wilﬁmm )

i—snd;p)

are given by expressions analo-

(I;+;n4;p)

gous to the expresslons for Q,Z)i . To be specific, the expression for v o0y 1S found by

exchanging qb Ay ) and upM and replacing x_¢; by X4¢; in eq. (5.10) and the expression for the

component @Z)ilfene #) is found using eq. (5.11) as follows: we exchange Cfl;)@) and iCr(i)@);

we also exchange Dq(jz)@) and infe)(Q) and we make the replacements @gj X—t5 = @9]. X405
and Y9, X—¢5 — —7Y0; X+¢p- Similarly, wi[é;;f:&ﬁ ) is found using the expression for 1/1559;;9;:&'5 )
leq. (5.12)] as follows: we exchange the functions with superscript (1)’ and the functions
with superscript ‘(})’, i.e., K, (T) > ZKT(i), Wé? > ZW&) and TT(LZ) > iTT(i) (the symbol <
denotes the exchange of the functlons appearing in the two sides of the ‘left-right’ arrow)
and we also make the replacements x_g5 — x4¢5 and I;Té.jek — —ﬁéjgk in eq. (5.12).

Let us now verify that the allowed values for the angular momentum quantum numbers
n and £ for the type-I modes satisfy n > ¢ > r = 2. As in the case of STSSH’s of rank 1 (see
Subsection 4.1), the appearance of £ in the denominator in egs. (4.9) and (4.10) implies that
there is no type-I mode if the Oy60yx-component (5.10) has ¢ = 0. Similarly, as egs. (5.19)
and (5.20) indicate, there is no type-I mode with 6y60xn-component given by eq. (5.10)
with £ = 1. Also, as demonstrated in Appendix E, the quantisation condition (5.4) for the
eigenvalue, as well as the condition n — ¢ > 0, arise as the requirement for the absence
of singularity in the functions gi)glzg) and 1!17(3 Thus, the allowed values for n and ¢ are
n=2,3,...and £ = 2, ..., n, respectively.
Type-II modes. The type-II modes with negative spin projection (¢ = —) on SV are

given by
@Z’iIéA,A’_’M p)(eN,ON—l) =0 (521)
(0) 7(Astp)
—n G (ON) Vg (ON-1)
@Z’igNA’ "D (O, On 1) = ! 4 (5.22)

ii?ﬂg? (On) &Sfﬁ) (On-1)

0 (0n) V0,057 (On-1) + AT (00) 306,057 (O-1)
TP 0, O 1) = ~
i) (0n) Vg, 05 (On-1) + iA%) (0) 30,05 (On 1)
(5.23)
(j,k =1,...., N — 1), where qbgloz) is given by eq. (3.1) and %(32) is given by eq. (3.2). The
type-A TT vector-spinor eigenmodes @Bi‘gfﬁ ) on SN-1 satisfy eqs. (4.14)-(4.16) and they
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are non-singular on SV~! for £ = 1,2,... (see Section 4). The functions describing the
dependence on Oy in eq. (5.23) are given by

ALY 2(GN) N—Jz 1 ¢ +2N2_1r§;>(9N) +sin Oy ¢£§>(9N)] , (5.24)
Aue)Q(HN) N—Jz 1 ¢ +2N21rfjg(eN) —sinfy ¢ (GN)] (5.25)
and
F%M = 1)16 ) { i [N;l cosfy + 0+ ]\[21} e )
- N; Ln+ JQV )sin? On L) (6 >}, (5.26)
N N; 1 (n+ %) sin? 9N¢S?(9N)}- (5.27)

(II- A; i+inl;p)

N , are anal-

The expressions for the type-II modes with positive spin projection, 1/)

ogous to the expressions for z/JiIIIWA i=intip)
(I-A+nlp) . (0) . (0) .
sion for w o0, is found by exchanging ¢,/ and i1, and making the replacement

@ZJ(AZP N ¢ Afp

wilé ?k+ intip) by using eq. (5.23) are: we exchange F(T) and z'l“ue), as well as A(Tg) and ZA(?,

A ZP) SN v 1[)4—6’ £p) and A Yo 1/) Aép) ¢+Aefp

presented above. More specifically, the expres-

in eq. (5.22). The steps required in order to find the expression for

and we make the replacements \Y, 0 1/1
q. (5.23).

Let us now verify that the allowed values for the angular momentum quantum numbers
n and £ for the type-II modes satisfy n > £ > r = 2. As mentioned in Section 4, the
eigenvector-spinors on SV =1 (1/;%@)) are non-singular for £ > 1. Also, since £ — 1 appears
in the denominator in egs. (5.26) a]nd (5.27), there is no type-II mode with 6y6;-component
given by eq. (5.22) with £ = 1. As in the case of the type-I modes, the quantisation
condition (5.4) and the condition n — ¢ > 0 arise by demanding qﬁglof) and ws? to be non-
singular. Hence, the allowed values for the angular momentum quantum numbers are

n=23,...and f=2,...n
Type-IIT modes. The type-III modes with negative (¢ = —) and positive (o = +) spin
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projections on S are given by

vigs P (On, 0y 1) = 0 (5.28)
¢$§€§g_m&ﬁ)(9m On-1)=0 (5.29)

(ITI-B;—:n4;p) ¢£L;2) (QN) ~(—~0 Gﬁk) (ON 1)
"‘pﬂ)jgk (gNa 0N—1) = . (72) ~(]~ ;Zﬁ) (530)

Fithn, " (ON) Y2y g, (ON—1)
and
v 5P (On, Oy 1) = 0 (5.31)
ﬂ’fgvf P (0n,On 1) = 0 (5.32)
_ . (=2) 7 (B;tp)

nl;p Wpe  (ON) Vg g (ON-1)

Bt g gy 1y = [ Pne %) Croo 653

(j,k = 1,..., N — 1) respectively, where ¢(—2) is given by eq. (3.1) and wflf) is given by
eq. (3.2). The STSSH’s of rank 2 on SN—1, 1/}_5 eep , satisfy egs. (5.6)-(5.9) and they are
non-singular for £ = 2,3, ... (see the next Subsectlon) By working as in the case of type-1
and type-II modes discussed above, we find again that the allowed values for the angular
momentum quantum numbers are n = 2,3,...and £ =2,....n

5.2 STSSH’s of rank 2 for N odd

The equations for the STSSH’s of rank 2 are given by egs. (5.1)-(5.3), where the gamma
matrices are given by eq. (2.14). We denote the STSSH’s of rank 2 as wilife 2 (with
n =2,..and £ = 2,....n), where the label B denotes the type of the mode. Note that
for N odd there is no spin projection index on SV [see also the passage before eq. (4.19)].
The labels n, ¢ and p have the same meaning as in the case of the STSSH’s of rank 1 in

Subsection 4.2.

For each value of n we have a representation of spin(/N + 1) acting on the space of the

B;nt;
( P The highest weights A\* = ()\f, o AT

eigenmodes ¢ ), (N+1

) /2) for these representations
are

51 1 1
Ai:<n+ 2,2,...,2,i>, (n=2,3,..), (5.34)

1
27

which can be determined using the branching rules for spin(N + 1) D spin(N) [21, 25, 26].
Note that for N = 3 we have A* = (n + 1/2,£5/2).
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Type-I modes. The type-I modes on SV are given by

n 1 . .
Ui O, O-1) =5 (14 i) {6 (00) % 01 (03" rssO-) (5.35)
1 . . =
¢£9?fep)(9Na On-1) :ﬁ(l + WN){ (CT(L?(Q)(HN) + 107(1%)(2) (HN)’YN) Vo, X—5(0n-1)

+ (Df&)@) (On) £ iDT(lié)(2)(9N)7N) %jx_m(aN_l)} (5.36)

n 1 . . -
@Z}ilg ﬁk” (On,On-1) Zﬁ(l + WN){ (KT(L;)(ON) + szlt)(GN)ny> 96,0, X—5(ON_1)
+ (Wﬁ) (GN) + ZW}L?(GN)’YN> -FIHj@kX—Zﬁ(ONfl)
+ (T;LP (On) £ Z‘Téi)(aN)’YN) ﬁéjekXLfﬁ(gN—l)} (5.37)

(j7 k=1,..,N — 1) where the eigenspinors x_s; on SV =1 satisfy eq. (2.22). The functions
qﬁng ,1/17(126), C’(b ) 7(12(2), ng), Wég) and T( ) (where b =1, ), describing the dependence on
On, are the same as in the even- dlmenblonal case [see eqs. (5.10)-(5.12)], while Hy.q, and
Héjak are given again by egs. (5.13) and (5.14), respectively.

Type-II modes. The type-II modes on SV are given by

(II- An@p
Q/)iQNgN ('9N, ONfl) =

(II- An€
¢i6N0 2 ('9N70N71) =

(5.38)

<1+in>{¢i°)<6N>iw (6x)7 }z&“’ (On-1)  (5.39)

(A Kp) N_1)

(II-Asne;
¢i9 Ok 7 (On,On-1) = Gk)

NS

(1+ wN>{ QHDSET

+

/

AL On) £ ial 0x)™ ) A 0,057 (B 1)}, (5.40)

(j,k =1,...,N — 1) where the TT eigenvector-spinors 1[)(_12;5’3) on SNV-1 satisfy eqs. (4.14)-
(4.16). As in the even-dimensional case, the functions czS © and w(%) are given by egs. (3.1)
and (3.2), respectively. The functions Afw),ASe), (Z) and I‘( ) are given by eqs. (5.24) ,
(5.25), (5.26) and (5.27), respectively.

Type-IIT modes. The type-III modes on SV are given by

w(ilélj\fgl\lnz 7 (0N7 GN—l) =0 (541)
WP 6y, 6n 1) =0 (5:42)

wié’ef"“wmezv1>=%(uwfv){@b;ﬁ(emiwéz”( Y FD 0x ), (5.43)

(j,k = 1,..,N — 1) where the rank-2 STSSH’s on SV~! (1/;(3;?2) satisfy egs. (5.6)-(5.9),
while the functions qbglf) and 1/17(122) are given by egs. (3.1) and (3.2), respectively.
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As in the case with N even, by requiring that the rank-2 STSSH’s of all types (i.e. type-
I, type-II and type-IIT) on S™ are non-singular, we obtain the quantisation condition (5.4)
for the eigenvalue, while the allowed values for the angular momentum quantum numbers
are found to ben =2,3,... and £ =2, ..., n.

6 Normalisation factors and transformation properties under spin(N +1)
of rank-1 and rank-2 STSSH’s

In this Section, we study the transformation properties of a specific class of STSSH’s of
ranks 1 and 2 on SV under a spin(N + 1) transformation. We also write down explicitly
the normalisation factors for all STSSH’s of ranks 1 and 2 and we make a conjecture for
the normalisation factors for STSSH’s of arbitrary rank r.

In order to derive the transformation formulae and determine the normalisation factors
for STSSH’s of ranks 1 and 2, we introduce an inner product on the solution space of
egs. (1.6) and (1.7) and we also exploit the spin(N 4 1) invariance of this inner product. The
transformation properties and the normalisation factors that we present in this Section have
been obtained after long and tedious calculations. For this reason, in this Section, we simply
present the results of our lengthy calculations and provide the necessary mathematical
background (for example, we discuss the Lie-Lorentz derivative (6.1) [27]). We refer the
reader to Appendix F for details of the calculations.

6.1 Lie-Lorentz derivative and spin(/N + 1) invariant inner product

Let )y,..., be any tensor-spinor of rank r and { be any Killing vector on § N The infinites-
imal change d¢ty, .., due to the spin(N 4 1) transformation generated by ¢ is conveniently
described by the Lie-Lorentz derivative [27]

Le Yo = EVolbur iy + Popineyin Vi € & Ppnvpsspiy Vo€ A+ oo+ sy 10V €
1
+ va@gkv“’ykd)uL..uw (61)
The Lie-Lorentz derivative satisfies [27]

L¢e,”=0, (6.2a)
Le 4% =0 (6.2b)

and - after a straightforward calculation - one can verify that
(]Lﬁvu - vu]l‘ﬁ) Yus.pr = 0. <6~3)

Thus, if 9, .., satisfies eqs. (1.6) and (1.7) (i.e., if ¥, ,, is a STSSH of rank r), then
L¢ Yu,..pu, also satisfies egs. (1.6) and (1.7).
Let us introduce the following inner product on the solution space of egs. (1.6) and

(1.7):

(60.02) = /S oy u, g (6.4)
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where d@y stands for dfy...dfs df;, while @bm e and 1/1#1 - are any two STSSH’s of rank
r with the same angular momentum n on S™V.? Since the inner product (6.4) is invariant
under spin(N + 1), we have

(ng(”,w@))m + (w“),ng(”)(r) =0 (6.5)

for any Killing vector € on S. We will study the transformation properties of a certain
class of STSSH’s of ranks 1 and 2 under spin(NV + 1), by specialising to the case where the
Killing vector in eq. (6.1) is given by & = ., where

0 0
S =10, = cosln_ 1%—cot91\/ sinfn_1 T

(6.6)

Now, let us discuss the certain class of STSSH’s of ranks 1 and 2 on SV (N > 3), the
transformation properties of which we are interested in.

e In the case of STSSH’s of rank r = 1, we will study the transformation properties of
the class of STSSH’s which comprises: the type-I modes and a certain kind of type-1I
modes, called type-II-I modes. The type-II-I modes on SV are defined for N > 4
and they are constructed in terms of type-I eigenvector-spinors on SV~1. Thus, the
type-II-I modes on SN are given by letting A = I in eqs. (4.17) and (4.18) (for N
even) and in eq. (4.22) (for N odd).

e In the case of STSSH’s of rank r = 2, we will study the class of STSSH’s which
comprises: the type-I modes, the type-II-I modes and the type-III-I modes. As in
the case of rank-1 STSSH’s, the type-II-I modes on SV are defined for N > 4 and
they are constructed in terms of type-I eigenvector-spinors on SV~1. Thus, these
modes are given by letting A = I in eqs. (5.21)-(5.23) (for N even) and in egs. (5.38)-
(5.40) (for N odd). The type-III-I modes on SV are defined for N > 4 and they
are constructed in terms of type-I STSSH’s of rank 2 on SN~ Thus, the type-III-I
modes on SV are given by letting B = I in egs. (5.30) and (5.33) (for N even) and
in eq. (5.43) (for N odd).

6.2 Normalisation factors and transformation properties under spin(/N + 1) of
STSSH’s of ranks 1 and 2

Case 1: N even. Using the inner product (6.4), we define the normalisation factors

cg\?;r) (n, £) for the STSSH’s of arbitrary rank r and type B on SV, wi]ila nlfrp), as

-2

B,
ey () 555G 010055 (6.7)

V2

(The normalised STSSH’s are cN (n 0)/\V2 1/1(3 ioinbip) .) As discussed in Sections 4 and 5

tpa...pr
(for r = 1 and r = 2, respectively), the STSSH’s of rank r on SV, wi]if Zg i)

(wiB;U;nf;ﬁ), wiB’;o’;nf’;ﬁ’)>(T) =

are constructed

Any two STSSH’s with different signs for the eigenvalue in eq. (1.6) and/or with different n are orthog-
onal to each other, since 7Y is hermitian with respect to the inner product (6.4).
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in terms of STSSH’s of rank 7 < 7 on SV~!, using the method of separation of variables.

The type of the mode wiif n,f 2

choice of 7. For convenience, instead of using the symbol 7, let us denote the rank of the

STSSH’s on SN—1 as (), where the type-I STSSH’s (@Z)il;f-; int; p)) have 77y = 0, the type-II

STSSH's ({T-47m60)) have 7y = 1, the type-IIT STSSH's (z/)jfjl Birinti)) have 7y = 2

and so forth. As shown in Appendix F, the normalisation factors for STSSH’s of rank

(i.e. the value assigned to the label B) depends on the

r€{1,2} are given by

. 2 ;
cg\ffﬂ") (n,0)|  27N72HHE) D(n— ¢+ 1)T (n +/+N)

V2 (50 D(n+ 3)P2
r—1 . ~ r—1
N+j+7g —2
—J N—-1+4j
J=T(B) J=T(B)
T— T(B 1
X H (6.8)
. N—2\2
i=1 5= (r-i+ 252
(7(py < r) where (F(Z»)) is the binomial coefficient. Here, if 11 > vy, then [[2, = 1. We

have proved eq. (6.8) only for r = 1 (where B = I, II) and for r = 2 (where B = I, I, III).
We make the following conjecture, which is true for r =1 and r = 2:
Conjecture: The normalisation factors for all types of STSSH’s (i.e. STSSH’s with all
possible values of B) of arbitrary rank r > 1 on SV are given by eq. (6.8), where n > ¢ >
r > 7y and 7(gy € {0,1,...,7 }.

Before presenting the transformation properties of our STSSH’s of rank r (r = 1,2)
under spin(N + 1), let us introduce the shorthand notation wil?\;g;nfm;p) for the STSSH’s of
ranks 1 and 2, defined as follows:

wib;\g imlmip) w(iila inlm;p) (B _ L II—I), (6.9&)
i, e = o, (6.9D)
wiB;VOQ' n@m;P) w(iif'uzfm p (B — I, II-I, III—I), (69C)

where we have also written out explicitly the dependence on the angular momentum quan-

SN=2 m, which corresponds to £ on S™V~!. The symbol p represents labels

tum number on
other than o,n,¢ and m. For the type-I modes we have m = 0,1,...,¢, for the type-II
modes we have m = 1,2, ..., £ and for the type-III modes we have m = 2,3, ...,£. (In other
words ¢ > m > f(B).)

As demonstrated in Appendix F, the spin(/V 4 1) transformation of the type-I modes
is expressed as

L;M,Z) (I;05m8m; p) ([) w([ ;05 n(Z—H)mp) + 93 djiljsn(f 1) m;p) Z%(I) w:(tll;\z'a;ném;p)
1I-I;05nbm;
n C%/(I—UI) ¢§:NT p)’ (6.10)
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where the coefficients on the right-hand side of eq. (6.10) are

o= J;(gfijyv))(éi]jvt%_ 2 x VE=m+1)(l+N—1+m), (6.11)
2

A = (ng(fi}v)_(f); ") VE—m)+m+ N —2), (6.12)
2
(n+F)(m+ 572 (N +2r — 2)

D = 2 _

2(@+N—)(e+ N(N-2) (6.13)
and
s _ A+ 5) -V =224 (N 47 -2) N3 mmi N 2)
o ((C+N-1)(N-2) N-2(+1)({+N-2)

(6.14)

Equations (6.10)-(6.14) hold for » = 1,2. Note that the sign of the spin projection index
o is flipped in the third term of the linear combination in eq. (6.10), while iz is the
only imaginary coefficient on the right-hand side of this equation. Also, note that .z (/=)
vanishes for m = 0, i.e. for m = 0 there is no mixing between type-I and type-II-I modes
in eq. (6.10). This is consistent with the fact that type-II modes are defined only for
m=1,2,..¢

The spin(N + 1) transformation of the type-II-I modes is expressed as

ij IIIo'nEmp) wi]fvian(ﬁ-i-l)mp) _’_%H wjgvlan(é 1) m;p)
[[)w (II-I;—omlm;p)
+<%/(II—>I) ¢g§;n€m;p) 4 (=1 d}ilg\lr-l;a;n@mm) (6.15)
where
o _ m+l+N)L+N+r—1)
200+ §)(e+ N)
(l+2){+N-2)
X\/(€+1)(€+N—1)(£ m+1){+m+ N —1), (6.16)

g _ (= D(E=r) \/(H1)(€+N—3)(€_m)(£+m+N_2), (6.17)

C2(0+ M2y —1) (({+ N -2)

(6.18)

(6.19)



T (N =3)m(m+ N —2)
=1 _ =1 \/(N—Q)(€+1)(£+N—2)’ (6.20)

where » = 1,2 and

=10 —

(6.21)

N+ =N (N4 N2 o ma N 1)
((—1)((+N)N “\ N 0+ N—1)

leq. (6.21) is defined only for » = 2|. The sign of the spin projection index is flipped in

the third term of the linear combination in eq. (6.15), while is(D

coefficient on the right-hand side of this equation. Note that ») vanishes for N = 4

is the only imaginary

and thus type-II-I modes with different spin projections on S* do not mix with each other
under the transformation (6.15).

The spin(N + 1) transformation of the rank-2 type-III-I modes is expressed as a linear
combination of other STSSH’s of rank 2, as follows:

Lo ififl Lo nmip) _ _/(III) Wfi i;n(ﬁﬂ) mip) | gpli) w(lfl Lo n (—1) msp)
e wififliz o;nlm;p) 4 (=) wili—lﬁg;nﬁm;p)7 (6.22)
where
WWU——W+“ﬁ”x¢“+”“+N_”@—m+n@+m+N—n, (6.23)
200+ %) ((l+N)

) _ (n—f+1) % \/(6""1>(£+N_?’)(z—m)(é—i—ﬂ”o—i—N—2)7 (6.24)

2(¢ + &32) -1+ N-1)

(n+ 3+ 552N 1)
LA .
2(£2+ 7‘2)(€Z+ 4N (6:29)
and
g HI—11) _ i\/(N - 2])\526_—:;\([”1?)]\7 - 1)' (6.26)

As in egs. (6.10) and (6.15), the spin projection index o has ﬂipped sign in the third term
of the linear combination in eq. (6.22). The STSSH’s wiml,[ mmie) and ¢ IH Iintmie) g4
not mix with each other for N = 4 since the coefficient D [eq. (6.25)] Vamshes for this
value of N.

Case 2: N odd. As in the case with IV even, the normalisation factors for the STSSH’s

wiizw 5 are defined using the inner product (6.4), as'®
(Bintip) | (B'mt'si') " (n,0) -
(¢:|: M/Ji )(T) = \/5 533/5@[/(5,3,3/. (6.27)

10Recall that for N odd the STSSH’s L/;f;feﬁz do not have a spin projection index on S¥. They
are just labelled by the angular momentum quantum numbers n and ¢, while the angular momentum
quantum numbers on SV =2, N3 82 81 and the spin projection indices on the even-dimensional spheres

SN-1 gN=3 82 are represented by p.
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As demonstrated in Appendix F, the normalisation factors for N odd are given again by
eq. (6.8). The conjecture for the normalisation factors of the STSSH’s in the passage below
q. (6.8) is made for both N odd and N even.
As in the case with IV even, we introduce the shorthand notation
the STSSH’s of ranks 1 and 2, as

w(B ;o N —1;m5p) for

wj\ge JON—1;M5P) _ w:(tB;L;lnf;UN—l;m;ﬂ) (B = I, II—I), (628&)
wilglf nb;o N _1;m; p) O (628b)
7!):5\{26 JON_1;m5P) _ w:(tli,zllf;mvfl;m;ﬂ) (B =1, II—I,I[I—I), (6.28C)

where we have also written out explicitly the dependence on the angular momentum quan-
tum number on SN2, m, which corresponds to £ on SN~ as well as the dependence on
the spin projection index on SV~ (ox_1 = 4). The symbol p represents labels other than
n,f,on_1 and m.

As shown in Appendix F, the spin(N + 1) transformation of the type-I, type-II-I and
type-III-I modes are expressed as

]LwanZJN 1,mp) ])wln (b+1);0n— 1,mp)+<@ w([n l—=1);0n—1;m;p)

+ioy_q 2D w(f snbson—1;mp) 4 U= @Z’ﬁvi 7"05;01\771%;/))7 (6.29)

L, 1/1 (II-Iintion —15mip) _ o7 %[H Iin (¢+1);0 N —15m;p) + gD (II-I'n (4=1);0N—1;m5p)

+N, +N;
. big I-Iintion —15m5p I—I Liosnbon—15m;p
i oy s RO tme) o (D) (Leintson—simip)
HO—I0) , (H-I;nto N 1;m5p)
+ . VYL, , (6.30)

and

(II-Iynlyo Ny —1;m;p) (I (HI-Iin (L+1);0 N —1;m5p) (I (HI-Iin (£—1);0n—1;m5p)
Lywim#z = ¢iﬂlﬂ2 + ‘% d)i,ullm

. () |, (II-Iinbo n —15m5p) (II—1I) ), (IT-Iinéon —1;msp)
+ioy_q wimuz + wimm ;

(6.31)

respectively. [In egs. (6.29) and (6.30) we have r € {1,2}, while eq. (6.31) is relevant
only for r = 2.] All coefficients in egs. (6.29)-(6.31) are given by the same expressions
as the coefficients in the case with N even [see egs. (6.10), (6.15) and (6.22)]. Unlike the
even-dimensional case, the two spin projections ony_1 = £ do not mix with each other
in egs. (6.29)-(6.31). However, the two spin projections ony_1 = £ mix with each other
under spin(/N) transformations. Note that the transformation formulae (6.30) and (6.31)
are defined only for N > 5 (N odd), since type-II and type-III modes on SV do not exist!!
for N = 3.

We are now ready to analytically continue our rank-1 and rank-2 STSSH’s to dSy and
study the group representation properties of the analytically continued STSSH’s.

"This is consistent with the fact that the coefficient ¢ I given by eq. (6.14), vanishes for N = 3.
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7 Obtaining spin-3/2 and spin-5/2 mode solutions on N-dimensional de
Sitter spacetime by the analytic continuation of STSSH’s

7.1 Analytic continuation techniques

In this Section, we begin by discussing our analytic continuation techniques for STSSH’s of
arbitrary rank r and then we specialise to the cases with r =1 and r = 2.

It is well known that dSy can be obtained by an “analytic continuation” of S™V (see,
e.g., Ref. [13]). By replacing the angle fy in the line element of SV (2.3) as:

Oy — z(t) = g —it, (7.1)
(t € R) we find the line element for global dSy:
ds® = —dt* + cosh® t ds%_;. (7.2)

Motivated by this observation, we can obtain the field equations (1.3) and (1.4) on dSy
by analytically continuing eqs. (1.6) and (1.7), respectively, for the STSSH’s on S%. For
convenience, let us give here again egs. (1.6) and (1.7) for STSSH’s on S:

. N
Yoty = Ei <n + 2> Yipypes (=1, 7+1,..) (7.3)
Va@/}:l:a,ug...,ur =0, FYaw:ta,uz.‘.,ur =0. (74)

Without loss of generality, we can choose to analytically continue the STSSH’s with either
one of the two signs for the eigenvalue in eq. (7.3), since each of the two sets of modes,
{4ps.p y and {_p, 4, }, forms independently a unitary representation of spin(/N + 1)
labelled by n (see the beginning of Sections 4 and 5). Here we choose to analytically
continue the STSSH’s ¢_,,,.. . By making the following replacements in eqgs. (7.3) and
(7.4):

Oy = a(t) =~ —it, THJ\L% (teR, M e R\ {0}) (7.5)

ol 3

we obtain egs. (1.3) and (1.4), respectively, with imaginary mass parameter M = iM
(M # 0) on dSy. Recall that we are mainly interested in field equations with imaginary
mass parameter because our aim is to study strictly and partially massless representations
of spin(N, 1), where the mass parameter takes the imaginary values (1.5). Note that the
gamma matrices on SV [egs. (2.11) and (2.14)] transform under the replacement (7.1) as:
AN = iyN =40, while the 49’s (j = 1, ..., N — 1) remain unchanged.'?

Let us now give a prescription for obtaining the explicit form of the spin-3/2 and spin-
5/2 TT mode functions with mass parameter M = iM on dSy by analytically continuing
the STSSH’s of rank 1 and 2, respectively. The functions describing the time-dependence

12 Alternatively, we could analytically continue the STSSH’s on SV by making the replacement 6y —
7/2 + it instead of the replacement (7.1). The analytically continued STSSH’s with 5 — 7/2 — it and
the ones with O — 7/2 + it are related to each other by charge conjugation. However, these two cases of
analytically continued STSSH’s form equivalent representations of spin(N,1).
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of the analytically continued STSSH’s are found by making the replacements (7.5) in the
(unnormalised) functions ¢£§) (On) |eq. (3.1)] and %(;)(QN) leq. (3.2)], as

-1
2a) - N (a)
500 = [ (3= 50|05y tot0) (7.
B $(t) (+1—a . ﬂf(t) l—a
= <COS 2) SIHT
SN i NN )
xF(—M+2 E,M+£+2,£+2,sm 5 ), (7.7)
(@ T NN @
dow=[m (3= 5.0)] 0y o) (73)
M l—a {+1—a
(w0 (a0
(+5 2 2
- N ~ N N+2
><F<—M+—|—€,M—|—€—|—;€+ i ;sinzx(t)>, (7.9)
2 2 2 2
where riy(M — 8,¢) is given by eq. (3.3) with n replaced by M — &, while
z(t) (. z@®)\ V2 t ..t
cos —= = <s1n 5 > = cosh 5 + isinh 5 ) (7.10)

Note that Qggi)M)e = ng\;)g and Iﬁéa—)z\?[)e = —1&1(\.3)[ The condition ¢ < n does not hold for dSy.
Now £ can be any positive integer with £ > r.

For brevity, let us use again the shorthand notation introduced in egs. (6.9) (for N
even) and (6.28) (for N odd). For N even, we denote the analytically continued STSSH’s

as \IIE\%U;Mzm;p) (t,0n_1) (where o = + is the spin projection index on dSy, while m < ¢

and £ =7, r+1,...). We define the modes \Ilg\lf;g;Mem;p) by making the replacements (7.5)

in the STSSH’s w(j\;gmzm;p) on SV, as

.o Nl ~ N -1 B;oi(M—N/2) tm; .
\11555 MO (1 Gy _y) = [F&qs <M - 27£>:| 1/1£Nr( /2 p)(ﬂ/z —it,On-1) (7.11)

- -1
where [/% (M - %,6)} is essentially the factor used in egs. (7.6) and (7.8) [it is used

in order to cancel the normalisation factor (3.3) of the Jacobi polynomials]. Note that,
(B;osntm;p)

by viewing the replacement 65 — Z — it as a coordinate change, we find that w_eN

2

transforms as B
B:o;nbm; . B;o;(M—N/2) fm;
1/}(_ ;05mdm;p) Z@ZJE ( /2) P)'
On t

(B;o;ntm;p)

. . B . Z .
Similarly, ¥4 5 and 1/1(_9’;@7; ™) transform as

(B;o;ntm;p) (B§0'§(M_N/2) Zm;p)
1/}—9]\79]\] - _¢7tt
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and .
(B;U;(M—N/Z) Zm;p)

B;onlm;p .
1/)(_ ) -1 w_t 0]- I

On0;
respectively. i

For N odd, the analytically continued STSSH’s are denoted as \Ilg\%M&aN -1mip) (where
on—1=*x,m<{land {=r,r+1,..). They are obtained by analytically continuing the

STSSH’s ¢!/3 "1 (9, 5 _1) on SV, as

~ —1 -
\Ilgg;Me;UN_l;m;p) (tv BN—I) = |:H¢ (M - §7 €>:| Qb(,?\}(TM_Nﬂ) Z70N71,m,p) (7T/2 — ’it, 0N—1)-

T

(7.12)

Note that, unlike the case with N even [eq. (7.11)], the analytically continued STSSH’s
(7.12) have a spin projection index (ox_1) on S™V~! instead of a spin projection index on
dSn.

7.2 Pure gauge modes for the massless spin-3/2 and spin-5/2 theories

As in Minkowski spacetime, (strictly and partially) massless field theories in dSy are gauge
invariant [8]. In terms of mode solutions of the corresponding field equations, gauge in-
variance manifests itself through the appearance of ‘pure gauge’ modes in the set of mode
solutions. The ‘pure gauge’ modes do not describe propagating DoF of the field theory
and - assuming that there exists an invariant inner product for the mode solutions - these
modes have zero norm (see, e.g. Ref. [13]).

For later convenience, let us present the ‘pure gauge’ modes that appear among the
analytically continued STSSH’s of rank r (r = 1,2) when we tune the imaginary mass
parameter (M = iM) to the massless values M = & [r — T4 (N — 2)/2], where T =1, ., r
[see eq. (1.5)]. For each massless value of M, the analytically continued STSSH’s of rank r

SN ysed

with r—1 > 7 > 0 are ‘pure gauge’ modes, where 7 is the rank of the STSSH on
in the method of separation of variables (see Sections 4 and 5). In Section 8 we will verify
that our ‘pure gauge’ modes have zero norm associated to a spin(/V,1) invariant scalar
product for N even. We will also demonstrate that for NV odd there does not exist any
spin(NN, 1) invariant scalar product for the analytically continued STSSH’s with imaginary
mass parameter. Thus, for N odd the norm of the ‘pure gauge’ modes cannot be calculated
in a meaningful way, as there is no de Sitter invariant notion of norm.

Strictly massless spin-3/2 field. The mass parameter for the strictly massless spin-
3/2 field is given by M = iM = =+i(N — 2)/2 [this is found by letting » = T = 1 in
eq. (1.5)]. The analytically continued STSSH’s of type-I (7 = 0) are ‘pure gauge’ modes.
As demonstrated in Appendix G, the analytically continued rank-1 STSSH’s (7.11) of type-I
with M = (N — 2)/2 are expressed in a ‘pure gauge’ form as follows:

L(ENZ2)0 ) ‘
w0 0,050 = (9,2 5 ) A0 (7.13

where for brevity we use the symbol 7 to represent all the labels of the analytically continued

STSSH’s which have not been written down explicitly. The Dirac spinors Agf ) (t,0n-1)
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satisfy

WA@ = Fi g A@. (7.14)
The ‘pure gauge’ expression (7.13) for the type-I modes coincides with the form of the
infinitesimal gauge transformation [8] (with a specific gauge condition) that leaves invariant
the action for the strictly massless spin-3/2 field in dS4. In Section 8 we show that the
‘pure gauge’ modes (7.13) have vanishing dS invariant norm for even N > 4.
Strictly massless spin-5/2 field. The mass parameter for the strictly massless spin-5/2
field is given by M = iM = +iN/2 [this is found by letting 7 = 2 and T = 1 in eq. (1.5)].
There are two types of ‘pure gauge’ modes, namely the analytically continued STSSH’s of
type-I (7 = 0) and type-II (7 = 1). As demonstrated in Appendix G, the analytically
continued rank-2 STSSH’s (7.11) of type-I and type-II with M = +N/2 are expressed in
the following ‘pure gauge’ form:

B;(£&):¢ /) Bl
N o) = (vt o) Con. B=rm )

(59)

where the gauge functions A}/ (¢,0n-1) (B = I, II) are vector-spinor fields satisfying

Bl N+2 (BJ
v 5 . A (7.16)
NS O\ GO (7.17)

B¢ . . . .
The vector-spinors )\g: u ! (t,0n_1) are given by the analytic continuation of rank-1 STSSH’s

of type-B (B = I,1II) - see Appendix G. Note that the ‘pure gauge’ expressions (7.15) for
the type-I and type-II modes coincide with the form of the infinitesimal gauge transfor-
mation [8] (with a specific gauge condition) for the gauge-invariant action for the strictly
massless spin-5/2 field in dS4. In Section 8 we show that the ‘pure gauge’ modes (7.15)
have zero (dS invariant) norm for even N > 4.

Partially massless spin-5/2 field. The mass parameter for the partially massless spin-
5/2 field is given by M = iM = +i(N — 2)/2 [this is found by letting r = 2 and T = 2 in
eq. (1.5)]. The analytically continued STSSH’s of type-I (7 = 0) are ‘pure gauge’ modes. As
demonstrated in Appendix G, the analytically continued rank-2 STSSH’s (7.11) of type-I
with M = +(N — 2)/2 are expressed in a ‘pure gauge’ form as follows:

(£ N=2)0 . 3 l
‘wa( ’ ”(u On-1) = (v(qu) Ty V) + 49W> sog_u)(t, On-1), (7.18)
where the spinor modes cpgf) (t,0n_1) satisfy
‘ N+2 (¢
ol = =i o, (7.19)

2

In Section 8 we show that the ‘pure gauge’ modes (7.18) have zero (dS invariant) norm for
even N > 4. We note that we have not constructed a gauge-invariant action for the partially
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massless spin-5/2 field in dSy with infinitesimal gauge transformation of the form (7.18).
However, we call the modes (7.18) ‘pure gauge’ modes because we expect that such an
action exists and that the expression (7.18) describes infinitesimal gauge transformations
(satisfying a specific gauge condition) for this action.

In Appendix G, we discuss the relation between our ‘pure gauge’ modes (7.18) and the
gauge transformation of the partially massless spin-5/2 field in dSy given in Ref. [8]. More
specifically, we observe the following intriguing fact: for a specific choice for the spinor
gauge function in the gauge transformation used in Ref. [8], the gamma-traceless part of
this gauge transformation can be expressed in our ‘pure gauge’ form (7.18).

8 (Non)unitarity of the massless representations of spin(/N, 1) formed by
the analytically continued rank-1 and rank-2 STSSH’s

For each value of the imaginary mass parameter M = iM in eq. (1.3), the TT tensor-
spinor mode solutions (i.e. the analytically continued STSSH’s) form a representation of
spin(N, 1). If one introduces a dS invariant scalar product among the analytically continued
STSSH’s, then the unitarity of the representation is equivalent to the positive-definiteness
of the associated norm. If there is no dS invariant scalar product, then the corresponding
representation of spin(N, 1) is, by definition, not unitary.

In this Section we prove statements 1, 2 and 3 presented in the Introduction, which
give rise to the main result of our paper (which we mention here again for convenience):
the strictly massless spin-3/2 field theory and the strictly and partially massless spin-5/2
field theories on dSy (N > 3) are unitary only for N = 4.

8.1 The massless spin-3/2 and spin-5/2 representations of spin(/N,1) are non-
unitary for even N > 4

In this Subsection, we show that the representations of spin(/N, 1) with even N > 4 formed
by the spin-3/2 and spin-5/2 TT mode solutions of eq. (1.3) with arbitrary imaginary mass
parameter M = iM (M # 0) are non-unitary (i.e. we prove statement 1). In order to arrive
at this result we study the transformation properties of our analytically continued STSSH’s
under a spin(N, 1) boost and then we investigate the positive-definiteness (or indefiniteness)
of the norm associated to a dS invariant scalar product for even N > 4. (In this Subsection
we work without specifying the form of the dS invariant scalar product.) We also find
that for N = 4 the requirement for dS invariance of the scalar product does not imply the
indefiniteness of the norm if and only if the mass parameter M is tuned to the massless
values (1.5). Furthermore, for N = 4 and M given by eq. (1.5), we show that the TT modes
are divided into two spin(4, 1) invariant subspaces, denoted as #~ and " (where each
subspace contains modes with definite helicity). The positivity of the norm in each of these
subspaces is shown in Subsection 8.2 by calculating explicitly the norms of the eigenmodes
with respect to a specific dS invariant scalar product. (In Subsection 8.2 we also verify the
results obtained in the present Subsection for even N > 4 by explicit calculation of the
norms of the eigenmodes with arbitrary imaginary mass parameter M = iM # 0.)
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The analytic continuation techniques introduced in Section 7 can also be applied to the
transformation properties of the STSSH’s under spin(/N + 1). By doing so, one obtains the
transformation properties of the analytically continued STSSH’s on dSy under spin(N, 1).
Let us make the replacement (7.1) in the Killing vector .## [eq. (6.6)] on S™. One finds
that the analytically continued version of #* is expressed as ¢ X*, where X* is the following
boost generator of spin(V, 1):

0 0
XH 0, = costn_1 5 tanht sinOy_1 FTI (8.1)
The de Sitter algebra spin(N, 1) is generated by the de Sitter boost (8.1) and the generators

of spin(NV).
By making the replacements (7.5) in the spin(/N + 1) transformation formulae (6.10),
(6.15) and (6.22) [and using eq. (7.11)], we find

LX\II%;TJ;Mem;p) = —icy D \Ij%;ra;]\z(e—i-l)m%f?) _ C(Z 1)%(1) \IJ(I;TU;M(Z—I)WNP)
_ D \I,%;T—U;Mfm;p) _ i) @%—I;U;MKWP)’ (8.2)
LX\I,(%-TI;J;MZW;/?) _ ic(g)d(lj) ‘I,(UT-I;U;M(EH)WP) . C(Z ; D) \I,(UT-I;U;M(K—l)m;p)

_ %(H)\pggr-f oM Emip) _ o o (11-41) gy (LM bmip)

T

_ i) \P%—I;U;Mém;p) (8.3)
(r=1,2,) and
II-T;0;Mémsp) . I HI-I;0;M (£+1) m; i I II-T;0;:M (£—1) m;
LX\I}LU& oiMemip) — ZC(K)JZ{( )\Il/(um oM (E1ymip) _ m‘%( )\Ijgtluz oM (1) mig)
_ %(III) @L€I£—2I;—U;Mfm;p) _ i(%/(IH—ﬂI) \I,/(JJIlIl—LIQ;o;MZm;p)’ (84)

respectively, with

_ n¢(M~—%,£+1) _M-t-F
ko(M — . 0) (+N/2

(o) (8.5)
where k4(M — N/2,0) is found by eq. (3.3) and Lx is the Lie-Lorentz derivative (6.1) on
dSy. The coefficients o7 (B), BB) 3B) (with B = I, II, IIT), ¢’ =10 g (H=1) sy (T—~1IT)
and # (=1 are found by making the replacement n — M — N/2 in the corresponding
expressions for the coefficients of STSSH’s on S¥ [see egs. (6.10), (6.15) and (6.22)]. Note
that we use the same symbols to represent the coefficients in the transformation formulae
on SV and the analytically continued coefficients on dSy.

Let <\IJ(1),\II(2)>(T) be a spin(V,1) invariant scalar product for any two analytically
continued rank-r STSSH’s \Ilg\lf)r, \I’S\Z,)T (r = 1,2) with imaginary mass parameter M = iM
(M # 0). Due to the spin(N, 1) invariance of the scalar product we have

(Lew®, w®) 4 (WO Lew®) =0 (8.6)
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for any Killing vector £ on dSy. Then, by letting \Ilg\lr)r = \IIE\%_;MEW’)) and \IIE\Q,)T =
WM (with B = I,11-I, III-) in eq. (8.6) with € = X and using the transformation
formulae (8.2)-(8.4), we find that the norms of eigenmodes with opposite spin projections

must satisfy:

PRV <<\p(1;—;Mﬁm;p)’ \p(l;—;Mfm;p)>(T) + (w+Mbmip) @(I;+;M€m;p)>(T)) =0, (8.7)

LA (<\1,(H-1;—;Mem;p), \I,(II-I;—;Mzm;p)>(T)

+ <\II(II-I;—i—;]\7[€771;/))7 \II([[-I;+;J\;[fm§P)>(T) ) =0, (88)

L) <<\IJ(III—I;—;]\~4€m;p), \I,(IH—I;—;MZm;p)> )

+ <\I/(III—I;-i—;]\?[&n;p)7 \I/(III—I;+;M€m;p)>(T)> —0. (8.9)

Note that, since the scalar product is also spin(/N) invariant, analytically continued STSSH’s
of different type or/and with different values for ¢ are orthogonal to each other because
they correspond to inequivalent irreducible representations of spin(/N) in the decomposition
spin(N, 1) D spin(N). For convenience, we give here the explicit form of the analytically
continued coefficients (D [eq. (6.13)], 5D [eq. (6.18)] and »D [eq. (6.25)]:

o Mm ME)(N tor - 2) .
b 2(0+ T‘2§(£+%)(N—2) (r=1,2), (8.10)
e M(m+;2)N—4) N 42\ ! o
v 2(¢+ ¥)(Z+ (N -2) . < N > (r=1,2), (8.11)
1(m -+ 272)(N —4)
L — |
. 2(0 + %2)(5 + N (8.12)

leq. (8.12) is relevant only for spin-5/2 modes, i.e. only for r = 2|. We also give the
explicit form of the analytically continued coefficients 2 /=) [eq. (6.14)] and ¢ (H—=1D)

leq. (6.21)]:

4(M2_(N—2)2/4>(N+r—2) \/N3 mm + N —2)

AU = 0+ N —1)(N —2) N 2@snetn-2 =L
(8.13)

. (02 = N?A) (N+1) [N 2 m—Dm+N-1)
A (B (EWaT X\/ N ginN-1) &9
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where eq. (8.14) is relevant only for r = 2. The analytically continued coefficients ¢ (=1

and ¢ I=1D) are given by the same expressions as the coefficients on SV, i.e. egs. (6.20)
and (6.26), respectively.

Let us first discuss the case with even N > 4, where ), D) and ) are all non-
zero (for all M # 0). The representation can be unitary only if eqs. (8.7)-(8.9) are consistent
with the positive-definiteness of the norm. However, it is clear from eqs. (8.7)-(8.9) that
the norm of the modes ‘Ilg\%_;Mém;p) is opposite of the norm of the modes \Ilg\]?f;Mem;p)
(B =1I,1I-1,1II-1) for all M # 0. Hence, for even N > 4, there are negative-norm modes
for all values of M # 0, unless all modes have zero norm. (Not all modes could have zero

norm if the field were to describe a physical particle.) Thus, we have proved statement 1.

Before discussing the case with N = 4, we can show that the ‘pure gauge’ modes
(discussed in Subsection 7.2), which appear among the TT mode solutions in the massless
theories, have zero norm with respect to any dS invariant scalar product for even N > 4,
as follows [28]. For the strictly massless spin-3/2 theory (r = T = 1), as well as for the par-
tially massless spin-5/2 theory (r = T = 2), the mass parameter is M? = (N — 2)2/4
[see eq. (1.5)], while the type-I modes are ‘pure gauge’ modes. We observe that the

coefficient # =1 |eq. (8.13)] vanishes for M? = (N — 2)2/4 (with » = 1,2). Then,

o N=2 . T (+N=2 .
by letting \Ilgi,)r = \II%;J’& 7)emip) and \Ilgf,)r = \IIS\Z Lo 552 tmip) in eq. (8.6) with

¢ = X and using the transformation formulae (8.2) and (8.3), we straightforwardly find
<\P(1;”;(i¥)zm?”),@UW?HE#)ZW”)NT) = 0 (with » = 1,2), i.e. the type-I modes have
zero norm for even N > 4. For the strictly massless spin-5/2 theory (r = 1+ 1 = 2)
the mass parameter is M2 = N2/4 [see eq. (1.5)], while both type-I and type-II modes

are ‘pure gauge’ modes. For this value of M? the coefficient ¢ (=) [eq. (8.14)] van-
o (N Vo Lo (£ X o

ishes. By letting \Ilg\li)T = \I/L(L{I,é’a’(iﬂzm’p) and \Ilg\zj)r = \I/,(l{ZQI’U’(iQ)Em’p) in eq. (8.6)

with £ = X and using the transformation formulae (8.3) (with » = 2) and (8.4), we find

o (N e
<\IJ(H-I;U;(i%)€m;p)7W([I-I;o’;(i%)@m;pb(rzm — 0. Then, by letting \Ilgir)T _ W}(L{ZLLQ’(:‘:Q)Z ,P)

Loy (N Vom:
and \Ifsf,)T = \Ill(fuj (&3 mip) in eq. (8.6) with £ = X and using the transformation formu-
lae (8.2) (with r = 2) and (8.3) (with r = 2), we find <\P(I;U;(i%)em”’), \P(I;g;(i%)em;p)hr:m =

0. Thus, in the strictly massless spin-5/2 theory the ‘pure gauge’ modes have zero norm
for even N > 4.

Let us now discuss the case with N = 4. First, we show that if N = 4, then the dS
invariance of the scalar product (8.6) (with £ = X)) for the analytically continued STSSH’s
with imaginary mass parameter M = iM = 0 does not require indefiniteness of the norm
if and only if M is tuned to the massless values (1.5). This can be shown as follows. For
N = 4 egs. (8.8) and (8.9) are trivial due to the vanishing of () [eq. (8.11)] and (/D)
leq. (8.12)], respectively. It is clear that if eq. (8.7) is not trivial, then the indefiniteness
of the norm can not be avoided. Equation (8.7) becomes trivial if we tune M to the
strictly /partially massless values (1.5) because for this value of M the type-I modes are
pure gauge (i.e. zero-norm modes). Hence, for N = 4 the dS invariance of the scalar
product does not require the indefiniteness of the norm for the massless theories with spin
s € {3/2,5/2}. Note that, since »D and ) are zero, the (non-zero-norm) eigenmodes
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with negative spin projection do not mix with the eigenmodes with positive spin projection
under the spin(4, 1) boost in egs. (8.3) and (8.4). We have also verified that (non-zero-norm)
eigenmodes with different spin projections on dS4 do not mix each other under spin(4).

According to our analysis in the previous paragraph, in the case of massless theories
with spin s =r+1/2 (r € {1,2}) on dS4, we conclude the following:

e The set #~ = {\Ilg\%_;M&ﬁ ) } of (non-zero-norm) TT eigenmodes with negative spin
projection forms an irreducible representation of spin(4,1).

e The set #T = {Wg@ﬂM&ﬁ) } of (non-zero-norm) TT eigenmodes with positive spin
projection forms separately an irreducible representation of spin(4,1).

The two sets of eigenmodes, S+ and ., form a direct sum of irreducible representa-
tions of spin(4,1). In Subsection 8.2 we are going to show that these irreducible repre-
sentations are unitary by demonstrating the positivity of the norm in each subspace. |As
we demonstrate in Appendix A, this is a direct sum of Discrete Series representations of
spin(4, 1).] Note that zero-norm modes (i.e. ‘pure gauge’ modes) transform only into zero-
norm modes under spin(4, 1) and they can be identified with zero, since, as we discussed
above, the coefficient (8.13) (in the transformation formula (8.2) with r € {1,2}) vanishes
for M? = (N — 2)?/4, while the coefficient (8.14) (in the transformation formula (8.3)
with 7 = 2) vanishes for M? = N?/4. For the strictly massless spin-3/2 theory (r = T =1,
M? = (N —2)%/4) and the partially massless spin-5/2 theory (r = T = 2, M? = (N —2)%/4),
where the type-I modes have zero norm, the action of spin(4,1) is defined on equivalence
classes of the TT modes contained in J#° (0 = %) with the equivalence relation

(Bios(=552)60) @(B;a;(i¥)€;ﬁ) n q/(l;a’;(i%)f’;ﬁ')

\I/NT N, N,

(with B = II-T for r = 1 and B = II-I, III-T for r = 2), where #8777 ¢ apy
type-I mode, i.e. the labels ¢/, ¢ and p’ are no necessarily equal to o,/ and p, respectively.
For the strictly massless spin-5/2 theory (r = T+ 1 = 2, M? = N?/4), where both type-
I and type-II-I modes have zero norm, the action of spin(4, 1) is defined on equivalence
classes of type-III-I modes in 7 (o = +) with the equivalence relation

(HI-Iio; (£ 5 6:5) (II-Iios (£ 5)6:5)

PG
\Iluluz ~ \Iluluz + \P£L1u2)=

where \I/,(ff,%) is any (finite or infinite) linear combination of type-I and type-II modes.

For the strictly massless theories with spin s € {3/2,5/2} on dSy, the set J~ is
identified with the set of states with ‘negative helicity’ (—s), while the set s is identified
with the set of states with ‘positive helicity’ (+s). This can be understood as follows. As
in Ref. [29], let us introduce the helicity operator égiej O @gj, where €p,9,0, is the invariant
3-form on S3 (i,7,k € {1,2,3}). For the strictly massless spin-3/2 theory on dSy, where

o Bio;s MU;p -Loy(£1)6p
o — {‘Ijgvl p)}: {‘If,(f[ I; ,(:I:l)ﬁ,p)},

13This situation is analogous to the case of the strictly massless spin-2 field in dSy [29], where self-dual
and anti-self-dual modes correspond to different irreducible representations of SO(4).
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it can readily be shown that eigenmodes with different spin projections belong to different
eigenspaces of the helicity operator, as

x ekv ‘IJ(HIU(il)Z 7 %ngl-l;a;(il)é;ﬁ) o <£+ Z) ‘lléfl-l;a;(il)f;ﬁ). (8.15)

(This equation can be readily proved using the fact that €0,0,0, X V0,00, Where Jg,0.0,
is the third-rank gamma matrix on S% which is given by the anti-symmetrised product of
three gamma matrices Jg,9,0, = 7j9,70,79,] - see e.g. Ref. [30].) Similarly, for the strictly
massless spin-5/2 theory on dSy4, where

{‘IIBUMﬁp)} {leHIIm(:I:Q)Ep)},

it can readily be shown that

~ 0;0 ;05 Ho 3 0
&, %, \I'éféf (£2)6:5) W\I,((fgf (£2)65) _ (£+2> ‘l’élgl (£2)67) (8.16)

In the case of the partially massless spin-5/2 field on dSy, where

(B;o; M o - o e
{\1, iP) = {‘1’55 Lioi(#1)67) \ijgf Loi(+167)

the helicity operator can not be defined in the same way. However, it is natural to identify
A~ with the set of states with helicities (—5/2, —3/2) and 2+ with the set of states with
helicities (+5/2,+3/2).

Below we choose a specific dS invariant scalar product for the analytically continued
STSSH’s with imaginary mass parameter. By calculating the associated norms of the modes
we will verify the non-unitarity of the spin(V, 1) representations for even N > 4 for arbitrary
imaginary mass parameter M = iM (M # 0). Also, in the case of massless theories on
dSy4, we will show that each of the spin(4, 1) invariant subspaces, = and 1, separately
forms a unitary representation of spin(4,1) (and, thus, we have a direct sum of UIR’s of

spin(4, 1)).

8.2 Massless spin-3/2 and spin-5/2 representations of spin(N,1) for N even:
norms of the eigenmodes

In this Subsection, by calculating the norms of the analytically continued STSSH’s explicitly,
we show that the representations of spin(/N,1) (even N > 4) formed by the spin-3/2 and
spin-5/2 TT mode solutions of eq. (1.3) with arbitrary imaginary mass parameter M = iM
(M # 0) are non-unitary, unless the following two conditions hold at the same time: i)
N =4 and ii) M is tuned to the massless values (1.5). For N = 4, we show that the TT
modes in the massless theories form a direct sum of UIR’s of spin(4, 1). In other words, in
the present Subsection we verify the results of Subsection 8.1 for even N > 4 and we prove
statement 2.

Let \I',(}I) - and \11,821) - be any two analytically continued STSSH’s [satisfying egs. (1.3)
and (1.4)] with the same imaginary mass parameter M = iM (M # 0) on dSy (N even).
The (axial) vector current

T =T N @pr (8.17)
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is covariantly conserved [28], where @Sl) gy = i\IJ;(}l),T,MT'yO and we used the fact that gamma

matrices are covariantly constant. Then, the scalar product

(@M, w2y :/SN1 V—=gdOy_1 J° (8.18)

is time independent, where d@y_1 stands for dfy dfs...d0_1, while g is the determinant of
the de Sitter metric. This scalar product is equivalently written as

(@0, w®) =coshN 1t - Vdoy_ UNT AN @ (8.19)
where we used (7°)? = —1, as well as
v—g = cosh™ 1t ./3, (8.20)

while /g is given by eq. (2.24).
Now let us show that the scalar product (8.19) is de Sitter invariant. Let £* be a Killing
vector of dSy satisfying

V,ugu + vug,u =0. (821)

The infinitesimal change d¢J# of the current (8.17) under the spin(N, 1) transformation
generated by &* is described by the Lie derivative

eV = LeJM = €V, JH — JVV 0
=V, (6 J* — Jven), (8.22)

where we used V,J# =V ,£# = 0. Then, it is straightforward to find

1

0eJV = 0,
N

[V=g(&%° — J%£%)], (8.23)

where k = 1,..., N — 1. By integrating eq. (8.23) over SN¥~! we find that the scalar prod-
uct (8.19) is de Sitter invariant, as

5 (U, ¥y = / dOn—1+/—gd:J° = 0. (8.24)
SN-1

It is possible to calculate the norms of the analytically continued STSSH’s of ranks 1
and 2 [the analytically continued STSSH’s are defined by eq. (7.11)| using the de Sitter
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invariant scalar product (8.19). We find in this manner

<\II(B;U;]\7[€;,5),\II(B’;J’;MZ’;ﬁ’)>(T) _ (—U) > < r ) 2N+2r—1—4f<3)

"(B)
T+ )P
T+ Y+mre+ Y-
y = ON+2 -1
N+j+7rp —2
=i +7+ ’I“(B)
y r—1 1
AL (l—j)l+N—-1+7)
J=T(B)
T—7(B) 2
~ N -2
X {—M2 + (7" —j + 2) } 5001535/(515,5/
j=1

(8.25)

for r € {1,2} and B = I,II, Il (where 0 = &, M € R\ {0}, F(g) < 7, while 7(;) = 0,
Fry = 1 and 7y = 2). The norms of type-I and type-II spin-3/2 modes, as well as
the norms of type-II and type-IIT spin-5/2 modes, can be determined by direct calculation
using the time-independence of the scalar product (8.19). The calculations are simplified
by using

T+ Y anre+ X —any (8.26)

2 ~a 2 2N+2a—1 ’F(f—i— Q)|2
- [0 @ =0) :

[This equation can readily be proved using egs. (B.7) and (B.8).] Once the norms of type-II
and type-III spin-5/2 modes have been calculated, the norm of the type-I spin-5/2 modes is
readily found using the dS invariance (8.6) of the inner product between type-I and type-IT
modes (by making use of the transformation formulae (8.2) and (8.3)).

As a consistency check, by using our result for the norms (8.25) of the eigenmodes
with spin s € {3/2,5/2}, we can reproduce the strictly/partially massless tunings (1.5)
for the imaginary mass parameter as follows. For » = 1 (spin-3/2 field), we find that the
norm (8.25) of type-I modes ((;) = 0) becomes zero if M? = (N — 2)?/4, corresponding
to the strictly massless spin-3/2 theory. For r = 2 (spin-5/2 field), we find that both
type-I (7(y) = 0) and type-II (77 = 1) modes have zero norm (8.25) for M? = N?/4,
corresponding to the strictly massless spin-5/2 theory. Finally, for r = 2, we find that
type-I (7() = 0) modes have zero norm (8.25) for M? = (N — 2)%/4, corresponding to the
partially massless spin-5/2 theory.

We observe that the sign of the norm (8.25) depends on the sign of the spin projection
index 0 = =+, as expected from the dS invariance of the scalar product (8.7)-(8.9). Thus,
it is easy to understand that representations of spin(N,1) with spin s € {3/2,5/2} and
arbitrary imaginary mass parameter M = iM # 0 are non-unitary for even N > 4, since
positive-norm and negative-norm modes mix with each other under spin(N, 1) [see the trans-

— 40 —



formation formulae (8.3) and (8.4)]. Similarly, we find that for N = 4 the representations
of spin(4,1) are not unitary if M is not given by the massless values in eq. (1.5).

Now, let us suppose that the following two conditions are satisfied at the same time:
i) N = 4 and ii) the imaginary mass parameter is tuned to the massless values (1.5).
According to our discussion for the N = 4 case in Subsection 8.1, each of the solution
subspaces, '~ and T, forms separately an irreducible representation of spin(4,1) with
spin s =7+ 1/2 (r € {1,2}). (The ‘pure gauge’ modes are identified with zero in each
subspace.) We can show that the subspaces 2~ and 1 form a direct sum of UIR’s of
spin(4,1) as follows. By observing that the norms (8.25) of the eigenmodes depend on the
spin projection, we have:

e For the set of eigenmodes with negative spin projection (or negative helicity) '~ =
{\Ils\%_;M&p ) }, the positive-definite inner product is

(B;—; ML) jy(B'3—;ML'55")
(v P p >(r)

— cosh® # / \/§d03 ‘I/L?f.._,jfm;ﬁ” 75 @(B’;—;Mf’;ﬁ’)m..-ur
53

The explicit expression for the positive-definite norm is given by eq. (8.25).

e For the set of eigenmodes with positive spin projection (or positive helicity) # =
"5 the positive-definite inner product is
WM Y the positive-definit duct
— (UBHMED) (Bt MR -
The explicit expression for the positive-definite norm is given by the negative of
eq. (8.25).

8.3 The massless spin-3/2 and spin-5/2 representations of spin(/N, 1) are non-
unitary for N odd

In this Subsection, we show that the massless field theories with spin s € {3/2,5/2} on
dSn (N odd) are not unitary (i.e. we prove statement 3).

As in the case with NV even, we study the transformation properties of the analytically
continued STSSH’s under the de Sitter boost (8.1). By making the replacements (7.5) in
the spin(N + 1) transformation formulae (6.29), (6.30) and (6.31) [and using eq. (7.12)], we
find

LX\II%;TME;UN_I;m;p) = —icq /D \I’S\IJTM (E+H1)ion—15mip) _ (:(Zl)%(f) \IIS\I]TM (E=1);0n—1;m;p)
— oy #0 \IIS\IJ;M&UNﬂ;m;p) — i U= \PE{,IT_I;M&JNA;WP), (8.27)
LX‘II(%;EM&O’N—UTTL?P) - _ ic(g);a%(ﬂ) \I,%—I;M (04+1);0 5 _13m5p)
_ L@(II) \IJ(II-I;]\ZI (t=1)ion—1;mip)
SN %(H)\IIE‘IJI_I;M&UN_IWW) — o =) \P%?Mf;aw_um;p)
_ Z'%(H—UH) \Ijg\I]IrI—I;MZ;UNA;m;P) (8'28)
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(r=1,2,) and

(II-I; MU0 N —13m;p)

IL’X\I/,UIMZ
— —icy sy ‘III(LIIIL-QI;M(£+1)§O'N—1§m§P) R ) \I,l(ﬂ-QI;M (=1);0n—1;m5p)
C(e-1)
— %(HI)\I,LIIIL—QI;M&UNa;m;p) _ i1 \Ilﬁtllll—é;l\ﬂ;awa;m;p)’ (8.29)

respectively, where all the coefficients on the right-hand sides of egs. (8.27)-(8.29) are the
same as the coefficients used in the case with N even [see egs. (8.2)-(8.4)].

Now, we will show that the representations of spin(V, 1) (N odd) formed by the spin-3/2
and spin-5/2 T'T mode solutions of eq. (1.3) are non-unitary for all values of the imaginary
mass parameter M = iM (M # 0). Let (¥ W) be a dS invariant scalar product for any
two analytically continued STSSH’s (1), W) [satisfying eqs. (1.3) and (1.4)] with M = iM

and M # 0. We will show that this scalar product must vanish for all eigenmodes. First, let
(B; MU0 N —15m3p)
N,

given by eqs. (8.27)-(8.29), always give rise to a term of the form »(5) \IIE\%M&UN‘“W’J) in
the linear combination on the right-hand sides of each of eqs. (8.27)-(8.29). The coefficients

2D 5D and 31D are given by egs. (8.10), (8.11) and (8.12), respectively, and they are

us make the following observation. The infinitesimal transformations L x W

all non-zero for N odd. Thus, by combining the dS invariance of the scalar product:

<LX\I;(B;M€;0N71;m;p)’ Q(B;M€;0N71;m;p)> + <\I}(B§M&0’N—l§mm)’]LX\I](B§MZ§UN—1§m§p)> -0
(8.30)
with the transformation formulae (8.27)-(8.29), we find
<\I/(B§MZ;UN—1;W;P)7 \I,(B;Mf;azvfum;p» -0 (8.31)

for B = I,II-I, ITI-I and for all M = 0. Then, since the eigenmodes with different labels
are orthogonal, we conclude that there is no dS invariant scalar product (which is not
identically zero).

9 Summary and discussions

In this paper, we showed that the strictly massless spin-3/2 field (i.e. gravitino field) theory,
as well as the strictly and partially massless spin-5/2 field theories on dSy (N > 3) are
unitary only in N = 4 dimensions. In order to arrive at this result, we studied the group-
theoretic properties of the eigenmodes for the following field theories with imaginary mass
parameter on dSy (N > 3): the vector-spinor field and the symmetric rank-2 tensor-spinor
field. The corresponding eigenmodes satisfy eq. (1.3) with M = iM (M # 0) and the
TT conditions (1.4). These eigenmodes were obtained by analytically continuing STSSH’s
on SN. The transformation properties of these eigenmodes under a spin(N, 1) boost were
studied. By using these transformation properties, we showed that all dS invariant scalar
products for even N > 4 are indefinite. We also showed that all dS invariant scalar products
must vanish identically for odd N. It was found that dS invariant scalar products that are
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positive-definite are allowed only for strictly and partially massless theories in N = 4
dimensions (and, thus, these theories are unitary). Also, for these unitary spin-s (s €
{3/2,5/2}) theories in dS4, we showed that eigenmodes with positive helicity and the ones
with negative helicity separately form UIR’s of spin(4,1). All the results mentioned in this
paragraph are summarised as statements 1, 2 and 3 in the Introduction.

In Appendix A, we verify our main result by using the known classification of the UIR’s
of spin(N, 1). Also, our analysis in Appendix A suggests that the (strictly and partially)
massless totally symmetric tensor-spinor fields with arbitrary half-odd-integer spin s > 7/2
on dSy (N > 3) are unitary only for N = 4. It would be interesting to verify this by
studying the group-theoretic properties of the corresponding eigenmodes, as we did in the
present paper for the spin-3/2 and spin-5/2 fields.

It would also be interesting to investigate whether our result about the non-unitarity
of the gauge-invariant spin-3/2 and spin-5/2 theories on dSy for N # 4 could be extended
to other N-dimensional vacuum spacetimes with positive cosmological constant. As an ar-
gument pointing towards the possible generalisation of our result, we would like to mention
the forbidden mass range for the symmetric spin-2 field on dSy [13, 31]. The forbidden mass
range for the symmetric spin-2 field on dSy was explained group-theoretically in Ref. [13]
and it was first observed for dSy in Ref. [31]. However, it was later shown that the forbid-
den mass range exists in all 4-dimensional vacuum spacetimes with positive cosmological
constant [32].
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A Interpretation of the main result in terms of the classification of the
Unitary Irreducible Representations of spin(N, 1)

In this Appendix, we verify the main result of this paper by using the classification of the
Unitary Irreducible Representations (UIR’s) of spin(N, 1) (N > 3) given by Ottoson [19]
and Schwarz |20] (see also Refs. [33-35]). More specifically, we will demonstrate that there
are no UIR’s of spin(NN, 1) that correspond to the strictly massless spin-3/2 field and to the
strictly and partially massless spin-5/2 fields on dSy for N # 4. Then, for N = 4, we will
identify the UIR’s of spin(4,1) that correspond to the unitary strictly massless spin-3/2
field and to the unitary strictly and partially massless spin-5/2 fields on dSs (these UIR’s
have also been identified in Ref. [36]). For the sake of completeness, we also identify the
UIR’s of spin(N, 1) (IV > 3) that correspond to spin-3/2 and spin-5/2 fields with real mass
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parameter M on dSy. The identification of the UIR’s of spin(NV, 1) that correspond to
massive and massless totally symmetric tensors of arbitrary rank on dSy has been given
in Ref. [15]. More recently, a field theoretic interpretation of the UIR’s of spin(N, 1) for
totally symmetric and mixed-symmetry tensor (and tensor-spinor) fields on dSy was given
in Ref. [16]. However, as mentioned in the Introduction, we disagree with the claims made
in Ref. [16] about the unitarity of the gauge-invariant symmetric tensor-spinor fields for
N #£4.

Below, we begin by reviewing the classification of the UIR’s by Ottoson [19] and
Schwarz [20]. Then, we will use this classification to verify the main result of the present
paper: ‘the strictly massless spin-3/2 field theory and the strictly and partially massless
spin-5/2 field theories on dSy are unitary only in N = 4 dimensions’.

Ottoson [19] and Schwarz [20] have obtained the UIR’s of spin(V, 1) in the decompo-
sition spin(N, 1) D spin(N).'* Under this decomposition, an irreducible representation of
spin(/N) appears at most once in a UIR of spin(N, 1) [37]. The case with N = 2p and the
case with N = 2p + 1, where p is a positive integer, are studied separately.

It is well known that a representation of spin(2p) or spin(2p + 1) is labelled by the
highest weight of the representation [25, 26|, denoted here as [f] = (f1, f2, ..., fp), where

fizfa> > foo1 > |1l for spin(2p) (A1)
fizfa>.>fpo12>f, >0  forspin(2p+1). (A2)

The label f, can be negative for spin(2p). The labels f; (j = 1,...,p) in egs. (A.1) and
(A.2) are all integers or all half-odd integers.

A.1 Classification of the UIR’s of spin(/V,1)

We adopt the notation for the labels of the UIR’s that was used by Higuchi in Ref. [15].
UIR’s of spin(2p, 1). A UIR of spin(2p, 1) (p = N/2 > 2) is labelled by the set of numbers
[F| = (Fo, F1, ..., Fp—1). The labels Fi, ..., Fj,_ satisfy

F>F>..>F_ >0 (A.3)

and they are all integers or all half-odd integers at the same time. A representation
(f1,..., fp) of spin(2p) that is contained in the UIR (Fy, F1, ..., Fj—1) satisfies

H2>2F1>f>F> .. 2> f1 > Fo1 2 fp (A4)

As an alternative to the decomposition SO(N,1) D SO(N) (or Spin(N,1) D Spin(N)), the UIR’s
of the group SO(N,1) can be obtained by making use of the theory of induced representations for the
parabolic subgroup of SO(N, 1), as in Refs. [16, 26]. This approach is suitable for applications to Conformal
Quantum Field theory in RY !, where the conformal group is SO(N, 1) [26]. Also, this approach is related
to realisations of the dS/CFT correspondence between field representations on dSx (like the ones studied
in the present paper) and conformal fields in RN ™! [14]. In this classification, each UIR of SO(N,1) is
labelled by the highest weight of SO(N — 1) (encoding the spin of the field in dSw, as well as the spin of the
corresponding conformal field in RV 1) and a “conformal weight” A, € C which is the weight for SO(1, 1)
(see Ref. [16] for more details). The conformal weight can be expressed in terms of the mass parameter of
the field in dSn [14, 16].
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Ottoson’s labels [19] and our labels are related to each other by [15]:

f] = lprl,j +.] —p (] = 17 "'ap)a (A5a>
Fj :l2p7j +75—p (j:L...,p—l), (A.5b)
FO = lgp’p —D- (A5C)

Schwarz’s labels [20] and our labels are related to each other by:

fj = M2pp—j+1 (j =1, "'7p)7 (AGa)
Fj = M2p+1,p—j (.] = 17 P 1)7 (A6b)
Fg = Z2p+1,p- (AGC)

The UIR’s of spin(2p,1) (p = N/2) are classified as follows:
e Principal Series Dpyin([F']) (Where [F] = (Fo, F1,..., Fp_1)) :

1 N -1

The labels F, Fy, ..., Fj,—1 are all integers or half-odd integers.

e Complementary Series Dcomp([F]) :

N -1 1 - - . . -
= —p—|—§ <Fy<—n (nisaninteger and 0 <n <p-—1).
If0<n<p—1,then Fsy1 = Fsqo = ... = F,_1 = 0 and F1, Fy, ..., F; are all positive
integers, while for the spin(2p) content we have frio = fiq3 = ... = f, = 0. If

n = p—1, then Fy, F», ..., F},_; are all positive integers. Our Complementary Series are
called Exceptional Series D(e;lap 1, ..., l2pp) in Ottoson’s classification [15, 19]. (Our
notation is related to Schwarz’s notation [20] as follows. The case with 0 <7 <p—1
corresponds to D¥ (M2p41 k41 -+ M2p+1,p—1; T2p+1,p), Where k is related to n by k = p—
n—1, while the case with 7 = p—1 corresponds to Do(m2p+1,1 e M2t 1 p—1; T2pp1.p)-)

e Exceptional Series Dex([F]) :
Fy=—-n (nisaninteger and 1 <n <p-—1).

Ifl1<n< p—1, then Fﬁ+1 = Fﬁ+2 = ... = I'p 1 = 0 and Fi, Fs, ..., F; are
all positive integers, while for the spin(2p) content we have fr11 = faye = ... =
fp =0 Ifn=p-—1, then Fy,F,..., F,_1 are all positive integers, while f, = 0.
Our Exceptional Series is called Supplementary Series D(s;lop 1, ..., l2pp) in Ottoson’s
classification [15, 19]. (Our notation is related to Schwarz’s notation [20] as follows.
The case with 1 < n < p — 1 corresponds to Dk(m2p+1,k+1 e M2l p—15 M2pt1,p) s
where k is related to n by £k = p — n — 1, while the case with n = p — 1 corresponds

to Do(m2p+1,1 e M2p+1p—15 M2p41,p)-)
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e Discrete Series D¥([F]) : F is real and it is an integer or half-odd integer at the
same time as the labels Fy, Fy, ..., Fj,_1. Also, the following conditions have to be
satisfied:

Foa>fp>2F+p> for DT ([F]), (A.7)

1
2

Fya<fy<—(Fotp) <3 for D([F)). (A8)

Our Discrete Series D*([F]) are called Exceptional Series D(;1l2p,1, ..., l2pp) in Ot-
toson’s classification [15, 19]. Also, our Discrete Series D*([F]) correspond to

+ .
D= (mapi1,1 - Mapy1,p-1; M2p+1,p)
in Schwarz’s classification [20].

For a UIR of spin(2p,1) labelled by [F] = (Fy, F1, ..., Fp—1) - or by (lap1,l2p2; -, l2pp) I
Ottoson’s notation [19] - the quadratic Casimir Co([F1]) is expressed as

p—1 P
Co([F]) = kZOFk (Fp+2p—2k—1) = ; lopj(laps — 1) — p(p—l;(p—i—l)' (A.9)

UIR’s of spin(2p + 1,1). A UIR of spin(2p + 1,1) (p = (N — 1)/2) is labelled by [F] =
(Fo, F1, ..., Fp). The labels Fi, ..., F), satisfy

F>F>.>F>0 (A.10)

and they are all integers or all half-odd integers. A representation (fi, ..., fp) of spin(2p+1)
that is contained in the UIR (Fy, F1, ..., F},) satisfies

>R >f>F>..>f>F>0 (A.11)

Ottoson’s labels [19] and our labels are related to each other by [15]:

f] = lgpvj +j i Za 1 (] = 17 "'7p)’ (AlQa‘)
F] = lZerl,j +.] -p (] = 17 "'ap)a (A12b)
Fo = lop1p+1 — p, (A.12¢)

while Schwarz’s labels [20] and our labels are related to each other by:

fi=mopripj1 (G=1..p), (A.13a)
F] = M2p4+2,p—j+1 (] =1, "-7p)7 <A13b>
FO = Z22p+2,p+1- (A13C)

The UIR’s of spin(2p + 1,1) (where p = (N — 1)/2 > 1) are classified as follows:
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e Principal Series Dpyin([F]) (Where [F] = (Fo, Fi,..., Fp)) :
N -1
Fo=-p+iy= —T—i—iy (y € R).

The labels Fy, Fy, ..., I, are all integers or all half-odd integers. If F,, = 0, then the
UIR with Fy = —(N —1)/2+iy and the UIR with Fy = —(N —1)/2—1iy are equivalent
(and thus we can let y > 0).

e Complementary Series Dcomp([F]) :

N -1
g = —p< Fy<—n (nisaninteger and 0 <n < p—1),
while F511 = Frio = ... = F, = 0 and Fy, Iy, ..., I} are all positive integers, where
for the spin(2p + 1) content we have fiyo = fiys = ... = f, = 0. (Our Com-

plementary Series corresponds to D¥(mapyo ki1 ... Mapi2p; Tapr2pt1) in Schwarz’s
classification [20], where k is related to n by k = p — n.)

e Exceptional Series Dex([F]) :
Fy=—-n (nisaninteger and 1 <n <p-—1),

where Fy 11 = Frio = ... = Fj, = 0 and F1, Fy, ..., F; are all positive integers, where for
the spin(2p+1) content we have f; 1 = faye = ... = fp = 0. (Our Exceptional Series
corresponds to Dk(m2p+2’k+1 <. Mopt2p; Mapt2,p+1) i Schwarz’s classification [20],
where k is related to n by k =p —n1.)

For a UIR of spin(2p + 1, 1) labelled by [F] = (Fy, Fi, ..., Fp) - or by (lop41,15 -+, lopt1,p+1)
in Ottoson’s notation [19] - the quadratic Casimir Co([F]) is expressed as
’ P (AR ()
cb(wq)::2{%5}(5@-%2p-—2k)::;g;zmﬂld-— 2 . (A.14)

A.2 The quadratic Casimir for analytically continued STSSH’s and some useful
information for massless theories with spin s € {3/2,5/2}

The quadratic Casimir for the spin(NN, 1) representation formed by the analytically contin-
ued STSSH’s with imaginary mass parameter on dSy can be determined as follows.

N even. The STSSH’s of (arbitrary) rank r on SV satisfy eqs. (7.3) and (7.4). The
STSSH’s form a unitary representation of spin(/N + 1) labelled by the highest weight

/\ == ()\1, ceey >\N/2)

P (n=mrr+1,..)
=|n 2,7" 279" 5 n=rnr yoer)

The quadratic Casimir 65(\) for any spin(/N +1) (N even) representation \ is given by [26]

N/2
G =D N+ N-2+1). (A.15)
j=1
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By specialising to the spin(/N + 1) representation A = (n + %,r + %, %, e %) formed by
STSSH’s of rank r on SV, we find the quadratic Casimir from eq. (A.15) as

G2(N) = <n + ];7)2 —r— N(]\;_ D + e 2)§N —3) +s(s+ N —2) (A.16)
= — VIV, + (N_2)8(N_3) +s(s+N—2) (where s=r+1/2),
where in the second line we used that V#V,, acts on STSSH’s of rank 7 on SV as
VhY,, :W2+W+r.

Using the analytic continuation techniques discussed in Section 7, we can find the quadratic
Casimir for the representation of spin(/V, 1) formed by the analytically continued STSSH’s
with imaginary mass parameter M = iM on dSy. More specifically, by replacing n by
M — N/2 in eq. (A.16) we immediately find

N(N —1) N (N —=2)(N-3)
4 8

(s = r+1/2). If the analytically continued STSSH’s form a UIR of spin(V, 1) labelled by
[F| = (Fo, F1, ..., Fp—1) (p = N/2), then the analytically continued Casimir (A.17) coincides
with the spin(N, 1) Casimir Cy([F]) in eq. (A.9).

N odd. By working as in the case with N even, we find that the quadratic Casimir for the
representation of spin(N,1) (N odd) formed by the analytically continued STSSH’s with
imaginary mass parameter on dSy is given again by eq. (A.17).

r2
<62;(131\]:]\4' - r—

+s(s+ N —2) (A.17)

For later convenience, recall that the TT eigenmodes for the strictly massless spin-3/2
theory are given by the analytically continued STSSH’s of rank r = 1 (see Section 7) with
imaginary mass parameter given by eq. (1.5) with » = T = 1. Similarly, the TT eigenmodes
for the strictly (partially) massless spin-5/2 theory are given by the analytically continued
STSSH’s of rank r = 2 with imaginary mass parameter given by eq. (1.5) withr = t+1 =2
(r=71=2). Al TT eigenmodes with spin s =r+1/2 (r € {1,2}) on dSy are constructed
in terms of STSSH’s of rank 7 (0 < # < 7) on SV~! (see Sections 4, 5 and 7). The
(strictly and partially) massless representations of spin(N, 1) are formed by the non-zero-
norm TT eigenmodes. The latter consist only of the T'T eigenmodes on dSp for which the
corresponding STSSH’s of rank 7 on SV ~! satisfy 7 —t+1 < 7 < r (see Subsection 7.2). In
other words, the strictly massless spin-3/2 representation (r =t = 1) is formed by type-II
modes (7 = 1). The strictly massless spin-5/2 representation (r = T+ 1 = 2) is formed
by type-III modes (7 = 2). The partially massless spin-5/2 representation (r = T = 2) is
formed by type-II (7 = 1) and type-IIl (7 = 2) modes.

A.3 Verifying the non-unitarity of the massless theories with spin s € {3/2,5/2}
for odd N =2p+1

We will show that there are no UIR’s of spin(2p+1, 1) that correspond to the massless fields
with spin s € {3/2,5/2} on dSp41 (p > 1). This will confirm that the representations of
spin(2p + 1, 1) corresponding to these fields are non-unitary.
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Let us first discuss the cases with N > 5 (p > 2). Recall that the spin(2p + 1) content
of the massless spin(2p+1, 1) representation with spin s = r+1/2 (r € {1,2}) corresponds
to the STSSH’s of rank # (with r > # > r — 1+ 1) on SV~ = §?. Thus, the spin(2p + 1)
content is

[f]:(flanM“"fp):<€+;af+;a;7"a;>v forp>3 (EZTZ’FZT_T—{_l)
(A.18)
[f]:(flaf2)2<£+;,f+;>, forp=2 (U>r>7>r—1+1). (A.19)

As for the spin(2p+ 1, 1) labels, Fi, Fy, ..., F},, they must all be half-odd-integers. It is clear
that these values for Fi,..., F}, correspond neither to the UIR’s of the Exceptional Series
D ([F]), nor to the UIR’s of the Complementary Series Deomp([F]), since these allow only
integer values for Fi,...,F),. Finally, we can verify that the Principal Series Dyyin([F]),
where Fy = —p + iy (y € R), cannot describe the massless fields with spin s € {3/2,5/2 },
since the allowed values for the representation labels F, Fy, ..., F,, (with Fy = —p + iy)
do not give the correct value for the quadratic Casimir. This is readily understood by
comparing the two expressions for the quadratic Casimir, i.e. comparing eq. (A.17) (with
M?=(r—1+ N=2)2) and eq. (A.14).

Now, let us examine the case with p = 1. Let us make the following observation for
the strictly massless vector-spinor field on dSs. This field has only type-I eigenmodes, i.e.
all TT eigenmodes of this field are expressed in the ‘pure gauge’ form (7.13). This means
that the spin(3, 1) representation corresponding to the strictly massless vector-spinor field

O
+

on dS3 and the representation corresponding to the spinors Ay’ in eq. (7.13) are equivalent.

The spinors Agf) have an imaginary mass parameter and thus they form a non-unitary
representation of spin(3,1). (By using the results of Section VB in Ref. [22], one can
straightforwardly show that there is no de Sitter invariant scalar product for spinors with
imaginary mass parameter on odd-dimensional dSpy. The argument is similar to that for
the vector-spinors and rank-2 tensor-spinors presented in Subsection 8.3.) Thus, we have
verified the non-unitarity of the strictly massless vector-spinor field on dSs3. Similarly,
we can verify the non-unitarity of the strictly and partially massless rank-2 symmetric
tensor-spinor fields on dS3. As in the case of the strictly massless vector-spinor field, only
type-I symmetric tensor-spinor eigenmodes exist on dSs. Hence, the non-unitary spin(3,1)
representation corresponding to the strictly (partially) massless symmetric tensor-spinor
field on dSs3 is equivalent to a non-unitary representation corresponding to a vector-spinor
(spinor) field with imaginary mass parameter on dSs [see eq. (7.15) for the strictly massless
case and eq. (7.18) for the partially massless case].

A.4 Verifying that the massless theories with spin s € {3/2,5/2} for even N =
2p are unitary only for p =2

We will show that there are no UIR’s of spin(2p, 1) that correspond either to the strictly
massless spin-3/2 field or to the strictly and partially massless spin-5/2 fields on dSs,
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for p > 3. Then, for p = 2, we will identify the UIR’s of spin(4,1) that correspond
to the unitary strictly massless spin-3/2 field on dS; and those that correspond to the
unitary strictly and partially massless spin-5/2 fields on dSy. Recall that a representation
of spin(2p, 1) is labelled by [F| = (Fo, F1, ..., F—1), while the spin(2p) content is labelled
by [f] = (f1, - fp)-

Even N > 6 (p > 3). The STSSH’s of rank 7 on S?P~! - determining the spin(2p) content
for the massless theory with spin s =r+1/2 (r € {1,2}) on dSy), - are labelled by:

[f]:(f17f277'“afp): €+17f+1a17717i1 ) fOl“pZ?) (EZTEFZT_T_‘_I)
2 2" 2 27 2
(A.20)

Also, the spin(2p, 1) labels F1, ..., Fj,—1 must be all half-odd-integers. The only Series of
UIR’s that allow these values for Fi,..., F,_1 are the Principal Series Dpyin([F]) - where
Fy = —p+1/2+iy (y > 0) - and the Discrete Series D*([F]), where the unitarity condition
for the Discrete Series means that Fj has to be given by Fp = —p+1/2 = —(N — 1)/2.
It can be readily shown that for Fy = —p + 1/2 + iy and for Fy = —p + 1/2 there are no
allowed values for F1, Fy, ..., Fj,_1 that give the correct value for the quadratic Casimir. In
other words, there are no UIR’s of spin(2p, 1) (p > 3) that correspond to the massless fields
with spin s € {3/2,5/2 } on dSs, (because these field theories are non-unitary).

N =4 (p = 2). The STSSH’s of rank 7 on S® - determining the spin(4) content for the
massless theory with spin s =7+ 1/2 (r € {1,2}) on dS4 - are labelled by:

[f]:(f1,f2)=<€+;,i(f—|—;)>, l>r>r>r—1+1). (A.21)

As discussed in Section 8, the (non-zero-norm) eigenmodes with negative spin projection
and the ones with positive spin projection on dS4 form a direct sum of UIR’s of spin(4,1).
(Recall that the massless tunings for the imaginary mass parameter M = iM are |M| =
r—t+(N—-2)/2 = r—1+1 - see eq. (1.5).) By studying the rules (A.8) for the Discrete Series,
we straightforwardly find that the eigenmodes with negative spin projection correspond to
the following labelling:

F1= (o) = (1011 - 3. 5) = (=t 5or+5)
[f1=(f,f2) = (H;, —(f+1)>, ((>r>F>r—141). (A.22)

The corresponding UIR of spin(4, 1) is the Discrete Series D™ (r—t—1/2, r+1/2). Similarly,
we find that the eigenmodes with positive spin projection correspond to:

[F] = (Fo, Fy) = <r—’c—;,r+;)

[f]Z(fl,fz)=<€+;,f+;>, ((>r>F>r—1+1). (A.23)

The corresponding UIR of spin(4, 1) is the Discrete Series D (r —t—1/2, r +1/2). Thus,
for the massless fields with spin s = r+1/2 (r € {1,2}) on dS4, the eigenmodes with
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negative spin projection and the ones with positive spin projection together form the direct

sum of UIR’s:
1 1 1 1
D~ —T— = - Dt (r—1—-= —].
(r T 2,7‘+2)® (r T 2,r+2>

(Note that the eigenmodes with M = +i|M| = i(r — T + 1) and the ones with M =
—i(r — T+ 1) form equivalent representations, because if we act with 4% [eq. (2.13)] on one
set of eigenmodes, we obtain the other set of eigenmodes and vice versa.)

A.5 Unitary representations of spin(N, 1) for fields with spin s € {3/2,5/2} and
real mass parameter

All representations corresponding to fields of spin s € {3/2,5/2 } with real mass parameter
on dSy are unitary. The TT eigenmodes with real mass parameter satisfy eq. (1.3) with
(1)

M € R on dSy. For two such eigenmodes, ¥, ,,. and \Ilfi),._w, a dS invariant positive-
definite inner product is

<\y(1) ’\11(2)> — coshN—1¢ / \/§d0N71 \I’E}l).J.r.m\Ij(Z)m'"M- (A.24)

SNfl

For real mass parameter, all types of T'T eigenmodes have positive norms.

The TT eigenmodes with real mass parameter on dSy are given by the analytic con-
tinuation of STSSH’s on SV. In order to obtain these eigenmodes on dSy we just apply
the analytic continuation techniques of Section 7, where instead of the replacements (7.5),
we have to make the following replacements:

N
Oy — x(t) = g —it, n— —iM - (t e R, M € R). (A.25)

For N even, we can find the formulae for the spin(N, 1) transformation of the eigenmodes
by replacing M by —iM in eqs. (8.2), (8.3) and (8.4). For N even and M = 0, the
two spin projections do not mix with each other under spin(NV, 1) - see egs. (8.10)-(8.12).
Furthermore, for N even and M = 0, the eigenmodes with negative spin projection are
eigenfunctions of V1 [eq. (2.13)] with eigenvalue +1, while the eigenmodes with positive

spin projection are eigenfunctions of 4N +1

with eigenvalue —1. This is easily understood
as follows. By analytically continuing the functions defined by eqs. (3.2), (4.10), (4.12),
(5.16), (5.18) and (5.20) [by making the replacements (A.25)], it is easy to check that the
analytically continued versions of all these functions vanish for M = 0. This leads to the
vanishing of the lower (upper) component of the eigenmodes with negative (positive) spin
projection and thus these eigenmodes become eigenfunctions of yN+1. For N odd, we find
the formulae for the spin(/V, 1) transformation of the eigenmodes by replacing M by —iM
in egs. (8.27)-(8.29).

Let us now identify the unitary representations of spin(V, 1) formed by the analytically
continued STSSH’s of rank r € { 1,2} with real mass parameter M on dSy.

Odd N = 2p + 1. We have:
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e For p = 1, the representation formed by the T'T eigenmodes on dS3 is labelled by:

[F] = (Fy, Fy) = (—p—iM,’l”-f—;) = <—1—z’M,r+;>

[f]=f1=€+% (t>r>0). (A.26)

)
The corresponding UIR of spin(3, 1) is Dpyin([F])

= Dpin(—1—iM, r+1/2) (M € R).
(Recall that on dS3 there are only type-I modes.)

e For p = 2, the representation formed by the TT eigenmodes on dSs is labelled by:

11 11
Fl= (Fy, FLFy) = (—p—iM, r+ =~ ) = (—2—iM, r+=, =
[F] = (Fo, F1, F3) (p i ,r+2,2> i ,r+2,2>
1 1
[f1=(f1, f2) = <€+2,f+2> (0>r>7F>0). (A.27)
The corresponding UIR of spin(5,1) is Dppin([F]) = Dprin(—2 — M, r + 1/2,1/2)

(M € R).

e For p > 3, the representation formed by the TT eigenmodes on dSa,1 is labelled by:

11 1
[F] :(Fo,Fl,FQ,...,Fp) = <—p_zM’ r4+ =, =, ... >

2727772
1 . 11 1 -
[f]:(f17f27fdaafp): <€+25T+252352) (EZTZTZO) (AZS)
The corresponding UIR of spin(2p+1, 1) is Dprin([F]) = Dprin(—p—tM, r+1/2,1/2,...,1/2)
(M € R).

Even N = 2p > 4. We have:
Case 1. M # 0. For M real and nonzero, the T'T eigenmodes with different spin projections

on dSs, mix with each other under spin(2p, 1) [see the transformation formulae (8.2)-(8.4)].

e For p = 2, the representation formed by the TT eigenmodes with M # 0 on dSy is
labelled by:

1= (f1,f2) = (H; i(f+;)>, (t>r>7>0). (A.29)

The corresponding UIR of spin(4,1) is Dpyin([F]) = Dprin(—3/2 + | M|, v+ 1/2) (for
all real M # 0). The eigenmodes with M = +|M| and the ones with M = —|M| form
equivalent representations.

e For p > 3, the representation formed by the TT eigenmodes with M # 0 on dSy), is
labelled by:

1
[F] = (Fo,Fl,...,prl) = <—p+ 5 +Z|M‘, r+

[f] = (f1, fas oo, fp) = <g_|_
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The corresponding UIR of spin(2p, 1) is

1 . 11 1
Dprin({F]) = Dprin <_p + 5 + Z|M‘, T+ 5) 5, 3] 2)

(for all real M # 0). The eigenmodes with M = +|M| and the ones with M = —|M|
form equivalent representations.

Case 2. M = 0. Recall that, for M = 0, the two sets of eigenmodes with different spin
projections on dSs, separately form UIR’s of spin(2p,1).

e For p = 2, the representation formed by the TT eigenmodes with negative spin
projection on dSjy is labelled by:

-os (s e3) - ()
A== (“i’ ‘(”;)>’ (tzrz7z0). (A.31)

The corresponding UIR of spin(4, 1) is the Discrete Series UIR

3 1
D (S, r+2).
(+3)

The representation formed by the T'T eigenmodes with positive spin projection on
dSy is labelled by:

1 1 3 1
[F] = (Fo, F1) = (—p+2, 7’4‘2) = <—27 T+2>
1 1
f1=(f1,f2) = <€+ F+), (>r>7>0). (A.32)
The corresponding UIR of spin(4, 1) is

3 1
D (=S, r+-).
(+3)

e For p > 3, the representation formed by the TT eigenmodes with negative spin
projection on dSs, is labelled by:

1 11 1
[F]:(FO)F17”'7Fp—1):<_p+,T+ . )

[f1=(f1: for s fp) = (€+ SR %, %, - ,—) , (0>r>7>0). (A.33)
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The representation formed by the T'T eigenmodes with positive spin projection on
dSop, is labelled by:

1 11 1
F|=(Fo,F1,... Fpo1)= | — = = =gy =
F1 = (Fo P Fye) = (=04 074 g0 )

1

U%:Uhﬁwwﬁ):<ﬂ+yf+;éww), ((>r>7>0). (A.34)

B Raising and lowering operators for the Gauss hypergeometric function
and other useful formulae

The Gauss hypergeometric function F'(a,b;c; z) satisfies [38]

diF(a,b;c;z):a—bF(a—i—l,b—i— e+ 1;2), (B.1)

z c

(zdi +c—1)F(a,b;c;z) = (c—1)F(a,b;c—1; 2), (B.2)
z

(,zdi +a)F(a,b;c;z) = aF(a+1,b;¢; 2). (B.3)
z

By combining eq. (B.3) with the following relation [39]:

(c=b)Fla+1,b—1;¢;2)+ (b—a—1)1—2)F(a+1,b;¢;2) = (¢c—a—1)F(a,b;¢; 2),
(B.4)

we find

(a(b —c)+a(-b+a+1)z—(=b+a+1)z(1 — z)%)F(a, b; c; z)

z

=alb—c)F(a+1,b—1;¢;2). (B.5)

Using egs. (B.1) and (B.2) we can show the ladder relations (F.21) and (F.22), while using
eq. (B.5) we can show the ladder relations (F.23) and (F.24).

The behaviour of the functions (3.1) and (3.2) in the limit 6 — 7 is studied by using
the transformation formula [24]

Iy —a-p)

FlOd02) = 16 a9

Fla,Bia+ B —v+1;1-2)

+(1- Z)”_Q_BF(W)FF((;;;E;; - 5)1’(’7 —a,y-Biy—a—B+11-2).
(B.6)
Equation (8.26) is proved using [40]
a+b 1 a+b 1 1
P(o05%55) =var (5°) [ narem * o varas) 7
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and [41]
F(maa+b+ui>:2VEr<“+@+Q

2 a—b B
1 1 1
X{H®+Dﬂﬂwmy_nm+nppwﬁ)- (B.8)

C Spinor eigenmodes of the Dirac operator on the (N — 1)-sphere

The spinor eigenmodes of the Dirac operator (i.e. the STSSH’s of rank 0) on spheres of
arbitrary dimension have been computed in Ref. [21]. Here we write down explicitly the
eigenspinors on SV~! that satisfy eq. (2.22). These eigenspinors play an important role
in the derivation of the formulae for the spin(N + 1) transformation of the STSSH’s in
Appendix F.

Case 1: N — 1 odd. We denote the eigenspinors on SV~ as X+tmp(ON—-1,0N—2), where
p stands for labels other than ¢ and m. These eigenspinors are given by

Xetmp(On-10v-2) = PG00 )T p(O-2) £ G0N ) Tmn(On-2)}.
(C.1)

where &é?i(ﬁjv_ﬂ and &ég}b(&v_l) are given by eqgs. (F.8) and (F.9), respectively, and
Renp(O3-2) =1+ ) T (Orv-2) (©2)
>:<+mp(0Nf2) :7N_1>~Cfmp(0N72)a (0-3)

where the spinors X4.,,(0n—2) are the eigenspinors of the Dirac operator on SN2 |The
gamma matrices on SV! are denoted as 7% - see eq. (2.11).] In order for the eigen-
spinors (C.1) to be non-singular we require ¢ > m and ¢ = 0,1,... [21]. The eigen-
spinors (C.1) satisfy the normalisation condition (2.23), while the normalisation factor is

given by [21]
WAMmUr_F@—m+DFM+N—1+m) (C.4)
V2 2V 4 O |
Case 2: N —1 even. We denote the eigenspinors on SV1 as X(ﬂ:{pl)(HN—l, On_2), where

SNfl

onN—1 = & is the spin projection index on and p stands for labels other than on_1,£

and m. The eigenspinors with negative spin projection are given by

~ ~(0) .
O (ont On o) = N=1Em) [ Py (ON—1) X (6N —2) o
Xiemp( N-1,0N_2) NG ii¢§?,z(9N—1)>~<fmp(9N—2) (C.5)

and those with positive spin projection are given by

. -7 (0) y
(D) oy Oy g) = N2l [0 (ON—1) Xmp (O —2) o6
Xetpmp(ON—1, 0N —2) NG i¢§2(91v—1)>~<+mp(91v—2) (C.6)

and they both satisfy eq. (2.22). The normalisation factors ¢y_1(¢,m), as well as the
0)

m(On_1) and @égg(@N,l), have the same expressions as in the case with N — 1

functions qzé
odd.
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D Some useful formulae on SN—1!
Let g, be the metric tensor on SN=1 The Riemann tensor on SV is
R;um)\ = g,ungz//\ - gwcg,u)\- (D'l)

Let @/N), 1;# and &W be any spinor, vector-spinor and rank-2 tensor-spinor field, respectively,

n SN=1. The commutator of covariant derivatives acting on these fields is given by

[V, Vi ]d 21 Rupn¥™ 3™ (D.2)
%(%% — G )V, (D.3)

(Vo Viltha = Rumw "o+ Ry a (D.4)
é(my — G+ 2 (D.5)
[@m@mhﬁZ%@m»—%w&w+2%m%w+2@w%w (D.6)

The Laplace-Beltrami operator on SV~ is defined as O = g’“@,ﬁ »- The eigenspinors
on SNV [see eq. (2.22)] satisfy [21]

- ~2 N —-1)(N -2
UX+e5 = [77 + ( L( )] X+65
N-1\? (N-1)(N-2
=|—-({+—) + ( I ) X+ (D.7)
2 4
Note also the following relations:
g = . N -1\ =~ N -2 _
iV (6, Vo, Xt = Fi <€ + 2) Vo, Xeetp + =70, Xx47, (D.8)
b = +1- O+ N
%0, Vo, X£e5 = 5 Vo Xty F ZTQWJ-Xﬂﬁ, (D.9)
e - - 5 3 N1\ .
VGZV(QZ.V(;J.)Xﬂﬁ = VQj <D + N — 4> X:tfp (E + 2) ’Y@ineﬁ, (D].O)
N—1
0 . = . -5 = 1. ~ N-=2
V%56, Vo, X5 = iZTQVGinEﬁ + 3%, <D + 2) X655 (D.11)

where in order to prove egs. (D.8) and (D.11) we have to use eq. (D.3), while in order to
prove eq. (D.10) we have to use egs. (D.3) and (D.5).
The TT vector-spinor eigenmodes [see eqs. (4.14)-(4.15)] satisfy

B N —1\2 (N—l)(N—2)
<€+ 5 >+ 1

|:lw(A €p) AZp

1| 9% (D.12)
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(j =1,..,N —1). By combining this equation with eq. (D.5) we can prove the following
relation:

(Aep)y 1 [= (A:tp)
vev(wﬁk’):2<m+N >¢i9k”

= % <§72 + N(AT 1)> P, (D.13)

The rank-2 STSSH’s on SV=! [see eqgs. (5.6)- (5.8)] satisfy

_<€+N—1>2+(N—1L(N—2)

(B;tp)
A 5

+£0,0, —

Bé
¢i9 9‘; (D.14)

G k=1,..,N - 1).

E Constructing the STSSH’s of rank 2 on the N-sphere

In this Appendix, we construct the STSSH’s of rank 2 on S¥. These STSSH’s satisfy
egs. (5.1)-(5.3) and we construct them explicitly by using the method of separation of
variables in geodesic polar coordinates (2.2), as in Refs. [18, 21]. In the method of separation
of variables, the STSSH’s of rank 2 on SV are expressed in terms of STSSH’s of rank 7
(with # = 0,1,2) on SN—1.

For later convenience, note that the functions gbgzg) (On) leq. (3.1)] satisfy the following
differential equation:

D6 % (0) = —C2no'% (Bw), (E.1)

where Qg’N = (% = (n+%)? is the eigenvalue of the STSSH in eq. (1.6), while the differential
operator is given by

2 o N —1\ cosfy
D(a) = @ + (N+2(L— 1) cot HNaT + <£+ 2 ) sin2 9]\]
_(HN?—l) %(N+2a—1)(N+2a—3)_(N+2a—1)2 (E.2)
sin? Oy 4 ' .

One can readily verify that the functions qﬁf{? (On) [eq. (3.1)] are the unique regular solutions
(up to a normalisation constant) of the differential equation (E.1) by using the results of
Ref. [21], as follows. By expressing (;57(;2) as

a 0 0
qb( )(GN) (Sln ?N cos ;V) qﬁgz) (On) (E.3)
see eq. (3.1)] we rewrite eq. (E.1) as Dy ¢(0) = - d>(0). The latter has been solved
0)Pne n,N¥nt

in Ref. [21] and it was found that the unique regular solutions gzﬁfloé) are the ones given by
eq. (3.1) (with @ = 0). For the rank-1 STSSH’s on SV the integer a takes the values
a = —1,1 (see Section 4), while for rank-2 STSSH’s a takes the values a = —2,0,2 (see
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Section 5). The functions gbgz) (On) are regular for a = 1 and a = 2 despite the factor

2 2
proved in Section 4 for r = 1 and in Section 5 for r = 2).

—a
(sm 0N cos O ) in eq. (E.3) because of the restriction ¢ > r (this restriction on ¢ is

The differential equation satisfied by the functions 1[)7(:2)(9 ~N) leq. (3.2)] is obtained from
eq. (E.1) by making the replacement 8y — 7 —6 in the expression (E.2) for the differential
operator D g).

Let us also briefly explain how to obtain the condition n > ¢ [eq. (3.4)]. By taking
the limit O — 7 for QSSZ)(HN) and using the transformation formula (B.6) for the Gauss
hypergeometric function, we readily find that the requirement for absence of singularity in
¢7(;Z) (0n) gives rise to the condition n > ¢, as well as to the quantisation condition

N
Gunl=n+5, neNo (E.4)

E.1 Constructing the STSSH’s of rank 2 for N even

Our aim is to obtain the STSSH’s ¢£€;U;M;ﬁ) that satisfy egs. (5.1)-(5. 3) where the gamma

(B;ont;p) .

matrices for N even are given by eq. (2.11). As in Ref. [21], we write ¥, in terms of

upper and lower 2V/2~1_dimensional spinor components

. Dy BP0y -1)
¢iugn P (Ox,On-1) = : (E.5)
1/&%5 ") (0, On—1)

It is clear that egs. (5.1)-(5.3) - which determine the form of our STSSH’s - reduce to a
system of equations for the upper and lower components. We will now obtain the system
of equations for the upper and lower components. By using egs. (2.4), (2.9), (2.11), (2.18),

(2.19), (5.1) and (5.2) and by expressing 1/1(3 760) iy terms of the upper and lower com-

ponents as in (E.5), we find that the eigenvalue equation W@Z’fg;g?\f ) +i| G, N Wﬁ);o?f i)

is written as

0 N+3 B;o;nt; B;ont;p
<89N + 5 cot Oy + 411 W) (10;97\, iP) _ :l:’LKn N‘ (10;97\, p)’ (E.62)
9  N+3 g (Bioint; (Bioint;
<89N T oty = oy W) Wi = il VT (Bob)
Similarly, we find that the eigenvalue equation W@bﬁﬁgf;ﬁ) = +i|¢n, N\zﬂﬁﬂ?&ﬁ ) (j =
1,..., N — 1) is written as
0 N -1 . ) o
(% + 5 cot On + 7?7) uwi]zg@nz P 4 i cos NG (“@/}(ii;jgjf"’)
(B;o;nt;
= :|ZZ|C7L N| iGNQn P)’ (E?a)
o  N-1 o ) .
(7891\7 + — cotOn — 1n9 W) (T)wilz; il ) —icos HN’Y@ wifz;;v iP)
(B l;
= £i[¢o,v] Py oo, ), (E.7b)
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while Wwi]z(;knép j:z|§nN|wiBg ‘2:6'5) (j,k=1,...,N — 1) is written as

a N 5 (B o; nl:p . ~ (B g, nt; )
<89N + 5 cot On + n 9 W) wig 0, ?) 1 9 cos Hny(g wiak b P
. B;ont;
= :|:Z|Cn,N| (T)@Z}(igjgk p)7 (E.8a)
0 N -5 1 (B;ont;p) . ~ (B;ont;p)
<89N + 5 cot Oy — Snfy W) 1/1i9 9, | — 2icos Hny(g wiek i
. sonlsp
= i[Co v | V5P (E.8b)

By making use of eq. (E.5), we express the gamma-tracelessness condition (5.2) as

(B;o;nt;p) { (B;osnt;p)
¢i0N“ sm 9N wiezﬂ =0
(Bioint;p i (Bioin;
M foroimtsP - Soe Oyl =0, (u=61,....0x and 6; =01, ...,0n1)
(E.9)
and the tracelessness condition (5.3) as
Biointip) | L co.0, (1) Biomtin) _
ﬂ’jzaNeN Sing QNQ Viga. ,
(E.10)
(Banfp) 1 ~99 (Bsont;p)
wj:GNON 81112 HN w:l:@ 19 = 0.

Similarly, by substituting eq. (E.5) into the divergence-free condition (5.2), we may express
(B;o;nt;p)

the condition V%ﬁia&N =0 as
9 (B;o;nt;p) 1 (Bsosnt;p)
[aeN (N + 3) cot GN} W ot T2 9N MG = o,
(E.11)
(B;osnl;p 1 (B;osnt;
[BHN (N + )COt QN} wie,j(;jv 7 SmQ Oy Qf)ig C(;;,Z R 0,
while the condition Vawiig i) _ (j=1,...,N —1) is expressed as
b 1 (B;o;nt;p) 1 (Bsosnt;p)
[m + (N — g)cot HN} wj:GNG T2 9N Myiars o, =0,
(E.12)
P 1 (Bioint;p) 1 (Bionb:p)
[% + (N —3)cot QN} inNH T2 On in o, =0

Type-I STSSH’s of rank 2 for IN even. Let us start by describing how to obtain the
type-I modes, given by egs. (5.10)-(5.12). The component wilea ge ) s a spinor on SNV,

Thus, in order to solve the system of equations (E.6) we separate variables as in the case
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of spinor eigenmodes in Ref. [21], i.e.

Dyl 62 (05, Ox_1) = 62 (On) x—e5(On-1)
W) (05, 1) = £ (On) x—e5(O—1) (E.13)
Do) (g O 1) = 02 (O) x5 On-1),
W Efa:;]f”)(ﬁN,ON 1) = 617 (08) x15(0n-1), (E.14)

where Y15 are the eigenspinors on SNV=1 (see eq. (2.22)). By substituting eq. (E.13) [or

eq. (E.14)] into the system of equations (E.6) and eliminating )w( ’N’ng ) (or (¢)¢$é;gl]5;ﬁ))

we find that gf)ng has to satisfy the differential equation (E.1) (with a = 2), while wffz) has to
satisfy the differential equation (E.1) (a = 2) with 6y replaced by m — 0y in the differential
operator D(9) [eq. (E.2)]. Thus, we find that qbfe) and ¢7(12é) are given by egs. (3.1) and (3.2),
respectlvely As a check, one readily finds that the components defined by eqs. (E.13) and
(E.14) satisfy the system of equations (E.6) by making use of the formulae (3.5) and (3.6).

Unfp)( — 1.

The components w Loy , ..., N — 1) are vector-spinors on SV~! and thus we

may separate variables analogously to eqs. (4.6) and (4.8). Thus, for STSSH’s with negative
spin projection (o = —) we separate variables as

D=2 (g, B 1) = CLP P (0) Vo, x—1(On—1) + DD (0) o, x—15(On—1),
u)@bgoj;at&ﬁ) (On,ON_1) =% Z'Cr(m)( '(6y) Vo, X—t5(On-1) iDig)(z)(QN) Yo, X—05(ON-1),
(E.15)

while for STSSH’s with positive spin projection (o = +) we separate variables as

”%ﬁféib’ﬁm (O, 0n-1) =iC) P (0n) Vg, x105(0n—1) — D) P (0n) Fo, X-15(On-1),

(¢)¢§Ef5;g;‘?;ﬁ)(9]v ,0x-_1) == CDP(0x) Vo, x105(0n-1) F D (08) 30, x105(On—1)-
(E.16)

By using the gamma-tracelessness condition (E.9) we readily find that the functions DS?(Z)
and C(b)(2 (b =t1,]) are related to each other by egs. (4.11) and (4.12). Then, using
the divergence-free condition (E.11), we find that C’,SL?(Q) is given by eq. (4.9) and C’fi)@)
is given by eq. (4.10), where we also have used egs. (3.5), (3.6) and eq. (D.7). One can
straightforwardly verify that the components defined by egs. (E.15) and (E.16) are solutions
of the system of equations (E.7), where the calculations are significantly simplified by using
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the following formulae:

o N-1 (+ N1 2
(* 5 OOV )Cﬁ?“’(em =D (o)

00N sin O sin O
N
- <n + 2) cH® ), (E.17)
o N-1 0+ A 2 2 2
t0 2 bR g pY@ ey
(89]\[ + 2 o N+ sin@N Cnf ( N) + SinaN nt ( N)
N
_ <n + 2) cD® gy, (E.18)
which can be proved by using the formulae (3.5) and (3.6).
The components ilgaene ) (j,k=1,...,N —1) are rank-2 symmetric tensor-spinors on
SN=L Let us first dlscuss the case with negative spin projection (¢ = —). We choose to
—nt;p) .
separate variables for w 0, A as follows:

b 7n£ ~
d’ie 0, On.On-1) :K,(;)WN) 96,0, X—t5(ON—1)

. . 0O
+ W (6w) (V(ejvek) - gojekN_1> X—05(ONn-1)

- . N4

%é 9’:“ (O, 85-1) = £ K5 (Ox) Go,0, X—t5(On—1)

. =& ~ O
+ ZWSJ) (On) (V(ejvek) — 99,0 N — 1) X—5(0n-1)

, U _ \%
+iT') (On) <V(9]-V9k) = 90,0057 | X-ts(On-1),  (E19)

where Y~7X_gﬁ = —i (f—i— %) X—¢p (see eq. (2.22)) and EX—Z[) = VGkVQkX_gﬁ is given
by eq. (D.7). By using the tracelessness condition (E.10), we find that Kfl;) and Kflﬁ)
are given by egs. (5.15) and (5.16), respectively. Then, by using the gamma-tracelessness
condition (E.9) (and by making use of egs. (D.8) and (D.9)) we find that the function Tﬁ)
(T&)) is expressed in terms of Wrg) (WT%)) as in eq. (5.17) (eq. (5.18)). Then, by making
use of the divergence-free condition (E.12) (and using egs. (D.10) and (D.11)) we find

( ot et 9N> C0n) + g KL (6)

00N 2 sin“fy "
2
| ((+255°(N-2) N2-1
sin 0y Wae (0n) { N_1 Ty
1 (+ 5 (N =-3)
—1 T(0n) =0 b=".1. E.20
25?0y N-1 ne (On) =0, T (E.20)
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Finally, by solving the system of equations consisting of eqgs. (5.17), (5.18) and (E.20) (and
using eqs. (E.17) and (E.18)) we find that WT(LP is given by eq. (5.19), while Wr%) is given
by eq. (5.20).
By working as in the case with negative spin projection, we find that the components
I s+inlp p . .. . . . . . .
1/1 0,0, with positive spin projection are expressed in terms of upper and lower spinorial

components as follows:

i+l p . ~
Dy ltir ™ (On, 0n-1) =iK 5 (On) Go,0,X 5O 1)

, = = _ 0
+ zWéi)(QN) (V(ejVGk) — 36,6y N—l) X+£,5<9N—1>

- S _ v
N ZTv(j)(QN) (7(% Vo) — 96,0: N1 X+65(ON-1),

WP (O, O 1) =% KL (08) Go,0, X 145(0x 1)

O

+ Wé? (On) (ﬁ(ejﬁek) - gej@’“N—l) X+05(ON-1)

e ¥
F T, (0n) (wejv@w—gejew_l arp(Ox-1). (E21)

We have verified using Mathematica 11.2 that the components defined by eqs. (E.19) and
(E.21) satisfy the system of equations (E.8).
Type-II STSSH’s of rank 2 for N even. Now let us describe how to obtain the type-

II modes given by egs. (5.22) and (5.23). The type-II modes satisfy wgg;%gm&ﬁ) = 0 by
definition. The components 1) iféé)g intip) (j =1,..., N — 1) may be expressed as
Dy (0n, 0x-1) = 60 (63) 5517 Ox 1),
%ﬁféﬁe " (0, 1) = il (On) B (O 1), (E:22)
¢§£NA@+MP (ON,ON-1) = w (6 )1/1(1”'0)( -1)
Dyle s 0, 0n1) = 203 (03) 957 (O3 -1). (E.23)

The TT eigenvector-spinors 1,[) Afp) (j = 1,..,N — 1) on SV~ satisfy eqs. (4.14) and

(4.15). By working as in the case of type-I modes presented above, we find that qﬁg? has to
satisfy the differential equation (E.1) with a = 0, while 1/1(0) has to satisfy the differential
equation (E.1) (a = 0) with 0y replaced by 7—6y in the differential operator D gy [eq. (E.2)].
Thus, we find that ¢n€ and ¢7(w) are given by eqs. (3.1) and (3.2), respectively. By making
use of the formulae (3.5) and (3.6), one can readily verify that the components defined by
egs. (E.22) and (E.23) are solutions of the system of equations (E.7).

The components v ilé ,94; intip) (j,k=1,..., N — 1) are symmetric rank-2 tensor-spinors

n SNV=1. Let us first discuss the case with negative spin projection (o = —). We separate
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variables as

Dyl P05, 0n-1) =T (0) V0, 057 On-1) + AT 0n) 0,557 On-1),
wilé g’ ’né’p)(QN,ON_l) :EZFgLe)(QN) V w Aép ( —1) Zl:iAglg)(HN):Y(ij(,g’k))(eN—l)v

(E.24)

where we have to determine the functions FS? and AS}) (with b =1,]). By using the TT

conditions as in the case of type-I modes, we find that Age) and Ase) are given by egs. (5.24)

and (5.25), respectively, while Fgé) and FSE) are given by egs. (5.26) and (5.27), respectively,
where we also have used egs. (3.5), (3.6) and (D.13). By using the formulae (3.5) and (3.6),

we can also prove the following formulae:

0 [ N-5 (+ 55 Lo 2% A N
<80N * 2 cot 0N sin GN nt (HN) sin HN (GN) (n + 2 ) nt (QN)a
(E.25)
0  N-5 5\ o 2 AW N\p®
<89N Ty 2 cot O + sin Oy ) Png (On) + MA ¢(On) =+ 9 )T (On).
(E.26)
(II-A;+nb;p) /.
Similarly, we find that the upper and lower components of ¢i9 o, (j,k=1,..,N—-1)

are given by

I-A+nt;p . . (A;£p)
DTS4 (G, By 1) =P8 (O) V0,057 (O —1) — A (Bx) 5 eww,j’( 1),

WD) (0 By 1) =+ T (0x) V0,057 (On1) F AL (0x) 3,057 (On-1).
(E.27)

By making use of the formulae (E.25) and (E.26), as well as eq. (D.5), one can readily
verify that the system of equations (E.8) is satisfied by the type-II modes in eqs. (E.24)
and (E.27).

Type-III STSSH’s of rank 2 for IN even. Finally, let us construct the type-III

mode, given by egs. (5.30) and (5.33). The type-IIl modes satisfy zpjngfN" nte)

and wiféfgoné;ﬁ) =0 (i = 1,...,N — 1) by definition. The components zpﬁ@é”&ﬁ)
(j,k = 1,...,N — 1) are rank-2 symmetric tensor-spinors on SN=1 Since type-III modes

are divergence-free and gamma-traceless, we separate variables in the following way:

@bjclgef’jnep)(@zv,azvfl):‘b (C )w(”k( N-1),

(IT-B;—;n¥; (= B
W BEB =) (9, B_1) = i, 2 (0x) D57 (Bx—1). (E.28)
7/&]595 HintP) (On,ON-1) = W(_ (0 )lbgng E@i (On-1),
(I1r A, nl;p B;p)
Oy 2D (0 O 1) = 68,7 (0x) 050 (Bx-1), (E.29)
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where eq. (E.28) describes the type-II STSSH with negative spin projection, while eq. (E 29)
describes the type-III STSSH with positive spin projection. The functions ¢;; ) and wnﬁ 2)
are given by egs. (3.1) and (3.2), respectively. It is straightforward to verify that the type-
IIT modes in egs. (E.28) and (E.29) are solutions of the system of equations (E.8) (with the
use of egs. (3.5) and (3.6)).

E.2 Constructing the STSSH’s of rank 2 for N odd

Now the gamma matrices are given by eq. (2.14). By combining egs. (2.4), (2.9), (2.14),
(2.18) and eq. (2.19) we find

n 0 N+3
W¢£N££ = [( + cot 0N> ’YN i

00N 2

(B;nt;p) (Bsnt;p)
sin 6 W] ¢i9N9N = %i|¢n, | ¢i9N9N ’
(E.30)

where we have used the gamma-tracelessness condition

N (B;nt;p) (B;nt;p)
Vigvon = 77b:|:6 On

(see eq. (5.2)). Similarly, we find

( 0 +N_1cot9N>’yN+

(Bsnb;p)
WwieNe ) 00N 2 sin O

0; Y4
V] wig " p) + cot HN'YG 1/’;595915)
(E.31)
(B;nt
= £1|Co, | @Z’ig]% )

(j=1,..,N—1) and

WibiBg%ip) = (821\/ + N; 500‘59]\/) vy ]wﬂ)nép) + 2 cot Ony (e, wiBeknf;Ji)
(E.32)
= iZKnNHZ}iBg%ip
(j,k=1,...,N —1). Note that for N odd we have
WY + 74N =0, (E.33)

since {vV,77} =0 (j = 1,...,N — 1) - see eq. (2.14). Now let us separate variables in
egs. (E.30)-(E.32).

Type-I STSSH’s of rank 2 for IV odd. As in Ref. [21], since N is odd we choose to
express the type-I modes in terms of the following spinors on SV~1:

(—tp(On-1) = \}5(1 + iy )X —0p(On 1) (E.34)
Xae5(On-1) =YV Xp5(ON—1) = \2(1 + i) X5 (On-1), (E.35)
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where x5 are the eigenspinors on SN=1 (satisfying eq. (2.22)). Since N is odd, X+¢5 and
X—¢p are related to each other as follows [21]:

X+05(On-1) = 7 X-£5(On-1)- (E.36)

The spinors Y15 are eigenfunctions of the operator v Y~7 (that commutes with W2) and

they satisfy [21]
N-—-1Y\ |
y Wxir =+ ( 0+ 5 ) Xt (E.37)

In order to construct the rank-2 type-I modes on S%, we separate variables as follows:
ﬂggzlgfv( Ny O 1) =02 (On)R—ep(On—1) + i) D (On) X 405(On 1) (E.38)
wﬁfﬁg” (On,ON-1) _Cr(m)( )(QN)VQ X—3(On-1) icét)@) (ON)Vo, X425(ON—1)

—iD{)® Rem%.wﬁwm ) DY (O8)30,X-5(05-1)  (E.39)
e O, 0n-1) =G0, (X-ep(On- D)KL (O8) % X 45(On 1)K (01))

SR g )
+ V(g.ng) :|

[ = 30,6, =
+ 190, Vo) — v 77}
X (=Xeap(On—1) AT (ON) F X050 1) T (01)) (E.40)

j,k=1,...N —1). By working as in the case with N even, we find that the functions
qﬁné ,¢7(12£), C’(b)( ) DS?(Q), K 7(112), Wéb) and Téé) (where b =1, ), describing the dependence on
On, are the same functions as the ones used in the even-dimensional case (see egs. (5.10)-
(5.12)). By expressing X+¢; in terms of x4¢; (by making use of eqs. (E.34) and (E.35)),
it is straightforward to show that egs. (E.38), (E.39) and (E.40) are equal to egs. (5.35),
(5.36) and (5.37), respectively, as presented in Subsection 5.2.
Type-II STSSH’s of rank 2 for N odd. In order to construct the type-II STSSH’s of

rank 2 on SV, we use the following vector-spinors on SV~

~(Aq0 _ A,
P (On 1) = 7 (1 +iy™)g 7 (On1) (E.41)
5P On-1) = NG (O ), (E.42)
where d) (4 Ep (j =1,...,N—1) are the TT eigevector-spinors on SV ~! (satisfying eqs. (4.14)
and (4.15)) and w (4; Kp N 1;(;‘2);]@ ) The vector-spinors Ji‘gfﬁ ) satisfy
N —
PP = (e + ) ol (E.43)
5o Afp) @Z,g;fﬁ) — 0. (E.44)
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By making use of the vector-spinors 1[15;;@ ), we separate variables for the type-II

STSSH’s Q,Z)ilif M2 on SN as follows:
SUS D O, 0x—1) =6 (030 5P (Oy-1) + i) (6n )0 5P (On 1) (E.45)

wgg;?;né;ﬁ)(eNyaN—l) 7(1@)(91\[) Vi, w”ﬁ (ON_l)iZ‘rS)( NV aw(:;e)p)( )
) : 25 e
- ZAL?(HN)’Y(%erGk) )( N-1) F Au)(e )’Y(O lb( 0r) )(9]\/ 1)
(E.46)

(j,k=1,...,N — 1), while @bilé '?gne ) — 0 by definition. By working as in the case with N

ne ) 7(12) and ngbﬁ) (where b =1,]) are given by the
same expressions as in the even-dimensional case (see egs. (5.39) and (5.40)). By expressing
z/;ﬁfﬁ ) in terms of J’ﬁfﬁ ) (with the use of egs. (E.41) and (E.42)), we straightforwardly
find that eqs. (E.45) and (E.46) are equal to egs. (5.39) and (5.40), respectively.
Type-III STSSH’s of rank 2 for N odd. In order to construct the type-III STSSH’s
of rank 2 on SV, we use the following rank-2 symmetric tensor-spinors on SV=1:

even, we find that the functions qﬁne ,w

B; ip) 1 . ~(B;tp
SE Oy 1) = 5™ Ox ) (E.47)
(B;¢p) B;0p)
DD 1) = VO B ), (E.48)
where iﬁg;gﬁ) (j,k=1,...,N —1) are the STSSH’s of rank 2 on SN_1 (satisfying egs. (5.6)-
(5.8)). Also, note that 1 fé %p =N 1;(739;?99 ) The tensor-spinors ¢ o, 9~) satisfy
£7) N — )
VYD = (z + ) o (E.49)
0, 2(Bit (B;tp)
FOup B — o B (E.50)
G0ibi 1/,;{@?) (E.51)

(Zajvk_l N_l)

By making use of the tensor-spinors w 40,0

Bilp ), we separate variables for the type-IIT

STSSH’s T/):tlgyB m60) on SN as follows:
(II-Bnt;p -2 > (Bilp e (B;ep)
053" P O 0n-1) =0\ On G On-1) £ 105 P O H On-)  (B52)
(j,k=1,..,N — 1), while wijgjgnﬁp) and wi%”gngp = 0 (by definition). By working

as in the case with N even, we find that the functions gbne ) and wif) are given by eqs. (3.1)
and (3.2), respectively [and, thus, eq. (E.52) is equal to eq. (5.43)].

F Deriving the formulae for the spin(N+1) transformation of the STSSH’s
of ranks 1 and 2 on SV and determining their normalisation factors

In Subsections F.1-F.3 of this Appendix we derive the transformation formulae (6.10),
(6.15), (6.29) and (6.30) for STSSH’s of rank 1 on S and we calculate the normalisation
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factors ¢t~ (n, £) and c%l;rzl)(n,f) leq. (6.8)]. The derivation of the transformation

formulae and the calculation of the normalisation factors for the STSSH’s of rank 2 have
many similarities with the case of rank-1 STSSH’s and, thus, we discuss them in less detail
in Subsection F.4.

F.1 Calculating cg\l,l;rzl)(n,f) and making the first step towards the calculation

of c%;rzl)(n, 0)

Since it is a quite simple task, let us start by calculating directly the normalisation factor
for type-II STSSH’s of rank 1 for arbitrary N. For N even, we substitute the unnormalised
type-II modes (4.17) (or (4.18)) into the inner product (6.7). Then, by performing the

integration over SN=! using eq. (4.16), we find
(IL;r=1) -2 r
N (n, )| _ . N-3 (-1) 2 (=1) 2
\/5 = /0 d@N Sin HN (¢n€ (HN)) + <¢n€ (9]\[))
1 (7 o 2 2
=3 [Camwsn oy [(¢;?<0N>) + (6% 0m) ] SR
0

where the functions gbfloe) and @ZJS? are given by egs. (3.1) and (3.2), respectively. The integral
in the last line is the same integral that appears in the normalisation of spinor eigenfunctions
on SV in Ref. [21]. Thus, using the result of Ref. [21] we readily find

2
_ 1 'n—4+1)I'(n+{+ N) (F.2)
2N-3 IT(n+ 5)[2 ’ '

D, 0)

V2

which is a special case of eq. (6.8). For N odd, the calculation is similar and we find again

that the normalisation factor is given by eq. (6.8).
The normalisation factor of the type-I modes can be found by calculating the following
integral:

c%;rzl)(n, 0|

2
. _ / dfy sinV " gy [(cﬁfe)(‘)N))Q*(w’(llf)(ON)ﬂ

O <£+N—1>2_(N—1)(N—2)

+ 2 4

T 2 2
x/ don sin 3 Oy [(cﬂ)(”(em) +(cMow)) ]
0
7r 2 2
+(N—1)/ Oy sinV =3 Oy UDS}”(&N)] +\ij}”(aN)] ]
0

rai (e 25

2
X/ dOn sinV 3 On
0
x |V om) DV (0n) + 5 03DV (0n)] (F.3)
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where Cﬁ;)(l),Cit)(l),Dfl?(l) and foe)(l) are given by egs. (4.9), (4.10), (4.11) and (4.12),
respectively. For N even, eq. (F.3) is derived by substituting the expressions (4.5) and
(4.6) for type-I modes into the inner product (6.7) and then performing the integration
over SV=1 (with the use of egs. (2.23) and (D.7)). For N odd, by working similarly we find
again eq. (F.3). Since the integrals in eq. (F.3) are not as simple as in the case of type-II
modes, we are going to take an indirect route. To be specific, we first obtain by direct
calculation the normalisation factor of the type-I modes with the highest allowed value for

(I;r:l)(

lie. cy n,? = n). Then, once we have obtained the transformation formulae of the

type-I modes under spin(/N +1), the normalisation factor c%;rzl) (n,0) (for¢ =1,2,...n—1)

will be constructed in terms of cj, n,n) by exploiting the spin(/N + 1) invariance of the

(Lir 1)(

inner product (6.4). To calculate cy’ n,n) we let £ =n in eq. (F.3) and by calculating

the integrals using Mathematica 11.2 we find
e
V2

F.2 Derivation of the transformation formulae of type-I and type-II-I STSSH’s

_ n(N —2)I'(n+ & +1) . (F4)
A1-n(1 4+ n)(N — 1)/l (n+ &)

2
n,n)

of rank 1 and calculation of the normalisation factor c%”ﬂzl) (n,?) for N even

Below we give details for the derivation of the transformation formulae (6.10) and (6.15)
for rank-1 (r = 1) modes with positive spin projection [these modes are given by eqs. (4.7),
(4.8) and (4.18)]. The calculations for the rank-1 modes with negative spin projection are
not presented here, as they can be performed in the same way.

In order to derive the desired transformation formulae (6.10) and (6.15), it is sufficient
to study the following two components of the Lie-Lorentz derivative (6.1): L v, and
L 1g,_,. After a straightforward calculation we find

sin sm@
Ly oy = <=7“3u + ZST];IVN N= 1> Yoy + g 1¢6N . (F.5)

and
sin @ .
Ly gy, = (yuau — cot Oy cosOn_q + %TNQl NyN-= 1> Von_, —SON_1 Yoy,
(F.6)

where we have substituted egs. (2.4), (2.9), (2.17) and (6.6) into eq. (6.1). Since N is even,
we express YV V"1 in eqs. (F.5) and (F.6) as

N—1
N _N-1 —vy 0
= F.7

where we have used eq. (2.11).

The partial derivatives in egs. (F.5) and (F.6) act only on the coordmates {HN, On—_1}.
Thus, for later convenience let us introduce the functions ¢£773(0N 1) and T/ng(eN 1) de-
scribing the 6 _1-dependence of the STSSH’s on SV~! . In analogy to egs. (3.1) and (3.2),
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these functions are given by

O On 1\ O\
Pom (ON—1) = Fg(l,m) | cos = sin —

N -1 On_
F<—€+m,€+m+N—1;m+ 5 - sin? N21), (F.8)
and
f+ N—-1 On_ m—a 3 m+1—a
7(a) — 2 N-1 N-1
Yy (ON-1) = ﬁ¢(€,m)m+N51 <co 5 > ( n >
+ 9 ON_1
xF{—Ll+m/l+m+N-—1,m+ 5 sin” =5 , (F.9)
where the normalisation factor is given by
¢+ N=1
Rg(,m) = e+ ) (F.10)

Tl —m+1)T(m+ ¥7L)

The number @ in egs. (F.8) and (F.9) is an integer and m is the angular momentum
quantum number on SV~2 [with £ > m, in analogy with eq. (3.4)]. The formulae analogous
to egs. (3.5) and (3.6) are given by

d N +2a—2 m+ 82 N -1\ -@
a4+ — = F.11
(deN—l + 5 cotOn—1 + N >¢gm < 5 ) i ( )
and
d N +2a —2 m—+ N2 ~(a) N —
tOy | — ———2— = {4+ ——- F.12
(deN—l + 2 COLUN-1 sin GN—I >¢gm + WW ( )
respectively.

Motivated by the techniques used in Refs. [13| and [22], in order to derive the transfor-
mation formulae of our STSSH’ s We introduce the ladder operators for ¢, sending £ to £ £ 1
when acting on the functions ¢n€ (On), @ZJELE)(GN) qbgm(ON 1) and 11) ( N—1). The ladder
operators are given by the following expressions:

d 1

qu+;a) _ dgN + (—6 +a— ;) cot O + S5 On’ (F.13)
T d9N ( (ha— ) cot O — 281111 o (F.14)
T = d9N <€+N+a— ) cot O — 2sirllaN’ (F.15)
Tqi—;a) _ d9N <£ +N+4a— > cot O + 281111 o (F.16)
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N—2
s(+a) d . - § B m + 3
HqS = sinfy_1 T + <€+ a+ N 2) cosOn_1 72“ n %) , (F.17)
5 = sing d +<E+&+N—> cos +m+N2_2 (F.18)
S g BT A
N—2
] (_7&) — 4 d _ _ 1 m + 2
H¢~> = 51n0N_1d9N X + < {+a 2) cosOn_1 + n N2_ ) (F.19)
N—2
o _ d 1) m ot N2
IT On_ +|(—l+a— < 0 F.20
SN Ydon_ ( EDY R (0 + N52) ( )
These operators act as follows
T 139 (0n) = KDL 0), (F.21)
T}—;a)féz) (Oy) = fnz L), (F.22)
ﬁ}““)féﬁf(ﬁzv_l) = k! +)fg+1m(9N—1)> (F.23)
I finl (On-1) = KO, (0n-), (F.24)

where f9(0n) € {6 (O0n), 62 (08) }, I 2 (On-1) € {62 (On_1), 0\ (On_1) } and

EH) = —(n+ £+ N), (F.25)

) =n—041, (F.26)

~ L+ N—-1+m)f—m+1

) = £+N)/(2 ), (F.27)

I%H__(H%—l)(wr NoLy (F.28)
N 0+ (N-2)/2 ' ‘

One can straightforwardly prove the ladder relations (F.21)-(F.24) using the raising and
lowering operators for the parameters of the Gauss hypergeometric function given in Ap-
pendix B. (Similar ladder relations have been obtained by the author in Ref. [22] while
studying the Dirac field on dSy.)

Let us now proceed to the derivation of the transformation formulae of the type-I
and type-II-I modes. It is clear from the expressions (F.5) and (F.6) for the Lie-Lorentz
derivative that we need to express the type-I and type-II-I modes in a form where the
dependence on both Oy and 0x_1 is written out explicitly. By substituting eq. (C.1) into
egs. (4.7) and (4.8), we express the type-I modes with positive spin projection as

1/):59; M0 (O, On 1, O —2)

i 65 (On) [ (On 1) Xmp(On—2) + 0 (O 1) Xmp(On )|
en—1(¢,m)

V2

i¢>gg) (On) [&ﬁ?ﬁ(&vfl) X-mp(ON—2) + Z’@ﬁi(%fl) >:(+mp(9N72)}
(F.29)
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wilez nfm ) (On,ON-1,0N—2)
: (t.m) |:E£Llﬁzn(0Na On-1) )%—mp(GN—Q) + iESg)m(GN, On_1) fCJFmP(QN_Q)}
— N1 TR)
— v 2 | 2 |
+ [H’SZ”(GN’ ON—-1) X—mp(On—2) + @O%(Gw, On-1) X+mp(91v_2)]
(F.30)

where ¢y _1(¢,m) is the normalisation factor (C.4) for the eigenspinors on SV~1 while the
spinors )%imp(HN_Q) on SN2 are defined by eq. (C.2). Also, we have defined

Ol (65, 0n—1) = C1)“ (B) 80 - %m(@ ) +iD W On) G (On-1)  (F31)
H) (On,6n-1) = CD @ (6) ae e Vim On—1) = iDL On) Gy O1)  (F32)
B\, (Ox05-1) = C5 (0) 89 B Gom(O—1) = iDL On) Ui O ) (F.33)

S (On Ox 1) = O () ag ¢em(9 1)+ D (On) (O 1) (F34)

(Recall that Cr(;)(a),Cy(i)(a),ijé)(a) and DSZ)(“) are given by eqgs. (4.9), (4.10), (4.11) and
(4.12), respectively.) Similarly, the type-I modes with negative spin projection are expressed
as

wi’ e p)(9N7 On_1,0N_2)

3 ¢>$ng) (On) [&E?,)l(@zv_l) X—mp(On—2) — z’@fﬁ(&v_l) )%-‘rmp(aN—Q)]
en—1(£,m)

V2

+iv') (0) [@ﬁg)l(@zv—l) Xomp(On—2) — i) (On-1) >2<+mp(9N—2)}
(F.35)

Y (G, Oy 1, O —2)
- H') (08, 08-1) Xomp(On—2) — 10U (On, On—1) Xmp (O —2)
_ ena(tm)

2 . 2 . 2
vy [ (0N, ON 1) Xmp (O —2) = 5500, (O3, O3 -1) X (O —2)

(F.36)

Similarly, it is straightforward to express the type-II-I modes with positive spin projec-
tion (4.18) as follows:

wﬁfé‘NI*Mm”’) (On,On-1,0n-2) =0, (F.37)
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YT (g 1, On-2)
(I;7=1) i%(@;l)(HN) [QEEQL(HN—Q )%—mp(eN_Q) + i&éi}i(@N_l) §+mp(9N_2)}
(¢, m)

i¢2;1)(9N) [&éz(eN—l) X-mp(On—2) + Z'l/;é,lg(HN—l) )%+mp(9N—2)i|
(F.38)

where c(” 1)(€ m) is the normalisation factor of the STSSH’s of rank 1 on SV~! and it
will be determlned later. The type-II-I modes with negative spin projection (4.17) are
expressed as
(II-T;—5mlm;
PUg T (O Oy 1, Oy—2) = 0, (F.39)

%Dﬁgjj’ M0 (B, O 1, On—2)

=) 0% (0n) | Bfis (On—1) Xomp(On—2) = i) (Ox—1) X-mp (On—2) |
_ CN_1 (&m)
2 R ) ~ ) b
v2 iiw,ﬂz”(&v) [¢§2(9N—1) X—mp(ON—2) — Z'%/Jé,lyz(@N—l) >~C+mp(eN—2)]
(F.40)

F.2.1 Derivation of the transformation formula (6.10) for type-I modes of rank
1 and calculation of the normalisation factor CE\I,;T:D (n,?)

By using the expressions (F.29) and (F.30) for the type-I modes, we express the Lie-Lorentz
derivative (F.5) as

(I;+5mlm;p)
Ly 1/’i9N

vty [ moON-2) TSN 63 -1) = Xamp(By-2) T (B, Ox-1)
=\ , (F.41)
\/5 2 .2
X mp(On—2) T (O, On—1) £ X smp(On—2) Ty (O, On—1)

where

sin Oy _1

10 = v, [660)] - o SInON-1 (1) 50 S'Sl;lgf;lgﬁgm (F.42)
1) = 770, (60000 + S50 + S';ir;z];;@% (.43)
) = 710, [ o) +22£@£¢$@3§+%Eﬁ% (F.44)
= o ] Bengag B s
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(Recall that OU) HW £ and 21 are given by eqs. (F.31), (F.32), (F.33) and (F.34),

n(m’
respectively.) In order to proceed we need to make use of the following relations:

1) = ZDKOEDD 30 4 pOEOFOY 3O 4 DpBF0 - (F g6
() — %(I)k(+)]~€(+)¢7(112+1%9r)1m + LOEOFO g G0 Dy a7
1) = Z2OEHEHGY 50 4 pMpOFEgW) 5O DeME0 (g )
1) = 2OEOEAGY 30 4 2OROFOY GO 4 0BG (g 49)

where k() k() k() and k() are given by eqs. (F.25), (F.26), (F.27) and (F.28), respec-
tively, while »/) is the coefficient defined in eq. (6.13) (with r = 1) and

o N S O

20+ =)+ N —-1) 200+ )

(F.50)

Let us outline the steps required for proving eq. (F.46). (Equations (F.47)-(F.49) are
proved similarly.) First, we express ’]Tgl) on the left-hand side of eq. (F.46) in terms of
o0 dg 1doy, 1) and dd\) /dfn_1 by making use of eqs. (F.42), (F.32), (F.12), (4.9),
(4.11) and (3.6). As for the right-hand side, we express qbgg 4, and ééi)lm in terms of
¢£le) (1) //dfn and ¢emv dd)(o) /dOn_1, respectively, by making use of the ladder rela-
tions (F.21) (F.24) and we also express wfllz) in terms of ¢Sg) and d(bgg) /dOn by making
use of eq. (3.6). Then, it is straightforward to show that the two sides of eq. (F.46) are
equal. We have verified the calculations using Mathematica 11.2.
Then, by substituting eqs. (F.46)-(F.49) into eq. (F.41), we express the latter as

. (1) 2 . 7(0 2
in_a(6,m) i 2¢£L£+1 [¢£+1m X-mp + W@Jr)lm X+mp]
Lo = F= {%www .

2 . 7(0 2
i¢n£+1 |:¢E+1m X—mp T 1W0p i1 X—i—mﬂ}

.1 (0 2 . 2
Zw’fz 4)—1 |:¢€—)1m X—mp + “pe—1 m X+mp}
L DR

1 (0 2 . 7(0 2
:I:(Zs'Ezl?—l |:¢g—)1 m X—=mp + “/}[g_)l m X—l—mp}

60 505y 15 o]
— D } (F.51)
ii@bfllg) [éé% f(fmp - “Z)é?rz ):(+mﬂ]
and we straightforwardly rewrite this as
L. QZ)ﬂfé};nﬂmp) 1)¢I+n €+1)mp)+%l)¢i19;n€ Dmip) 7/}(1’ ,némp7 (F.52)
as in eq. (6.10), where we have defined
oD = OB _on-1llm) (F.53)
CN_— 1<£ +1 m)
2 = ) _oabm) (F 54)

CN—l(E - 17m>
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It easy to verify that these expressions for 7)) and B1) agree with the expressions given
by eqgs. (6.11) (with » = 1) and (6.12) (with r = 1), respectively.

Now, we can determine the normalisation factor c%"ﬂ:l)(n ¢) for the type-I modes.
By using the spin(/V + 1) invariance of the inner product (6.5) between 1,[) (Losnbmie) and

w(if ;fm(“l)m;p ) and using the transformation formula (6.10) we find
I;r=1
=D, ) _ (=0l +N-1) (F.55)
=D 01 1) L+ 1D+ N)(n+L+N)
By iterating this equation and using eq. (F.4), one can straightforwardly find
(Iyr=1) 2
ey (n,f)] 1 T'(n—L+1)(n+{+N)
V2 2 D+ D)
" (N —-2){({+ N —1) 7 (F.56)

(N =1) ([n+ /2 = [N — 2] /4)

which is eq. (6.8) with » = 1 and 7(p) = 7(;y = 0. For later convenience, note that we
can easily deduce the form of the normalisation factor for the type-I STSSH’s of rank 1 on
SN=1 by making the replacements N — N — 1, n — £ and £ — m in eq. (F.56), as

(I;7=1 2
Cgv_l )(& m)

L

1 Tl-—m+1)I(l+m+ N—1)

A (e + 8502

(N =3)m(m+N—2)
(N=2)l+1)(t+N—-2)

(F.57)

Let us now discuss the mixing between type-I and type-II-I modes under the spin(N +
1) transformation. By using the equation w(ﬂ Lomtmip) — 0 and egs. (F.29) and (F.38)
(or egs. (F.35) and (F.40)), one readily finds that the component given by (F.5) of the
infinitesimal transformation of a type-II-I mode is proportional to a type-I mode, as

L (II-I;o;mlm;p) _Sin 9N71 (II-I;o;mlm;p)
S 1/’19 N =325

sin? On v
_ ”)wﬁf g;snfm%f’), (F.58)
in agreement with eq. (6.15), where we have defined
ytr—n 2 16 N m) (F.59)
T2 én_1(6,m) '

It is easy to show that this expression for # (=1 is equal to the expression given by
eq. (6.20) (with r = 1). Then, since type-II-I modes transform into type-I modes under
the spin(N + 1) transformation, the spin(N + 1) invariance of the inner product (6.5)
(between w (Lointmip) and zpﬁ_fff?"?”fm”’)) implies that

]Ly@b (Lomtmip) _ 4 1—>U)¢ (II-L;o5mbm; p) (F.60)
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where all the STSSH’s in ‘...” are type-I modes, while # 1) is given by

(.0

=) _ (= D)x
Iyr=
A= (n, 0)

, (F.61)

where the asterisk denotes complex conjugation. Then, by using the expression for J# (=1
leq. (6.20)] and the expressions for the normalisation factors [eq. (6.8)] we find that ¢ (=)
in eq. (F.61) is equal to the expression given by eq. (6.14) (with r = 1).

F.2.2 Derivation of the transformation formula (6.15) for type-II-I modes of
rank 1

By substituting the type-II-I mode (F.38) into the Lie-Lorentz derivative (F.6) we find

(II-I;+5nlm; p)
LylbigN_l

(7= 1)(8 m) iX—mp(ON—2) T;(J,H) (ON,ON—-1) — X+mp(On—2) TYI)WN, On—_1)

_CON-1
\/i 2 .2 '
X mp(On—2) TS (O, O5—1) % X qmp (On—2) TS (O, Ox—1)
(F.62)
where
I 1 sin 0 L0
(" = (749, ~ cot O cos by 1) [0, 6f,)| - e ', %W{, (F.63)
ar na 1] , sinfn_ Lo
Ty = ("0, cotHNCOSHN_l) ne @ZJ }—1— D sin O gb@m, (F.64)
) _ oy (1], sinbn-—y $GVG
T (“H0, cot@NCOSHN_l) M gb }4— 25 O Yy (F.65)
T = (919, — cot Oy cosOy_1) ¢< D] - sl WCDB(O) (F.66)
2sin 6y
Then, as in the case of the type-I modes, we prove the following relations:
TUD — gD PN () () 7(1) (), (=1) 7(1) Hﬁll
1= ¢ne+1¢z+1m+ Kk ¢ne 1P00m T2 Une Py + 5
(F.67)
~ oW
5" = @(H)k(ﬂk(ﬂ‘f’nuﬂ/’é?lm+$(H)k( 'k ¢ne 1% 1m %(11)1/1 1/1(1) T;m,
(F.68)
TUD _ gD (i) () ()~ (i) (0 30, B
3 - wn€+l¢€+1m+ wn@ l¢€ 1m % ¢n€ ¢£m+ 9
(F.69)
T _ gpiD), PN () () 7(1) (), (=1) 5(1) de)m
4 - wn€+1¢€+1m+ k k '¢ lwﬁflm—i—% ¢n€ wfm—i_ 2 ’
(F.70)
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where »!) is given by eq. (6.18) (with r = 1) and

200+ Y (0 + N - 1)’ 20(¢ + 1)
By substituting egs. (F.67)-(F.70) into eq. (F.62) we find
]Le/w:tléj\{-‘,l-nﬁmp) %([1 wjf]]\{—:n(é—i—l)mp) + B [[)1/} H]\f—il-n(f 1) m;p)
;—nlm; iném;
1/};|:I£I p) + 7 II%I)QbiIe; X P)7 (F72)

in precise agreement with the transformation formula (6.15), where we have defined

o &
oD = gpUD) L.(+) |.(+) - N_l) (t;m) (F.73)
Cy_y (L+1 m)
&L=
B = D (—)7(-) g“m) (F.74)

cgv (£—1, m)

It easy to verify that these expressions for o) and U agree with the expressions given
by egs. (6.16) (with » = 1) and (6.17) (with r = 1), respectively.

F.3 Derivation of the transformation formulae of type-I and type-II-I STSSH’s
(I;r=1)

of rank 1 and calculation of the normalisation factor ¢y~ ’(n, /) for N odd
The Lie-Lorentz derivative is given by egs. (F.5) and (F.6), where vV =1 is given by
01
N, N-1
= F.75
Ty <_1 0) : (F.75)

where 1 is the identity spinorial matrix of dimension 255 /2.
The type-I modes on SV with positive spin projection index on SN~1 (on—1 = +) are
found by substituting eq. (C.6) into egs. (4.20) and (4.21), as

¢§[]9;Z,Z;+;m;p) (On,ON-1,0N_2)

(1 + 1) i) (B -1) [Gﬁgg)(eN) + WSZ(QN)} Xtmp(On—2)

9

~—
Sl
[\)

N-1(f,m
2 ~
v (1= 1) B (On-1) [0 (0n) = i) (On)] Ktm(On-2)

(F.76)

wi@?f T mie) (On,ON-1,0N—2)

; m) 1 (1+41) [2024)771(91\/,91\/—1)jFESz)mWN,@N—l)] X-+mp(ON_2)
N—-1\%t,

SR
S

(1=3) | =Hih O, On 1) B, (O, On-1)| Kmp(O—2)
(F.77)

— 76 —



(the functions describing the dependence on Oy and Oy_; in eq. (F.77) are given by
eqs. (F.31)-(F.34)). The component wileng’ ) is obtained from eq. (F.76) by making the

replacement X{mp — X—mp and exchanging “/)Km and qbg ). The component 1/1(1 M’ mip) |
(1 )

ném

obtained from eq. (F.77) by making the replacement X, — X—m, and exchanglng 10
and H' e) , as well as exchangmg ¢E( ) and ik, (1 ) . The ladder relations for the functions
¢£w)(9N) ’QZJSLE)(GN) ¢£m(0N 1), ¢€m(0N 1) are given again by egs. (F.21)-(F.24). Equations
(F.46)-(F.49) hold as in the even-dimensional case.

The type-II-I modes on SV with positive spin projection index on SN~ (ony_1 = +)
are expressed as

Q/J:I:Ié]\{ nf i) (gNa 0N—17 BN—Q)
wy 1[G DN [0 On) 01 60)] RO

V2P i) [0570n) £ 105 08)] Tma(6xs)

(F.78)

_(I;7=1
C§V—1 )(6

I;
while wilg nh—mip)

and exchangmg uﬂgg and ééi}z Equations (F.67)-(F.70) hold as in the even-dimensional

is obtained from eq. (F.78) by making the replacement X {m, = X—mp

case.

The rest of the derivation of the transformation formulae is similar to that for the
even-dimensional case. We find that the transformation formulae for the type-I and type-
II-I modes are given by egs. (6.29) and (6.30), respectively, while the normalisation factor
c%;rzl)(n,ﬂ) is given by eq. (F.56).

F.4 Transformation properties under spin(/NV + 1) and normalisation factors for
STSSH’s of rank 2 on SV

As mentioned in the beginning of this Appendix, the calculations needed in order to derive
the transformation formulae and determine the normalisation factors for STSSH’s of rank 2
on SV have many similarities with the case of rank-1 STSSH’s, which was presented above.
Therefore, below we just provide a brief description of the basic steps.

Let us begin by determining the normalisation factor for type-III STSSH’s of rank 2,
c%fl;r:g) (n,f). In the case with N even, we substitute the rank-2 type-III modes (5.28)-
(5.30) into the inner product (6.7), while in the case with N odd we substitute the type-IIT
modes (5.41)-(5.43) into the inner product (6.27). By working as in the case of rank-1
type-II modes, we readily find (with the use of eq. (5.9))

p— 2
e (0.0
V2

for both V even and N odd, which is eq. (6.8) with r = 7 = 2.
Now we will determine the normalisation factor for type-1I STSSH’s of rank 2, C%I;T:m (n,?0).
For N even we substitute egs. (5.21)-(5.23) into the inner product (6.7), while for N odd we

1 I'(n—£+1)I'(n+L+N)
= o ot 5P , (F.79)
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substitute egs. (5.38)-(5.40) into the inner product (6.27). By performing the integration
over SV~ (using eqs. (D.13) and (4.16)), we straightforwardly find

2
— 2/ din sin?V~ 39N [(¢(0)( )) * (wg?(e]v))?

<€+N—1> _N(N+1)

N 0]
V2

2
* 2

™ ©) 2 o) 2
I r
[y KW) . <<HN>> ]
0 2 9
(
nf

& A
+2(N+1)/ df sin™ 75 Oy {”@2
0

G

x / dfy sin™ 7 Oy [rf;)(eN)A;?(eN)+r§jg(eN)Afy(aN)], (F.80)
0

where F;?,FSE), Agg) and Afjg are given by egs. (5.26), (5.27), (5.24) and (5.25), respectively.
The calculations can be significantly simplified by making use of the following relations:

4 © g (1)
sin? qu 0) = ¢n’f’(9)|NeN+27
4 (0) (1)
sin2 9¢ne 0) =1 /15’ ‘NHNJrZ’
2 o) (®)(1)
sin? GF”‘ 0) =Cpry (9)|N—>N+2’
2 b b
sin? eAilf) 0)= D Oy ypor 0= (F.81)

where 6 € [0, 7], n" =n —1 and ¢/ = ¢ — 1, while on the right-hand sides of the relations in
eq. (F.81) we have denoted the replacement of N by N + 2 as N — N + 2. The relations
in eq. (F.81) can be readily proved by using egs. (3.1), (3.2), (4.9), (4.10), (4.11), (4.12),
(5.24), (5.25) (5.26) and (5.27). By comparing egs. (F.80) and (F.3) and by using eq. (F.81),
we straightforwardly find

A0 | m—te-nf _—
V2 V2
1 T(n—L+1)T(n+L+N)
SN D(n+ )2
N —1)({+N) (F83)

(N +1) ([n + N/ - N2/4) ’

which is eq. (6.8) with r =2 and gy = 7(j5) = 1.
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As for the normalisation of rank-2 type-I modes, by working as in the case of rank-1
type-I modes, we calculate the normalisation factor for £ = n using Mathematica 11.2

p— 2
)T =DV =2+ ¥+ 1)

V2 2+ 1)(N 4 1)yal(n+ )’

(F.84)

while the normalisation factor c(I;r:m(n, ) (for £ =2,3,...,n— 1) will be determined using
the spin(N + 1) invariance of the inner product (6.5).

In order to derive the transformation formulae (6.10), (6.15), (6.22), (6.29), (6.30) and
(6.31) for the STSSH’s of rank 2 it is sufficient to study the following components of the
Lie-Lorentz derivative (6.1):

sinHN_1 N N—1 2sin0N_1

Lovoyon = (5”“% + sty | )%NQN + Yopon 15 (F.85)

sin2 0 N

SlneN_l N N-—1

Lovoyon_, = (Y“@L —cosfn_1 cot Oy + sy )weNaN_l

sin Oy _1 .
Mw@N_leN_l - SlnHN—leNQN (F86)

and

SineN_l N N—l)
Jsinby | 7 ) Von-i0n

—2sinOn_1 Voyon_,- (F.87)

Lotoy on 1 = (5”“8“ —2cosfOn_1 cot Oy +

By working as in the case of rank-1 STSSH’s, we make use of the ladder operators (F.21)-
(F.24) and (after a long calculation) we find the transformation formulae (6.10), (6.15)
and (6.22) for N even, and the transformation formulae (6.29)-(6.31) for N odd. Then,
as in the case of rank-1 type-I modes, the normalisation factor of rank-2 type-I modes is

found by combining the spin(/N + 1) invariance of the inner product between quuﬂi Zlfm;p)
and wgﬁﬁ(ul)m;p) with eq. (F.84), as
=D 00 1 Ta— 4 )00+ L+ N)
V2| TR P
N -2 l+N-1){—-1)(¢+ N) (F.58)

N1 ([n +NJ2? — [N — 22 /4) ([n +NJ2)? - N2/4) ’

(for both N even and N odd) which is eq. (6.8) with » = 2 and 7By =T = 0.

G Pure gauge modes

In this Appendix, we present details for the derivation of the pure gauge expressions (7.13),
(7.15) and (7.18) for N even. The calculations for N odd are similar and, thus, we do not
present them here.
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For later convenience, note that by making the replacements 0y — z(t) = 7/2 — it,
n — M — N/2 [eq. (7.5)] in the formulae (3.5) and (3.6) we find

d N +2a—-1 ﬁ—l—(N—l)/Q ~(a) )
(dl‘ * 2 cote + sin Mﬁ(t) N M(b]m(t) (G.1)
and
d N+2a—-1 £+(N—1)/2 ~(a) B ~ - (a)
<dx 5 cotx — o qﬁjm(t) = —ijm(t), (G.2)

respectively, where cot x = i tanh ¢ and sin x = cosht. Also, let us obtain lowering operators
for M as follows. By making the replacements N — N + 1, Oy_1 — z(t) = 7/2 — it,
¢ — M — N/2, @ — a and m — £ in the lowering operator (F.19) we find

IA/(M;a)QZA)(?) (t) = |sin 332 + ( M + it + a) cos + ﬁ gZ;(a) (t)
¢ Me or 2 2( _ 1/2)
M (M —¢—N/2
i / >q3<“9 (®), (G3)

M—1/2 (M=1)¢
while by making the same replacements in the lowering operator (F.20) we find
. N—1
P (150), 5(@) ) — | i oo 0 N - 75 | @
L, wMZ(t):[&na:ax—i-( M+2+a>cosa;—2(_1/2 ¥ 7,(1)
M (M 0 N/2)

— (a)
= —1/2 w(M,l)e(t)- (G.4)

G.1 Pure gauge modes for the strictly massless spin-3/2 field, N even

The type-I modes (7.13) for the strictly massless spin-3/2 field (with M = (N —2)/2) are
‘pure gauge’ modes. In this Subsection, we prove explicitly the ¢-component of eq. (7.13)
and we describe the calculations needed in order to prove the rest of the components. Let

. £) . 05 . . .
us denote the spinors AQ in eq. (7.13) as A(ia P ), where we have written out explicitly
the dependence on the spin projection index o = + and the angular momentum quantum
number £ = 1,2,.... Since these spinors satisfy the Dirac equation (¥ + iN/Q)Af&p) =0,

they are given by [22]

Y (1) x—e5(85-1)

—il:p 2 N

A( ,E,p)(t70N71) —— 2 Z : (G5)
* ¢ ¢18 () x—e5(On-1)
(+:6:7) 2 “&(ﬁo)@(t) X+65(ON-1)

Ai . (tagN—l) = - \ , (G6)

¢ de;Zg)’z(t) X+¢5(0N-1)

where qg(g)g(t) and ﬁ(ﬂo)z(t) are found by letting M = N/2 in eqs. (7.7) and (7.9), respectively,
27 27
while x1¢; are the eigenspinors (2.22) of the Dirac operator on SN=L The factor of 2/¢
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will be motivated naturally below [it arises from the use of the lowering operators (G.3)
and (G.4)]. Below we prove the t-component of eq. (7.13) only for negative spin projection

o = —. The case with ¢ = + can be proved in the same way.
(4 N=2yp.5 -
e type-/ modes or the strictly massless spin- e = —
Th I modes 08T ) o0 the strictly massless spin-3/2 field (37 = (N
2)/2) are found by combining eq. (7.11) with eqgs. (4.5) and (4.6), as
(L= 252 )6:p) ] &ELM@)X—%(ONA)
‘Ijt 2 (t, 0N71) = —1 i A(%) (G?)
¢Z¢(¥)e(t)xf€ﬁ(9N—l)

(ta 0N—1)
C'((pé))z(t) Vo, X—e3(@n-1) + D Q_lz))z(t) Yo, X—05(ON-1)
= , (G.8)
FiC (008 (0) Vo, x-1(Ox 1) F iD(R) (1) G0, X-rp(On-1)

2

where the functions C’](\s[)z(l) (t) and ﬁg\?e(l)(t) (b =1,1) are obtained by making the replace-
ments Oy — 7/2 — it, n — M — N/2, ¢\ (0n) = &'V (1), w5 (0x) — (1) in the
functions C’SZ)(D(GN) and Dflbg)(l)(HN) (b =1, ), respectively, in eq. (4.6).

(L=(=552)6p) .
Now, let us prove eq. (7.13) for the t-component of ¥, . We will show that

the two sides of eq. (7.13) are equal by making use of the lowering operators (G.3) and
(G.4). We want to show

I;—; F N2 0;p 0 7 —0:D
\IIE ( 2 ) p) = <8t + 2”)/t> A(i ,f,p) (Gg)

which is expressed in terms of upper and lower components as

B2, (DX—tp(0n-1) [&éﬁgw -3 828{@@)] X-ip(On-1)
2
y :% , (G.10)
(1) ) o )
Fith 2, (DX-p(ON-1) T {zgtwgfz(t) - ;qbggfz(t)} X—15(0n-1)

£ o) RO EA(O) 1 :0)
2 ¢(¥)£(t>  sinz ¢(¥)Z(t) ) %!(t) + 5 %’Z(t) (G.11)
L0 = L0~ D50 Lo

5 Y2y () = o bve) () = 5 0y (1) = 50w (8), (G.12)

where we have used eqs. (7.7) and (7.9). Then, by using the formulae (G.1) and (G.2) we
rewrite egs. (G.11) and (G.12) as

€+(N—1)/2> 3(0) NE 5o

(sinxd - }cota; + v () = v ( _Q)K(t) (G.13)
27

dr 2 N -1
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and

(smxi—icotx—W)zﬁ(g)’g(t) = NN 1/30) 2 (8, (G.14)
respectively. It is easy to verify that eq. (G.13) is equal to the lowering operator (G.3) acting
on gg(%o)’e(t), while eq. (G.14) is equal to the lowering operator (G.4) acting on 1[}(%0)’5(25). Hence,
the two sides of the time Component of eq. (7.13) are equal. The rest of the components
of eq. (7.13), i.e. \I'gj;i;(i 6p) _ (V + 27 )A( i6:6) (j=1,..,N —1), can be proved
straightforwardly just by using egs. (G.13) and (G.14), as well as formulae (G.1) and (G.2).

G.2 Pure gauge modes for the strictly massless spin-5/2 field, N even

The type-I and type-II modes for the strictly massless spin-5/2 field (with M = £N/2 -
see eq. (7.15)) are ‘pure gauge’ modes. In this Subsection, we briefly describe how to obtain
(Bt

the ‘pure gauge’ expression in eq. (7.15). We denote the vector-spinors A}, )(t, On_1) in
eq. (7.15) as )\fjo;&p) (t,0n-1) (6 =+, B=1,II and ¢ = 2,3, ...). Since the calculations

for 0 = — and o = + are similar, below we discuss only the case with o = —.
A
Pure gauge modes of type-I. The type-I modes Wg,} (+3)67) for the strictly massless

spin-5/2 field (M = +N/2) are found by combining eq. (7.11) with egs. (5.10). The ‘time-
time component’ is

2(2
(I X)67) ¢(%),g(t)><—eﬁ(91v71)

) Dt 0w 1w (1 A G.15
5 (t,0n-1) = (—1) X :Fl'd}(g)j(t)x_gﬁ(aN—l) o

Similarly, since the TT vector-spinors )\(jj_;g;ﬁ)(t, On_1) in eq. (7.15) satisfy
N + 2 B;—34;p
(W +i ) MDD = g,

they are given by the analytic continuation of the type-I STSSH’s of rank 1 in eqgs. (4.5)
and (4.6). The ‘time component’ is given by

7(1)
s ; ¢ (D)X —5(0N-1)
AGT P (01 = — 2 (AN% ) ’ (G.16)
-1 1/1 ), ( )X-e5(ON-1)

(The factor of 2/(¢—1) is inserted for the same reason as the factor of 2/¢ in eqgs. (G.5) and

: (L= 5)6p)
(G.6).) Then, by usmg egs. (G.15) and (G.16), we expand the two sides of W, =

(Vi £ im) )\it P [see eq. (7.15)] and find

(-1, d - 1-

s One®) = g 9n () F 5Pz (1) (G.17)
(=1 9 ) 10

sin v 5 ,f(t) N %w(%)e(t) - §¢(T+2)g(t)‘ (G.18)



These equations are proved in the same way as egs. (G.11) and (G.12). Thus, we have
verified the ‘time-time component’ of the ‘pure gauge’ expression (7.15). The rest of the

. (Li=5(x5)6p) i (I;=34;p) (1i=3(&3)6p)
components of eq. (7.~15), e Wy 2 = (Ve £37¢) )\iej) ?) and Vg0, 2 =
(Vi, £ %’}/(gk) )\gg;);e;p), can be proved using egs. (G.17) and (G.18).

Pure gauge modes of type-II. By working as in the case of type-I modes presented
above, we find

7(0) 7(A0p)
AN o (Y (On-1)
‘I’t(elj A7) (t,On-—1) = (—i) X %(’g) f;]afﬁ) (G.19)
Fi) (0057 (On-1)
and
N - A;f~
(H—;l;—;f;ﬁ) 4 ¢EN?2)E(t)w(79jp)(0N—l)
)\iej (t7 HN—l) = 16—71 . A(2_1) N(A~7€ﬁ) (GZO)
¥Zw(¥)g(t)¢_0j (GN—l)

Ao (N5 Aot
Recall that for type-II modes we have \I’(H Aioi(E3)40) =0 and )\(H Awitip) = 0.) Then,
tt +t

we can verify the ‘pure gauge’ expression (7.15) by working as in the case of type-I modes

presented above.

G.3 Pure gauge modes for the partially massless spin-5/2 field, N even

The type-I modes [eq. (7.18)] for the partially massless spin-5/2 field (with M = +(N —
2)/2) are ‘pure gauge’ modes. Below we describe briefly how to obtain the ‘pure gauge’
expression in eq. (7.18) for N even. (We present the proof only for the tt-component of
eq. (7.18).) We denote the Dirac spinors gogp (t,0n_1) in eq. (7.18) as cpgf;&ﬁ)(t,BN,l)
(0 =4 and ¢ = 2,3,...). Again, the calculations for o = — and o = + are similar and,
thus, we discuss only the case with o = —.

For later convenience let us write down explicit expressions for lowering operators that
lower the parameter M to M — 2 of the functions f](\;z(t) € {(fﬁg\%(t), 1[1](\%@) }. By applying
each of the lowering operators (G.3), (G.4) twice, we find

A”_.aA~.a ~(a . 82 a rla
A I O [sm2 R cf(x)] 0
MM —1)(M— -5 (M-1-0-5) .
- (N1~ (T —3) a0 (G20

(recall x = m/2 — it) where

¢+ %)(M —1)sinz

(M —1/2)(M — 3/2)

bp(x) =sinwcosx (—2M+1+2a+N> + sy (G.22)
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and
(e+ 251y
4(M —1/2)(M —3/2)
(¢ + Y1) cosx (—M+a+21 1—M+a+N21>

cf(x) =

+ s S + —
/ 2 M —3/2 M—1/)2

(o2 (a2

N -1
—sin2:c< M—l—a—i—) <2—M—i—a—|—2>, (G.23)

with sy = 1if £ (t) = ¢\ (£) and s = —1 if £ () = ') ().
Now we will verify the ‘time-time component’ of eq. (7.18) with negative spin projection
(0= —),ie.

I— (£ ¥=2):p . 3 —il;p
\Ijt(t ( 2 ) p) (t, HN,l) = (Vtvt + Z’tht + 4gtt> Qﬁg: i6:p) (t7 0]\[,1). (G24)

Since the spinors goi’ ) (t,0n-_1) satisfy the Dirac equation [V & i(N + 2)/2] ¢} (736:p) _ =0,
they are given by [22]

~ O Raz ) () X-e(On 1)
(0 g Yo L cEr G.25
P+ ( y UN 1) E(E ) ( w (L ( ) 2,5(0]\7_1) ) ( )
TN S £ ORI CAY o
S N () FO) (1) xet5(0n-1) | o

where the factor 4/ (¢[¢ —1]) is motivated naturally below. On the other hand, the ¢t-
component of the type-I mode of the partially massless spin-5/2 field is given by

/\(2
(e N=2y, ¢ w2y, ()x—e5(On-1)
‘I’t(tl =5 Mp)(t,ON—l): (—1) x (fé;)é g (G.27)
By substituting eqs. (G.25) and (G.27) into eq. (G.24) we find
L£—1) L0 —1) -~
A, =505, 0
sin“z ()¢
_ (9 . 3);0 )
= <a$2 1) Pz () + 5oV, (1) (G.28)
0l —1) 12 (L= 1) 10
T Ve = ey Ve
0 3\ 50 9 50
= (axz + 4> Yiagz) () = 5oy, (8)- (G.29)
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Equation (G.28) is proved using the lowering operator (G.21) as follows. First, we express

81[’(((@)4 /O0z in eq. (G.28) in terms of 8(]BE(L)£ /O0x and ég(@)e by making use of the
2 2 2

formulae (G.1) and (G.2). Then, after a long calculation, we rewrite eq. (G.28) as

(€ —1) ~0) (NN 41) [ (Xia=0) ; (8210=0) +(0)
sinz (55 N(N + 2)sin®z Lf Lf ¢ (Na2yp | > (G.30)

which is readily verified using the lowering relation (G.21). Equation (G.29) is proved in the

same way. Thus, we have verified the ¢f-component of the ‘pure gauge’ expression (7.18).

Iioy(M=+1)¢;
Let us now show that our ‘pure gauge’ expression for the type-I modes \Ill(wa (M=+1)7)

on dSy in eq. (7.18) is equal to the gamma-traceless part of the gauge transformation that
is proposed in Ref. [8] (for a specific choice of the spinor gauge function in the gauge
transformation of Ref. [8]). In order to compare our results with the results of Ref. [8] we
let N =4and M = +(N —2)/2 = +1 in eq. (7.18). [Now, the spinors @Sf;&ﬁ) in eq. (7.18)
satisfy Wgo oi6:P) 3z'g05f;£;ﬁ ).] By using units in which the cosmological constant is A = 3,
the gauge transformation for the partially massless spin-5/2 field 1), in Ref. [8] is

1 15
Oy = (v(,uvz/) - *V(MVV)W + g;w) € (G.31)
3% 15
= (V( Vo) + ’V(uv,,) + — 16 > €, (G.32)

where we have chosen € to be a solution of the equation Ye = —3ie. (For this choice it is

clear that our spinors <p(+ #) are the mode functions corresponding to the field e.) Note

that for this choice of € the gauge transformation of the auxiliary field is zero - see Ref. [§].
Also, for this choice of € it can be readily verified that g"”d1),, = 0, but v#d1,,, # 0. Let
(w:w be the gamma-traceless part of 01, i.e.

(WJ,,W = 6¢}LV - 770457!)&1/ - FYV Oc(swa/“ <G33)

where 791y, = 0 and g"”d4),,, = 0. Then, we can straightforwardly show that

‘ 3
0y = <V<uvu> T V) + 49w> €, (G.34)

which is in precise agreement with the expression for our type-I modes in eq. (7.18).
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