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Abstract: The divergence-free and gamma-traceless vector-spinor eigenfunctions, as well

as the divergence-free and gamma-traceless rank-2 symmetric tensor-spinor eigenfunctions,

of the Dirac operator on the N -sphere (SN ) are written down explicitly for N ≥ 3. The

spin-3/2 and spin-5/2 eigenmodes of the Dirac operator with arbitrary imaginary mass

parameter on N -dimensional (N ≥ 3) de Sitter spacetime (dSN ) are obtained by analytic

continuation. Their transformation properties under the de Sitter algebra spin(N, 1) are

studied. ForN odd, we show that there is no de Sitter (dS) invariant scalar product for these

eigenmodes. For N even, although dS invariant scalar products exist, positive-definiteness

of the norm occurs only for the strictly and partially massless theories in N = 4 dimensions.

For N = 4, the way in which the eigenmodes form unitary strictly and partially massless

representations of spin(4, 1) is emphasised. The analysis presented in this paper reveals

previously unknown features of the gauge-invariant theories with spin 3/2 and 5/2 on dSN
(N ≥ 3): the strictly massless spin-3/2 field theory, as well as the strictly and partially

massless spin-5/2 field theories, are unitary only for N = 4. In particular, a unitary theory

for the gravitino field on dSN does not exist unless N = 4.
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1 Introduction

1.1 Background

The de Sitter spacetime, apart from its relevance to inflationary cosmology, is also thought

to be a good model for the asymptotic future of our Universe, as suggested by current ex-

perimental evidence in favour of a positive cosmological constant [1–3]. The N -dimensional

de Sitter spacetime (dSN ) is the maximally symmetric solution of the vacuum Einstein field

equations with positive cosmological constant Λ [4]

Rµν −
1

2
gµνR+ Λgµν = 0, (1.1)

where gµν is the metric tensor, Rµν is the Ricci tensor, R is the Ricci scalar and

Λ =
(N − 2)(N − 1)

2 R2
, (1.2)

while R is the de Sitter radius. Throughout this paper we use units in which R = 1.

Unlike Minkowskian field theories, possible field theories of spin s on dSN are not

restricted to the two usual cases of massive and strictly massless theories, where for N = 4

the former has 2s + 1 propagating degrees of freedom (DoF), while the latter has only 2

helicity DoF (±s) due to the gauge invariance of the theory [5]. On dSN there also exist

intermediate gauge-invariant theories for s ≥ 2, known as partially massless 1 theories [6–

10]. For a given spin s ≥ 1, there exists one strictly massless theory and [s] − 1 different

partially massless theories, where [s] = s if the spin s is an integer and [s] = s− 1/2 if s is

a half-odd integer. Partial masslessness was first observed for the spin-2 field by Deser and

Nepomechie [11, 12] and for higher integer-spin fields by Higuchi [13]. Partially massless

theories with various spins have been discussed further in a series of papers by Deser and

Waldron [6–10, 14]. From now on, we use the term ‘massless theory’ in order to refer to a

gauge-invariant theory that is either strictly or partially massless.

Each massless theory is conveniently labelled by a distinct value of the ‘depth’ τ =

1, 2, ..., [s] (where the value τ = 1 corresponds to strict masslessness) and in 4 dimensions

there are 2τ propagating helicities, namely: (±s,±(s − 1), ...,±(s − τ + 1)) [6, 8, 9]. For

given spin s and depth τ, each of these gauge-invariant theories corresponds to a distinct

tuning of the mass parameter to the cosmological constant Λ [6, 8, 9, 13, 14]. Higuchi

classified the tunings of the mass parameter for massless theories with arbitrary integer

spin by studying the group-theoretic properties of the eigenmodes of the Laplace-Beltrami

(LB) operator on dSN [13, 15]. Deser and Waldron gave an analogous classification for

arbitrary integer and half-odd-integer spins by using group representation methods based

on the dS/CFT correspondence [14].

A field theory on dSN is unitary only if it corresponds to a unitary representation of

the de Sitter algebra spin(N, 1). Unitarity is very important for physical problems since

it ensures the positivity of probabilities. The unitarity of massless totally symmetric field

1Partially massless theories exist also in anti-de Sitter spacetime. Partially and strictly massless theories

on both de Sitter and anti-de Sitter spacetimes are discussed in Ref. [8].
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representations with arbitrary integer spin on dSN has been studied in detail by Higuchi [13,

15]. More specifically, by applying analytic continuation to the totally symmetric, traceless

and divergence-free tensor-eigenfunctions of the LB operator on the N -sphere (SN ), he

obtained the totally symmetric, traceless and divergence-free tensor eigenmodes of the LB

operator on dSN . Then, by calculating the norm of these eigenmodes explicitly, he showed

that all massless theories with arbitrary integer spin s on dSN are unitary (due to the

positivity of the norm). However, such an analysis for half-odd-integer spins is still absent

from the literature. It is the purpose of the present article to start filling this gap in

the literature for the vector-spinor and symmetric rank-2 tensor-spinor fields on dSN , by

working along the lines of Higuchi’s analysis [13, 15].

Particles with arbitrary half-odd-integer spin s ≡ r + 1/2 on dSN can be described by

totally symmetric 2 tensor-spinors Ψµ1...µr satisfying [6, 14]

(
/∇+M

)
Ψµ1...µr = 0 (1.3)

∇αΨαµ2...µr = 0, γαΨαµ2...µr = 0, (1.4)

where /∇ = γν∇ν is the Dirac operator on dSN . (See Subsection 2.2 for our convention

for the gamma matrices.) From now on, we will refer to the divergence-free and gamma-

tracelessness conditions in eq. (1.4) as the TT conditions. For each value of the mass

parameter M , the TT eigenmodes Ψµ1...µr in eq. (1.3) form a representation of the de Sitter

algebra spin(N, 1). The half-odd-integer-spin theories described by eqs. (1.3) and (1.4)

become gauge-invariant (i.e. massless) for the following imaginary values 3 of the mass

parameter M = iM̃ [14]:

M̃2 = −M2 =

(
r − τ+

N − 2

2

)2

(τ = 1, ..., r) (1.5)

for r ≥ 1 4. Real values of M (including M = 0) correspond to non-gauge-invariant theories

and they are discussed in Appendix A.

1.2 Main aim and strategy

The main aim of this paper is to study the unitarity of three different representations of

spin(N, 1), corresponding to: the strictly massless spin-3/2 field (i.e. the gravitino field),

the strictly massless spin-5/2 field and the partially massless spin-5/2 field on dSN (N ≥ 3).

Since all these massless theories occur for the imaginary values (1.5) of the mass parameter,

2Note that not all possible half-odd-integer-spin representations of spin(N, 1) can be formed by totally

symmetric tensor-spinors. Similarly, not all possible integer-spin representations of spin(N, 1) can be formed

by totally symmetric tensors. Mixed-symmetry fields on dSN and the corresponding representations of the

de Sitter algebra have been discussed in Ref. [16].
3The imaginary values of M in eq. (1.5) imply that the action functional for massless half-odd-integer-

spin theories on dSN is not hermitian. The fact that the gauge-invariant spin-3/2 field theory in de Sitter

spacetime has an imaginary mass parameter had been already observed in cosmological supergravity [17].
4In the case of the spin-1/2 field, where r = 0, there is no gauge-invariance for any value of M . However,

for N even, the spin-1/2 theory with M = 0 behaves as a massless theory since the spin(N, 1) representation

formed by the eigenmodes is reducible. Note also that for N even, the non-gauge-invariant M = 0 theories

with r ≥ 1 are “massless” in the sense of reducibility of the representation - see Appendix A.
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we will focus our group-theoretic analysis on the case where M is an arbitrary imaginary

numberM = iM̃ (M̃ ̸= 0) and we will specialise to the massless values (1.5) when necessary.

The basic steps of our analysis are as follows:

• We obtain the TT vector-spinor eigenmodes Ψµ1 (spin-3/2 modes) and the TT sym-

metric tensor-spinor eigenmodes Ψµ1µ2 (spin-5/2 modes) of eq. (1.3) with arbitrary

imaginary mass parameter M = iM̃ (M̃ ̸= 0). (The case with M = 0, as well as the

cases with any real mass parameter M , are discussed in Appendix A.)

• We study the transformation properties of the eigenmodes under a spin(N, 1) boost.

• By exploiting the transformation properties of the eigenmodes under the spin(N, 1)

boost, we examine when their norm with respect to a de Sitter (dS) invariant scalar

product is positive-definite.

As in the relevant study of integer-spin fields [13, 15], in order to obtain the TT eigen-

modes of eq. (1.3) we will take advantage of the well-known fact that SN can be analytically

continued to dSN (see Section 7). Motivated by this, we will write down explicitly the mode

solutions of the following eigenvalue equation on SN :

/∇ψµ1...µr = iζψµ1...µr (1.6)

∇αψαµ2...µr = 0, γαψαµ2...µr = 0, (1.7)

where ψµ1...µr is a totally symmetric tensor-spinor of rank r on SN which also satisfies the

TT conditions (1.7) and /∇ is the Dirac operator on SN . The eigenvalue in eq. (1.6) is

imaginary, i.e. ζ ∈ R, since - as is well known - /∇2
is negative semidefinite on compact

spin manifolds. We call the eigenmodes satisfying eqs. (1.6) and (1.7) the symmetric

tensor-spinor spherical harmonics (STSSH’s). In the present work we study only

the STSSH’s with ranks r = 1 and r = 2 on SN (N ≥ 3), where we are also going

to normalise them, as well as study their transformation properties under a spin(N + 1)

transformation (spin(N + 1) is the Lie algebra of the isometry group of SN ). Note that

the unnormalised STSSH’s of rank r = 1 - i.e. the TT vector-spinor eigenmodes of the

Dirac operator /∇ on SN - have been already constructed in Ref. [18], but no emphasis was

given on their group-theoretic properties. To our knowledge, the STSSH’s of rank r = 2

are constructed in the present paper for the first time (see Section 5 and Appendix E). By

applying analytic continuation techniques to eqs. (1.6) and (1.7), one can obtain eqs. (1.3)

and (1.4), respectively, on dSN .

1.3 Main result

Our main result is:

• The strictly massless spin-3/2 field and the strictly and partially massless spin-5/2

fields on dSN (N ≥ 3) are unitary only for N = 4.

(In this paper we do not discuss the vector-spinor field and the symmetric tensor-spinor

field on dS2.) In particular, a unitary theory for the gravitino (corresponding to the strictly
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massless spin-3/2 field) on dSN (N ≥3) does not exist unless N = 4. In order to arrive at

our main result, we study the group-theoretic properties of the spin-3/2 and spin-5/2 TT

eigenmodes of eq. (1.3) with arbitrary imaginary mass parameter M = iM̃ (M̃ ̸= 0) and

we show:

1. For even N > 4: all dS invariant scalar products for these eigenmodes must be

indefinite for all imaginary M = iM̃ (M̃ ̸= 0). This is demonstrated by showing that

both positive-norm and negative-norm mode solutions exist and they mix with each

other under spin(N, 1) for all M̃ ̸= 0 [including the strictly and partially massless

values (1.5)].

2. For N = 4: all dS invariant scalar products for these eigenmodes must be indefinite

unless M̃ is tuned to the massless values (1.5). The solution space of the massless

theories is divided into two spin(4, 1) invariant subspaces, denoted as H− and H+,

where all mode solutions in H− have ‘negative helicity’, while all mode solutions in

H+ have ‘positive helicity’. Then, we introduce a specific dS invariant scalar product

[eq. (8.19)] in H− and H+. For this choice of scalar product, it happens that the norm

is positive-definite in H− and negative-definite in H+. However, group-theoretically,

we are allowed to have a different scalar product for each invariant subspace (since

they correspond to different irreducible representations). Thus, by a redefinition of

the scalar product in H+, we can change the sign of the associated norm and make it

positive-definite. This shows that H− and H+ form a direct sum of unitary irreducible

representations of spin(4, 1).

3. For N odd: For all M = iM̃ ̸= 0 [including the strictly and partially massless

values (1.5)], there does not exist any dS invariant scalar product for these eigenmodes.

Thus, by definition, the corresponding spin(N, 1) representations are not unitary.

To our knowledge, all these features of the strictly massless spin-3/2 field and of the strictly

and partially massless spin-5/2 fields on dSN are unknown in the mathematical physics

community. In Appendix A, we verify our results by making use of the known classification

of the Unitary Irreducible Representations (UIR’s) of spin(N, 1) [19, 20]. Our analysis in

Appendix A suggests that partially or strictly massless unitary theories with any half-odd-

integer spin exist only in 4 dimensions. Also, for the sake of completeness, in Appendix A

we provide a detailed correspondence between all unitary spin s ∈ { 3/2, 5/2 } theories with

real and imaginary mass parameter on dSN (N ≥ 3) and UIR’s of spin(N, 1), where we

also give the explicit values for the labels of the UIR’s for each unitary theory. We believe

that the exact correspondence between half-odd-integer-spin theories on dSN (N ≥ 3) and

UIR’s given in Appendix A is absent from the literature.

Our main result stands in contrast to the claims made in Refs. [14, 16]. The non-

unitarity of the massless spin-3/2 and spin-5/2 fields on dSN for N ̸= 4 was missed in

Refs. [14, 16], apparently because the norm of the corresponding eigenmodes was not ex-

amined. We note that the positivity of the norm in the Hilbert space of the massless

theories for N = 4 had been emphasised in the relevant works by Deser and Waldron - see

e.g. Ref. [6].
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1.4 Outline of the paper, notation and conventions

The paper is organised as follows. In Section 2, we begin by presenting the Christoffel sym-

bols, vielbein fields and spin connection components on SN in geodesic polar coordinates.

Then, we present the basics about gamma-matrices and tensor-spinor fields on SN . We

also review the eigenspinors of the Dirac operator on SN−1. In Section 3, we present the

functions that describe the dependence of the STSSH’s on the geodesic distance (θN ) from

the North Pole of SN . In Section 4, we write down explicitly the unnormalised STSSH’s

of rank 1 on SN (which have been constructed in Ref. [18]). In Section 5, we write down

explicitly the unnormalised STSSH’s of rank 2 on SN (which we construct in Appendix E).

In Section 6, we use the Lie-Lorentz derivative [27] in order to study the transformation

properties of the STSSH’s of rank r (r ∈ { 1, 2 }) on SN under a spin(N + 1) transfor-

mation and we give their normalisation factors. In Section 7, we begin by obtaining the

vector-spinor and rank-2 symmetric tensor-spinor TT eigenmodes of the Dirac operator

with arbitrary imaginary mass parameter on dSN by analytically continuing the STSSH’s

of rank 1 and rank 2, respectively, on SN . Then, we identify the ‘pure gauge’ modes of

the massless spin-3/2 and spin-5/2 theories on dSN . In Section 8, we derive the main

result of this paper (i.e. we prove statements 1, 2 and 3 listed above), by studying the

transformation properties of the TT eigenmodes of eq. (1.3) with arbitrary imaginary mass

parameter under a spin(N, 1) boost. More specifically, in Subsection 8.1, we show that all

dS invariant scalar products must be indefinite for even N > 4 (i.e. we prove statement 1).

Also, for even N ≥ 4, we show that the ‘pure gauge’ modes in the massless theories with

spin s ∈ { 3/2, 5/2 } have zero norm with respect to any dS invariant scalar product. Then,

for N = 4, we show that the requirement for dS invariance of the scalar product does not

imply the indefiniteness of the norm if and only if the imaginary mass parameter M = iM̃

(with M̃ ̸= 0) takes the massless values (1.5). We also find that for the massless theories

with spin s ∈ { 3/2, 5/2 } on dS4, the eigenmodes with negative helicity and the ones with

positive helicity separately form irreducible representations of spin(4, 1) (the unitarity of

these irreducible representations is proved in Subsection 8.2). In Subsection 8.2, we cal-

culate the norms of the eigenmodes on dSN (for even N ≥ 4) with respect to a specific

dS invariant scalar product and we verify statement 1 (which was proved in the previous

Subsection) and we also prove statement 2. Subsection 8.3 concerns the case with N odd

and we prove statement 3. Finally, in Section 9, we give a summary of our results. We also

discuss the possible generalisation of our results to higher half-odd-integer spins, as well as

to other vacuum spacetimes with positive cosmological constant.

There are seven Appendices. In Appendix A, we first verify our main result (presented

in Subsection 1.3 of the Introduction) by using the known classification of the UIR’s of

spin(N, 1). Then, for the sake of completeness, we identify the unitary field theories with

spin s ∈ { 3/2, 5/2 } and real mass parameter on dSN with known UIR’s of spin(N, 1). In

Appendix E, we construct the STSSH’s of rank 2 on SN by making use of the method of

separation of variables. In this method, the STSSH’s of rank 2 on SN are expressed in terms

of STSSH’s of rank r̃ (0 ≤ r̃ ≤ 2) on SN−1. In Appendix F, we present technical details

omitted in Section 6. To be specific, we first give a detailed derivation of the formulae for the
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spin(N + 1) transformation of the rank-1 STSSH’s and we determine their normalisation

factors. Then, we discuss briefly the derivation of the transformation formulae and the

normalisation factors for the rank-2 STSSH’s on SN . The rest of the Appendices concern

other technical details that were omitted in the main text.

Notation and conventions. We use the mostly plus metric sign convention for dSN .

Lowercase Greek tensor indices refer to components with respect to the “coordinate basis”.

Lowercase Latin tensor indices refer to components with respect to the vielbein basis.

Summation over repeated indices is understood. We denote the symmetrisation of a pair of

indices as A(µν) ≡ (Aµν + Aνµ)/2 and the anti-symmetrisation as A[µν] ≡ (Aµν − Aνµ)/2.

Spinor indices are always suppressed throughout this paper. We use the term ‘massless field’

of spin s ∈ { 3/2, 5/2 } to refer to either one of the following three cases (unless otherwise

stated): the strictly massless spin-3/2 field (r = τ = 1), the strictly massless spin-5/2 field

(r = τ + 1 = 2), the partially massless spin-5/2 field (r = τ = 2). The complex conjugate

of the complex number z is denoted as z∗.

2 Geometry of the N-sphere and tensor-spinor fields

2.1 Coordinate system, Christoffel symbols and spin connection

The N -sphere (SN ) embedded in the Euclidean space R
N+1 is described by

δabX
aXb = 1, (2.1)

(a, b = 1, 2, ..., N + 1) where δab is the Kronecker delta symbol and X1, X2, ..., XN+1 are

the standard coordinates for R
N+1. The geodesic polar coordinates are given by

XN+1 = XN+1(θN ) = cos θN

Xi = Xi(θN ,θN−1) = sin θN X̃i(θN−1), i = 1, ..., N, (2.2)

where 0 ≤ θN ≤ π is the geodesic distance from the North Pole and θN−1 = (θN−1, ..., θ1)

(where 0 ≤ θ1 < 2π and 0 ≤ θi ≤ π for i = 2, 3, ..., N − 1). The X̃i’s in eq. (2.2) are the

geodesic polar coordinates for SN−1 in N -dimensional Euclidean space.

The line element for SN is expressed in coordinates (2.2) as

ds2N = dθ2N + sin2 θNds
2
N−1, (2.3)

where ds2N−1 is the line element for SN−1. (Note that we define ds21 ≡ dθ21.) The non-zero

Christoffel symbols in geodesic polar coordinates are

ΓθNθiθj = − sin θN cos θN g̃θiθj , ΓθiθjθN = cot θN g̃θiθj ,

Γθkθiθj = Γ̃θkθiθj , (2.4)

where g̃θiθj and Γ̃θkθiθj are the metric tensor and the Christoffel symbols, respectively, on

SN−1. The vielbein fields ea = eµa∂µ (where a = 1, ..., N and µ = θ1, ..., θN ), determining

an orthonormal frame, satisfy

eµ
a eν

bδab = gµν , eµa eµ
b = δba, (2.5)
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where the co-vielbein fields ea = eµ
a dxµ define the dual coframe. The co-vielbein trans-

forms under local rotations Λ : SN → SO(N) as

ea → Λ(x)ab e
b. (2.6)

In geodesic polar coordinates the non-zero components of the vielbein fields are given by

eθN N = 1, eθi i =
1

sin θN
ẽθi i, i = 1, ..., N − 1, (2.7)

where ẽθi i are the vielbein fields on SN−1. The spin connection ωabc = ωa[bc] ≡ (ωabc −
ωacb)/2 is given by

ωabc = −eµa
(
∂µe

λ
b + Γλµνe

ν
b

)
eλc (2.8)

and its only non-zero components are

ωijk =
ω̃ijk
sin θN

, ωiNk = −ωikN = − cot θN δik, i, j, k = 1, ..., N − 1, (2.9)

where ω̃ijk are the spin connection components on SN−1. (Note that the sign convention

we use for the spin connection is the opposite of the one used in Refs. [21, 22].)

2.2 Gamma matrices and tensor-spinor fields on the N-sphere

A Clifford algebra representation in N dimensions is generated by N gamma matrices.

These are matrices of dimension 2[N/2] - where [N/2] = N/2 if N is even and [N/2] =

(N − 1)/2 if N is odd - satisfying the anti-commutation relations

{γa, γb} = 2δab1, a, b = 1, 2, ..., N, (2.10)

where 1 is the identity matrix. We adopt the representation of gamma matrices used in

Ref. [21], where gamma matrices in N dimensions are expressed in terms of gamma matrices

in N − 1 dimensions (γ̃i) as follows:

• For N even

γN =

(
0 1

1 0

)
, γj =

(
0 iγ̃j

−iγ̃j 0

)
, (2.11)

(j = 1, ..., N − 1) where the lower-dimensional gamma matrices satisfy the Euclidean

Clifford algebra anti-commutation relations

{γ̃j , γ̃k} = 2δjk1, j, k = 1, ..., N − 1. (2.12)

By using the vielbein fields (2.7) we can express the gamma matrices (2.11) in the

“coordinate basis” as γµ(x) = eµa(x) γ
a. Note that one can construct the extra gamma

matrix γN+1, which is given by the product γN+1 ≡ ϵ γ1γ2...γN , where ϵ is a phase

factor. The matrix γN+1 anti-commutes with each of the γa’s in eq. (2.11). As in

Ref. [21], we choose the phase factor ϵ such that

γN+1 =

(
1 0

0 −1

)
. (2.13)
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• For N odd

γN =

(
1 0

0 −1

)
, γN−1 = γ̃N−1 =

(
0 1

1 0

)
,

γj = γ̃j =

(
0 i˜̃γ

j

−i˜̃γj 0

)
, j = 1, ..., N − 2. (2.14)

The double-tilde is used to denote gamma matrices in N − 2 dimensions. In N = 1

dimension the only (one-dimensional) gamma matrix is equal to 1. The gamma

matrices (2.14) are expressed in the “coordinate basis” by using the vielbein fields (2.7),

as in the case with N even.

Note that all gamma matrices in eqs. (2.11)-(2.14) are hermitian.

The tensor-spinor fields ψµ1...µr of rank r are defined as rth-rank tensors where each

one of the tensorial components transforms as a 2[N/2]-dimensional spinor under Spin(N)

(double cover of SO(N)). Tensor-spinors transform under the local rotation of the co-

vielbein in eq. (2.6) as

ψµ1...µr(x) → Λ(x) ν1µ1 ...Λ(x)
νr
µr

S(Λ(x))ψν1...νr(x), (2.15)

where the matrix Λ(x) ∈ SO(N) acts on the tensor indices of ψµ1...µr , while the matrix

S(Λ(x)) ∈ Spin(N) acts on the spinor indices of ψµ1...µr (the spinor indices have been

suppressed for convenience). For any Λ(x) ∈ SO(N) we have [23]

S(Λ(x))−1 γa S(Λ(x)) = Λ(x)abγ
b, (2.16)

where S(Λ(x)) is either one of the two matrices in Spin(N) that correspond to Λ(x). (See,

e.g., Ref. [21] and Appendix D of Ref. [23] for more detailed discussions on spinor repre-

sentations of orthogonal groups.)

The covariant derivative for a vector-spinor field is given by

∇νψµ = ∂νψµ +
1

2
ωνbcΣ

bcψµ − Γλνµψλ, (2.17)

while the covariant derivative for a rank-2 tensor-spinor field is given by

∇νψµ1µ2 =∂νψµ1µ2 +
1

2
ωνbcΣ

bcψµ1µ2 − Γλνµ1ψλµ2 − Γλνµ2ψµ1λ, (2.18)

where ωνbc = e d
ν ωdbc [see eq. (2.9)]. The matrices Σab are the generators of the 2[N/2]-

dimensional spinor representation of Spin(N) and they are given by

Σab =
1

4
[γa, γb] (2.19)

=
1

2
γa γb − 1

2
δab, a, b = 1, ..., N. (2.20)
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They satisfy the Spin(N) algebra commutation relations

[Σab,Σcd] = δbcΣad − δacΣbd + δadΣbc − δbdΣac. (2.21)

(The gamma matrices are covariantly constant, i.e. ∇aγ
b = 0 - see e.g. Appendix D of

Ref. [23].)

For later convenience, let us introduce the spinor eigenmodes χ±ℓρ̃(θN−1) of the Dirac

operator on SN−1 (see also Ref. [21] and Appendix C of the present paper). These spinor

eigenmodes satisfy [21]

/̃∇χ±ℓρ̃ = ±i
(
ℓ+

N − 1

2

)
χ±ℓρ̃, (2.22)

where /̃∇ = γa∇̃a is the Dirac operator on SN−1, ∇̃a is the spinor covariant derivative on

SN−1 and ℓ is the angular momentum quantum number on SN−1. The symbol ρ̃ represents

labels other than ℓ. The requirement for regularity of the spinor eigenmodes (2.22) on SN−1

restricts ℓ to take the values ℓ = 0, 1, 2, ... [21]. We suppose that the spinor eigenmodes (2.22)

are normalised as

∫

SN−1

√
g̃ dθN−1 χ±ℓρ̃(θN−1)

† χ±ℓ′ρ̃′(θN−1) = δℓℓ′δρ̃ρ̃′ , (2.23)

where dθN−1 = dθN−1 dθN−2...dθ1. The square root of the determinant of the metric on

SN−1 is

√
g̃ = sinN−2 θN−1 sinN−3 θN−2 ... sin θ2 (2.24)

= sinN−2 θN−1

√
˜̃g, (2.25)

where ˜̃g is the determinant of the metric on SN−2. All the χ+ eigenspinors are orthogonal

to all the χ− eigenspinors in eq. (2.23) [21].

3 The functions describing the dependence of STSSH’s on θN

Before writing down the explicit form of the STSSH’s of rank r (= 1, 2) on SN , it is

useful to introduce the functions ϕ
(a)
nℓ (θN ) [eq. (3.1)] and ψ

(a)
nℓ (θN ) [eq. (3.2)] that describe

the dependence of the STSSH’s on the geodesic distance from the North Pole, θN , since

they are going to be used extensively in the rest of the paper. The properties of these

functions play a crucial role in the normalisation of the STSSH’s and in the derivation

of the formulae for the spin(N + 1) transformation of the STSSH’s (see Section 6 and

Appendix F). Most importantly, in view of the analytic continuation of our STSSH’s to

dSN , the properties of the functions ϕ
(a)
nℓ (θN ) and ψ

(a)
nℓ (θN ) will play a very important role

in studying the unitarity/non-unitarity of the spin(N, 1) representations formed by the

analytically continued STSSH’s.
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As we will see in Sections 4 and 5, the θN -dependence of the STSSH’s on SN is described

by functions of the following form:

ϕ
(a)
nℓ (θN ) = κϕ(n, ℓ)

(
cos

θN
2

)ℓ+1−a(
sin

θN
2

)ℓ−a

× F

(
−n+ ℓ, n+ ℓ+N ; ℓ+

N

2
; sin2

θN
2

)
, (3.1)

ψ
(a)
nℓ (θN ) = κϕ(n, ℓ)

n+ N
2

ℓ+ N
2

(
cos

θN
2

)ℓ−a(
sin

θN
2

)ℓ+1−a

× F

(
−n+ ℓ, n+ ℓ+N ; ℓ+

N + 2

2
; sin2

θN
2

)
, (3.2)

where the normalisation factor κϕ(n, ℓ) is given by

κϕ(n, ℓ) =
Γ(n+N/2)

Γ(n− ℓ+ 1)Γ(ℓ+N/2)
, (3.3)

while F (A,B;C; z) is the Gauss hypergeometric function [24]. The number a in eqs. (3.1)

and (3.2) is taken to be an integer for the purposes of this paper. The functions in eqs. (3.1)

and (3.2) can be expressed in terms of the Jacobi polynomials [24], where κϕ(n, ℓ) plays

the role of the conventional normalisation factor for the Jacobi polynomials [24]. (These

functions with a = 0 were used to describe spinors on SN [21].) As we will discuss in

Section 4 and 5, the integer n is the angular momentum quantum number of the STSSH’s

on SN and it labels the representation of spin(N +1) formed by the STSSH’s. The angular

momentum quantum number on SN−1, ℓ, is initially assumed to be a positive integer or

zero (this requirement is motivated naturally in the recursive construction of the STSSH’s

on SN in terms of STSSH’s on SN−1 - see Appendix E). Furthermore, the requirement for

absence of singularity in the STSSH’s on SN will give rise to the condition

n− ℓ ∈ N0 (3.4)

or equivalently n ≥ ℓ, where N0 is the set of positive integers including zero. Equation (3.4)

is obtained in Appendix E, by requiring the regularity of ϕ
(a)
nℓ (θN ) and ψ

(a)
nℓ (θN ) in the limit

θN → π.

The functions ϕ
(a)
nℓ (θN ) and ψ

(a)
nℓ (θN ) are related to each other by the following formulae:

(
d

dθN
+
N + 2a− 1

2
cot θN +

ℓ+ (N − 1)/2

sin θN

)
ψ
(a)
nℓ (θN ) =

(
n+

N

2

)
ϕ
(a)
nℓ (θN ) (3.5)

(
d

dθN
+
N + 2a− 1

2
cot θN − ℓ+ (N − 1)/2

sin θN

)
ϕ
(a)
nℓ (θN ) = −

(
n+

N

2

)
ψ
(a)
nℓ (θN ). (3.6)

Equations (3.5) and (3.6) are proved using the raising and lowering operators for the Gauss

hypergeometric function in Appendix B. Note also the relation

ψ
(a)
nℓ (θN ) = (−1)n−ℓϕ

(a)
nℓ (π − θN ). (3.7)
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4 The STSSH’s of rank 1 on the N-sphere

In this Section we write down explicitly the unnormalised STSSH’s of rank 1 [i.e. the TT

vector-spinor eigenmodes of eq. (1.6)], by following Ref. [18] where these eigenmodes have

been constructed. However, we will present the results of Ref. [18] in a slightly modified

manner that is more suitable for studying the group-theoretic properties of the eigenmodes.

4.1 STSSH’s of rank 1 for N even

The equations (1.6) and (1.7) for the TT vector-spinor eigenmodes on SN (N ≥ 4) are

written as

/∇ψ(A;σ;nℓ;ρ̃)
±µ = ±i

(
n+

N

2

)
ψ
(A;σ;nℓ;ρ̃)
±µ , (4.1)

∇αψ
(A;σ;nℓ;ρ̃)
±α = γαψ

(A;σ;nℓ;ρ̃)
±α = 0. (4.2)

We have denoted the TT vector-spinor eigenmodes with eigenvalue ±i(n+ N
2 ) as ψ

(A;σ;nℓ;ρ̃)
±µ ,

where n = 1, 2, ... and ℓ = 1, ..., n are the angular momentum quantum numbers on SN

and SN−1, respectively. (The angular momentum quantum numbers for our STSSH’s of

rank r ∈ { 1, 2 } on SN satisfy n ≥ ℓ ≥ r. The condition n ≥ ℓ was discussed in the

previous Section - see eq. (3.4). However, as we will see below, the condition ℓ ≥ r is

obtained by using the explicit expressions of the STSSH’s.) The index σ takes the values

“+” or “−” and is called the spin projection index on SN . The symbol ρ̃ stands for angular

momentum quantum numbers on SN−2, SN−3, ..., S2, S1 and spin projection indices on the

even-dimensional spheres SN−2, SN−4, ..., S2.5

Equations (4.1) and (4.2) have two different types of mode solutions, namely, the type-

I modes and the type-II modes [18]. We assign to the label A the value ‘I’ in order to

indicate the type-I modes (ψ
(I;σ;nℓ;ρ̃)
±µ ) and the value ‘II-Ã’ in order to indicate the type-II

modes (ψ
(II-Ã;σ;nℓ;ρ̃)
±µ ), where the label Ã on SN−1 corresponds to A on SN (the label Ã is

discussed further in the passage after eq. (4.15)).

For each value of n we have a representation of spin(N+1) (i.e. algebra of Spin(N+1))

acting on the space of the eigenmodes ψ
(A;σ;nℓ;ρ̃)
+µ (or ψ

(A;σ;nℓ;ρ̃)
−µ ). The highest weight λ =

(λ1, ..., λN/2) for this representation is given by

λ =

(
n+

1

2
,
3

2
,
1

2
, ...,

1

2

)
, (n = 1, 2, ...) (4.3)

which can be determined using the branching rules for spin(N + 1) ⊃ spin(N) 6. Note

that for N = 4 we have λ = (n + 1/2, 3/2) (n = 1, 2, ...). The two sets of eigenmodes,

{ψ(A;σ;nℓ;ρ̃)
+µ } and {ψ(A;σ;nℓ;ρ̃)

−µ }, form equivalent representations and they are related to each

other by ψ
(A;σ;nℓ;ρ̃)
+µ = γN+1ψ

(A;σ;nℓ;ρ̃)
−µ .

Type-I modes. The type-I modes are expressed in their vector components as

ψ
(I;σ;nℓ;ρ̃)
±µ =

(
ψ
(I;σ;nℓ;ρ̃)
±θN

, ψ
(I;σ;nℓ;ρ̃)
±θj

)
(4.4)

5Note that spin projection indices exist only on even-dimensional spheres - see e.g. Ref. [22].
6See, e.g., Refs. [21, 25, 26], as well as Appendix A.
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(j = 1, ..., N − 1), where ψ
(I;σ;nℓ;ρ̃)
±θN

is a spinor on SN−1, while ψ
(I;σ;nℓ;ρ̃)
±θj

is a vector-spinor

on SN−1 [18]. The type-I modes with negative spin projection (σ = −) on SN are given

by [18]

ψ
(I;−;nℓ;ρ̃)
±θN

(θN ,θN−1) =

(
ϕ
(1)
nℓ (θN )χ−ℓρ̃(θN−1)

±iψ(1)
nℓ (θN )χ−ℓρ̃(θN−1)

)
(4.5)

ψ
(I;−;nℓ;ρ̃)
±θj

(θN ,θN−1) =




C
(↑)(1)
nℓ (θN ) ∇̃θjχ−ℓρ̃(θN−1) +D

(↑)(1)
nℓ (θN ) γ̃θjχ−ℓρ̃(θN−1)

±iC(↓)(1)
nℓ (θN ) ∇̃θjχ−ℓρ̃(θN−1)± iD

(↓)(1)
nℓ (θN ) γ̃θjχ−ℓρ̃(θN−1)


 .

(4.6)

The type-I modes with positive spin projection (σ = +) on SN are given by [18]

ψ
(I;+;nℓ;ρ)
±θN

(θN ,θN−1) =

(
iψ

(1)
nℓ (θN )χ+ℓρ̃(θN−1)

±ϕ(1)nℓ (θN )χ+ℓρ̃(θN−1)

)
(4.7)

ψ
(I;+;nℓ;ρ̃)
±θj

(θN ,θN−1) =



iC

(↓)(1)
nℓ (θN ) ∇̃θjχ+ℓρ̃(θN−1)− iD

(↓)(1)
nℓ (θN ) γ̃θjχ+ℓρ̃(θN−1)

±C(↑)(1)
nℓ (θN ) ∇̃θjχ+ℓρ̃(θN−1)∓ iD

(↑)(1)
nℓ (θN ) γ̃θjχ+ℓρ̃(θN−1)


 .

(4.8)

The eigenspinors on SN−1, χ±ℓρ̃, satisfy eq. (2.22) and they are written down explicitly

in Appendix C. The functions ϕ
(1)
nℓ and ψ

(1)
nℓ are given by eqs. (3.1) and (3.2), respectively.

The functions C
(↑)(a)
nℓ , C

(↓)(a)
nℓ are expressed in terms of ϕ

(a)
nℓ and ψ

(a)
nℓ as follows [18]:

C
(↑)(a)
nℓ (θN ) =

1

ℓ(ℓ+N − 1)

{
sin θN

[
N − 1

2
cos θN + ℓ+

N − 1

2

]
ϕ
(a)
nℓ (θN )

− N − 1

N − 2
(n+

N

2
) sin2 θN ψ

(a)
nℓ (θN )

}
, (4.9)

C
(↓)(a)
nℓ (θN ) =

1

ℓ(ℓ+N − 1)
×
{
sin θN

[
N − 1

2
cos θN − ℓ− N − 1

2

]
ψ
(a)
nℓ (θN )

+
N − 1

N − 2
(n+

N

2
) sin2 θNϕ

(a)
nℓ (θN )

}
, (4.10)

while the functions D
(↑)(a)
nℓ and D

(↓)(a)
nℓ are given by:

D
(↑)(a)
nℓ (θN ) =

−i
N − 1

[
−
(
ℓ+

N − 1

2

)
C

(↑)(a)
nℓ (θN ) + sin θN ϕ

(a)
nℓ (θN )

]
(4.11)

and

D
(↓)(a)
nℓ (θN ) =

−i
N − 1

[
−
(
ℓ+

N − 1

2

)
C

(↓)(a)
nℓ (θN )− sin θN ψ

(a)
nℓ (θN )

]
, (4.12)
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respectively. The appearance of ℓ in the denominator in eqs. (4.9) and (4.10) reflects the

fact that there is no type-I eigenmode if the θN -component (4.5) [or (4.7)] has ℓ = 0 (i.e.

ℓ has to satisfy ℓ ≥ r = 1). The condition n ≥ ℓ and the quantisation of the eigenvalue in

eq. (4.1) follow from the requirement of regularity of the functions ϕ
(a)
nℓ (θN ) and ψ

(a)
nℓ (θN )

(see Appendix E). Thus, we have verified that the allowed values for the angular momentum

quantum numbers are n = 1, 2, ... and ℓ = 1, ..., n.

Type-II modes. The vector components of the type-II modes are expressed as [18]

ψ
(II-Ã;σ;nℓ;ρ̃)
±µ =

(
0, ψ

(II-Ã;σ;nℓ;ρ̃)
±θj

)
, (4.13)

(j = 1, ..., N − 1) where ψ
(II-Ã;σ;nℓ;ρ̃)
±θN

= 0. The type-II modes (4.13) are TT vector-

spinors on SN−1. Thus, they can be constructed in terms of TT vector-spinor eigenmodes

ψ̃
(Ã;ℓρ̃)
±θj

(θN−1) on SN−1 that satisfy

/̃∇ψ̃(Ã;ℓρ̃)
±θj

= ±i
(
ℓ+

N − 1

2

)
ψ̃
(Ã;ℓρ̃)
±θj

(4.14)

γ̃θiψ̃
(Ã;ℓρ̃)
±θi

= ∇̃θiψ̃
(Ã;ℓρ̃)
±θi

= 0, (4.15)

where the label Ã indicates the type of the eigenmode ψ̃
(Ã;ℓρ̃)
±θj

. (The TT vector-spinor

eigenmodes and the corresponding types of modes on odd-dimensional spheres are presented

in Subsection 4.2.) The requirement for regularity of ψ̃
(Ã;ℓρ̃)
±θj

on SN−1 gives the allowed

values for ℓ, i.e. ℓ = 1, 2, ... . This requirement for ℓ follows naturally from the recursive

construction of the STSSH’s of rank 1 in Ref. [18]. We suppose that the eigenmodes ψ̃
(Ã;ℓρ̃)
±θj

are normalised on SN−1 as
∫

SN−1

√
g̃ dθN−1 ψ̃

(Ã;ℓρ̃)
±θi

(θN−1)
† ψ̃

(Ã′;ℓ′ρ̃′)θi
± (θN−1) = δℓℓ′δρ̃ρ̃′δÃÃ′ , (4.16)

where
√
g̃ is given by eq. (2.24). Any two TT eigenmodes, ψ̃

(Ã;ℓρ̃)
σθi

and ψ̃
(Ã′;ℓ′ρ̃′)
σ′θi

(σ, σ′ =

±), with different signs for the eigenvalue and/or with different labels are orthogonal to

each other since they are eigenmodes of the hermitian operator i /̃∇. The type-II modes

ψ
(II-Ã;σ;nℓ;ρ̃)
±µ on SN with negative (σ = −) and positive (σ = +) spin projections are given

by [18]

ψ
(II-Ã;−;nℓ;ρ̃)
±θN

(θN ,θN−1) = 0

ψ
(II-Ã;−;nℓ;ρ̃)
±θj

(θN ,θN−1) =


 ϕ

(−1)
nℓ (θN ) ψ̃

(Ã;ℓρ̃)
−θj

(θN−1)

±iψ(−1)
nℓ (θN ) ψ̃

(Ã;ℓρ̃)
−θj

(θN−1)


 (4.17)

and

ψ
(II-Ã;+;nℓ;ρ̃)
±θN

(θN ,θN−1) = 0

ψ
(II-Ã;+;nℓ;ρ̃)
±θj

(θN ,θN−1) =


 iψ

(−1)
nℓ (θN )ψ̃

(Ã;ℓρ̃)
+θi

(θN−1)

±ϕ(−1)
nℓ (θN )ψ̃

(Ã;ℓρ̃)
+θj

(θN−1)


 , (4.18)
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(j = 1, ..., N − 1) respectively. The functions ϕ
(−1)
nℓ and ψ

(−1)
nℓ are given by eqs. (3.1) and

(3.2), respectively. As in the case of type-I modes, we find the allowed values n = 1, 2, ...

and ℓ = 1, ..., n.

4.2 STSSH’s of rank 1 for N odd

The eigenvalue equation and the TT conditions are given again by eqs. (4.1) and (4.2),

respectively, while the gamma matrices are now given by eq. (2.14). The TT eigenmodes

on SN are denoted as ψ
(A;nℓ;ρ̃)
±µ . As in the even-dimensional case, the label A denotes

the type of the mode, where the type-I modes (ψ
(I;nℓ;ρ̃)
±µ ) on SN are constructed in terms

of eigenspinors on SN−1, while the type-II modes (ψ
(II-Ã;nℓ;ρ̃)
±µ ) on SN are constructed in

terms of TT eigenvector-spinors of type-Ã on SN−1. The allowed values for the angular

momentum quantum numbers are n = 1, 2, ... and ℓ = 1, ..., n. However, for N odd there is

no spin projection index on SN .7 Here, the label ρ̃ stands for angular momentum quantum

numbers on all lower-dimensional spheres SN−2, ..., S2, S1 and spin projection indices on

the even-dimensional spheres SN−1, SN−3, ..., S2. Note that TT eigenvector-spinor modes

of any type on SN (with arbitrary N) exist only for N ≥ 3, while type-II modes exist only

for N ≥ 4 - see Ref. [18].

For each value of n we have a representation of spin(N + 1) acting on the space of the

eigenmodes ψ
(A;nℓ;ρ̃)
±µ . The highest weights λ± = (λ±1 , ..., λ

±
(N+1)/2) for these representations

are given by

λ± =

(
n+

1

2
,
3

2
,
1

2
, ...,

1

2
,±1

2

)
, (n = 1, 2, ...) (4.19)

which can be determined using the branching rules for spin(N+1) ⊃ spin(N). 8 Unlike the

case with N even, for N odd there does not exist any spinorial matrix that relates ψ
(A;nℓ;ρ̃)
+µ

and ψ
(A;nℓ;ρ̃)
−µ , since the two sets of modes form inequivalent representations of spin(N +1).

(In general, for N odd there does not exist any spinorial matrix that relates two STSSH’s

of arbitrary rank r with different sign for the eigenvalue.) Note that for N = 3 we have

λ± = (n+ 1/2, ±3/2) (n = 1, 2, ...).

Type-I modes. The type-I modes are given by [18]

ψ
(I;nℓ;ρ̃)
±θN

(θN ,θN−1) =
1√
2
(1 + iγN )

{
ϕ
(1)
nℓ (θN )± iψ

(1)
nℓ (θN )γ

N
}
χ−ℓρ̃(θN−1) (4.20)

ψ
(I;nℓ;ρ̃)
±θj

(θN ,θN−1) =
1√
2
(1 + iγN )

{(
C

(↑)(1)
nℓ (θN )± iC

(↓)(1)
nℓ (θN )γ

N
)
∇̃θjχ−ℓρ̃(θN−1)

+
(
D

(↑)(1)
nℓ (θN )± iD

(↓)(1)
nℓ (θN )γ

N
)
γ̃θjχ−ℓρ̃(θN−1)

}
, (4.21)

7See also Ref. [22].
8The branching rules for spin(N +1) ⊃ spin(N) with N odd are different from the branching rules with

N even. See, e.g., Refs. [21, 25, 26], as well as Appendix A.
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(j = 1, ..., N − 1) where χ−ℓρ̃ are the eigenspinors on SN−1 satisfying eq. (2.22). (Since

γN anti-commutes with /̃∇ we have γNχ−ℓρ̃ = χ+ℓρ̃ [21].) As in the case with N even, the

functions ϕ
(1)
nℓ and ψ

(1)
nℓ are given by eqs. (3.1) and (3.2), respectively, while the functions

C
(↑)(1)
nℓ , C

(↓)(1)
nℓ , D

(↑)(1)
nℓ and D

(↓)(1)
nℓ are given by eqs. (4.9), (4.10), (4.11) and (4.12), respec-

tively. As in the even-dimensional case, one finds that the angular momentum quantum

numbers are allowed to take the values n = 1, 2, ... and ℓ = 1, ..., n.

Type-II modes. The type-II modes are given by [18]

ψ
(II-Ã;nℓ;ρ̃)
±θN

(θN ,θN−1) =0

ψ
(II-Ã;nℓ;ρ̃)
±θj

(θN ,θN−1) =
1√
2
(1 + iγN )

{
ϕ
(−1)
nℓ (θN )± iψ

(−1)
nℓ (θN )γ

N
}
ψ̃
(Ã;ℓρ̃)
−θj

(θN−1), (4.22)

where the functions ϕ
(−1)
nℓ and ψ

(−1)
nℓ are given by eqs. (3.1) and (3.2), respectively, while the

rank-1 STSSH’s of type-Ã on SN−1, ψ̃
(Ã;ℓρ̃)
−θj

, satisfy eqs. (4.14)-(4.16) (where γN ψ̃
(Ã;ℓρ̃)
−θj

=

ψ̃
(Ã;ℓρ̃)
+θj

). As in the case with N even, we find that the angular momentum quantum numbers

are allowed to take the values: n = 1, 2, ... and ℓ = 1, ..., n.

5 The STSSH’s of rank 2 on the N-sphere

In this Section we write down explicitly the STSSH’s of rank 2 on SN by using the method

of separation of variables. In this method the STSSH’s of rank 2 on SN are expressed

in terms of STSSH’s of rank r̃ (where r̃ ≤ r) on SN−1. (The 0th rank STSSH’s are the

eigenspinors of the Dirac operator constructed in Ref. [21].) We present the details of the

calculations in Appendix E.

5.1 STSSH’s of rank 2 for N even

The equations for the STSSH’s of rank 2 are given by:

/∇ψ(B;σ;nℓ;ρ̃)
±µν = ±i|ζn,N |ψ(B;σ;ℓN ℓ;ρ̃)

±µν , (5.1)

∇αψ
(B;σ;nℓ;ρ̃)
±αν = γαψ

(B;σ;nℓ;ρ̃)
±αν = 0, (5.2)

gαβψ
(B;σ;nℓ;ρ̃)
±αβ = 0, (5.3)

[see eqs. (1.6) and (1.7)] where the labels σ, n, ℓ, ρ̃ have the same meaning as in the case

of STSSH’s of rank 1 [see the passage after eqs. (4.1) and (4.2)]. Note that eq. (5.3) arises

just by contracting the gamma-tracelessness condition in (5.2) with γν . As demonstrated

in Appendix E, by requiring our eigenmodes to be non-singular, we find the quantisation

condition for the eigenvalue in eq. (5.1),

|ζn,N | = n+
N

2
, n ∈ N0, (5.4)

(N0 is the set of positive integers including zero), while the allowed values for the angular

momentum quantum numbers are found to be n = 2, 3, ... and ℓ = 2, ..., n. As we will

discuss below, eqs. (5.1)-(5.3) have three different types of mode solutions, namely, the
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type-I modes, the type-II modes and the type-III modes. The label B is used in

order to indicate the type of the STSSH ψ
(B;σ;nℓ;ρ̃)
±µν on SN .

For each value of n we have a representation of spin(N + 1) acting on the space of

the eigenmodes ψ
(B;σ;nℓ;ρ̃)
+µν (or ψ

(B;σ;nℓ;ρ̃)
−µν ). The highest weight λ = (λ1, ..., λN/2) for this

representation is given by

λ =

(
n+

1

2
,
5

2
,
1

2
, ...,

1

2

)
, (n = 2, 3, ...), (5.5)

which can be determined using the branching rules for spin(N + 1) ⊃ spin(N) [21, 25, 26].

Note that for N = 4 we have λ = (n + 1/2, 5/2). As in the case of STSSH’s of rank 1,

the two sets of eigenmodes, {ψ(B;σ;nℓ;ρ̃)
+µν } and {ψ(B;σ;nℓ;ρ̃)

−µν }, form equivalent representations

and they are related to each other by ψ
(B;σ;nℓ;ρ̃)
+µν = γN+1ψ

(B;σ;nℓ;ρ̃)
−µν .

In analogy with the rank-1 STSSH’s discussed in Section 4, the rank-2 type-I modes

are constructed using the eigenspinors χ±ℓρ̃ on SN−1 [eq. (2.22)], while the type-II modes

are constructed using the TT eigenvector-spinors ψ̃
(Ã;ℓρ̃)
±θi

on SN−1 [eqs. (4.14) and (4.15)].

The rank-2 type-III modes are constructed using the STSSH’s of rank 2 on SN−1 (ψ̃
(B̃;ℓρ̃)
±θiθj

),

satisfying

/̃∇ψ̃(B̃;ℓρ̃)
±θiθj

= ±i
(
ℓ+

N − 1

2

)
ψ̃
(B̃;ℓρ̃)
±θiθj

(5.6)

γ̃θiψ̃
(B̃;ℓρ̃)
±θiθj

= ∇̃θiψ̃
(B̃;ℓρ̃)
±θiθj

= 0, (5.7)

g̃θiθj ψ̃
(B̃;ℓρ̃)
±θiθj

= 0, (5.8)

where the label B̃ indicates the type of the STSSH ψ̃
(B̃;ℓρ̃)
±θiθj

on SN−1. (The rank-2 STSSH’s

on odd-dimensional spheres are presented in Subsection 5.2.) We require ℓ = 2, 3, ... in

order for ψ̃
(B̃;ℓρ̃)
±θiθj

to be non-singular on SN−1. This requirement for ℓ is motivated naturally

in the recursive construction of the STSSH’s of rank 2 in Appendix E. We suppose that the

STSSH’s on SN−1, ψ̃
(B̃;ℓρ̃)
±θiθj

, are normalised as
∫

SN−1

√
g̃ dθN−1 ψ̃

(B̃;ℓρ̃)
±θiθj

(θN−1)
† ψ̃

(B̃′;ℓ′ρ̃′)θiθj
± (θN−1) = δℓℓ′δρ̃ρ̃′δB̃B̃′ , (5.9)

where all the ψ̃+θiθj modes are orthogonal to all the ψ̃−θiθj modes (see also the passage

after eq. (4.16)). Now let us present the explicit form of the STSSH’s of rank 2 on SN (see

Appendix E for the derivation).

Type-I modes. The type-I modes with negative spin projection (σ = −) on SN are given

by

ψ
(I;−;nℓ;ρ̃)
±θNθN

(θN ,θN−1) =

(
ϕ
(2)
nℓ (θN )χ−ℓρ̃(θN−1)

±iψ(2)
nℓ (θN )χ−ℓρ̃(θN−1)

)
(5.10)

ψ
(I;−;nℓ;ρ̃)
±θNθj

(θN ,θN−1) =




C
(↑)(2)
nℓ (θN ) ∇̃θjχ−ℓρ̃(θN−1) +D

(↑)(2)
nℓ (θN ) γ̃θjχ−ℓρ̃(θN−1)

±iC(↓)(2)
nℓ (θN ) ∇̃θjχ−ℓρ̃(θN−1)± iD

(↓)(2)
nℓ (θN ) γ̃θjχ−ℓρ̃(θN−1)




(5.11)
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ψ
(I;−;nℓ;ρ̃)
±θjθk

(θN ,θN−1)

=




K
(↑)
nℓ (θN ) g̃θjθkχ−ℓρ̃(θN−1)

±iK(↓)
nℓ (θN ) g̃θjθkχ−ℓρ̃(θN−1)




+




W
(↑)
nℓ (θN ) H̃θjθkχ−ℓρ̃(θN−1) + T

(↑)
nℓ (θN ) H̃

′
θjθk

χ−ℓρ̃(θN−1)

±iW (↓)
nℓ (θN ) H̃θjθkχ−ℓρ̃(θN−1)± iT

(↓)
nℓ (θN ) H̃

′
θjθk

χ−ℓρ̃(θN−1)


 , (5.12)

(j, k = 1, ..., N − 1) where χ±ℓρ̃ are the eigenspinors on SN−1 [see eq. (5.8)] and we have

defined

H̃θjθk ≡ ∇̃(θj∇̃θk) − g̃θjθk
□̃

N − 1
, (5.13)

H̃ ′
θjθk

≡ γ̃(θj∇̃θk) − g̃θjθk
/̃∇

N − 1
. (5.14)

These differential operators satisfy g̃θjθkH̃θjθk = g̃θjθkH̃ ′
θjθk

= 0. Note that /̃∇χ±ℓρ̃ =

±i
(
ℓ+ N−1

2

)
χ±ℓρ̃ [eq. (2.22)], while □̃χ±ℓρ̃ ≡ ∇̃θk∇̃θkχ±ℓρ̃ is given by eq. (D.7). The

function ϕ
(2)
nℓ is given by eq. (3.1), the function ψ

(2)
nℓ is given by eq. (3.2), the functions

C
(↑)(2)
nℓ and C

(↓)(2)
nℓ are given by eqs. (4.9) and (4.10), respectively, while the functions D

(↑)(2)
nℓ

and D
(↓)(2)
nℓ are given by eqs. (4.11) and (4.12), respectively. The functions describing the

dependence on θN in eq. (5.12) are given by

K
(↑)
nℓ (θN ) = −sin2 θN

N − 1
ϕ
(2)
nℓ (θN ), (5.15)

K
(↓)
nℓ (θN ) = −sin2 θN

N − 1
ψ
(2)
nℓ (θN ), (5.16)

T
(↑)
nℓ (θN ) =

−2i

N + 1

{
sin θN C

(↑)(2)
nℓ (θN )−

(
ℓ+

N − 1

2

)
W

(↑)
nℓ (θN )

}
, (5.17)

T
(↓)
nℓ (θN ) =

−2i

N + 1

{
− sin θN C

(↓)(2)
nℓ (θN )−

(
ℓ+

N − 1

2

)
W

(↓)
nℓ (θN )

}
, (5.18)

W
(↑)
nℓ (θN ) =

sin θN
(ℓ− 1)(ℓ+N)(N − 1)

×
{ [ N(N − 3)

(
ℓ+ N−1

2

)

N − 1
+
N(N + 1)

2
cos θN

]
C

(↑)(2)
nℓ (θN )

− (n+
N

2
)(N + 1) sin θN C

(↓)(2)
nℓ (θN ) +

N + 1

N − 1
sin θN ϕ

(2)
nℓ (θN )

}
(5.19)
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and

W
(↓)
nℓ (θN ) =

sin θN
(ℓ− 1)(ℓ+N)(N − 1)

×
{ [

− N(N − 3)
(
ℓ+ N−1

2

)

N − 1
+
N(N + 1)

2
cos θN

]
C

(↓)(2)
nℓ (θN )

+ (n+
N

2
)(N + 1) sin θN C

(↑)(2)
nℓ (θN ) +

N + 1

N − 1
sin θN ψ

(2)
nℓ (θN )

}
. (5.20)

The type-I modes with positive spin projection, ψ
(I;+;nℓ;ρ̃)
±µν , are given by expressions analo-

gous to the expressions for ψ
(I;−;nℓ;ρ̃)
±µν . To be specific, the expression for ψ

(I;+;nℓ;ρ̃)
±θNθN

is found by

exchanging ϕ
(2)
nℓ and iψ

(2)
nℓ and replacing χ−ℓρ̃ by χ+ℓρ̃ in eq. (5.10) and the expression for the

component ψ
(I;+;nℓ;ρ̃)
±θNθj

is found using eq. (5.11) as follows: we exchange C
(↑)(2)
nℓ and iC

(↓)(2)
nℓ ;

we also exchange D
(↑)(2)
nℓ and iD

(↓)(2)
nℓ and we make the replacements ∇̃θjχ−ℓρ̃ → ∇̃θjχ+ℓρ̃

and γ̃θjχ−ℓρ̃ → −γ̃θjχ+ℓρ̃. Similarly, ψ
(I;+;nℓ;ρ̃)
±θjθk

is found using the expression for ψ
(I;−;nℓ;ρ̃)
±θjθk

[eq. (5.12)] as follows: we exchange the functions with superscript ‘(↑)’ and the functions

with superscript ‘(↓)’, i.e., K
(↑)
nℓ ↔ iK

(↓)
nℓ , W

(↑)
nℓ ↔ iW

(↓)
nℓ and T

(↑)
nℓ ↔ iT

(↓)
nℓ (the symbol ↔

denotes the exchange of the functions appearing in the two sides of the ‘left-right’ arrow)

and we also make the replacements χ−ℓρ̃ → χ+ℓρ̃ and H̃ ′
θjθk

→ −H̃ ′
θjθk

in eq. (5.12).

Let us now verify that the allowed values for the angular momentum quantum numbers

n and ℓ for the type-I modes satisfy n ≥ ℓ ≥ r = 2. As in the case of STSSH’s of rank 1 (see

Subsection 4.1), the appearance of ℓ in the denominator in eqs. (4.9) and (4.10) implies that

there is no type-I mode if the θNθN -component (5.10) has ℓ = 0. Similarly, as eqs. (5.19)

and (5.20) indicate, there is no type-I mode with θNθN -component given by eq. (5.10)

with ℓ = 1. Also, as demonstrated in Appendix E, the quantisation condition (5.4) for the

eigenvalue, as well as the condition n − ℓ ≥ 0, arise as the requirement for the absence

of singularity in the functions ϕ
(2)
nℓ and ψ

(2)
nℓ . Thus, the allowed values for n and ℓ are

n = 2, 3, ... and ℓ = 2, ..., n, respectively.

Type-II modes. The type-II modes with negative spin projection (σ = −) on SN are

given by

ψ
(II-Ã;−;nℓ;ρ̃)
±θNθN

(θN ,θN−1) = 0 (5.21)

ψ
(II-Ã;−;nℓ;ρ̃)
±θNθj

(θN ,θN−1) =


 ϕ

(0)
nℓ (θN ) ψ̃

(Ã;ℓρ̃)
−θj

(θN−1)

±iψ(0)
nℓ (θN ) ψ̃

(Ã;ℓρ̃)
−θj

(θN−1)


 (5.22)

ψ
(II-Ã;−;nℓ;ρ̃)
±θjθk

(θN ,θN−1) =




Γ
(↑)
nℓ (θN ) ∇̃(θj ψ̃

(Ã;ℓρ̃)
−θk)

(θN−1) + ∆
(↑)
nℓ (θN ) γ̃(θj ψ̃

(Ã;ℓρ̃)
−θk)

(θN−1)

±iΓ(↓)
nℓ (θN ) ∇̃(θj ψ̃

(Ã;ℓρ̃)
−θk)

(θN−1)± i∆
(↓)
nℓ (θN ) γ̃(θj ψ̃

(Ã;ℓρ̃)
−θk)

(θN−1)




(5.23)

(j, k = 1, ..., N − 1), where ϕ
(0)
nℓ is given by eq. (3.1) and ψ

(0)
nℓ is given by eq. (3.2). The

type-Ã TT vector-spinor eigenmodes ψ̃
(Ã;ℓρ̃)
±θk

on SN−1 satisfy eqs. (4.14)-(4.16) and they
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are non-singular on SN−1 for ℓ = 1, 2, ... (see Section 4). The functions describing the

dependence on θN in eq. (5.23) are given by

∆
(↑)
nℓ (θN )

2
=

−i
N + 1

[
−ℓ+

N−1
2

2
Γ
(↑)
nℓ (θN ) + sin θN ϕ

(0)
nℓ (θN )

]
, (5.24)

∆
(↓)
nℓ (θN )

2
=

−i
N + 1

[
−ℓ+

N−1
2

2
Γ
(↓)
nℓ (θN )− sin θN ψ

(0)
nℓ (θN )

]
(5.25)

and

Γ
(↑)
nℓ (θN )

2
=

1

(ℓ− 1)(ℓ+N)

{
sin θN

[
N + 1

2
cos θN + ℓ+

N − 1

2

]
ϕ
(0)
nℓ (θN )

− N + 1

N
(n+

N

2
) sin2 θNψ

(0)
nℓ (θN )

}
, (5.26)

Γ
(↓)
nℓ (θN )

2
=

1

(ℓ− 1)(ℓ+N)

{
sin θN

[
N + 1

2
cos θN − ℓ− N − 1

2

]
ψ
(0)
nℓ (θN )

+
N + 1

N
(n+

N

2
) sin2 θNϕ

(0)
nℓ (θN )

}
. (5.27)

The expressions for the type-II modes with positive spin projection, ψ
(II-Ã;+;nℓ;ρ̃)
±µν , are anal-

ogous to the expressions for ψ
(II-Ã;−;nℓ;ρ̃)
±µν presented above. More specifically, the expres-

sion for ψ
(II-Ã;+;nℓ;ρ̃)
±θNθj

is found by exchanging ϕ
(0)
nℓ and iψ

(0)
nℓ and making the replacement

ψ̃
(Ã;ℓρ̃)
−θj

→ ψ̃
(Ã;ℓρ̃)
+θj

in eq. (5.22). The steps required in order to find the expression for

ψ
(II-Ã;+;nℓ;ρ̃)
±θjθk

by using eq. (5.23) are: we exchange Γ
(↑)
nℓ and iΓ

(↓)
nℓ , as well as ∆

(↑)
nℓ and i∆

(↓)
nℓ ,

and we make the replacements ∇̃(θj ψ̃
(Ã;ℓρ̃)
−θk)

→ ∇̃(θj ψ̃
(Ã;ℓρ̃)
+θk)

and γ̃(θj ψ̃
(Ã;ℓρ̃)
−θk)

→ −γ̃(θj ψ̃
(Ã;ℓρ̃)
+θk)

in

eq. (5.23).

Let us now verify that the allowed values for the angular momentum quantum numbers

n and ℓ for the type-II modes satisfy n ≥ ℓ ≥ r = 2. As mentioned in Section 4, the

eigenvector-spinors on SN−1 (ψ̃
(Ã;ℓρ̃)
−θj

) are non-singular for ℓ ≥ 1. Also, since ℓ− 1 appears

in the denominator in eqs. (5.26) and (5.27), there is no type-II mode with θNθj-component

given by eq. (5.22) with ℓ = 1. As in the case of the type-I modes, the quantisation

condition (5.4) and the condition n − ℓ ≥ 0 arise by demanding ϕ
(0)
nℓ and ψ

(0)
nℓ to be non-

singular. Hence, the allowed values for the angular momentum quantum numbers are

n = 2, 3, ... and ℓ = 2, ..., n.

Type-III modes. The type-III modes with negative (σ = −) and positive (σ = +) spin
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projections on SN are given by

ψ
(III-B̃;−;nℓ;ρ̃)
±θNθN

(θN ,θN−1) = 0 (5.28)

ψ
(III-B̃;−;nℓ;ρ̃)
±θNθj

(θN ,θN−1) = 0 (5.29)

ψ
(III-B̃;−;nℓ;ρ̃)
±θjθk

(θN ,θN−1) =


 ϕ

(−2)
nℓ (θN ) ψ̃

(B̃;ℓρ̃)
−θjθk

(θN−1)

±iψ(−2)
nℓ (θN ) ψ̃

(B̃;ℓρ̃)
−θjθk

(θN−1)


 (5.30)

and

ψ
(III-B̃;+;nℓ;ρ̃)
±θNθN

(θN ,θN−1) = 0 (5.31)

ψ
(III-B̃;+;nℓ;ρ̃)
±θNθj

(θN ,θN−1) = 0 (5.32)

ψ
(III-B̃;+;nℓ;ρ̃)
±θjθk

(θN ,θN−1) =


 iψ

(−2)
nℓ (θN ) ψ̃

(B̃;ℓρ̃)
+θjθk

(θN−1)

±ϕ(−2)
nℓ (θN ) ψ̃

(B̃;ℓρ̃)
+θjθk

(θN−1)


 , (5.33)

(j, k = 1, ..., N − 1) respectively, where ϕ
(−2)
nℓ is given by eq. (3.1) and ψ

(−2)
nℓ is given by

eq. (3.2). The STSSH’s of rank 2 on SN−1, ψ̃
(B̃;ℓρ̃)
+θjθk

, satisfy eqs. (5.6)-(5.9) and they are

non-singular for ℓ = 2, 3, ... (see the next Subsection). By working as in the case of type-I

and type-II modes discussed above, we find again that the allowed values for the angular

momentum quantum numbers are n = 2, 3, ... and ℓ = 2, ..., n.

5.2 STSSH’s of rank 2 for N odd

The equations for the STSSH’s of rank 2 are given by eqs. (5.1)-(5.3), where the gamma

matrices are given by eq. (2.14). We denote the STSSH’s of rank 2 as ψ
(B;nℓ;ρ̃)
±µν (with

n = 2, ... and ℓ = 2, ..., n), where the label B denotes the type of the mode. Note that

for N odd there is no spin projection index on SN [see also the passage before eq. (4.19)].

The labels n, ℓ and ρ̃ have the same meaning as in the case of the STSSH’s of rank 1 in

Subsection 4.2.

For each value of n we have a representation of spin(N + 1) acting on the space of the

eigenmodes ψ
(B;nℓ;ρ̃)
±µν . The highest weights λ± = (λ±1 , ..., λ

±
(N+1)/2) for these representations

are

λ± =

(
n+

1

2
,
5

2
,
1

2
, ...,

1

2
,±1

2

)
, (n = 2, 3, ...), (5.34)

which can be determined using the branching rules for spin(N + 1) ⊃ spin(N) [21, 25, 26].

Note that for N = 3 we have λ± = (n+ 1/2,±5/2).
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Type-I modes. The type-I modes on SN are given by

ψ
(I;nℓ;ρ̃)
±θNθN

(θN ,θN−1) =
1√
2
(1+ iγN )

{
ϕ
(2)
nℓ (θN )± iψ

(2)
nℓ (θN )γ

N
}
χ−ℓρ̃(θN−1) (5.35)

ψ
(I;nℓ;ρ̃)
±θNθj

(θN ,θN−1) =
1√
2
(1+ iγN )

{(
C

(↑)(2)
nℓ (θN )± iC

(↓)(2)
nℓ (θN )γ

N
)
∇̃θjχ−ℓρ̃(θN−1)

+
(
D

(↑)(2)
nℓ (θN )± iD

(↓)(2)
nℓ (θN )γ

N
)
γ̃θjχ−ℓρ̃(θN−1)

}
(5.36)

ψ
(I;nℓ;ρ̃)
±θjθk

(θN ,θN−1) =
1√
2
(1+ iγN )

{(
K

(↑)
nℓ (θN )± iK

(↓)
nℓ (θN )γ

N
)
g̃θjθkχ−ℓρ̃(θN−1)

+
(
W

(↑)
nℓ (θN )± iW

(↓)
nℓ (θN )γ

N
)
H̃θjθkχ−ℓρ̃(θN−1)

+
(
T
(↑)
nℓ (θN )± iT

(↓)
nℓ (θN )γ

N
)
H̃ ′
θjθk

χ−ℓρ̃(θN−1)

}
(5.37)

(j, k = 1, ..., N − 1) where the eigenspinors χ−ℓρ̃ on SN−1 satisfy eq. (2.22). The functions

ϕ
(2)
nℓ , ψ

(2)
nℓ , C

(b)(2)
nℓ , D

(b)(2)
nℓ ,K

(b)
nℓ ,W

(b)
nℓ and T

(b)
nℓ (where b =↑, ↓), describing the dependence on

θN , are the same as in the even-dimensional case [see eqs. (5.10)-(5.12)], while H̃θjθk and

H̃ ′
θjθk

are given again by eqs. (5.13) and (5.14), respectively.

Type-II modes. The type-II modes on SN are given by

ψ
(II-Ã;nℓ;ρ̃)
±θNθN

(θN ,θN−1) = 0 (5.38)

ψ
(II-Ã;nℓ;ρ̃)
±θNθj

(θN ,θN−1) =
1√
2
(1+ iγN )

{
ϕ
(0)
nℓ (θN )± iψ

(0)
nℓ (θN )γ

N
}
ψ̃
(Ã;ℓρ̃)
−θj

(θN−1) (5.39)

ψ
(II-Ã;nℓ;ρ̃)
±θjθk

(θN ,θN−1) =
1√
2
(1+ iγN )

{(
Γ
(↑)
nℓ (θN )± iΓ

(↓)
nℓ (θN )γ

N
)
∇̃(θj ψ̃

(Ã;ℓρ̃)
−θk)

(θN−1)

+
(
∆

(↑)
nℓ (θN )± i∆

(↓)
nℓ (θN )γ

N
)
γ̃(θj ψ̃

(Ã;ℓρ̃)
−θk)

(θN−1)

}
, (5.40)

(j, k = 1, ..., N − 1) where the TT eigenvector-spinors ψ̃
(Ã;ℓρ̃)
−θk

on SN−1 satisfy eqs. (4.14)-

(4.16). As in the even-dimensional case, the functions ϕ
(0)
nℓ and ψ

(0)
nℓ are given by eqs. (3.1)

and (3.2), respectively. The functions ∆
(↑)
nℓ ,∆

(↓)
nℓ ,Γ

(↑)
nℓ and Γ

(↓)
nℓ are given by eqs. (5.24) ,

(5.25), (5.26) and (5.27), respectively.

Type-III modes. The type-III modes on SN are given by

ψ
(III-B̃;nℓ;ρ̃)
±θNθN

(θN ,θN−1) = 0 (5.41)

ψ
(III-B̃;nℓ;ρ̃)
±θNθj

(θN ,θN−1) = 0 (5.42)

ψ
(III-B̃;nℓ;ρ̃)
±θjθk

(θN ,θN−1) =
1√
2
(1+ iγN )

{
ϕ
(−2)
nℓ (θN )± iψ

(−2)
nℓ (θN )γ

N
}
ψ̃
(B̃;ℓρ̃)
−θjθk

(θN−1), (5.43)

(j, k = 1, ..., N − 1) where the rank-2 STSSH’s on SN−1 (ψ̃
(B̃;ℓρ̃)
−θjθk

) satisfy eqs. (5.6)-(5.9),

while the functions ϕ
(−2)
nℓ and ψ

(−2)
nℓ are given by eqs. (3.1) and (3.2), respectively.
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As in the case with N even, by requiring that the rank-2 STSSH’s of all types (i.e. type-

I, type-II and type-III) on SN are non-singular, we obtain the quantisation condition (5.4)

for the eigenvalue, while the allowed values for the angular momentum quantum numbers

are found to be n = 2, 3, ... and ℓ = 2, ..., n.

6 Normalisation factors and transformation properties under spin(N+1)

of rank-1 and rank-2 STSSH’s

In this Section, we study the transformation properties of a specific class of STSSH’s of

ranks 1 and 2 on SN under a spin(N + 1) transformation. We also write down explicitly

the normalisation factors for all STSSH’s of ranks 1 and 2 and we make a conjecture for

the normalisation factors for STSSH’s of arbitrary rank r.

In order to derive the transformation formulae and determine the normalisation factors

for STSSH’s of ranks 1 and 2, we introduce an inner product on the solution space of

eqs. (1.6) and (1.7) and we also exploit the spin(N+1) invariance of this inner product. The

transformation properties and the normalisation factors that we present in this Section have

been obtained after long and tedious calculations. For this reason, in this Section, we simply

present the results of our lengthy calculations and provide the necessary mathematical

background (for example, we discuss the Lie-Lorentz derivative (6.1) [27]). We refer the

reader to Appendix F for details of the calculations.

6.1 Lie-Lorentz derivative and spin(N + 1) invariant inner product

Let ψµ1...µr be any tensor-spinor of rank r and ξ be any Killing vector on SN . The infinites-

imal change δξψµ1...µr due to the spin(N +1) transformation generated by ξ is conveniently

described by the Lie-Lorentz derivative [27]

Lξ ψµ1...µr = ξν∇νψµ1...µr + ψνµ2...µr∇µ1ξ
ν + ψµ1νµ3...µr∇µ2ξ

ν + ...+ ψµ1...µr−1ν∇µrξ
ν

+
1

4
∇κξλγ

κγλψµ1...µr . (6.1)

The Lie-Lorentz derivative satisfies [27]

Lξ e
a

µ = 0, (6.2a)

Lξ γ
a = 0 (6.2b)

and - after a straightforward calculation - one can verify that

(Lξ∇µ −∇µLξ) ψµ1...µr = 0. (6.3)

Thus, if ψµ1...µr satisfies eqs. (1.6) and (1.7) (i.e., if ψµ1...µr is a STSSH of rank r), then

Lξ ψµ1...µr also satisfies eqs. (1.6) and (1.7).

Let us introduce the following inner product on the solution space of eqs. (1.6) and

(1.7):

(
ψ(1), ψ(2)

)

(r)
=

∫

SN

√
g dθN ψ

(1)†
µ1...µr ψ

(2)µ1...µr , (6.4)
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where dθN stands for dθN ...dθ2 dθ1, while ψ
(1)
µ1...µr and ψ

(2)
µ1...µr are any two STSSH’s of rank

r with the same angular momentum n on SN .9 Since the inner product (6.4) is invariant

under spin(N + 1), we have
(
Lξψ

(1), ψ(2)
)

(r)
+
(
ψ(1),Lξψ

(2)
)

(r)
= 0 (6.5)

for any Killing vector ξ on SN . We will study the transformation properties of a certain

class of STSSH’s of ranks 1 and 2 under spin(N + 1), by specialising to the case where the

Killing vector in eq. (6.1) is given by ξ = S , where

S = S
µ∂µ = cos θN−1

∂

∂θN
− cot θN sin θN−1

∂

∂θN−1
. (6.6)

Now, let us discuss the certain class of STSSH’s of ranks 1 and 2 on SN (N ≥ 3), the

transformation properties of which we are interested in.

• In the case of STSSH’s of rank r = 1, we will study the transformation properties of

the class of STSSH’s which comprises: the type-I modes and a certain kind of type-II

modes, called type-II-I modes. The type-II-I modes on SN are defined for N ≥ 4

and they are constructed in terms of type-I eigenvector-spinors on SN−1. Thus, the

type-II-I modes on SN are given by letting Ã = I in eqs. (4.17) and (4.18) (for N

even) and in eq. (4.22) (for N odd).

• In the case of STSSH’s of rank r = 2, we will study the class of STSSH’s which

comprises: the type-I modes, the type-II-I modes and the type-III-I modes. As in

the case of rank-1 STSSH’s, the type-II-I modes on SN are defined for N ≥ 4 and

they are constructed in terms of type-I eigenvector-spinors on SN−1. Thus, these

modes are given by letting Ã = I in eqs. (5.21)-(5.23) (for N even) and in eqs. (5.38)-

(5.40) (for N odd). The type-III-I modes on SN are defined for N ≥ 4 and they

are constructed in terms of type-I STSSH’s of rank 2 on SN−1. Thus, the type-III-I

modes on SN are given by letting B̃ = I in eqs. (5.30) and (5.33) (for N even) and

in eq. (5.43) (for N odd).

6.2 Normalisation factors and transformation properties under spin(N + 1) of

STSSH’s of ranks 1 and 2

Case 1: N even. Using the inner product (6.4), we define the normalisation factors

c
(B;r)
N (n, ℓ) for the STSSH’s of arbitrary rank r and type B on SN , ψ

(B;σ;nℓ;ρ̃)
±µ1...µr , as

(
ψ
(B;σ;nℓ;ρ̃)
± , ψ

(B′;σ′;nℓ′;ρ̃′)
±

)

(r)
≡
∣∣∣∣∣
c
(B;r)
N (n, ℓ)√

2

∣∣∣∣∣

−2

δBB′δσσ′δℓℓ′δρ̃ρ̃′ . (6.7)

(The normalised STSSH’s are c
(B;r)
N (n, ℓ)/

√
2 ψ

(B;σ;nℓ;ρ̃)
±µ1...µr .) As discussed in Sections 4 and 5

(for r = 1 and r = 2, respectively), the STSSH’s of rank r on SN , ψ
(B;σ;nℓ;ρ̃)
±µ1...µr , are constructed

9Any two STSSH’s with different signs for the eigenvalue in eq. (1.6) and/or with different n are orthog-

onal to each other, since i /∇ is hermitian with respect to the inner product (6.4).

– 24 –



in terms of STSSH’s of rank r̃ ≤ r on SN−1, using the method of separation of variables.

The type of the mode ψ
(B;σ;nℓ;ρ̃)
±µ1...µr (i.e. the value assigned to the label B) depends on the

choice of r̃. For convenience, instead of using the symbol r̃, let us denote the rank of the

STSSH’s on SN−1 as r̃(B), where the type-I STSSH’s (ψ
(I;σ;nℓ;ρ̃)
±µ1...µr ) have r̃(I) = 0, the type-II

STSSH’s (ψ
(II-Ã;σ;nℓ;ρ̃)
±µ1...µr ) have r̃(II) = 1, the type-III STSSH’s (ψ

(III-B̃;σ;nℓ;ρ̃)
±µ1...µr ) have r̃(III) = 2

and so forth. As shown in Appendix F, the normalisation factors for STSSH’s of rank

r ∈ { 1, 2 } are given by

∣∣∣∣∣
c
(B;r)
N (n, ℓ)√

2

∣∣∣∣∣

2

=
2−N−2r+1+4r̃(B)

(
r

r̃(B)

) Γ(n− ℓ+ 1)Γ(n+ ℓ+N)

|Γ(n+ N
2 )|2

×




r−1∏

j=r̃(B)

N + j + r̃(B) − 2

N + 2j − 1






r−1∏

j=r̃(B)

(ℓ− j)(ℓ+N − 1 + j)




×
r−r̃(B)∏

j=1

1
(
n+ N

2

)2 −
(
r − j + N−2

2

)2 (6.8)

(r̃(B) ≤ r) where
(
r

r̃(B)

)
is the binomial coefficient. Here, if ν1 > ν2, then

∏ν2
j=ν1

= 1. We

have proved eq. (6.8) only for r = 1 (where B = I, II) and for r = 2 (where B = I, II, III).

We make the following conjecture, which is true for r = 1 and r = 2:

Conjecture: The normalisation factors for all types of STSSH’s (i.e. STSSH’s with all

possible values of B) of arbitrary rank r ≥ 1 on SN are given by eq. (6.8), where n ≥ ℓ ≥
r ≥ r̃(B) and r̃(B) ∈ { 0, 1, ..., r }.

Before presenting the transformation properties of our STSSH’s of rank r (r = 1, 2)

under spin(N +1), let us introduce the shorthand notation ψ
(B;σ;nℓm;ρ)
±Nr

for the STSSH’s of

ranks 1 and 2, defined as follows:

ψ
(B;σ;nℓm;ρ)
±N1

= ψ
(B;σ;nℓm;ρ)
±µ1 (B = I, II-I), (6.9a)

ψ
(III-I;σ;nℓm;ρ)
±N1

= 0, (6.9b)

ψ
(B;σ;nℓm;ρ)
±N2

= ψ
(B;σ;nℓm;ρ)
±µ1µ2 (B = I, II-I, III-I), (6.9c)

where we have also written out explicitly the dependence on the angular momentum quan-

tum number on SN−2, m, which corresponds to ℓ on SN−1. The symbol ρ represents labels

other than σ, n, ℓ and m. For the type-I modes we have m = 0, 1, ..., ℓ, for the type-II

modes we have m = 1, 2, ..., ℓ and for the type-III modes we have m = 2, 3, ..., ℓ. (In other

words ℓ ≥ m ≥ r̃(B).)

As demonstrated in Appendix F, the spin(N + 1) transformation of the type-I modes

is expressed as

LSψ
(I;σ;nℓm;ρ)
±Nr

= A
(I) ψ

(I;σ;n (ℓ+1)m;ρ)
±Nr

+ B
(I) ψ

(I;σ;n (ℓ−1)m;ρ)
±Nr

− iκ(I) ψ
(I;−σ;nℓm;ρ)
±Nr

+ K
(I→II) ψ

(II-I;σ;nℓm;ρ)
±Nr

, (6.10)
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where the coefficients on the right-hand side of eq. (6.10) are

A
(I) =− (n+ ℓ+N)(ℓ+N + r − 1)

2(ℓ+ N
2 )(ℓ+N − 1)

×
√
(ℓ−m+ 1)(ℓ+N − 1 +m), (6.11)

B
(I) =

(n− ℓ+ 1)(ℓ− r)

2(ℓ+ N−2
2 )ℓ

×
√
(ℓ−m)(ℓ+m+N − 2), (6.12)

κ
(I) =− (n+ N

2 )(m+ N−2
2 )(N + 2r − 2)

2(ℓ+ N−2
2 )(ℓ+ N

2 )(N − 2)
, (6.13)

and

K
(I→II) =−

4
[(
n+ N

2

)2 − (N − 2)2/4
]
(N + r − 2)

ℓ(ℓ+N − 1)(N − 2)
×
√
N − 3

N − 2

m(m+N − 2)

(ℓ+ 1)(ℓ+N − 2)
.

(6.14)

Equations (6.10)-(6.14) hold for r = 1, 2. Note that the sign of the spin projection index

σ is flipped in the third term of the linear combination in eq. (6.10), while iκ(I) is the

only imaginary coefficient on the right-hand side of this equation. Also, note that K (I→II)

vanishes for m = 0, i.e. for m = 0 there is no mixing between type-I and type-II-I modes

in eq. (6.10). This is consistent with the fact that type-II modes are defined only for

m = 1, 2, ..., ℓ.

The spin(N + 1) transformation of the type-II-I modes is expressed as

LSψ
(II-I;σ;nℓm;ρ)
±Nr

= A
(II) ψ

(II-I;σ;n (ℓ+1)m;ρ)
±Nr

+ B
(II) ψ

(II-I;σ;n (ℓ−1)m;ρ)
±Nr

− iκ(II)ψ
(II-I;−σ;nℓm;ρ)
±Nr

+ K
(II→I) ψ

(I;σ;nℓm;ρ)
±Nr

+ K
(II→III) ψ

(III-I;σ;nℓm;ρ)
±Nr

(6.15)

where

A
(II) =− (n+ ℓ+N)(ℓ+N + r − 1)

2(ℓ+ N
2 )(ℓ+N)

×
√

(ℓ+ 2)(ℓ+N − 2)

(ℓ+ 1)(ℓ+N − 1)
(ℓ−m+ 1)(ℓ+m+N − 1), (6.16)

B
(II) =

(n− ℓ+ 1)(ℓ− r)

2(ℓ+ N−2
2 )(ℓ− 1)

×
√

(ℓ+ 1)(ℓ+N − 3)

ℓ(ℓ+N − 2)
(ℓ−m)(ℓ+m+N − 2), (6.17)

κ
(II) =

−(n+ N
2 )(m+ N−2

2 )(N − 4)

2(ℓ+ N−2
2 )(ℓ+ N

2 )(N − 2)
×
(
N + 2

N

)r−1

(6.18)

(6.19)
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K
(II→I) =

r

4
×
√

(N − 3)m(m+N − 2)

(N − 2)(ℓ+ 1)(ℓ+N − 2)
, (6.20)

where r = 1, 2 and

K
(II→III) =− 23

[(
n+ N

2

)2 −N2/4
]
(N + 1)

(ℓ− 1)(ℓ+N)N
×
√
N − 2

N

(m− 1)(m+N − 1)

ℓ(ℓ+N − 1)
(6.21)

[eq. (6.21) is defined only for r = 2]. The sign of the spin projection index is flipped in

the third term of the linear combination in eq. (6.15), while iκ(II) is the only imaginary

coefficient on the right-hand side of this equation. Note that κ
(II) vanishes for N = 4

and thus type-II-I modes with different spin projections on S4 do not mix with each other

under the transformation (6.15).

The spin(N +1) transformation of the rank-2 type-III-I modes is expressed as a linear

combination of other STSSH’s of rank 2, as follows:

LSψ
(III-I;σ;nℓm;ρ)
±µ1µ2 = A

(III) ψ
(III-I;σ;n (ℓ+1)m;ρ)
±µ1µ2 + B

(III) ψ
(III-I;σ;n (ℓ−1)m;ρ)
±µ1µ2

− iκ(III) ψ
(III-I;−σ;nℓm;ρ)
±µ1µ2 + K

(III→II) ψ
(II-I;σ;nℓm;ρ)
±µ1µ2 , (6.22)

where

A
(III) =− (n+ ℓ+N)

2(ℓ+ N
2 )

×
√

(ℓ+ 2)(ℓ+N − 2)

ℓ(ℓ+N)
(ℓ−m+ 1)(ℓ+m+N − 1), (6.23)

B
(III) =

(n− ℓ+ 1)

2(ℓ+ N−2
2 )

×
√

(ℓ+ 1)(ℓ+N − 3)

(ℓ− 1)(ℓ+N − 1)
(ℓ−m)(ℓ+m+N − 2), (6.24)

κ
(III) = −(n+ N

2 )(m+ N−2
2 )(N − 4)

2(ℓ+ N−2
2 )(ℓ+ N

2 )N
(6.25)

and

K
(III→II) =

1

4

√
(N − 2)(m− 1)(m+N − 1)

N ℓ(ℓ+N − 1)
. (6.26)

As in eqs. (6.10) and (6.15), the spin projection index σ has flipped sign in the third term

of the linear combination in eq. (6.22). The STSSH’s ψ
(III-I;−;nℓm;ρ)
±µν and ψ

(III-I;+;nℓm;ρ)
±µν do

not mix with each other for N = 4 since the coefficient κ
(III) [eq. (6.25)] vanishes for this

value of N .

Case 2: N odd. As in the case with N even, the normalisation factors for the STSSH’s

ψ
(B;nℓ;ρ̃)
±µ1...µr are defined using the inner product (6.4), as10

(
ψ
(B;nℓ;ρ̃)
± , ψ

(B′;nℓ′;ρ̃′)
±

)

(r)
≡
∣∣∣∣∣
c
(B;r)
N (n, ℓ)√

2

∣∣∣∣∣

−2

δBB′δℓℓ′δρ̃ρ̃′ . (6.27)

10Recall that for N odd the STSSH’s ψ
(B;nℓ;ρ̃)
±µ1...µr

do not have a spin projection index on SN . They

are just labelled by the angular momentum quantum numbers n and ℓ, while the angular momentum

quantum numbers on SN−2, SN−3, ..., S2, S1 and the spin projection indices on the even-dimensional spheres

SN−1, SN−3, ..., S2 are represented by ρ̃.
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As demonstrated in Appendix F, the normalisation factors for N odd are given again by

eq. (6.8). The conjecture for the normalisation factors of the STSSH’s in the passage below

eq. (6.8) is made for both N odd and N even.

As in the case with N even, we introduce the shorthand notation ψ
(B;nℓ;σN−1;m;ρ)
±Nr

for

the STSSH’s of ranks 1 and 2, as

ψ
(B;nℓ;σN−1;m;ρ)
±N1

= ψ
(B;nℓ;σN−1;m;ρ)
±µ1 (B = I, II-I), (6.28a)

ψ
(III-I;nℓ;σN−1;m;ρ)
±N1

= 0, (6.28b)

ψ
(B;nℓ;σN−1;m;ρ)
±N2

= ψ
(B;nℓ;σN−1;m;ρ)
±µ1µ2 (B = I, II-I, III-I), (6.28c)

where we have also written out explicitly the dependence on the angular momentum quan-

tum number on SN−2, m, which corresponds to ℓ on SN−1, as well as the dependence on

the spin projection index on SN−1 (σN−1 = ±). The symbol ρ represents labels other than

n, ℓ, σN−1 and m.

As shown in Appendix F, the spin(N + 1) transformation of the type-I, type-II-I and

type-III-I modes are expressed as

LSψ
(I;nℓ;σN−1;m;ρ)
±Nr

= A
(I) ψ

(I;n (ℓ+1);σN−1;m;ρ)
±Nr

+ B
(I) ψ

(I;n (ℓ−1);σN−1;m;ρ)
±Nr

± i σN−1 κ
(I) ψ

(I;nℓ;σN−1;m;ρ)
±Nr

+ K
(I→II) ψ

(II-I;nℓ;σN−1;m;ρ)
±Nr

, (6.29)

LSψ
(II-I;nℓ;σN−1;m;ρ)
±Nr

= A
(II) ψ

(II-I;n (ℓ+1);σN−1;m;ρ)
±Nr

+ B
(II) ψ

(II-I;n (ℓ−1);σN−1;m;ρ)
±Nr

± i σN−1 κ
(II) ψ

(II-I;nℓ;σN−1;m;ρ)
±Nr

+ K
(II→I) ψ

(I;σ;nℓ;σN−1;m;ρ)
±Nr

+ K
(II→III) ψ

(III-I;nℓ;σN−1;m;ρ)
±Nr

, (6.30)

and

LSψ
(III-I;nℓ;σN−1;m;ρ)
±µ1µ2 = A

(III) ψ
(III-I;n (ℓ+1);σN−1;m;ρ)
±µ1µ2 + B

(III) ψ
(III-I;n (ℓ−1);σN−1;m;ρ)
±µ1µ2

± i σN−1 κ
(III) ψ

(III-I;nℓ;σN−1;m;ρ)
±µ1µ2 + K

(III→II) ψ
(II-I;nℓ;σN−1;m;ρ)
±µ1µ2 ,

(6.31)

respectively. [In eqs. (6.29) and (6.30) we have r ∈ { 1, 2 }, while eq. (6.31) is relevant

only for r = 2.] All coefficients in eqs. (6.29)-(6.31) are given by the same expressions

as the coefficients in the case with N even [see eqs. (6.10), (6.15) and (6.22)]. Unlike the

even-dimensional case, the two spin projections σN−1 = ± do not mix with each other

in eqs. (6.29)-(6.31). However, the two spin projections σN−1 = ± mix with each other

under spin(N) transformations. Note that the transformation formulae (6.30) and (6.31)

are defined only for N ≥ 5 (N odd), since type-II and type-III modes on SN do not exist11

for N = 3.

We are now ready to analytically continue our rank-1 and rank-2 STSSH’s to dSN and

study the group representation properties of the analytically continued STSSH’s.

11This is consistent with the fact that the coefficient K
(I→II), given by eq. (6.14), vanishes for N = 3.
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7 Obtaining spin-3/2 and spin-5/2 mode solutions on N-dimensional de

Sitter spacetime by the analytic continuation of STSSH’s

7.1 Analytic continuation techniques

In this Section, we begin by discussing our analytic continuation techniques for STSSH’s of

arbitrary rank r and then we specialise to the cases with r = 1 and r = 2.

It is well known that dSN can be obtained by an “analytic continuation” of SN (see,

e.g., Ref. [13]). By replacing the angle θN in the line element of SN (2.3) as:

θN → x(t) ≡ π

2
− it, (7.1)

(t ∈ R) we find the line element for global dSN :

ds2 = −dt2 + cosh2 t ds2N−1. (7.2)

Motivated by this observation, we can obtain the field equations (1.3) and (1.4) on dSN
by analytically continuing eqs. (1.6) and (1.7), respectively, for the STSSH’s on SN . For

convenience, let us give here again eqs. (1.6) and (1.7) for STSSH’s on SN :

/∇ψ±µ1...µr = ±i
(
n+

N

2

)
ψ±µ1...µr , (n = r, r + 1, ...) (7.3)

∇αψ±αµ2...µr = 0, γαψ±αµ2...µr = 0. (7.4)

Without loss of generality, we can choose to analytically continue the STSSH’s with either

one of the two signs for the eigenvalue in eq. (7.3), since each of the two sets of modes,

{ψ+µ1...µr} and {ψ−µ1...µr}, forms independently a unitary representation of spin(N + 1)

labelled by n (see the beginning of Sections 4 and 5). Here we choose to analytically

continue the STSSH’s ψ−µ1...µr . By making the following replacements in eqs. (7.3) and

(7.4):

θN → x(t) ≡ π

2
− it, n→ M̃ − N

2
(t ∈ R, M̃ ∈ R \ {0}) (7.5)

we obtain eqs. (1.3) and (1.4), respectively, with imaginary mass parameter M = iM̃

(M̃ ̸= 0) on dSN . Recall that we are mainly interested in field equations with imaginary

mass parameter because our aim is to study strictly and partially massless representations

of spin(N, 1), where the mass parameter takes the imaginary values (1.5). Note that the

gamma matrices on SN [eqs. (2.11) and (2.14)] transform under the replacement (7.1) as:

γN → iγN = γ0, while the γj ’s (j = 1, ..., N − 1) remain unchanged.12

Let us now give a prescription for obtaining the explicit form of the spin-3/2 and spin-

5/2 TT mode functions with mass parameter M = iM̃ on dSN by analytically continuing

the STSSH’s of rank 1 and 2, respectively. The functions describing the time-dependence

12Alternatively, we could analytically continue the STSSH’s on SN by making the replacement θN →

π/2 + it instead of the replacement (7.1). The analytically continued STSSH’s with θN → π/2 − it and

the ones with θN → π/2 + it are related to each other by charge conjugation. However, these two cases of

analytically continued STSSH’s form equivalent representations of spin(N, 1).
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of the analytically continued STSSH’s are found by making the replacements (7.5) in the

(unnormalised) functions ϕ
(a)
nℓ (θN ) [eq. (3.1)] and ψ

(a)
nℓ (θN ) [eq. (3.2)], as

ϕ̂
(a)

M̃ℓ
(t) ≡

[
κϕ

(
M̃ − N

2
, ℓ

)]−1

ϕ
(a)

(M̃−N
2
) ℓ
(x(t)) (7.6)

=

(
cos

x(t)

2

)ℓ+1−a(
sin

x(t)

2

)ℓ−a

× F

(
−M̃ +

N

2
+ ℓ, M̃ + ℓ+

N

2
; ℓ+

N

2
; sin2

x(t)

2

)
, (7.7)

ψ̂
(a)

M̃ℓ
(t) ≡

[
κϕ

(
M̃ − N

2
, ℓ

)]−1

ψ
(a)

(M̃−N
2
) ℓ
(x(t)) (7.8)

=
M̃

ℓ+ N
2

(
cos

x(t)

2

)ℓ−a(
sin

x(t)

2

)ℓ+1−a

× F

(
−M̃ +

N

2
+ ℓ, M̃ + ℓ+

N

2
; ℓ+

N + 2

2
; sin2

x(t)

2

)
, (7.9)

where κϕ(M̃ − N
2 , ℓ) is given by eq. (3.3) with n replaced by M̃ − N

2 , while

cos
x(t)

2
=

(
sin

x(t)

2

)∗

=

√
2

2

(
cosh

t

2
+ i sinh

t

2

)
. (7.10)

Note that ϕ̂
(a)

(−M̃)ℓ
= ϕ̂

(a)

M̃ℓ
and ψ̂

(a)

(−M̃)ℓ
= −ψ̂(a)

M̃ℓ
. The condition ℓ ≤ n does not hold for dSN .

Now ℓ can be any positive integer with ℓ ≥ r.

For brevity, let us use again the shorthand notation introduced in eqs. (6.9) (for N

even) and (6.28) (for N odd). For N even, we denote the analytically continued STSSH’s

as Ψ
(B;σ;M̃ℓm;ρ)
Nr

(t,θN−1) (where σ = ± is the spin projection index on dSN , while m ≤ ℓ

and ℓ = r, r + 1, ... ). We define the modes Ψ
(B;σ;M̃ℓm;ρ)
Nr

by making the replacements (7.5)

in the STSSH’s ψ
(B;σ;nℓm;ρ)
−Nr

on SN , as

Ψ
(B;σ;M̃ℓm;ρ)
Nr

(t,θN−1) =

[
κϕ

(
M̃ − N

2
, ℓ

)]−1

ψ
(B;σ;(M̃−N/2) ℓm;ρ)
−Nr

(π/2− it,θN−1) (7.11)

where
[
κϕ

(
M̃ − N

2 , ℓ
)]−1

is essentially the factor used in eqs. (7.6) and (7.8) [it is used

in order to cancel the normalisation factor (3.3) of the Jacobi polynomials]. Note that,

by viewing the replacement θN → π
2 − it as a coordinate change, we find that ψ

(B;σ;nℓm;ρ)
−θN

transforms as

ψ
(B;σ;nℓm;ρ)
−θN

→ i ψ
(B;σ;(M̃−N/2) ℓm;ρ)
−t .

Similarly, ψ
(B;σ;nℓm;ρ)
−θNθN

and ψ
(B;σ;nℓm;ρ)
−θNθj

transform as

ψ
(B;σ;nℓm;ρ)
−θNθN

→ −ψ(B;σ;(M̃−N/2) ℓm;ρ)
−t t
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and

ψ
(B;σ;nℓm;ρ)
−θNθj

→ i ψ
(B;σ;(M̃−N/2) ℓm;ρ)
−t θj

,

respectively.

For N odd, the analytically continued STSSH’s are denoted as Ψ
(B;M̃ℓ;σN−1;m;ρ)
Nr

(where

σN−1 = ±, m ≤ ℓ and ℓ = r, r + 1, ... ). They are obtained by analytically continuing the

STSSH’s ψ
(B;nℓ;σN−1;m;ρ)
−Nr

(θN ,θN−1) on SN , as

Ψ
(B;M̃ℓ;σN−1;m;ρ)
Nr

(t,θN−1) =

[
κϕ

(
M̃ − N

2
, ℓ

)]−1

ψ
(B;(M̃−N/2) ℓ;σN−1;m;ρ)
−Nr

(π/2− it,θN−1).

(7.12)

Note that, unlike the case with N even [eq. (7.11)], the analytically continued STSSH’s

(7.12) have a spin projection index (σN−1) on SN−1 instead of a spin projection index on

dSN .

7.2 Pure gauge modes for the massless spin-3/2 and spin-5/2 theories

As in Minkowski spacetime, (strictly and partially) massless field theories in dSN are gauge

invariant [8]. In terms of mode solutions of the corresponding field equations, gauge in-

variance manifests itself through the appearance of ‘pure gauge’ modes in the set of mode

solutions. The ‘pure gauge’ modes do not describe propagating DoF of the field theory

and - assuming that there exists an invariant inner product for the mode solutions - these

modes have zero norm (see, e.g. Ref. [13]).

For later convenience, let us present the ‘pure gauge’ modes that appear among the

analytically continued STSSH’s of rank r (r = 1, 2) when we tune the imaginary mass

parameter (M = iM̃) to the massless values M̃ = ± [r − τ+ (N − 2)/2], where τ = 1, .., r

[see eq. (1.5)]. For each massless value of M̃ , the analytically continued STSSH’s of rank r

with r−τ ≥ r̃ ≥ 0 are ‘pure gauge’ modes, where r̃ is the rank of the STSSH on SN−1 used

in the method of separation of variables (see Sections 4 and 5). In Section 8 we will verify

that our ‘pure gauge’ modes have zero norm associated to a spin(N, 1) invariant scalar

product for N even. We will also demonstrate that for N odd there does not exist any

spin(N, 1) invariant scalar product for the analytically continued STSSH’s with imaginary

mass parameter. Thus, for N odd the norm of the ‘pure gauge’ modes cannot be calculated

in a meaningful way, as there is no de Sitter invariant notion of norm.

Strictly massless spin-3/2 field. The mass parameter for the strictly massless spin-

3/2 field is given by M = iM̃ = ±i(N − 2)/2 [this is found by letting r = τ = 1 in

eq. (1.5)]. The analytically continued STSSH’s of type-I (r̃ = 0) are ‘pure gauge’ modes.

As demonstrated in Appendix G, the analytically continued rank-1 STSSH’s (7.11) of type-I

with M̃ = ±(N − 2)/2 are expressed in a ‘pure gauge’ form as follows:

Ψ
(I;(±N−2

2
);ℓ̃)

µ (t,θN−1) =

(
∇µ ±

i

2
γµ

)
Λ
(ℓ̃)
± (t,θN−1), (7.13)

where for brevity we use the symbol ℓ̃ to represent all the labels of the analytically continued

STSSH’s which have not been written down explicitly. The Dirac spinors Λ
(ℓ̃)
± (t,θN−1)
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satisfy

/∇Λ
(ℓ̃)
± = ∓i N

2
Λ
(ℓ̃)
± . (7.14)

The ‘pure gauge’ expression (7.13) for the type-I modes coincides with the form of the

infinitesimal gauge transformation [8] (with a specific gauge condition) that leaves invariant

the action for the strictly massless spin-3/2 field in dS4. In Section 8 we show that the

‘pure gauge’ modes (7.13) have vanishing dS invariant norm for even N ≥ 4.

Strictly massless spin-5/2 field. The mass parameter for the strictly massless spin-5/2

field is given by M = iM̃ = ±iN/2 [this is found by letting r = 2 and τ = 1 in eq. (1.5)].

There are two types of ‘pure gauge’ modes, namely the analytically continued STSSH’s of

type-I (r̃ = 0) and type-II (r̃ = 1). As demonstrated in Appendix G, the analytically

continued rank-2 STSSH’s (7.11) of type-I and type-II with M̃ = ±N/2 are expressed in

the following ‘pure gauge’ form:

Ψ
(B;(±N

2
);ℓ̃)

µν (t,θN−1) =

(
∇(µ ±

i

2
γ(µ

)
λ
(B;ℓ̃)
±ν) (t,θN−1), B = I, II, (7.15)

where the gauge functions λ
(B;ℓ̃)
±µ (t,θN−1) (B = I, II) are vector-spinor fields satisfying

/∇λ(B;ℓ̃)
±µ = ∓i N + 2

2
λ
(B;ℓ̃)
±µ (7.16)

γµλ
(B;ℓ̃)
±µ = ∇µλ

(B;ℓ̃)
±µ = 0. (7.17)

The vector-spinors λ
(B;ℓ̃)
±µ (t,θN−1) are given by the analytic continuation of rank-1 STSSH’s

of type-B (B = I, II) - see Appendix G. Note that the ‘pure gauge’ expressions (7.15) for

the type-I and type-II modes coincide with the form of the infinitesimal gauge transfor-

mation [8] (with a specific gauge condition) for the gauge-invariant action for the strictly

massless spin-5/2 field in dS4. In Section 8 we show that the ‘pure gauge’ modes (7.15)

have zero (dS invariant) norm for even N ≥ 4.

Partially massless spin-5/2 field. The mass parameter for the partially massless spin-

5/2 field is given by M = iM̃ = ±i(N − 2)/2 [this is found by letting r = 2 and τ = 2 in

eq. (1.5)]. The analytically continued STSSH’s of type-I (r̃ = 0) are ‘pure gauge’ modes. As

demonstrated in Appendix G, the analytically continued rank-2 STSSH’s (7.11) of type-I

with M̃ = ±(N − 2)/2 are expressed in a ‘pure gauge’ form as follows:

Ψ
(I;(±N−2

2
);ℓ̃)

µν (t,θN−1) =

(
∇(µ∇ν) ± iγ(µ∇ν) +

3

4
gµν

)
φ
(ℓ̃)
± (t,θN−1), (7.18)

where the spinor modes φ
(ℓ̃)
± (t,θN−1) satisfy

/∇φ(ℓ̃)± = ∓i N + 2

2
φ
(ℓ̃)
± . (7.19)

In Section 8 we show that the ‘pure gauge’ modes (7.18) have zero (dS invariant) norm for

even N ≥ 4. We note that we have not constructed a gauge-invariant action for the partially
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massless spin-5/2 field in dSN with infinitesimal gauge transformation of the form (7.18).

However, we call the modes (7.18) ‘pure gauge’ modes because we expect that such an

action exists and that the expression (7.18) describes infinitesimal gauge transformations

(satisfying a specific gauge condition) for this action.

In Appendix G, we discuss the relation between our ‘pure gauge’ modes (7.18) and the

gauge transformation of the partially massless spin-5/2 field in dS4 given in Ref. [8]. More

specifically, we observe the following intriguing fact: for a specific choice for the spinor

gauge function in the gauge transformation used in Ref. [8], the gamma-traceless part of

this gauge transformation can be expressed in our ‘pure gauge’ form (7.18).

8 (Non)unitarity of the massless representations of spin(N, 1) formed by

the analytically continued rank-1 and rank-2 STSSH’s

For each value of the imaginary mass parameter M = iM̃ in eq. (1.3), the TT tensor-

spinor mode solutions (i.e. the analytically continued STSSH’s) form a representation of

spin(N, 1). If one introduces a dS invariant scalar product among the analytically continued

STSSH’s, then the unitarity of the representation is equivalent to the positive-definiteness

of the associated norm. If there is no dS invariant scalar product, then the corresponding

representation of spin(N, 1) is, by definition, not unitary.

In this Section we prove statements 1, 2 and 3 presented in the Introduction, which

give rise to the main result of our paper (which we mention here again for convenience):

the strictly massless spin-3/2 field theory and the strictly and partially massless spin-5/2

field theories on dSN (N ≥ 3) are unitary only for N = 4.

8.1 The massless spin-3/2 and spin-5/2 representations of spin(N, 1) are non-

unitary for even N > 4

In this Subsection, we show that the representations of spin(N, 1) with even N > 4 formed

by the spin-3/2 and spin-5/2 TT mode solutions of eq. (1.3) with arbitrary imaginary mass

parameter M = iM̃ (M̃ ̸= 0) are non-unitary (i.e. we prove statement 1). In order to arrive

at this result we study the transformation properties of our analytically continued STSSH’s

under a spin(N, 1) boost and then we investigate the positive-definiteness (or indefiniteness)

of the norm associated to a dS invariant scalar product for even N > 4. (In this Subsection

we work without specifying the form of the dS invariant scalar product.) We also find

that for N = 4 the requirement for dS invariance of the scalar product does not imply the

indefiniteness of the norm if and only if the mass parameter M̃ is tuned to the massless

values (1.5). Furthermore, for N = 4 and M̃ given by eq. (1.5), we show that the TT modes

are divided into two spin(4, 1) invariant subspaces, denoted as H − and H + (where each

subspace contains modes with definite helicity). The positivity of the norm in each of these

subspaces is shown in Subsection 8.2 by calculating explicitly the norms of the eigenmodes

with respect to a specific dS invariant scalar product. (In Subsection 8.2 we also verify the

results obtained in the present Subsection for even N > 4 by explicit calculation of the

norms of the eigenmodes with arbitrary imaginary mass parameter M = iM̃ ̸= 0.)
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The analytic continuation techniques introduced in Section 7 can also be applied to the

transformation properties of the STSSH’s under spin(N +1). By doing so, one obtains the

transformation properties of the analytically continued STSSH’s on dSN under spin(N, 1).

Let us make the replacement (7.1) in the Killing vector S µ [eq. (6.6)] on SN . One finds

that the analytically continued version of S µ is expressed as iXµ, where Xµ is the following

boost generator of spin(N, 1):

Xµ∂µ = cos θN−1
∂

∂t
− tanh t sin θN−1

∂

∂θN−1
. (8.1)

The de Sitter algebra spin(N, 1) is generated by the de Sitter boost (8.1) and the generators

of spin(N).

By making the replacements (7.5) in the spin(N + 1) transformation formulae (6.10),

(6.15) and (6.22) [and using eq. (7.11)], we find

LXΨ
(I;σ;M̃ℓm;ρ)
Nr

= − i c(ℓ) A
(I)Ψ

(I;σ;M̃ (ℓ+1)m;ρ)
Nr

− i

c(ℓ−1)
B

(I)Ψ
(I;σ;M̃ (ℓ−1)m;ρ)
Nr

− κ
(I)Ψ

(I;−σ;M̃ℓm;ρ)
Nr

− iK (I→II)Ψ
(II-I;σ;M̃ℓm;ρ)
Nr

, (8.2)

LXΨ
(II-I;σ;M̃ℓm;ρ)
Nr

= − i c(ℓ)A
(II)Ψ

(II-I;σ;M̃ (ℓ+1)m;ρ)
Nr

− i

c(ℓ−1)
B

(II)Ψ
(II-I;σ;M̃ (ℓ−1)m;ρ)
Nr

− κ
(II)Ψ

(II-I;−σ;M̃ℓm;ρ)
Nr

− iK (II→I)Ψ
(I;σ;M̃ℓm;ρ)
Nr

− iK (II→III)Ψ
(III-I;σ;M̃ℓm;ρ)
Nr

(8.3)

(r = 1, 2,) and

LXΨ
(III-I;σ;M̃ℓm;ρ)
µ1µ2 = − i c(ℓ)A

(III)Ψ(III-I;σ;M̃ (ℓ+1)m;ρ)
µ1µ2 − i

c(ℓ−1)
B

(III)Ψ(III-I;σ;M̃ (ℓ−1)m;ρ)
µ1µ2

− κ
(III)Ψ(III-I;−σ;M̃ℓm;ρ)

µ1µ2 − iK (III→II)Ψ(II-I;σ;M̃ℓm;ρ)
µ1µ2 , (8.4)

respectively, with

c(ℓ) =
κϕ(M̃ − N

2 , ℓ+ 1)

κϕ(M̃ − N
2 , ℓ)

=
M̃ − ℓ− N

2

ℓ+N/2
, (8.5)

where κϕ(M̃ − N/2, ℓ) is found by eq. (3.3) and LX is the Lie-Lorentz derivative (6.1) on

dSN . The coefficients A (B),B(B),κ(B) (with B = I, II, III), K (I→II),K (II→I),K (II→III)

and K (III→II) are found by making the replacement n → M̃ − N/2 in the corresponding

expressions for the coefficients of STSSH’s on SN [see eqs. (6.10), (6.15) and (6.22)]. Note

that we use the same symbols to represent the coefficients in the transformation formulae

on SN and the analytically continued coefficients on dSN .

Let ⟨Ψ(1),Ψ(2)⟩(r) be a spin(N, 1) invariant scalar product for any two analytically

continued rank-r STSSH’s Ψ
(1)
Nr
,Ψ

(2)
Nr

(r = 1, 2) with imaginary mass parameter M = iM̃

(M̃ ̸= 0). Due to the spin(N, 1) invariance of the scalar product we have

⟨LξΨ(1),Ψ(2)⟩(r) + ⟨Ψ(1),LξΨ
(2)⟩(r) = 0 (8.6)
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for any Killing vector ξ on dSN . Then, by letting Ψ
(1)
Nr

= Ψ
(B;−;M̃ℓm;ρ)
Nr

and Ψ
(2)
Nr

=

Ψ
(B;+;M̃ℓm;ρ)
Nr

(with B = I, II-I, III-I) in eq. (8.6) with ξ = X and using the transformation

formulae (8.2)-(8.4), we find that the norms of eigenmodes with opposite spin projections

must satisfy:

κ
(I) ×

(
⟨Ψ(I;−;M̃ℓm;ρ),Ψ(I;−;M̃ℓm;ρ)⟩(r) + ⟨Ψ(I;+;M̃ℓm;ρ),Ψ(I;+;M̃ℓm;ρ)⟩(r)

)
= 0, (8.7)

κ
(II) ×

(
⟨Ψ(II-I;−;M̃ℓm;ρ),Ψ(II-I;−;M̃ℓm;ρ)⟩(r)
+ ⟨Ψ(II-I;+;M̃ℓm;ρ),Ψ(II-I;+;M̃ℓm;ρ)⟩(r)

)
= 0, (8.8)

κ
(III) ×

(
⟨Ψ(III-I;−;M̃ℓm;ρ),Ψ(III-I;−;M̃ℓm;ρ)⟩(r)
+ ⟨Ψ(III-I;+;M̃ℓm;ρ),Ψ(III-I;+;M̃ℓm;ρ)⟩(r)

)
= 0. (8.9)

Note that, since the scalar product is also spin(N) invariant, analytically continued STSSH’s

of different type or/and with different values for ℓ are orthogonal to each other because

they correspond to inequivalent irreducible representations of spin(N) in the decomposition

spin(N, 1) ⊃ spin(N). For convenience, we give here the explicit form of the analytically

continued coefficients κ
(I) [eq. (6.13)], κ(II) [eq. (6.18)] and κ

(III) [eq. (6.25)]:

κ
(I) =− M̃(m+ N−2

2 )(N + 2r − 2)

2(ℓ+ N−2
2 )(ℓ+ N

2 )(N − 2)
(r = 1, 2), (8.10)

κ
(II) =− M̃(m+ N−2

2 )(N − 4)

2(ℓ+ N−2
2 )(ℓ+ N

2 )(N − 2)
×
(
N + 2

N

)r−1

(r = 1, 2), (8.11)

κ
(III) = −M̃(m+ N−2

2 )(N − 4)

2(ℓ+ N−2
2 )(ℓ+ N

2 )N
(8.12)

[eq. (8.12) is relevant only for spin-5/2 modes, i.e. only for r = 2]. We also give the

explicit form of the analytically continued coefficients K (I→II) [eq. (6.14)] and K (II→III)

[eq. (6.21)]:

K
(I→II) =−

4
(
M̃2 − (N − 2)2/4

)
(N + r − 2)

ℓ(ℓ+N − 1)(N − 2)
×
√
N − 3

N − 2

m(m+N − 2)

(ℓ+ 1)(ℓ+N − 2)
(r = 1, 2),

(8.13)

K
(II→III) =− 23

(
M̃2 −N2/4

)
(N + 1)

(ℓ− 1)(ℓ+N)N
×
√
N − 2

N

(m− 1)(m+N − 1)

ℓ(ℓ+N − 1)
, (8.14)
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where eq. (8.14) is relevant only for r = 2. The analytically continued coefficients K (II→I)

and K (III→II) are given by the same expressions as the coefficients on SN , i.e. eqs. (6.20)

and (6.26), respectively.

Let us first discuss the case with even N > 4, where κ
(I),κ(II) and κ

(III) are all non-

zero (for all M̃ ̸= 0). The representation can be unitary only if eqs. (8.7)-(8.9) are consistent

with the positive-definiteness of the norm. However, it is clear from eqs. (8.7)-(8.9) that

the norm of the modes Ψ
(B;−;M̃ℓm;ρ)
Nr

is opposite of the norm of the modes Ψ
(B;+;M̃ℓm;ρ)
Nr

(B = I, II-I, III-I) for all M̃ ̸= 0. Hence, for even N > 4, there are negative-norm modes

for all values of M̃ ̸= 0, unless all modes have zero norm. (Not all modes could have zero

norm if the field were to describe a physical particle.) Thus, we have proved statement 1.

Before discussing the case with N = 4, we can show that the ‘pure gauge’ modes

(discussed in Subsection 7.2), which appear among the TT mode solutions in the massless

theories, have zero norm with respect to any dS invariant scalar product for even N ≥ 4,

as follows [28]. For the strictly massless spin-3/2 theory (r = τ = 1), as well as for the par-

tially massless spin-5/2 theory (r = τ = 2), the mass parameter is M̃2 = (N − 2)2/4

[see eq. (1.5)], while the type-I modes are ‘pure gauge’ modes. We observe that the

coefficient K (I→II) [eq. (8.13)] vanishes for M̃2 = (N − 2)2/4 (with r = 1, 2). Then,

by letting Ψ
(1)
Nr

= Ψ
(I;σ;(±N−2

2
)ℓm;ρ)

Nr
and Ψ

(2)
Nr

= Ψ
(II-I;σ;(±N−2

2
)ℓm;ρ)

Nr
in eq. (8.6) with

ξ = X and using the transformation formulae (8.2) and (8.3), we straightforwardly find

⟨Ψ(I;σ;(±N−2
2

)ℓm;ρ),Ψ(I;σ;(±N−2
2

)ℓm;ρ)⟩(r) = 0 (with r = 1, 2), i.e. the type-I modes have

zero norm for even N ≥ 4. For the strictly massless spin-5/2 theory (r = τ + 1 = 2)

the mass parameter is M̃2 = N2/4 [see eq. (1.5)], while both type-I and type-II modes

are ‘pure gauge’ modes. For this value of M̃2 the coefficient K (II→III) [eq. (8.14)] van-

ishes. By letting Ψ
(1)
Nr

= Ψ
(II-I;σ;(±N

2
)ℓm;ρ)

µ1µ2 and Ψ
(2)
Nr

= Ψ
(III-I;σ;(±N

2
)ℓm;ρ)

µ1µ2 in eq. (8.6)

with ξ = X and using the transformation formulae (8.3) (with r = 2) and (8.4), we find

⟨Ψ(II-I;σ;(±N
2
)ℓm;ρ),Ψ(II-I;σ;(±N

2
)ℓm;ρ)⟩(r=2) = 0. Then, by letting Ψ

(1)
Nr

= Ψ
(I;σ;(±N

2
)ℓm;ρ)

µ1µ2

and Ψ
(2)
Nr

= Ψ
(II-I;σ;(±N

2
)ℓm;ρ)

µ1µ2 in eq. (8.6) with ξ = X and using the transformation formu-

lae (8.2) (with r = 2) and (8.3) (with r = 2), we find ⟨Ψ(I;σ;(±N
2
)ℓm;ρ),Ψ(I;σ;(±N

2
)ℓm;ρ)⟩(r=2) =

0. Thus, in the strictly massless spin-5/2 theory the ‘pure gauge’ modes have zero norm

for even N ≥ 4.

Let us now discuss the case with N = 4. First, we show that if N = 4, then the dS

invariance of the scalar product (8.6) (with ξ = X) for the analytically continued STSSH’s

with imaginary mass parameter M = iM̃ ̸= 0 does not require indefiniteness of the norm

if and only if M̃ is tuned to the massless values (1.5). This can be shown as follows. For

N = 4 eqs. (8.8) and (8.9) are trivial due to the vanishing of κ(II) [eq. (8.11)] and κ
(III)

[eq. (8.12)], respectively. It is clear that if eq. (8.7) is not trivial, then the indefiniteness

of the norm can not be avoided. Equation (8.7) becomes trivial if we tune M̃ to the

strictly/partially massless values (1.5) because for this value of M̃ the type-I modes are

pure gauge (i.e. zero-norm modes). Hence, for N = 4 the dS invariance of the scalar

product does not require the indefiniteness of the norm for the massless theories with spin

s ∈ { 3/2, 5/2 }. Note that, since κ
(II) and κ

(III) are zero, the (non-zero-norm) eigenmodes
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with negative spin projection do not mix with the eigenmodes with positive spin projection

under the spin(4, 1) boost in eqs. (8.3) and (8.4). We have also verified that (non-zero-norm)

eigenmodes with different spin projections on dS4 do not mix each other under spin(4).

According to our analysis in the previous paragraph, in the case of massless theories

with spin s = r + 1/2 (r ∈ { 1, 2 }) on dS4, we conclude the following:

• The set H − = {Ψ(B;−;M̃ℓ;ρ̃)
Nr

} of (non-zero-norm) TT eigenmodes with negative spin

projection forms an irreducible representation of spin(4, 1).

• The set H + = {Ψ(B;+;M̃ℓ;ρ̃)
Nr

} of (non-zero-norm) TT eigenmodes with positive spin

projection forms separately an irreducible representation of spin(4, 1).13

The two sets of eigenmodes, H + and H −, form a direct sum of irreducible representa-

tions of spin(4, 1). In Subsection 8.2 we are going to show that these irreducible repre-

sentations are unitary by demonstrating the positivity of the norm in each subspace. [As

we demonstrate in Appendix A, this is a direct sum of Discrete Series representations of

spin(4, 1).] Note that zero-norm modes (i.e. ‘pure gauge’ modes) transform only into zero-

norm modes under spin(4, 1) and they can be identified with zero, since, as we discussed

above, the coefficient (8.13) (in the transformation formula (8.2) with r ∈ { 1, 2 }) vanishes

for M̃2 = (N − 2)2/4, while the coefficient (8.14) (in the transformation formula (8.3)

with r = 2) vanishes for M̃2 = N2/4. For the strictly massless spin-3/2 theory (r = τ = 1,

M̃2 = (N−2)2/4) and the partially massless spin-5/2 theory (r = τ = 2, M̃2 = (N−2)2/4),

where the type-I modes have zero norm, the action of spin(4, 1) is defined on equivalence

classes of the TT modes contained in H σ (σ = ±) with the equivalence relation

Ψ
(B;σ;(±N−2

2
)ℓ;ρ̃)

Nr
∼ Ψ

(B;σ;(±N−2
2

)ℓ;ρ̃)
Nr

+Ψ
(I;σ′;(±N−2

2
)ℓ′;ρ̃′)

Nr

(with B = II-I for r = 1 and B = II-I, III-I for r = 2), where Ψ
(I;σ′;(±N−2

2
)ℓ′;ρ̃′)

Nr
is any

type-I mode, i.e. the labels σ′, ℓ′ and ρ̃′ are no necessarily equal to σ, ℓ and ρ̃, respectively.

For the strictly massless spin-5/2 theory (r = τ + 1 = 2, M̃2 = N2/4), where both type-

I and type-II-I modes have zero norm, the action of spin(4, 1) is defined on equivalence

classes of type-III-I modes in H σ (σ = ±) with the equivalence relation

Ψ
(III-I;σ;(±N

2
)ℓ;ρ̃)

µ1µ2 ∼ Ψ
(III-I;σ;(±N

2
)ℓ;ρ̃)

µ1µ2 +Ψ(PG)
µ1µ2 ,

where Ψ
(PG)
µ1µ2 is any (finite or infinite) linear combination of type-I and type-II modes.

For the strictly massless theories with spin s ∈ { 3/2, 5/2 } on dS4, the set H − is

identified with the set of states with ‘negative helicity’ (−s), while the set H + is identified

with the set of states with ‘positive helicity’ (+s). This can be understood as follows. As

in Ref. [29], let us introduce the helicity operator ϵ̃
θjθk

θi
∇̃θj , where ϵ̃θiθjθk is the invariant

3-form on S3 (i, j, k ∈ { 1, 2, 3 }). For the strictly massless spin-3/2 theory on dS4, where

H
σ = {Ψ(B;σ;M̃ℓ;ρ̃)

N1
} = {Ψ(II-I;σ;(±1)ℓ;ρ̃)

µ } ,
13This situation is analogous to the case of the strictly massless spin-2 field in dS4 [29], where self-dual

and anti-self-dual modes correspond to different irreducible representations of SO(4).
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it can readily be shown that eigenmodes with different spin projections belong to different

eigenspaces of the helicity operator, as

ϵ̃
θjθk

θi
∇̃θjΨ

(II-I;σ;(±1)ℓ;ρ̃)
θk

∝ /̃∇Ψ
(II-I;σ;(±1)ℓ;ρ̃)
θi

= iσ

(
ℓ+

3

2

)
Ψ

(II-I;σ;(±1)ℓ;ρ̃)
θi

. (8.15)

(This equation can be readily proved using the fact that ϵ̃θiθjθk ∝ γ̃θiθjθk , where γ̃θiθjθk
is the third-rank gamma matrix on S3 which is given by the anti-symmetrised product of

three gamma matrices γ̃θiθjθk = γ̃[θi γ̃θj γ̃θk] - see e.g. Ref. [30].) Similarly, for the strictly

massless spin-5/2 theory on dS4, where

H
σ = {Ψ(B;σ;M̃ℓ;ρ̃)

N2
} = {Ψ(III-I;σ;(±2)ℓ;ρ̃)

µν } ,

it can readily be shown that

ϵ̃
θjθk

θi
∇̃θjΨ

(III-I;σ;(±2)ℓ;ρ̃)
θkθl

∝ /̃∇Ψ
(III-I;σ;(±2)ℓ;ρ̃)
θiθl

= iσ

(
ℓ+

3

2

)
Ψ

(III-I;σ;(±2)ℓ;ρ̃)
θiθl

. (8.16)

In the case of the partially massless spin-5/2 field on dS4, where

H
σ = {Ψ(B;σ;M̃ℓ;ρ̃)

N2
} = {Ψ(II-I;σ;(±1)ℓ;ρ̃)

µν ,Ψ(III-I;σ;(±1)ℓ;ρ̃)
µν } ,

the helicity operator can not be defined in the same way. However, it is natural to identify

H − with the set of states with helicities (−5/2,−3/2) and H + with the set of states with

helicities (+5/2,+3/2).

Below we choose a specific dS invariant scalar product for the analytically continued

STSSH’s with imaginary mass parameter. By calculating the associated norms of the modes

we will verify the non-unitarity of the spin(N, 1) representations for evenN > 4 for arbitrary

imaginary mass parameter M = iM̃ (M̃ ̸= 0). Also, in the case of massless theories on

dS4, we will show that each of the spin(4, 1) invariant subspaces, H − and H +, separately

forms a unitary representation of spin(4, 1) (and, thus, we have a direct sum of UIR’s of

spin(4, 1)).

8.2 Massless spin-3/2 and spin-5/2 representations of spin(N, 1) for N even:

norms of the eigenmodes

In this Subsection, by calculating the norms of the analytically continued STSSH’s explicitly,

we show that the representations of spin(N, 1) (even N ≥ 4) formed by the spin-3/2 and

spin-5/2 TT mode solutions of eq. (1.3) with arbitrary imaginary mass parameter M = iM̃

(M̃ ̸= 0) are non-unitary, unless the following two conditions hold at the same time: i)

N = 4 and ii) M̃ is tuned to the massless values (1.5). For N = 4, we show that the TT

modes in the massless theories form a direct sum of UIR’s of spin(4, 1). In other words, in

the present Subsection we verify the results of Subsection 8.1 for even N > 4 and we prove

statement 2.

Let Ψ
(1)
µ1...µr and Ψ

(2)
µ1...µr be any two analytically continued STSSH’s [satisfying eqs. (1.3)

and (1.4)] with the same imaginary mass parameter M = iM̃ (M̃ ̸= 0) on dSN (N even).

The (axial) vector current

Jµ = iΨ
(1)
µ1...µrγ

µγN+1Ψ(2)µ1...µr (8.17)
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is covariantly conserved [28], where Ψ
(1)
µ1...µr = iΨ

(1)†
µ1...µrγ

0 and we used the fact that gamma

matrices are covariantly constant. Then, the scalar product

⟨Ψ(1),Ψ(2)⟩(r) =
∫

SN−1

√−g dθN−1 J
0 (8.18)

is time independent, where dθN−1 stands for dθ1 dθ2...dθN−1, while g is the determinant of

the de Sitter metric. This scalar product is equivalently written as

⟨Ψ(1),Ψ(2)⟩(r) =coshN−1 t

∫

SN−1

√
g̃ dθN−1Ψ

(1)†
µ1...µrγ

N+1Ψ(2)µ1...µr , (8.19)

where we used (γ0)2 = −1, as well as

√−g = coshN−1 t
√
g̃, (8.20)

while
√
g̃ is given by eq. (2.24).

Now let us show that the scalar product (8.19) is de Sitter invariant. Let ξµ be a Killing

vector of dSN satisfying

∇µξν +∇νξµ = 0. (8.21)

The infinitesimal change δξJ
µ of the current (8.17) under the spin(N, 1) transformation

generated by ξµ is described by the Lie derivative

δξJ
µ = LξJ

µ = ξν∇νJ
µ − Jν∇νξ

µ

= ∇ν(ξ
νJµ − Jνξµ), (8.22)

where we used ∇µJ
µ = ∇µξ

µ = 0. Then, it is straightforward to find

δξJ
0 =

1√−g∂θκ
[√−g(ξθκJ0 − Jθκξ0)

]
, (8.23)

where κ = 1, ..., N − 1. By integrating eq. (8.23) over SN−1 we find that the scalar prod-

uct (8.19) is de Sitter invariant, as

δξ ⟨Ψ(1),Ψ(2)⟩(r) =
∫

SN−1

dθN−1
√−g δξJ0 = 0. (8.24)

It is possible to calculate the norms of the analytically continued STSSH’s of ranks 1

and 2 [the analytically continued STSSH’s are defined by eq. (7.11)] using the de Sitter
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invariant scalar product (8.19). We find in this manner

⟨Ψ(B;σ;M̃ℓ;ρ̃),Ψ(B′;σ′;M̃ℓ′;ρ̃′)⟩(r) = (−σ)×
(

r

r̃(B)

)
2N+2r−1−4r̃(B)

× |Γ(ℓ+ N
2 )|2

Γ(ℓ+ N
2 + M̃)Γ(ℓ+ N

2 − M̃)

×




r−1∏

j=r̃(B)

N + 2j − 1

N + j + r̃(B) − 2




×




r−1∏

j=r̃(B)

1

(ℓ− j)(ℓ+N − 1 + j)




×



r−r̃(B)∏

j=1

{
−M̃2 +

(
r − j +

N − 2

2

)2
}
 δσσ′δℓℓ′δρ̃ρ̃′

(8.25)

for r ∈ { 1, 2 } and B = I, II, III (where σ = ±, M̃ ∈ R \ {0}, r̃(B) ≤ r, while r̃(I) = 0,

r̃(II) = 1 and r̃(III) = 2). The norms of type-I and type-II spin-3/2 modes, as well as

the norms of type-II and type-III spin-5/2 modes, can be determined by direct calculation

using the time-independence of the scalar product (8.19). The calculations are simplified

by using

∣∣∣ϕ̂(a)
M̃ℓ

(t = 0)
∣∣∣
2
−
∣∣∣ψ̂(a)

M̃ℓ
(t = 0)

∣∣∣
2
=

2N+2a−1 |Γ(ℓ+ N
2 )|2

Γ(ℓ+ N
2 + M̃)Γ(ℓ+ N

2 − M̃)
. (8.26)

[This equation can readily be proved using eqs. (B.7) and (B.8).] Once the norms of type-II

and type-III spin-5/2 modes have been calculated, the norm of the type-I spin-5/2 modes is

readily found using the dS invariance (8.6) of the inner product between type-I and type-II

modes (by making use of the transformation formulae (8.2) and (8.3)).

As a consistency check, by using our result for the norms (8.25) of the eigenmodes

with spin s ∈ { 3/2, 5/2 }, we can reproduce the strictly/partially massless tunings (1.5)

for the imaginary mass parameter as follows. For r = 1 (spin-3/2 field), we find that the

norm (8.25) of type-I modes (r̃(I) = 0) becomes zero if M̃2 = (N − 2)2/4, corresponding

to the strictly massless spin-3/2 theory. For r = 2 (spin-5/2 field), we find that both

type-I (r̃(I) = 0) and type-II (r̃(II) = 1) modes have zero norm (8.25) for M̃2 = N2/4,

corresponding to the strictly massless spin-5/2 theory. Finally, for r = 2, we find that

type-I (r̃(I) = 0) modes have zero norm (8.25) for M̃2 = (N − 2)2/4, corresponding to the

partially massless spin-5/2 theory.

We observe that the sign of the norm (8.25) depends on the sign of the spin projection

index σ = ±, as expected from the dS invariance of the scalar product (8.7)-(8.9). Thus,

it is easy to understand that representations of spin(N, 1) with spin s ∈ { 3/2, 5/2 } and

arbitrary imaginary mass parameter M = iM̃ ̸= 0 are non-unitary for even N > 4, since

positive-norm and negative-norm modes mix with each other under spin(N, 1) [see the trans-
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formation formulae (8.3) and (8.4)]. Similarly, we find that for N = 4 the representations

of spin(4, 1) are not unitary if M̃ is not given by the massless values in eq. (1.5).

Now, let us suppose that the following two conditions are satisfied at the same time:

i) N = 4 and ii) the imaginary mass parameter is tuned to the massless values (1.5).

According to our discussion for the N = 4 case in Subsection 8.1, each of the solution

subspaces, H − and H +, forms separately an irreducible representation of spin(4, 1) with

spin s = r + 1/2 (r ∈ { 1, 2 }). (The ‘pure gauge’ modes are identified with zero in each

subspace.) We can show that the subspaces H − and H + form a direct sum of UIR’s of

spin(4, 1) as follows. By observing that the norms (8.25) of the eigenmodes depend on the

spin projection, we have:

• For the set of eigenmodes with negative spin projection (or negative helicity) H − =

{Ψ(B;−;M̃ℓ;ρ̃)
Nr

}, the positive-definite inner product is

⟨Ψ(B;−;M̃ℓ;ρ̃),Ψ(B′;−;M̃ℓ′;ρ̃′)⟩(r)

= cosh3 t

∫

S3

√
g̃ dθ3Ψ

(B;−;M̃ℓ;ρ̃)†
µ1...µr γ5Ψ(B′;−;M̃ℓ′;ρ̃′)µ1...µr

The explicit expression for the positive-definite norm is given by eq. (8.25).

• For the set of eigenmodes with positive spin projection (or positive helicity) H + =

{Ψ(B;+;M̃ℓ;ρ̃)
Nr

}, the positive-definite inner product is

−⟨Ψ(B;+;M̃ℓ;ρ̃),Ψ(B′;+;M̃ℓ′;ρ̃′)⟩(r) .
The explicit expression for the positive-definite norm is given by the negative of

eq. (8.25).

8.3 The massless spin-3/2 and spin-5/2 representations of spin(N, 1) are non-

unitary for N odd

In this Subsection, we show that the massless field theories with spin s ∈ { 3/2, 5/2 } on

dSN (N odd) are not unitary (i.e. we prove statement 3).

As in the case with N even, we study the transformation properties of the analytically

continued STSSH’s under the de Sitter boost (8.1). By making the replacements (7.5) in

the spin(N +1) transformation formulae (6.29), (6.30) and (6.31) [and using eq. (7.12)], we

find

LXΨ
(I;M̃ℓ;σN−1;m;ρ)
Nr

= − i c(ℓ) A
(I)Ψ

(I;M̃ (ℓ+1);σN−1;m;ρ)
Nr

− i

c(ℓ−1)
B

(I)Ψ
(I;M̃ (ℓ−1);σN−1;m;ρ)
Nr

− σN−1 κ
(I)Ψ

(I;M̃ℓ;σN−1;m;ρ)
Nr

− iK (I→II)Ψ
(II-I;M̃ℓ;σN−1;m;ρ)
Nr

, (8.27)

LXΨ
(II-I;M̃ℓ;σN−1;m;ρ)
Nr

= − i c(ℓ)A
(II)Ψ

(II-I;M̃ (ℓ+1);σN−1;m;ρ)
Nr

− i

c(ℓ−1)
B

(II)Ψ
(II-I;M̃ (ℓ−1);σN−1;m;ρ)
Nr

− σN−1 κ
(II)Ψ

(II-I;M̃ℓ;σN−1;m;ρ)
Nr

− iK (II→I)Ψ
(I;M̃ℓ;σN−1;m;ρ)
Nr

− iK (II→III)Ψ
(III-I;M̃ℓ;σN−1;m;ρ)
Nr

(8.28)
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(r = 1, 2,) and

LXΨ
(III-I;M̃ℓ;σN−1;m;ρ)
µ1µ2

= − i c(ℓ)A
(III)Ψ

(III-I;M̃ (ℓ+1);σN−1;m;ρ)
µ1µ2 − i

c(ℓ−1)
B

(III)Ψ
(III-I;M̃ (ℓ−1);σN−1;m;ρ)
µ1µ2

− σN−1 κ
(III)Ψ

(III-I;M̃ℓ;σN−1;m;ρ)
µ1µ2 − iK (III→II)Ψ

(II-I;M̃ℓ;σN−1;m;ρ)
µ1µ2 , (8.29)

respectively, where all the coefficients on the right-hand sides of eqs. (8.27)-(8.29) are the

same as the coefficients used in the case with N even [see eqs. (8.2)-(8.4)].

Now, we will show that the representations of spin(N, 1) (N odd) formed by the spin-3/2

and spin-5/2 TT mode solutions of eq. (1.3) are non-unitary for all values of the imaginary

mass parameter M = iM̃ (M̃ ̸= 0). Let ⟨Ψ(1),Ψ(2)⟩ be a dS invariant scalar product for any

two analytically continued STSSH’s Ψ(1),Ψ(2) [satisfying eqs. (1.3) and (1.4)] with M = iM̃

and M̃ ̸= 0. We will show that this scalar product must vanish for all eigenmodes. First, let

us make the following observation. The infinitesimal transformations LXΨ
(B;M̃ℓ;σN−1;m;ρ)
Nr

given by eqs. (8.27)-(8.29), always give rise to a term of the form κ
(B)Ψ

(B;M̃ℓ;σN−1;m;ρ)
Nr

in

the linear combination on the right-hand sides of each of eqs. (8.27)-(8.29). The coefficients

κ
(I),κ(II) and κ

(III) are given by eqs. (8.10), (8.11) and (8.12), respectively, and they are

all non-zero for N odd. Thus, by combining the dS invariance of the scalar product:

⟨LXΨ(B;M̃ℓ;σN−1;m;ρ),Ψ(B;M̃ℓ;σN−1;m;ρ)⟩+ ⟨Ψ(B;M̃ℓ;σN−1;m;ρ),LXΨ
(B;M̃ℓ;σN−1;m;ρ)⟩ = 0

(8.30)

with the transformation formulae (8.27)-(8.29), we find

⟨Ψ(B;M̃ℓ;σN−1;m;ρ),Ψ(B;M̃ℓ;σN−1;m;ρ)⟩ = 0 (8.31)

for B = I, II-I, III-I and for all M̃ ̸= 0. Then, since the eigenmodes with different labels

are orthogonal, we conclude that there is no dS invariant scalar product (which is not

identically zero).

9 Summary and discussions

In this paper, we showed that the strictly massless spin-3/2 field (i.e. gravitino field) theory,

as well as the strictly and partially massless spin-5/2 field theories on dSN (N ≥ 3) are

unitary only in N = 4 dimensions. In order to arrive at this result, we studied the group-

theoretic properties of the eigenmodes for the following field theories with imaginary mass

parameter on dSN (N ≥ 3): the vector-spinor field and the symmetric rank-2 tensor-spinor

field. The corresponding eigenmodes satisfy eq. (1.3) with M = iM̃ (M̃ ̸= 0) and the

TT conditions (1.4). These eigenmodes were obtained by analytically continuing STSSH’s

on SN . The transformation properties of these eigenmodes under a spin(N, 1) boost were

studied. By using these transformation properties, we showed that all dS invariant scalar

products for even N > 4 are indefinite. We also showed that all dS invariant scalar products

must vanish identically for odd N . It was found that dS invariant scalar products that are
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positive-definite are allowed only for strictly and partially massless theories in N = 4

dimensions (and, thus, these theories are unitary). Also, for these unitary spin-s (s ∈
{ 3/2, 5/2 }) theories in dS4, we showed that eigenmodes with positive helicity and the ones

with negative helicity separately form UIR’s of spin(4, 1). All the results mentioned in this

paragraph are summarised as statements 1, 2 and 3 in the Introduction.

In Appendix A, we verify our main result by using the known classification of the UIR’s

of spin(N, 1). Also, our analysis in Appendix A suggests that the (strictly and partially)

massless totally symmetric tensor-spinor fields with arbitrary half-odd-integer spin s ≥ 7/2

on dSN (N ≥ 3) are unitary only for N = 4. It would be interesting to verify this by

studying the group-theoretic properties of the corresponding eigenmodes, as we did in the

present paper for the spin-3/2 and spin-5/2 fields.

It would also be interesting to investigate whether our result about the non-unitarity

of the gauge-invariant spin-3/2 and spin-5/2 theories on dSN for N ̸= 4 could be extended

to other N -dimensional vacuum spacetimes with positive cosmological constant. As an ar-

gument pointing towards the possible generalisation of our result, we would like to mention

the forbidden mass range for the symmetric spin-2 field on dSN [13, 31]. The forbidden mass

range for the symmetric spin-2 field on dSN was explained group-theoretically in Ref. [13]

and it was first observed for dS4 in Ref. [31]. However, it was later shown that the forbid-

den mass range exists in all 4-dimensional vacuum spacetimes with positive cosmological

constant [32].
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A Interpretation of the main result in terms of the classification of the

Unitary Irreducible Representations of spin(N, 1)

In this Appendix, we verify the main result of this paper by using the classification of the

Unitary Irreducible Representations (UIR’s) of spin(N, 1) (N ≥ 3) given by Ottoson [19]

and Schwarz [20] (see also Refs. [33–35]). More specifically, we will demonstrate that there

are no UIR’s of spin(N, 1) that correspond to the strictly massless spin-3/2 field and to the

strictly and partially massless spin-5/2 fields on dSN for N ̸= 4. Then, for N = 4, we will

identify the UIR’s of spin(4, 1) that correspond to the unitary strictly massless spin-3/2

field and to the unitary strictly and partially massless spin-5/2 fields on dS4 (these UIR’s

have also been identified in Ref. [36]). For the sake of completeness, we also identify the

UIR’s of spin(N, 1) (N ≥ 3) that correspond to spin-3/2 and spin-5/2 fields with real mass
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parameter M on dSN . The identification of the UIR’s of spin(N, 1) that correspond to

massive and massless totally symmetric tensors of arbitrary rank on dSN has been given

in Ref. [15]. More recently, a field theoretic interpretation of the UIR’s of spin(N, 1) for

totally symmetric and mixed-symmetry tensor (and tensor-spinor) fields on dSN was given

in Ref. [16]. However, as mentioned in the Introduction, we disagree with the claims made

in Ref. [16] about the unitarity of the gauge-invariant symmetric tensor-spinor fields for

N ̸= 4.

Below, we begin by reviewing the classification of the UIR’s by Ottoson [19] and

Schwarz [20]. Then, we will use this classification to verify the main result of the present

paper: ‘the strictly massless spin-3/2 field theory and the strictly and partially massless

spin-5/2 field theories on dSN are unitary only in N = 4 dimensions’.

Ottoson [19] and Schwarz [20] have obtained the UIR’s of spin(N, 1) in the decompo-

sition spin(N, 1) ⊃ spin(N).14 Under this decomposition, an irreducible representation of

spin(N) appears at most once in a UIR of spin(N, 1) [37]. The case with N = 2p and the

case with N = 2p+ 1, where p is a positive integer, are studied separately.

It is well known that a representation of spin(2p) or spin(2p + 1) is labelled by the

highest weight of the representation [25, 26], denoted here as [f ] = (f1, f2, ..., fp), where

f1 ≥ f2 ≥ ... ≥ fp−1 ≥ |fp| for spin(2p) (A.1)

f1 ≥ f2 ≥ ... ≥ fp−1 ≥ fp ≥ 0 for spin(2p+ 1). (A.2)

The label fp can be negative for spin(2p). The labels fj (j = 1, ..., p) in eqs. (A.1) and

(A.2) are all integers or all half-odd integers.

A.1 Classification of the UIR’s of spin(N, 1)

We adopt the notation for the labels of the UIR’s that was used by Higuchi in Ref. [15].

UIR’s of spin(2p,1). A UIR of spin(2p, 1) (p = N/2 ≥ 2) is labelled by the set of numbers

[F ] = (F0, F1, ..., Fp−1). The labels F1, ..., Fp−1 satisfy

F1 ≥ F2 ≥ ... ≥ Fp−1 ≥ 0 (A.3)

and they are all integers or all half-odd integers at the same time. A representation

(f1, ..., fp) of spin(2p) that is contained in the UIR (F0, F1, ..., Fp−1) satisfies

f1 ≥ F1 ≥ f2 ≥ F2 ≥ ... ≥ fp−1 ≥ Fp−1 ≥ |fp|. (A.4)

14As an alternative to the decomposition SO(N, 1) ⊃ SO(N) (or Spin(N, 1) ⊃ Spin(N)), the UIR’s

of the group SO(N, 1) can be obtained by making use of the theory of induced representations for the

parabolic subgroup of SO(N, 1), as in Refs. [16, 26]. This approach is suitable for applications to Conformal

Quantum Field theory in R
N−1, where the conformal group is SO(N, 1) [26]. Also, this approach is related

to realisations of the dS/CFT correspondence between field representations on dSN (like the ones studied

in the present paper) and conformal fields in R
N−1 [14]. In this classification, each UIR of SO(N, 1) is

labelled by the highest weight of SO(N −1) (encoding the spin of the field in dSN , as well as the spin of the

corresponding conformal field in R
N−1) and a “conformal weight” ∆c ∈ C which is the weight for SO(1, 1)

(see Ref. [16] for more details). The conformal weight can be expressed in terms of the mass parameter of

the field in dSN [14, 16].
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Ottoson’s labels [19] and our labels are related to each other by [15]:

fj = l2p−1,j + j − p (j = 1, ..., p), (A.5a)

Fj = l2p,j + j − p (j = 1, ..., p− 1), (A.5b)

F0 = l2p,p − p. (A.5c)

Schwarz’s labels [20] and our labels are related to each other by:

fj = m2p,p−j+1 (j = 1, ..., p), (A.6a)

Fj = m2p+1,p−j (j = 1, ..., p− 1), (A.6b)

F0 = z2p+1,p. (A.6c)

The UIR’s of spin(2p, 1) (p = N/2) are classified as follows:

• Principal Series Dprin([F ]) (where [F ] = (F0, F1, ..., Fp−1)) :

F0 = −p+ 1

2
+ iy = −N − 1

2
+ iy (y > 0).

The labels F1, F2, ..., Fp−1 are all integers or half-odd integers.

• Complementary Series Dcomp([F ]) :

−N − 1

2
= −p+ 1

2
≤ F0 < −ñ (ñ is an integer and 0 ≤ ñ ≤ p− 1).

If 0 ≤ ñ < p−1, then Fñ+1 = Fñ+2 = ... = Fp−1 = 0 and F1, F2, ..., Fñ are all positive

integers, while for the spin(2p) content we have fñ+2 = fñ+3 = ... = fp = 0. If

ñ = p−1, then F1, F2, ..., Fp−1 are all positive integers. Our Complementary Series are

called Exceptional Series D(e; l2p,1, ..., l2p,p) in Ottoson’s classification [15, 19]. (Our

notation is related to Schwarz’s notation [20] as follows. The case with 0 ≤ ñ < p− 1

corresponds to Dk(m2p+1,k+1 ... m2p+1,p−1;x2p+1,p), where k is related to ñ by k = p−
ñ−1, while the case with ñ = p−1 corresponds to D0(m2p+1,1 ... m2p+1,p−1;x2p+1,p).)

• Exceptional Series Dex([F ]) :

F0 = −ñ (ñ is an integer and 1 ≤ ñ ≤ p− 1).

If 1 ≤ ñ < p − 1, then Fñ+1 = Fñ+2 = ... = Fp−1 = 0 and F1, F2, ..., Fñ are

all positive integers, while for the spin(2p) content we have fñ+1 = fñ+2 = ... =

fp = 0. If ñ = p − 1, then F1, F2, ..., Fp−1 are all positive integers, while fp = 0.

Our Exceptional Series is called Supplementary Series D(s; l2p,1, ..., l2p,p) in Ottoson’s

classification [15, 19]. (Our notation is related to Schwarz’s notation [20] as follows.

The case with 1 ≤ ñ < p − 1 corresponds to Dk(m2p+1,k+1 ... m2p+1,p−1;m2p+1,p),

where k is related to ñ by k = p− ñ− 1, while the case with ñ = p− 1 corresponds

to D0(m2p+1,1 ... m2p+1,p−1;m2p+1,p).)

– 45 –



• Discrete Series D±([F ]) : F0 is real and it is an integer or half-odd integer at the

same time as the labels F1, F2, ..., Fp−1. Also, the following conditions have to be

satisfied:

Fp−1 ≥ fp ≥ F0 + p ≥ 1

2
for D+([F ]), (A.7)

−Fp−1 ≤ fp ≤ −(F0 + p) ≤ −1

2
for D−([F ]). (A.8)

Our Discrete Series D±([F ]) are called Exceptional Series D(±; l2p,1, ..., l2p,p) in Ot-

toson’s classification [15, 19]. Also, our Discrete Series D±([F ]) correspond to

D±(m2p+1,1 ...m2p+1,p−1;m2p+1,p)

in Schwarz’s classification [20].

For a UIR of spin(2p, 1) labelled by [F ] = (F0, F1, ..., Fp−1) - or by (l2p,1, l2p,2, ..., l2p,p) in

Ottoson’s notation [19] - the quadratic Casimir C2([F ]) is expressed as

C2([F ]) =

p−1∑

k=0

Fk (Fk + 2p− 2k − 1) =

p∑

j=1

l2p,j(l2p,j − 1)− p(p− 1)(p+ 1)

3
. (A.9)

UIR’s of spin(2p+ 1,1). A UIR of spin(2p+ 1, 1) (p = (N − 1)/2) is labelled by [F ] =

(F0, F1, ..., Fp). The labels F1, ..., Fp satisfy

F1 ≥ F2 ≥ ... ≥ Fp ≥ 0 (A.10)

and they are all integers or all half-odd integers. A representation (f1, ..., fp) of spin(2p+1)

that is contained in the UIR (F0, F1, ..., Fp) satisfies

f1 ≥ F1 ≥ f2 ≥ F2 ≥ ... ≥ fp ≥ Fp ≥ 0. (A.11)

Ottoson’s labels [19] and our labels are related to each other by [15]:

fj = l2p,j + j − p− 1 (j = 1, ..., p), (A.12a)

Fj = l2p+1,j + j − p (j = 1, ..., p), (A.12b)

F0 = l2p+1,p+1 − p, (A.12c)

while Schwarz’s labels [20] and our labels are related to each other by:

fj = m2p+1,p−j+1 (j = 1, ..., p), (A.13a)

Fj = m2p+2,p−j+1 (j = 1, ..., p), (A.13b)

F0 = z2p+2,p+1. (A.13c)

The UIR’s of spin(2p+ 1, 1) (where p = (N − 1)/2 ≥ 1) are classified as follows:
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• Principal Series Dprin([F ]) (where [F ] = (F0, F1, ..., Fp)) :

F0 = −p+ iy = −N − 1

2
+ iy (y ∈ R).

The labels F1, F2, ..., Fp are all integers or all half-odd integers. If Fp = 0, then the

UIR with F0 = −(N−1)/2+iy and the UIR with F0 = −(N−1)/2−iy are equivalent

(and thus we can let y ≥ 0).

• Complementary Series Dcomp([F ]) :

−N − 1

2
= −p < F0 < −ñ (ñ is an integer and 0 ≤ ñ ≤ p− 1),

while Fñ+1 = Fñ+2 = ... = Fp = 0 and F1, F2, ..., Fñ are all positive integers, where

for the spin(2p + 1) content we have fñ+2 = fñ+3 = ... = fp = 0. (Our Com-

plementary Series corresponds to Dk(m2p+2,k+1 ... m2p+2,p;x2p+2,p+1) in Schwarz’s

classification [20], where k is related to ñ by k = p− ñ.)

• Exceptional Series Dex([F ]) :

F0 = −ñ (ñ is an integer and 1 ≤ ñ ≤ p− 1),

where Fñ+1 = Fñ+2 = ... = Fp = 0 and F1, F2, ..., Fñ are all positive integers, where for

the spin(2p+1) content we have fñ+1 = fñ+2 = ... = fp = 0. (Our Exceptional Series

corresponds to Dk(m2p+2,k+1 ... m2p+2,p;m2p+2,p+1) in Schwarz’s classification [20],

where k is related to ñ by k = p− ñ.)

For a UIR of spin(2p + 1, 1) labelled by [F ] = (F0, F1, ..., Fp) - or by (l2p+1,1, ..., l2p+1,p+1)

in Ottoson’s notation [19] - the quadratic Casimir C2([F ]) is expressed as

C2([F ]) =

p∑

k=0

Fk (Fk + 2p− 2k) =

p+1∑

j=1

l22p+1,j −
p(p+ 1)(p+ 1

2)

3
. (A.14)

A.2 The quadratic Casimir for analytically continued STSSH’s and some useful

information for massless theories with spin s ∈ { 3/2, 5/2 }
The quadratic Casimir for the spin(N, 1) representation formed by the analytically contin-

ued STSSH’s with imaginary mass parameter on dSN can be determined as follows.

N even. The STSSH’s of (arbitrary) rank r on SN satisfy eqs. (7.3) and (7.4). The

STSSH’s form a unitary representation of spin(N + 1) labelled by the highest weight

λ =
(
λ1, ..., λN/2

)

=

(
n+

1

2
, r +

1

2
,
1

2
, ...,

1

2

)
(n = r, r + 1, ...).

The quadratic Casimir C2(λ) for any spin(N +1) (N even) representation λ is given by [26]

C2(λ) =

N/2∑

j=1

λj (λj +N − 2j + 1). (A.15)
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By specialising to the spin(N + 1) representation λ =
(
n+ 1

2 , r +
1
2 ,

1
2 , ...,

1
2

)
formed by

STSSH’s of rank r on SN , we find the quadratic Casimir from eq. (A.15) as

C2(λ) =

(
n+

N

2

)2

− r − N(N − 1)

4
+

(N − 2)(N − 3)

8
+ s(s+N − 2) (A.16)

= −∇µ∇µ +
(N − 2)(N − 3)

8
+ s(s+N − 2) (where s = r + 1/2),

where in the second line we used that ∇µ∇µ acts on STSSH’s of rank r on SN as

∇µ∇µ = /∇2
+
N(N − 1)

4
+ r.

Using the analytic continuation techniques discussed in Section 7, we can find the quadratic

Casimir for the representation of spin(N, 1) formed by the analytically continued STSSH’s

with imaginary mass parameter M = iM̃ on dSN . More specifically, by replacing n by

M̃ −N/2 in eq. (A.16) we immediately find

C2;dSN
= M̃2 − r − N(N − 1)

4
+

(N − 2)(N − 3)

8
+ s(s+N − 2) (A.17)

(s = r + 1/2). If the analytically continued STSSH’s form a UIR of spin(N, 1) labelled by

[F ] = (F0, F1, ..., Fp−1) (p = N/2), then the analytically continued Casimir (A.17) coincides

with the spin(N, 1) Casimir C2([F ]) in eq. (A.9).

N odd. By working as in the case with N even, we find that the quadratic Casimir for the

representation of spin(N, 1) (N odd) formed by the analytically continued STSSH’s with

imaginary mass parameter on dSN is given again by eq. (A.17).

For later convenience, recall that the TT eigenmodes for the strictly massless spin-3/2

theory are given by the analytically continued STSSH’s of rank r = 1 (see Section 7) with

imaginary mass parameter given by eq. (1.5) with r = τ = 1. Similarly, the TT eigenmodes

for the strictly (partially) massless spin-5/2 theory are given by the analytically continued

STSSH’s of rank r = 2 with imaginary mass parameter given by eq. (1.5) with r = τ+1 = 2

(r = τ = 2). All TT eigenmodes with spin s = r+1/2 (r ∈ { 1, 2 }) on dSN are constructed

in terms of STSSH’s of rank r̃ (0 ≤ r̃ ≤ r) on SN−1 (see Sections 4, 5 and 7). The

(strictly and partially) massless representations of spin(N, 1) are formed by the non-zero-

norm TT eigenmodes. The latter consist only of the TT eigenmodes on dSN for which the

corresponding STSSH’s of rank r̃ on SN−1 satisfy r−τ+1 ≤ r̃ ≤ r (see Subsection 7.2). In

other words, the strictly massless spin-3/2 representation (r = τ = 1) is formed by type-II

modes (r̃ = 1). The strictly massless spin-5/2 representation (r = τ + 1 = 2) is formed

by type-III modes (r̃ = 2). The partially massless spin-5/2 representation (r = τ = 2) is

formed by type-II (r̃ = 1) and type-III (r̃ = 2) modes.

A.3 Verifying the non-unitarity of the massless theories with spin s ∈ { 3/2, 5/2 }
for odd N = 2p+ 1

We will show that there are no UIR’s of spin(2p+1, 1) that correspond to the massless fields

with spin s ∈ { 3/2, 5/2 } on dS2p+1 (p ≥ 1). This will confirm that the representations of

spin(2p+ 1, 1) corresponding to these fields are non-unitary.
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Let us first discuss the cases with N ≥ 5 (p ≥ 2). Recall that the spin(2p+ 1) content

of the massless spin(2p+1, 1) representation with spin s = r+1/2 (r ∈ { 1, 2 }) corresponds

to the STSSH’s of rank r̃ (with r ≥ r̃ ≥ r − τ+ 1) on SN−1 = S2p. Thus, the spin(2p+ 1)

content is

[f ] = (f1, f2, , ..., fp) =

(
ℓ+

1

2
, r̃ +

1

2
,
1

2
, ...,

1

2

)
, for p ≥ 3 (ℓ ≥ r ≥ r̃ ≥ r − τ+ 1)

(A.18)

[f ] = (f1, f2) =

(
ℓ+

1

2
, r̃ +

1

2

)
, for p = 2 (ℓ ≥ r ≥ r̃ ≥ r − τ+ 1). (A.19)

As for the spin(2p+1, 1) labels, F1, F2, ..., Fp, they must all be half-odd-integers. It is clear

that these values for F1, ..., Fp correspond neither to the UIR’s of the Exceptional Series

Dex([F ]), nor to the UIR’s of the Complementary Series Dcomp([F ]), since these allow only

integer values for F1, ..., Fp. Finally, we can verify that the Principal Series Dprin([F ]),

where F0 = −p+ iy (y ∈ R), cannot describe the massless fields with spin s ∈ { 3/2, 5/2 },
since the allowed values for the representation labels F1, F2, ..., Fp (with F0 = −p + iy)

do not give the correct value for the quadratic Casimir. This is readily understood by

comparing the two expressions for the quadratic Casimir, i.e. comparing eq. (A.17) (with

M̃2 = (r − τ+ N−2
2 )2) and eq. (A.14).

Now, let us examine the case with p = 1. Let us make the following observation for

the strictly massless vector-spinor field on dS3. This field has only type-I eigenmodes, i.e.

all TT eigenmodes of this field are expressed in the ‘pure gauge’ form (7.13). This means

that the spin(3, 1) representation corresponding to the strictly massless vector-spinor field

on dS3 and the representation corresponding to the spinors Λ
(ℓ̃)
± in eq. (7.13) are equivalent.

The spinors Λ
(ℓ̃)
± have an imaginary mass parameter and thus they form a non-unitary

representation of spin(3, 1). (By using the results of Section VB in Ref. [22], one can

straightforwardly show that there is no de Sitter invariant scalar product for spinors with

imaginary mass parameter on odd-dimensional dSN . The argument is similar to that for

the vector-spinors and rank-2 tensor-spinors presented in Subsection 8.3.) Thus, we have

verified the non-unitarity of the strictly massless vector-spinor field on dS3. Similarly,

we can verify the non-unitarity of the strictly and partially massless rank-2 symmetric

tensor-spinor fields on dS3. As in the case of the strictly massless vector-spinor field, only

type-I symmetric tensor-spinor eigenmodes exist on dS3. Hence, the non-unitary spin(3, 1)

representation corresponding to the strictly (partially) massless symmetric tensor-spinor

field on dS3 is equivalent to a non-unitary representation corresponding to a vector-spinor

(spinor) field with imaginary mass parameter on dS3 [see eq. (7.15) for the strictly massless

case and eq. (7.18) for the partially massless case].

A.4 Verifying that the massless theories with spin s ∈ { 3/2, 5/2 } for even N =

2p are unitary only for p = 2

We will show that there are no UIR’s of spin(2p, 1) that correspond either to the strictly

massless spin-3/2 field or to the strictly and partially massless spin-5/2 fields on dS2p
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for p ≥ 3. Then, for p = 2, we will identify the UIR’s of spin(4, 1) that correspond

to the unitary strictly massless spin-3/2 field on dS4 and those that correspond to the

unitary strictly and partially massless spin-5/2 fields on dS4. Recall that a representation

of spin(2p, 1) is labelled by [F ] = (F0, F1, ..., Fp−1), while the spin(2p) content is labelled

by [f ] = (f1, ..., fp).

Even N ≥ 6 (p ≥ 3). The STSSH’s of rank r̃ on S2p−1 - determining the spin(2p) content

for the massless theory with spin s = r + 1/2 (r ∈ { 1, 2 }) on dS2p - are labelled by:

[f ] = (f1, f2, , ..., fp) =

(
ℓ+

1

2
, r̃ +

1

2
,
1

2
, ...,

1

2
,±1

2

)
, for p ≥ 3 (ℓ ≥ r ≥ r̃ ≥ r − τ+ 1).

(A.20)

Also, the spin(2p, 1) labels F1, ..., Fp−1 must be all half-odd-integers. The only Series of

UIR’s that allow these values for F1, ..., Fp−1 are the Principal Series Dprin([F ]) - where

F0 = −p+1/2+ iy (y > 0) - and the Discrete Series D±([F ]), where the unitarity condition

for the Discrete Series means that F0 has to be given by F0 = −p + 1/2 = −(N − 1)/2.

It can be readily shown that for F0 = −p + 1/2 + iy and for F0 = −p + 1/2 there are no

allowed values for F1, F2, ..., Fp−1 that give the correct value for the quadratic Casimir. In

other words, there are no UIR’s of spin(2p, 1) (p ≥ 3) that correspond to the massless fields

with spin s ∈ { 3/2, 5/2 } on dS2p (because these field theories are non-unitary).

N = 4 (p = 2). The STSSH’s of rank r̃ on S3 - determining the spin(4) content for the

massless theory with spin s = r + 1/2 (r ∈ { 1, 2 }) on dS4 - are labelled by:

[f ] = (f1, f2) =

(
ℓ+

1

2
, ±(r̃ +

1

2
)

)
, (ℓ ≥ r ≥ r̃ ≥ r − τ+ 1). (A.21)

As discussed in Section 8, the (non-zero-norm) eigenmodes with negative spin projection

and the ones with positive spin projection on dS4 form a direct sum of UIR’s of spin(4, 1).

(Recall that the massless tunings for the imaginary mass parameter M = iM̃ are |M̃ | =
r−τ+(N−2)/2 = r−τ+1 - see eq. (1.5).) By studying the rules (A.8) for the Discrete Series,

we straightforwardly find that the eigenmodes with negative spin projection correspond to

the following labelling:

[F ] = (F0, F1) =

(
|M̃ | − 3

2
, r +

1

2

)
=

(
r − τ− 1

2
, r +

1

2

)

[f ] = (f1, f2) =

(
ℓ+

1

2
, −(r̃ +

1

2
)

)
, (ℓ ≥ r ≥ r̃ ≥ r − τ+ 1). (A.22)

The corresponding UIR of spin(4, 1) is the Discrete SeriesD−(r−τ−1/2, r+1/2). Similarly,

we find that the eigenmodes with positive spin projection correspond to:

[F ] = (F0, F1) =

(
r − τ− 1

2
, r +

1

2

)

[f ] = (f1, f2) =

(
ℓ+

1

2
, r̃ +

1

2

)
, (ℓ ≥ r ≥ r̃ ≥ r − τ+ 1). (A.23)

The corresponding UIR of spin(4, 1) is the Discrete Series D+(r− τ− 1/2, r+1/2). Thus,

for the massless fields with spin s = r + 1/2 (r ∈ { 1, 2 }) on dS4, the eigenmodes with
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negative spin projection and the ones with positive spin projection together form the direct

sum of UIR’s:

D−

(
r − τ− 1

2
, r +

1

2

)
⊕D+

(
r − τ− 1

2
, r +

1

2

)
.

(Note that the eigenmodes with M = +i|M̃ | = i(r − τ + 1) and the ones with M =

−i(r− τ+ 1) form equivalent representations, because if we act with γ5 [eq. (2.13)] on one

set of eigenmodes, we obtain the other set of eigenmodes and vice versa.)

A.5 Unitary representations of spin(N, 1) for fields with spin s ∈ { 3/2, 5/2 } and

real mass parameter

All representations corresponding to fields of spin s ∈ { 3/2, 5/2 } with real mass parameter

on dSN are unitary. The TT eigenmodes with real mass parameter satisfy eq. (1.3) with

M ∈ R on dSN . For two such eigenmodes, Ψ
(1)
µ1...µr and Ψ

(2)
µ1...µr , a dS invariant positive-

definite inner product is

⟨Ψ(1)|Ψ(2)⟩ =coshN−1 t

∫

SN−1

√
g̃ dθN−1Ψ

(1)†
µ1...µrΨ

(2)µ1...µr . (A.24)

For real mass parameter, all types of TT eigenmodes have positive norms.

The TT eigenmodes with real mass parameter on dSN are given by the analytic con-

tinuation of STSSH’s on SN . In order to obtain these eigenmodes on dSN we just apply

the analytic continuation techniques of Section 7, where instead of the replacements (7.5),

we have to make the following replacements:

θN → x(t) ≡ π

2
− it, n→ −iM − N

2
(t ∈ R, M ∈ R). (A.25)

For N even, we can find the formulae for the spin(N, 1) transformation of the eigenmodes

by replacing M̃ by −iM in eqs. (8.2), (8.3) and (8.4). For N even and M = 0, the

two spin projections do not mix with each other under spin(N, 1) - see eqs. (8.10)-(8.12).

Furthermore, for N even and M = 0, the eigenmodes with negative spin projection are

eigenfunctions of γN+1 [eq. (2.13)] with eigenvalue +1, while the eigenmodes with positive

spin projection are eigenfunctions of γN+1 with eigenvalue −1. This is easily understood

as follows. By analytically continuing the functions defined by eqs. (3.2), (4.10), (4.12),

(5.16), (5.18) and (5.20) [by making the replacements (A.25)], it is easy to check that the

analytically continued versions of all these functions vanish for M = 0. This leads to the

vanishing of the lower (upper) component of the eigenmodes with negative (positive) spin

projection and thus these eigenmodes become eigenfunctions of γN+1. For N odd, we find

the formulae for the spin(N, 1) transformation of the eigenmodes by replacing M̃ by −iM
in eqs. (8.27)-(8.29).

Let us now identify the unitary representations of spin(N, 1) formed by the analytically

continued STSSH’s of rank r ∈ { 1, 2 } with real mass parameter M on dSN .

Odd N = 2p+ 1. We have:
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• For p = 1, the representation formed by the TT eigenmodes on dS3 is labelled by:

[F ] = (F0, F1) =

(
−p− iM, r +

1

2

)
=

(
−1− iM, r +

1

2

)

[f ] = f1 = ℓ+
1

2
(ℓ ≥ r ≥ 0). (A.26)

The corresponding UIR of spin(3, 1) is Dprin([F ]) = Dprin(−1−iM, r+1/2) (M ∈ R).

(Recall that on dS3 there are only type-I modes.)

• For p = 2, the representation formed by the TT eigenmodes on dS5 is labelled by:

[F ] = (F0, F1, F2) =

(
−p− iM, r +

1

2
,
1

2

)
=

(
−2− iM, r +

1

2
,
1

2

)

[f ] = (f1, f2) =

(
ℓ+

1

2
, r̃ +

1

2

)
(ℓ ≥ r ≥ r̃ ≥ 0). (A.27)

The corresponding UIR of spin(5, 1) is Dprin([F ]) = Dprin(−2 − iM, r + 1/2, 1/2)

(M ∈ R).

• For p ≥ 3, the representation formed by the TT eigenmodes on dS2p+1 is labelled by:

[F ] = (F0, F1, F2, ..., Fp) =

(
−p− iM, r +

1

2
,
1

2
, ...,

1

2

)

[f ] = (f1, f2, f3, ..., fp) =

(
ℓ+

1

2
, r̃ +

1

2
,
1

2
, ...,

1

2

)
(ℓ ≥ r ≥ r̃ ≥ 0). (A.28)

The corresponding UIR of spin(2p+1, 1) isDprin([F ]) = Dprin(−p−iM, r+1/2, 1/2, ..., 1/2)

(M ∈ R).

Even N = 2p ≥ 4. We have:

Case 1. M ̸= 0. For M real and nonzero, the TT eigenmodes with different spin projections

on dS2p mix with each other under spin(2p, 1) [see the transformation formulae (8.2)-(8.4)].

• For p = 2, the representation formed by the TT eigenmodes with M ̸= 0 on dS4 is

labelled by:

[F ] = (F0, F1) =

(
−p+ 1

2
+ i|M |, r + 1

2

)
=

(
−3

2
+ i|M |, r + 1

2

)

[f ] = (f1, f2) =

(
ℓ+

1

2
, ±(r̃ +

1

2
)

)
, (ℓ ≥ r ≥ r̃ ≥ 0). (A.29)

The corresponding UIR of spin(4, 1) is Dprin([F ]) = Dprin(−3/2 + i|M |, r+ 1/2) (for

all real M ̸= 0). The eigenmodes with M = +|M | and the ones with M = −|M | form

equivalent representations.

• For p ≥ 3, the representation formed by the TT eigenmodes with M ̸= 0 on dS2p is

labelled by:

[F ] = (F0, F1, ..., Fp−1) =

(
−p+ 1

2
+ i|M |, r + 1

2
,
1

2
, ...,

1

2

)

[f ] = (f1, f2, ..., fp) =

(
ℓ+

1

2
, r̃ +

1

2
,
1

2
, ...,

1

2
,±1

2

)
, (ℓ ≥ r ≥ r̃ ≥ 0). (A.30)
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The corresponding UIR of spin(2p, 1) is

Dprin([F ]) = Dprin

(
−p+ 1

2
+ i|M |, r + 1

2
,
1

2
, ...,

1

2

)

(for all real M ̸= 0). The eigenmodes with M = +|M | and the ones with M = −|M |
form equivalent representations.

Case 2. M = 0. Recall that, for M = 0, the two sets of eigenmodes with different spin

projections on dS2p separately form UIR’s of spin(2p, 1).

• For p = 2, the representation formed by the TT eigenmodes with negative spin

projection on dS4 is labelled by:

[F ] = (F0, F1) =

(
−p+ 1

2
, r +

1

2

)
=

(
−3

2
, r +

1

2

)

[f ] = (f1, f2) =

(
ℓ+

1

2
, −(r̃ +

1

2
)

)
, (ℓ ≥ r ≥ r̃ ≥ 0). (A.31)

The corresponding UIR of spin(4, 1) is the Discrete Series UIR

D−

(
−3

2
, r +

1

2

)
.

The representation formed by the TT eigenmodes with positive spin projection on

dS4 is labelled by:

[F ] = (F0, F1) =

(
−p+ 1

2
, r +

1

2

)
=

(
−3

2
, r +

1

2

)

[f ] = (f1, f2) =

(
ℓ+

1

2
, r̃ +

1

2

)
, (ℓ ≥ r ≥ r̃ ≥ 0). (A.32)

The corresponding UIR of spin(4, 1) is

D+

(
−3

2
, r +

1

2

)
.

• For p ≥ 3, the representation formed by the TT eigenmodes with negative spin

projection on dS2p is labelled by:

[F ] = (F0, F1, ..., Fp−1) =

(
−p+ 1

2
, r +

1

2
,
1

2
, ...,

1

2

)

[f ] = (f1, f2, ..., fp) =

(
ℓ+

1

2
, r̃ +

1

2
,
1

2
, ...,

1

2
,−1

2

)
, (ℓ ≥ r ≥ r̃ ≥ 0). (A.33)

The corresponding UIR of spin(2p, 1) is the Discrete Series UIR

D−

(
−p+ 1

2
, r +

1

2
,
1

2
, ...,

1

2

)
.
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The representation formed by the TT eigenmodes with positive spin projection on

dS2p is labelled by:

[F ] = (F0, F1, ..., Fp−1) =

(
−p+ 1

2
, r +

1

2
,
1

2
, ...,

1

2

)

[f ] = (f1, f2, ..., fp) =

(
ℓ+

1

2
, r̃ +

1

2
,
1

2
, ...,

1

2

)
, (ℓ ≥ r ≥ r̃ ≥ 0). (A.34)

The corresponding UIR of spin(2p, 1) is the Discrete Series UIR

D+

(
−p+ 1

2
, r +

1

2
,
1

2
, ...,

1

2

)
.

B Raising and lowering operators for the Gauss hypergeometric function

and other useful formulae

The Gauss hypergeometric function F (a, b; c; z) satisfies [38]

d

dz
F (a, b; c; z) =

ab

c
F (a+ 1, b+ 1; c+ 1; z), (B.1)

(z
d

dz
+ c− 1)F (a, b; c; z) = (c− 1)F (a, b; c− 1; z), (B.2)

(z
d

dz
+ a)F (a, b; c; z) = aF (a+ 1, b; c; z). (B.3)

By combining eq. (B.3) with the following relation [39]:

(c− b)F (a+ 1, b− 1; c; z) + (b− a− 1)(1− z)F (a+ 1, b; c; z) = (c− a− 1)F (a, b; c; z),

(B.4)

we find
(
a(b− c) + a(−b+ a+ 1)z − (−b+ a+ 1)z(1− z)

d

dz

)
F (a, b; c; z)

= a(b− c)F (a+ 1, b− 1; c; z). (B.5)

Using eqs. (B.1) and (B.2) we can show the ladder relations (F.21) and (F.22), while using

eq. (B.5) we can show the ladder relations (F.23) and (F.24).

The behaviour of the functions (3.1) and (3.2) in the limit θN → π is studied by using

the transformation formula [24]

F (α, β; γ; z) =
Γ(γ)Γ(γ − α− β)

Γ(γ − α)Γ(γ − β)
F (α, β;α+ β − γ + 1; 1− z)

+ (1− z)γ−α−β
Γ(γ)Γ(−γ + α+ β)

Γ(α)Γ(β)
F (γ − α, γ − β; γ − α− β + 1; 1− z).

(B.6)

Equation (8.26) is proved using [40]

F

(
a, b,

a+ b

2
;
1

2

)
=

√
π Γ

(
a+ b

2

)[
1

Γ((a+ 1)/2)Γ(b/2)
+

1

Γ((b+ 1)/2)Γ(a/2)

]
(B.7)
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and [41]

F

(
a, b,

a+ b

2
+ 1;

1

2

)
=

2
√
π

a− b
Γ

(
a+ b

2
+ 1

)

×
[

1

Γ((b+ 1)/2)

1

Γ(a/2)
− 1

Γ((a+ 1)/2)Γ(b/2)

]
. (B.8)

C Spinor eigenmodes of the Dirac operator on the (N − 1)-sphere

The spinor eigenmodes of the Dirac operator (i.e. the STSSH’s of rank 0) on spheres of

arbitrary dimension have been computed in Ref. [21]. Here we write down explicitly the

eigenspinors on SN−1 that satisfy eq. (2.22). These eigenspinors play an important role

in the derivation of the formulae for the spin(N + 1) transformation of the STSSH’s in

Appendix F.

Case 1: N − 1 odd. We denote the eigenspinors on SN−1 as χ±ℓmρ(θN−1,θN−2), where

ρ stands for labels other than ℓ and m. These eigenspinors are given by

χ±ℓmρ(θN−1,θN−2) =
c̃N−1(ℓ,m)√

2

{
ϕ̃
(0)
ℓm(θN−1) ˆ̃χ−mρ(θN−2)± iψ̃

(0)
ℓm(θN−1) ˆ̃χ+mρ(θN−2)

}
,

(C.1)

where ϕ̃
(0)
ℓm(θN−1) and ψ̃

(0)
ℓm(θN−1) are given by eqs. (F.8) and (F.9), respectively, and

ˆ̃χ±mρ(θN−2) =
1√
2
(1 + iγ̃N−1)χ̃±mρ(θN−2), (C.2)

ˆ̃χ+mρ(θN−2) =γ̃
N−1χ̃−mρ(θN−2), (C.3)

where the spinors χ̃±mρ(θN−2) are the eigenspinors of the Dirac operator on SN−2. [The

gamma matrices on SN−1 are denoted as γ̃a - see eq. (2.11).] In order for the eigen-

spinors (C.1) to be non-singular we require ℓ ≥ m and ℓ = 0, 1, ... [21]. The eigen-

spinors (C.1) satisfy the normalisation condition (2.23), while the normalisation factor is

given by [21] ∣∣∣∣
c̃N−1(ℓ,m)√

2

∣∣∣∣
2

=
Γ(ℓ−m+ 1)Γ(ℓ+N − 1 +m)

2N−2|Γ(N−1
2 + ℓ)|2

. (C.4)

Case 2: N−1 even. We denote the eigenspinors on SN−1 as χ
(σN−1)
±ℓmρ (θN−1,θN−2), where

σN−1 = ± is the spin projection index on SN−1 and ρ stands for labels other than σN−1, ℓ

and m. The eigenspinors with negative spin projection are given by

χ
(−)
±ℓmρ(θN−1,θN−2) =

c̃N−1(ℓ,m)√
2

(
ϕ̃
(0)
ℓm(θN−1) χ̃−mρ(θN−2)

±iψ̃(0)
ℓm(θN−1) χ̃−mρ(θN−2)

)
(C.5)

and those with positive spin projection are given by

χ
(+)
±ℓmρ(θN−1,θN−2) =

c̃N−1(ℓ,m)√
2

(
iψ̃

(0)
ℓm(θN−1) χ̃+mρ(θN−2)

±ϕ̃(0)ℓm(θN−1) χ̃+mρ(θN−2)

)
(C.6)

and they both satisfy eq. (2.22). The normalisation factors c̃N−1(ℓ,m), as well as the

functions ϕ̃
(0)
ℓm(θN−1) and ψ̃

(0)
ℓm(θN−1), have the same expressions as in the case with N − 1

odd.
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D Some useful formulae on SN−1

Let g̃µν be the metric tensor on SN−1. The Riemann tensor on SN−1 is

R̃µνκλ = g̃µκg̃νλ − g̃νκg̃µλ. (D.1)

Let ψ̃, ψ̃µ and ψ̃µν be any spinor, vector-spinor and rank-2 tensor-spinor field, respectively,

on SN−1. The commutator of covariant derivatives acting on these fields is given by

[∇̃µ, ∇̃ν ]ψ̃ =
1

4
R̃µνκλγ̃

κγ̃λψ̃ (D.2)

=
1

2
(γ̃µγ̃ν − g̃µν)ψ̃, (D.3)

[∇̃µ, ∇̃ν ]ψ̃α =
1

4
R̃µνκλγ̃

κγ̃λψ̃α + R̃λανµψ̃λ (D.4)

=
1

2
(γ̃µγ̃ν − g̃µν)ψ̃α + 2g̃α[µψ̃ν], (D.5)

[∇̃µ, ∇̃ν ]ψ̃αβ =
1

2
(γ̃µγ̃ν − g̃µν)ψ̃αβ + 2g̃α[µψ̃ν]β + 2ψ̃α[ν g̃µ]β . (D.6)

The Laplace-Beltrami operator on SN−1 is defined as □̃ ≡ g̃κλ∇̃κ∇̃λ. The eigenspinors

on SN−1 [see eq. (2.22)] satisfy [21]

□̃χ±ℓρ̃ =

[
/̃∇
2
+

(N − 1)(N − 2)

4

]
χ±ℓρ̃

=

[
−
(
ℓ+

N − 1

2

)2

+
(N − 1)(N − 2)

4

]
χ±ℓρ̃. (D.7)

Note also the following relations:

γ̃θi∇̃(θi∇̃θj)χ±ℓρ̃ = ±i
(
ℓ+

N − 1

2

)
∇̃θjχ±ℓρ +

N − 2

4
γ̃θjχ±ℓρ̃, (D.8)

γ̃θi γ̃(θi∇̃θj)χ±ℓρ̃ =
N + 1

2
∇̃θjχ±ℓρ ∓ i

ℓ+ N−1
2

2
γ̃θjχ±ℓρ̃, (D.9)

∇̃θi∇̃(θi∇̃θj)χ±ℓρ̃ = ∇̃θj

(
□̃+N − 5

4

)
χ±ℓρ̃ ∓

3

4
i

(
ℓ+

N − 1

2

)
γ̃θjχ±ℓρ̃, (D.10)

∇̃θi γ̃(θi∇̃θj)χ±ℓρ̃ = ±iℓ+
N−1
2

2
∇̃θjχ±ℓρ̃ +

1

2
γ̃θj

(
□̃+

N − 2

2

)
χ±ℓρ̃, (D.11)

where in order to prove eqs. (D.8) and (D.11) we have to use eq. (D.3), while in order to

prove eq. (D.10) we have to use eqs. (D.3) and (D.5).

The TT vector-spinor eigenmodes [see eqs. (4.14)-(4.15)] satisfy

□̃ψ̃
(Ã;ℓρ̃)
±θj

=

[
−
(
ℓ+

N − 1

2

)2

+
(N − 1)(N − 2)

4
+ 1

]
ψ̃
(Ã;ℓρ̃)
±θj

(D.12)
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(j = 1, ..., N − 1). By combining this equation with eq. (D.5) we can prove the following

relation:

∇̃θi∇̃(θiψ̃
(Ã;ℓρ̃)
±θk)

=
1

2

(
□̃+N − 3

2

)
ψ̃
(Ã;ℓρ̃)
±θk

=
1

2

(
/̃∇
2
+
N(N + 1)

4

)
ψ̃
(Ã;ℓρ̃)
±θk

. (D.13)

The rank-2 STSSH’s on SN−1 [see eqs. (5.6)- (5.8)] satisfy

□̃ψ̃
(B̃;ℓρ̃)
±θjθk

=

[
−
(
ℓ+

N − 1

2

)2

+
(N − 1)(N − 2)

4
+ 2

]
ψ̃
(B̃;ℓρ̃)
±θjθk

(D.14)

(j, k = 1, ..., N − 1).

E Constructing the STSSH’s of rank 2 on the N-sphere

In this Appendix, we construct the STSSH’s of rank 2 on SN . These STSSH’s satisfy

eqs. (5.1)-(5.3) and we construct them explicitly by using the method of separation of

variables in geodesic polar coordinates (2.2), as in Refs. [18, 21]. In the method of separation

of variables, the STSSH’s of rank 2 on SN are expressed in terms of STSSH’s of rank r̃

(with r̃ = 0, 1, 2) on SN−1.

For later convenience, note that the functions ϕ
(a)
nℓ (θN ) [eq. (3.1)] satisfy the following

differential equation:

D(a)ϕ
(a)
nℓ (θN ) = −ζ2n,Nϕ

(a)
nℓ (θN ), (E.1)

where ζ2n,N ≡ ζ2 = (n+N
2 )

2 is the eigenvalue of the STSSH in eq. (1.6), while the differential

operator is given by

D(a) =
∂2

∂θ2N
+ (N + 2a− 1) cot θN

∂

∂θN
+

(
ℓ+

N − 1

2

)
cos θN

sin2 θN

− (ℓ+ N−1
2 )2 − 1

4(N + 2a− 1)(N + 2a− 3)

sin2 θN
− (N + 2a− 1)2

4
. (E.2)

One can readily verify that the functions ϕ
(a)
nℓ (θN ) [eq. (3.1)] are the unique regular solutions

(up to a normalisation constant) of the differential equation (E.1) by using the results of

Ref. [21], as follows. By expressing ϕ
(a)
nℓ as

ϕ
(a)
nℓ (θN ) =

(
sin

θN
2

cos
θN
2

)−a

ϕ
(0)
nℓ (θN ) (E.3)

[see eq. (3.1)] we rewrite eq. (E.1) as D(0)ϕ
(0)
nℓ = −ζ2n,Nϕ

(0)
nℓ . The latter has been solved

in Ref. [21] and it was found that the unique regular solutions ϕ
(0)
nℓ are the ones given by

eq. (3.1) (with a = 0). For the rank-1 STSSH’s on SN the integer a takes the values

a = −1, 1 (see Section 4), while for rank-2 STSSH’s a takes the values a = −2, 0, 2 (see
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Section 5). The functions ϕ
(a)
nℓ (θN ) are regular for a = 1 and a = 2 despite the factor(

sin θN
2 cos θN2

)−a
in eq. (E.3) because of the restriction ℓ ≥ r (this restriction on ℓ is

proved in Section 4 for r = 1 and in Section 5 for r = 2).

The differential equation satisfied by the functions ψ
(a)
nℓ (θN ) [eq. (3.2)] is obtained from

eq. (E.1) by making the replacement θN → π−θN in the expression (E.2) for the differential

operator D(a).

Let us also briefly explain how to obtain the condition n ≥ ℓ [eq. (3.4)]. By taking

the limit θN → π for ϕ
(a)
nℓ (θN ) and using the transformation formula (B.6) for the Gauss

hypergeometric function, we readily find that the requirement for absence of singularity in

ϕ
(a)
nℓ (θN ) gives rise to the condition n ≥ ℓ, as well as to the quantisation condition

|ζn,N | = n+
N

2
, n ∈ N0. (E.4)

E.1 Constructing the STSSH’s of rank 2 for N even

Our aim is to obtain the STSSH’s ψ
(B;σ;nℓ;ρ̃)
µν that satisfy eqs. (5.1)-(5.3), where the gamma

matrices for N even are given by eq. (2.11). As in Ref. [21], we write ψ
(B;σ;nℓ;ρ̃)
µν in terms of

upper and lower 2N/2−1-dimensional spinor components

ψ
(B;σ;nℓ;ρ̃)
±µν (θN ,θN−1) =




(↑)ψ
(B;σ;nℓ;ρ̃)
±µν (θN ,θN−1)

(↓)ψ
(B;σ;nℓ;ρ̃)
±µν (θN ,θN−1)


 . (E.5)

It is clear that eqs. (5.1)-(5.3) - which determine the form of our STSSH’s - reduce to a

system of equations for the upper and lower components. We will now obtain the system

of equations for the upper and lower components. By using eqs. (2.4), (2.9), (2.11), (2.18),

(2.19), (5.1) and (5.2) and by expressing ψ
(B;σ;nℓ;ρ̃)
±µν in terms of the upper and lower com-

ponents as in (E.5), we find that the eigenvalue equation /∇ψ(B;σ;nℓ;ρ̃)
±θNθN

= ±i|ζn,N |ψ(B;σ;nℓ;ρ̃)
±θNθN

is written as
(

∂

∂θN
+
N + 3

2
cot θN +

i

sin θN
/̃∇
)

(↓)ψ
(B;σ;nℓ;ρ̃)
±θNθN

= ±i|ζn,N | (↑)ψ(B;σ;nℓ;ρ̃)
±θNθN

, (E.6a)

(
∂

∂θN
+
N + 3

2
cot θN − i

sin θN
/̃∇
)

(↑)ψ
(B;σ;nℓ;ρ̃)
±θNθN

= ±i|ζn,N | (↓)ψ(B;σ;nℓ;ρ̃)
±θNθN

. (E.6b)

Similarly, we find that the eigenvalue equation /∇ψ(B;σ;nℓ;ρ̃)
±θNθj

= ±i|ζn,N |ψ(B;σ;nℓ;ρ̃)
±θNθj

(j =

1, ..., N − 1) is written as

( ∂

∂θN
+
N − 1

2
cot θN +

i

sin θN
/̃∇
)
(↓)ψ

(B;σ;nℓ;ρ̃)
±θNθj

+ i cos θN γ̃θj
(↓)ψ

(B;σ;nℓ;ρ̃)
±θNθN

= ±i|ζn,N | (↑)ψ(B;σ;nℓ;ρ̃)
±θNθj

, (E.7a)
( ∂

∂θN
+
N − 1

2
cot θN − i

sin θN
/̃∇
)
(↑)ψ

(B;σ;nℓ;ρ̃)
±θNθj

− i cos θN γ̃θj
(↑)ψ

(B;σ;nℓ;ρ̃)
±θNθN

= ±i|ζn,N | (↓)ψ(B;σ;nℓ;ρ̃)
±θNθj

, (E.7b)

– 58 –



while /∇ψ(B;σ;nℓ;ρ̃)
±θjθk

= ±i|ζn,N |ψ(B;σ;nℓ;ρ̃)
±θjθk

(j, k = 1, ..., N − 1) is written as

( ∂

∂θN
+
N − 5

2
cot θN +

i

sin θN
/̃∇
)
(↓)ψ

(B;σ;nℓ;ρ̃)
±θjθk

+ 2i cos θN γ̃(θj
(↓)ψ

(B;σ;nℓ;ρ̃)
±θk)θN

= ±i|ζn,N | (↑)ψ(B;σ;nℓ;ρ̃)
±θjθk

, (E.8a)
( ∂

∂θN
+
N − 5

2
cot θN − i

sin θN
/̃∇
)
(↑)ψ

(B;σ;nℓ;ρ̃)
±θjθk

− 2i cos θN γ̃(θj
(↑)ψ

(B;σ;nℓ;ρ̃)
±θk)θN

= ±i|ζn,N | (↓)ψ(B;σ;nℓ;ρ̃)
±θjθk

. (E.8b)

By making use of eq. (E.5), we express the gamma-tracelessness condition (5.2) as





(↓)ψ
(B;σ;nℓ;ρ̃)
±θNµ

+
i

sin θN
γ̃θi (↓)ψ

(B;σ;nℓ;ρ̃)
±θiµ

= 0,

(↑)ψ
(B;σ;nℓ;ρ̃)
±θNµ

− i

sin θN
γ̃θi (↑)ψ

(B;σ;nℓ;ρ̃)
±θiµ

= 0, (µ = θ1, ..., θN and θi = θ1, ..., θN−1)

(E.9)

and the tracelessness condition (5.3) as





(↓)ψ
(B;σ;nℓ;ρ̃)
±θNθN

+
1

sin2 θN
g̃θiθj (↓)ψ

(B;σ;nℓ;ρ̃)
±θiθj

= 0,

(↑)ψ
(B;σ;nℓ;ρ̃)
±θNθN

+
1

sin2 θN
g̃θiθj (↑)ψ

(B;σ;nℓ;ρ̃)
±θiθj

= 0.

(E.10)

Similarly, by substituting eq. (E.5) into the divergence-free condition (5.2), we may express

the condition ∇αψ
(B;σ;nℓ;ρ̃)
±αθN

= 0 as





[
∂
∂θN

+ (N + 1
2) cot θN

]
(↑)ψ

(B;σ;nℓ;ρ̃)
±θNθN

+
1

sin2 θN
∇̃θi (↑)ψ

(B;σ;nℓ;ρ̃)
±θiθN

= 0,

[
∂
∂θN

+ (N + 1
2) cot θN

]
(↓)ψ

(B;σ;nℓ;ρ̃)
±θNθN

+
1

sin2 θN
∇̃θi (↓)ψ

(B;σ;nℓ;ρ̃)
±θiθN

= 0,

(E.11)

while the condition ∇αψ
(B;σ;nℓ;ρ̃)
±αθj

= 0 (j = 1, ..., N − 1) is expressed as





[
∂
∂θN

+ (N − 1
2) cot θN

]
(↑)ψ

(B;σ;nℓ;ρ̃)
±θNθj

+
1

sin2 θN
∇̃θi (↑)ψ

(B;σ;nℓ;ρ̃)
±θiθj

= 0,

[
∂
∂θN

+ (N − 1
2) cot θN

]
(↓)ψ

(B;σ;nℓ;ρ̃)
±θNθj

+
1

sin2 θN
∇̃θi (↓)ψ

(B;σ;nℓ;ρ̃)
±θiθj

= 0.

(E.12)

Type-I STSSH’s of rank 2 for N even. Let us start by describing how to obtain the

type-I modes, given by eqs. (5.10)-(5.12). The component ψ
(I;σ;nℓ;ρ̃)
±θNθN

is a spinor on SN−1.

Thus, in order to solve the system of equations (E.6) we separate variables as in the case
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of spinor eigenmodes in Ref. [21], i.e.

(↑)ψ
(I;−;nℓ;ρ̃)
±θNθN

(θN ,θN−1) = ϕ
(2)
nℓ (θN )χ−ℓρ̃(θN−1),

(↓)ψ
(I;−;nℓ;ρ̃)
±θNθN

(θN ,θN−1) = ±iψ(2)
nℓ (θN )χ−ℓρ̃(θN−1) (E.13)

(↑)ψ
(I;+;nℓ;ρ̃)
±θNθN

(θN ,θN−1) = iψ
(2)
nℓ (θN )χ+ℓρ̃(θN−1),

(↓)ψ
(I;+;nℓ;ρ̃)
±θNθN

(θN ,θN−1) = ±ϕ(2)nℓ (θN )χ+ℓρ̃(θN−1), (E.14)

where χ±ℓρ̃ are the eigenspinors on SN−1 (see eq. (2.22)). By substituting eq. (E.13) [or

eq. (E.14)] into the system of equations (E.6) and eliminating (↓)ψ
(I;−;nℓ;ρ̃)
±θNθN

(or (↓)ψ
(I;+;nℓ;ρ̃)
±θNθN

)

we find that ϕ
(2)
nℓ has to satisfy the differential equation (E.1) (with a = 2), while ψ

(2)
nℓ has to

satisfy the differential equation (E.1) (a = 2) with θN replaced by π− θN in the differential

operator D(2) [eq. (E.2)]. Thus, we find that ϕ
(2)
nℓ and ψ

(2)
nℓ are given by eqs. (3.1) and (3.2),

respectively. As a check, one readily finds that the components defined by eqs. (E.13) and

(E.14) satisfy the system of equations (E.6) by making use of the formulae (3.5) and (3.6).

The components ψ
(I;σ;nℓ;ρ̃)
±θNθj

(j = 1, ..., N − 1) are vector-spinors on SN−1 and thus we

may separate variables analogously to eqs. (4.6) and (4.8). Thus, for STSSH’s with negative

spin projection (σ = −) we separate variables as

(↑)ψ
(I;−;nℓ;ρ̃)
±θNθj

(θN ,θN−1) =C
(↑)(2)
nℓ (θN ) ∇̃θjχ−ℓρ̃(θN−1) +D

(↑)(2)
nℓ (θN ) γ̃θjχ−ℓρ̃(θN−1),

(↓)ψ
(I;−;nℓ;ρ̃)
±θNθj

(θN ,θN−1) =± iC
(↓)(2)
nℓ (θN ) ∇̃θjχ−ℓρ̃(θN−1)± iD

(↓)(2)
nℓ (θN ) γ̃θjχ−ℓρ̃(θN−1),

(E.15)

while for STSSH’s with positive spin projection (σ = +) we separate variables as

(↑)ψ
(I;+;nℓ;ρ̃)
±θNθj

(θN ,θN−1) = iC
(↓)(2)
nℓ (θN ) ∇̃θjχ+ℓρ̃(θN−1)− iD

(↓)(2)
nℓ (θN ) γ̃θjχ+ℓρ̃(θN−1),

(↓)ψ
(I;+;nℓ;ρ̃)
±θNθj

(θN ,θN−1) =± C
(↑)(2)
nℓ (θN ) ∇̃θjχ+ℓρ̃(θN−1)∓D

(↑)(2)
nℓ (θN ) γ̃θjχ+ℓρ̃(θN−1).

(E.16)

By using the gamma-tracelessness condition (E.9) we readily find that the functions D
(b)(2)
nℓ

and C
(b)(2)
nℓ (b =↑, ↓) are related to each other by eqs. (4.11) and (4.12). Then, using

the divergence-free condition (E.11), we find that C
(↑)(2)
nℓ is given by eq. (4.9) and C

(↓)(2)
nℓ

is given by eq. (4.10), where we also have used eqs. (3.5), (3.6) and eq. (D.7). One can

straightforwardly verify that the components defined by eqs. (E.15) and (E.16) are solutions

of the system of equations (E.7), where the calculations are significantly simplified by using
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the following formulae:
(

∂

∂θN
+
N − 1

2
cot θN − ℓ+ N−1

2

sin θN

)
C

(↑)(2)
nℓ (θN )−

2i

sin θN
D

(↑)(2)
nℓ (θN )

= −
(
n+

N

2

)
C

(↓)(2)
nℓ (θN ), (E.17)

(
∂

∂θN
+
N − 1

2
cot θN +

ℓ+ N−1
2

sin θN

)
C

(↓)(2)
nℓ (θN ) +

2i

sin θN
D

(↓)(2)
nℓ (θN )

=

(
n+

N

2

)
C

(↑)(2)
nℓ (θN ), (E.18)

which can be proved by using the formulae (3.5) and (3.6).

The components ψ
(I;σ;nℓ;ρ̃)
±θjθk

(j, k = 1, ..., N − 1) are rank-2 symmetric tensor-spinors on

SN−1. Let us first discuss the case with negative spin projection (σ = −). We choose to

separate variables for ψ
(I;−;nℓ;ρ̃)
±θjθk

as follows:

(↑)ψ
(I;−;nℓ;ρ̃)
±θjθk

(θN ,θN−1) =K
(↑)
nℓ (θN ) g̃θjθkχ−ℓρ̃(θN−1)

+W
(↑)
nℓ (θN )

(
∇̃(θj∇̃θk) − g̃θjθk

□̃

N − 1

)
χ−ℓρ̃(θN−1)

+ T
(↑)
nℓ (θN )

(
γ̃(θj∇̃θk) − g̃θjθk

/̃∇
N − 1

)
χ−ℓρ̃(θN−1),

(↓)ψ
(I;−;nℓ;ρ̃)
±θjθk

(θN ,θN−1) =± iK
(↓)
nℓ (θN ) g̃θjθkχ−ℓρ̃(θN−1)

± iW
(↓)
nℓ (θN )

(
∇̃(θj∇̃θk) − g̃θjθk

□̃

N − 1

)
χ−ℓρ̃(θN−1)

± iT
(↓)
nℓ (θN )

(
γ̃(θj∇̃θk) − g̃θjθk

/̃∇
N − 1

)
χ−ℓρ̃(θN−1), (E.19)

where /̃∇χ−ℓρ̃ = −i
(
ℓ+ N−1

2

)
χ−ℓρ̃ (see eq. (2.22)) and □̃χ−ℓρ̃ ≡ ∇θk∇θkχ−ℓρ̃ is given

by eq. (D.7). By using the tracelessness condition (E.10), we find that K
(↑)
nℓ and K

(↓)
nℓ

are given by eqs. (5.15) and (5.16), respectively. Then, by using the gamma-tracelessness

condition (E.9) (and by making use of eqs. (D.8) and (D.9)) we find that the function T
(↑)
nℓ

(T
(↓)
nℓ ) is expressed in terms of W

(↑)
nℓ (W

(↓)
nℓ ) as in eq. (5.17) (eq. (5.18)). Then, by making

use of the divergence-free condition (E.12) (and using eqs. (D.10) and (D.11)) we find

(
∂

∂θN
+ (N − 1

2
) cot θN

)
C

(b)(2)
nℓ (θN ) +

1

sin2 θN
K

(b)
nℓ (θN )

+
1

sin2 θN
W

(b)
nℓ (θN )

{
−
(
ℓ+ N−1

2

)2
(N − 2)

N − 1
+
N2 − 1

4

}

− i
1

2 sin2 θN

(
ℓ+ N−1

2

)
(N − 3)

N − 1
T
(b)
nℓ (θN ) = 0, b =↑, ↓ . (E.20)
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Finally, by solving the system of equations consisting of eqs. (5.17), (5.18) and (E.20) (and

using eqs. (E.17) and (E.18)) we find that W
(↑)
nℓ is given by eq. (5.19), while W

(↓)
nℓ is given

by eq. (5.20).

By working as in the case with negative spin projection, we find that the components

ψ
(I;+;nℓ;ρ̃)
±θjθk

with positive spin projection are expressed in terms of upper and lower spinorial

components as follows:

(↑)ψ
(I;+;nℓ;ρ̃)
±θjθk

(θN ,θN−1) =iK
(↓)
nℓ (θN ) g̃θjθkχ+ℓρ̃(θN−1)

+ iW
(↓)
nℓ (θN )

(
∇̃(θj∇̃θk) − g̃θjθk

□̃

N − 1

)
χ+ℓρ̃(θN−1)

− iT
(↓)
nℓ (θN )

(
γ̃(θj∇̃θk) − g̃θjθk

/̃∇
N − 1

)
χ+ℓρ̃(θN−1),

(↓)ψ
(I;+;nℓ;ρ̃)
±θjθk

(θN ,θN−1) =±K
(↑)
nℓ (θN ) g̃θjθkχ+ℓρ̃(θN−1)

±W
(↑)
nℓ (θN )

(
∇̃(θj∇̃θk) − g̃θjθk

□̃

N − 1

)
χ+ℓρ̃(θN−1)

∓ T
(↑)
nℓ (θN )

(
γ̃(θj∇̃θk) − g̃θjθk

/̃∇
N − 1

)
χ+ℓρ̃(θN−1). (E.21)

We have verified using Mathematica 11.2 that the components defined by eqs. (E.19) and

(E.21) satisfy the system of equations (E.8).

Type-II STSSH’s of rank 2 for N even. Now let us describe how to obtain the type-

II modes given by eqs. (5.22) and (5.23). The type-II modes satisfy ψ
(II-Ã;σ;nℓ;ρ̃)
±θNθN

= 0 by

definition. The components ψ
(II-Ã;σ;nℓ;ρ̃)
±θNθj

(j = 1, ..., N − 1) may be expressed as

(↑)ψ
(II-Ã;−;nℓ;ρ̃)
±θNθj

(θN ,θN−1) = ϕ
(0)
nℓ (θN ) ψ̃

(Ã;ℓρ̃)
−θj

(θN−1),

(↓)ψ
(II-Ã;−;nℓ;ρ̃)
±θNθj

(θN ,θN−1) = ±iψ(0)
nℓ (θN ) ψ̃

(Ã;ℓρ̃)
−θj

(θN−1), (E.22)

(↑)ψ
(II-Ã;+;nℓ;ρ̃)
±θNθj

(θN ,θN−1) = iψ
(0)
nℓ (θN ) ψ̃

(Ã;ℓρ̃)
+θj

(θN−1)

(↓)ψ
(II-Ã;+;nℓ;ρ̃)
±θNθj

(θN ,θN−1) = ±ϕ(0)nℓ (θN ) ψ̃
(Ã;ℓρ̃)
+θj

(θN−1). (E.23)

The TT eigenvector-spinors ψ̃
(Ã;ℓρ̃)
±θj

(j = 1, ..., N − 1) on SN−1 satisfy eqs. (4.14) and

(4.15). By working as in the case of type-I modes presented above, we find that ϕ
(0)
nℓ has to

satisfy the differential equation (E.1) with a = 0, while ψ
(0)
nℓ has to satisfy the differential

equation (E.1) (a = 0) with θN replaced by π−θN in the differential operatorD(0) [eq. (E.2)].

Thus, we find that ϕ
(0)
nℓ and ψ

(0)
nℓ are given by eqs. (3.1) and (3.2), respectively. By making

use of the formulae (3.5) and (3.6), one can readily verify that the components defined by

eqs. (E.22) and (E.23) are solutions of the system of equations (E.7).

The components ψ
(II-Ã;σ;nℓ;ρ̃)
±θjθk

(j, k = 1, ..., N − 1) are symmetric rank-2 tensor-spinors

on SN−1. Let us first discuss the case with negative spin projection (σ = −). We separate

– 62 –



variables as

(↑)ψ
(II-Ã;−;nℓ;ρ̃)
±θjθk

(θN ,θN−1) =Γ
(↑)
nℓ (θN ) ∇̃(θj ψ̃

(Ã;ℓρ̃)
−θk)

(θN−1) + ∆
(↑)
nℓ (θN ) γ̃(θj ψ̃

(Ã;ℓρ̃)
−θk)

(θN−1),

(↓)ψ
(II-Ã;−;nℓ;ρ̃)
±θjθk

(θN ,θN−1) =± iΓ
(↓)
nℓ (θN ) ∇̃(θj ψ̃

(Ã;ℓρ̃)
−θk)

(θN−1)± i∆
(↓)
nℓ (θN ) γ̃(θj ψ̃

(Ã;ℓρ̃)
−θk)

(θN−1),

(E.24)

where we have to determine the functions Γ
(b)
nℓ and ∆

(b)
nℓ (with b =↑, ↓). By using the TT

conditions as in the case of type-I modes, we find that ∆
(↑)
nℓ and ∆

(↓)
nℓ are given by eqs. (5.24)

and (5.25), respectively, while Γ
(↑)
nℓ and Γ

(↓)
nℓ are given by eqs. (5.26) and (5.27), respectively,

where we also have used eqs. (3.5), (3.6) and (D.13). By using the formulae (3.5) and (3.6),

we can also prove the following formulae:

(
∂

∂θN
+
N − 5

2
cot θN − ℓ+ N−1

2

sin θN

)
Γ
(↑)
nℓ (θN )−

2i

sin θN
∆

(↑)
nℓ (θN ) = −(n+

N

2
)Γ

(↓)
nℓ (θN ),

(E.25)
(

∂

∂θN
+
N − 5

2
cot θN +

ℓ+ N−1
2

sin θN

)
Γ
(↓)
nℓ (θN ) +

2i

sin θN
∆

(↓)
nℓ (θN ) = (n+

N

2
)Γ

(↑)
nℓ (θN ).

(E.26)

Similarly, we find that the upper and lower components of ψ
(II-Ã;+;nℓ;ρ̃)
±θjθk

(j, k = 1, ..., N − 1)

are given by

(↑)ψ
(II-Ã;+;nℓ;ρ̃)
±θjθk

(θN ,θN−1) = iΓ
(↓)
nℓ (θN ) ∇̃(θj ψ̃

(Ã;ℓρ̃)
+θk)

(θN−1)− i∆
(↓)
nℓ (θN ) γ̃(θj ψ̃

(Ã;ℓρ̃)
+θk)

(θN−1),

(↓)ψ
(II-Ã;+;nℓ;ρ̃)
±θjθk

(θN ,θN−1) =± Γ
(↑)
nℓ (θN ) ∇̃(θj ψ̃

(Ã;ℓρ̃)
+θk)

(θN−1)∓∆
(↑)
nℓ (θN ) γ̃(θj ψ̃

(Ã;ℓρ̃)
+θk)

(θN−1).

(E.27)

By making use of the formulae (E.25) and (E.26), as well as eq. (D.5), one can readily

verify that the system of equations (E.8) is satisfied by the type-II modes in eqs. (E.24)

and (E.27).

Type-III STSSH’s of rank 2 for N even. Finally, let us construct the type-III

mode, given by eqs. (5.30) and (5.33). The type-III modes satisfy ψ
(III-B̃;σ;nℓ;ρ̃)
±θNθN

= 0

and ψ
(III-B̃;σ;nℓ;ρ̃)
±θNθi

= 0 (i = 1, ..., N − 1) by definition. The components ψ
(III-Ã;σ;nℓ;ρ̃)
±θjθk

(j, k = 1, ..., N − 1) are rank-2 symmetric tensor-spinors on SN−1. Since type-III modes

are divergence-free and gamma-traceless, we separate variables in the following way:

(↑)ψ
(III-B̃;−;nℓ;ρ̃)
±θjθk

(θN ,θN−1) = ϕ
(−2)
nℓ (θN ) ψ̃

(B̃;ℓρ̃)
−θjθk

(θN−1),

(↓)ψ
(III-B̃;−;nℓ;ρ̃)
±θjθk

(θN ,θN−1) = ±iψ(−2)
nℓ (θN ) ψ̃

(B̃;ℓρ̃)
−θjθk

(θN−1), (E.28)

(↑)ψ
(III-B̃;+;nℓ;ρ̃)
±θjθk

(θN ,θN−1) = iψ
(−2)
nℓ (θN ) ψ̃

(B̃;ℓρ̃)
+θjθk

(θN−1),

(↓)ψ
(III−Ã;+;nℓ;ρ̃)
±θjθk

(θN ,θN−1) = ±ϕ(−2)
nℓ (θN ) ψ̃

(B̃;ℓρ̃)
+θjθk

(θN−1), (E.29)
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where eq. (E.28) describes the type-III STSSH with negative spin projection, while eq. (E.29)

describes the type-III STSSH with positive spin projection. The functions ϕ
(−2)
nℓ and ψ

(−2)
nℓ

are given by eqs. (3.1) and (3.2), respectively. It is straightforward to verify that the type-

III modes in eqs. (E.28) and (E.29) are solutions of the system of equations (E.8) (with the

use of eqs. (3.5) and (3.6)).

E.2 Constructing the STSSH’s of rank 2 for N odd

Now the gamma matrices are given by eq. (2.14). By combining eqs. (2.4), (2.9), (2.14),

(2.18) and eq. (2.19) we find

/∇ψ(B;nℓ;ρ̃)
±θNθN

=

[(
∂

∂θN
+
N + 3

2
cot θN

)
γN +

1

sin θN
/̃∇
]
ψ
(B;nℓ;ρ̃)
±θNθN

= ±i|ζn,N |ψ(B;nℓ;ρ̃)
±θNθN

,

(E.30)

where we have used the gamma-tracelessness condition

γNψ
(B;nℓ;ρ̃)
±θNθN

= −γθjψ(B;nℓ;ρ̃)
±θjθN

(see eq. (5.2)). Similarly, we find

/∇ψ(B;nℓ;ρ̃)
±θNθj

=

[(
∂

∂θN
+
N − 1

2
cot θN

)
γN +

1

sin θN
/̃∇
]
ψ
(B;nℓ;ρ̃)
±θNθj

+ cot θNγθjψ
(B;nℓ;ρ̃)
±θNθN

(E.31)

= ±i|ζn,N |ψ(B;nℓ;ρ̃)
±θNθj

(j = 1, ..., N − 1) and

/∇ψ(B;nℓ;ρ̃)
±θjθk

=

[(
∂

∂θN
+
N − 5

2
cot θN

)
γN +

1

sin θN
/̃∇
]
ψ
(B;nℓ;ρ̃)
±θjθk

+ 2 cot θNγ(θjψ
(B;nℓ;ρ̃)
±θk)θN

(E.32)

= ±i|ζn,N |ψ(B;nℓ;ρ̃)
±θjθk

(j, k = 1, ..., N − 1). Note that for N odd we have

γN /̃∇+ /̃∇γN = 0, (E.33)

since {γN , γ̃j} = 0 (j = 1, ..., N − 1) - see eq. (2.14). Now let us separate variables in

eqs. (E.30)-(E.32).

Type-I STSSH’s of rank 2 for N odd. As in Ref. [21], since N is odd we choose to

express the type-I modes in terms of the following spinors on SN−1:

χ̂−ℓρ̃(θN−1) ≡
1√
2
(1+ iγN )χ−ℓρ̃(θN−1) (E.34)

χ̂+ℓρ̃(θN−1) ≡ γN χ̂−ℓρ̃(θN−1) =
1√
2
(1+ iγN )χ+ℓρ̃(θN−1), (E.35)
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where χ±ℓρ̃ are the eigenspinors on SN−1 (satisfying eq. (2.22)). Since N is odd, χ+ℓρ̃ and

χ−ℓρ̃ are related to each other as follows [21]:

χ+ℓρ̃(θN−1) = γNχ−ℓρ̃(θN−1). (E.36)

The spinors χ̂±ℓρ̃ are eigenfunctions of the operator γN /̃∇ (that commutes with /∇2
) and

they satisfy [21]

γN /̃∇χ̂±ℓρ̃ = ±
(
ℓ+

N − 1

2

)
χ̂±ℓρ̃. (E.37)

In order to construct the rank-2 type-I modes on SN , we separate variables as follows:

ψ
(I;nℓ;ρ̃)
±θNθN

(θN ,θN−1) =ϕ
(2)
nℓ (θN )χ̂−ℓρ̃(θN−1)± iψ

(2)
nℓ (θN )χ̂+ℓρ̃(θN−1) (E.38)

ψ
(I;nℓ;ρ̃)
±θNθj

(θN ,θN−1) =C
(↑)(2)
nℓ (θN )∇̃θj χ̂−ℓρ̃(θN−1)± iC

(↓)(2)
nℓ (θN )∇̃θj χ̂+ℓρ̃(θN−1)

− iD
(↑)(2)
nℓ (θN )γ̃θj χ̂+ℓρ̃(θN−1)∓D

(↓)(2)
nℓ (θN )γ̃θj χ̂−ℓρ̃(θN−1) (E.39)

ψ
(I;nℓ;ρ̃)
±θjθk

(θN ,θN−1) =g̃θjθk

(
χ̂−ℓρ̃(θN−1)K

(↑)
nℓ (θN )± χ̂+ℓρ̃(θN−1) iK

(↓)
nℓ (θN )

)

+

[
∇̃(θj∇̃θk) −

g̃θjθk
N − 1

□̃

]

×
(
χ̂−ℓρ̃(θN−1)W

(↑)
nℓ (θN )± χ̂+ℓρ̃(θN−1) iW

(↓)
nℓ (θN )

)

+

[
γ̃(θj∇̃θk) −

g̃θjθk
N − 1

/̃∇
]

×
(
−χ̂+ℓρ̃(θN−1) iT

(↑)
nℓ (θN )∓ χ̂−ℓρ̃(θN−1)T

(↓)
nℓ (θN )

)
, (E.40)

(j, k = 1, ..., N − 1). By working as in the case with N even, we find that the functions

ϕ
(2)
nℓ , ψ

(2)
nℓ , C

(b)(2)
nℓ , D

(b)(2)
nℓ ,K

(b)
nℓ ,W

(b)
nℓ and T

(b)
nℓ (where b =↑, ↓), describing the dependence on

θN , are the same functions as the ones used in the even-dimensional case (see eqs. (5.10)-

(5.12)). By expressing χ̂±ℓρ̃ in terms of χ±ℓρ̃ (by making use of eqs. (E.34) and (E.35)),

it is straightforward to show that eqs. (E.38), (E.39) and (E.40) are equal to eqs. (5.35),

(5.36) and (5.37), respectively, as presented in Subsection 5.2.

Type-II STSSH’s of rank 2 for N odd. In order to construct the type-II STSSH’s of

rank 2 on SN , we use the following vector-spinors on SN−1:

ˆ̃
ψ
(Ã;ℓρ̃)
−θj

(θN−1) ≡
1√
2
(1+ iγN )ψ̃

(Ã;ℓρ̃)
−θj

(θN−1) (E.41)

ˆ̃
ψ
(Ã;ℓρ̃)
+θj

(θN−1) ≡ γN
ˆ̃
ψ
(Ã;ℓρ̃)
−θj

(θN−1), (E.42)

where ψ̃
(Ã;ℓρ̃)
±θj

(j = 1, ..., N−1) are the TT eigevector-spinors on SN−1 (satisfying eqs. (4.14)

and (4.15)) and ψ̃
(Ã;ℓρ̃)
+θj

= γN ψ̃
(Ã;ℓρ̃)
−θj

. The vector-spinors
ˆ̃
ψ
(Ã;ℓρ̃)
±θj

satisfy

γN /̃∇ ˆ̃
ψ
(Ã;ℓρ̃)
±θj

= ±
(
ℓ+

N − 1

2

)
ˆ̃
ψ
(Ã;ℓρ̃)
±θj

(E.43)

γ̃θi
ˆ̃
ψ
(Ã;ℓρ̃)
±θi

= ∇̃θi ˆ̃ψ
(Ã;ℓρ̃)
±θi

= 0. (E.44)
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By making use of the vector-spinors
ˆ̃
ψ
(Ã;ℓρ̃)
±θj

, we separate variables for the type-II

STSSH’s ψ
(II-Ã;nℓ;ρ̃)
±µν on SN as follows:

ψ
(II-Ã;nℓ;ρ̃)
±θNθj

(θN ,θN−1) =ϕ
(0)
nℓ (θN )

ˆ̃
ψ
(Ã;ℓρ̃)
−θj

(θN−1)± iψ
(0)
nℓ (θN )

ˆ̃
ψ
(Ã;ℓρ̃)
+θj

(θN−1) (E.45)

ψ
(II-Ã;nℓ;ρ̃)
±θjθk

(θN ,θN−1) =Γ
(↑)
nℓ (θN )∇̃(θj

ˆ̃
ψ
(Ã;ℓρ̃)
−θk)

(θN−1)± iΓ
(↓)
nℓ (θN )∇̃(θj

ˆ̃
ψ
(Ã;ℓρ̃)
+θk)

(θN−1)

− i∆
(↑)
nℓ (θN )γ̃(θj

ˆ̃
ψ
(Ã;ℓρ̃)
+θk)

(θN−1)∓∆
(↓)
nℓ (θN )γ̃(θj

ˆ̃
ψ
(Ã;ℓρ̃)
−θk)

(θN−1)

(E.46)

(j, k = 1, ..., N − 1), while ψ
(II-Ã;nℓ;ρ̃)
±θNθN

= 0 by definition. By working as in the case with N

even, we find that the functions ϕ
(0)
nℓ , ψ

(0)
nℓ ,∆

(b)
nℓ and Γ

(b)
nℓ (where b =↑, ↓) are given by the

same expressions as in the even-dimensional case (see eqs. (5.39) and (5.40)). By expressing
ˆ̃
ψ
(Ã;ℓρ̃)
±θj

in terms of ψ̃
(Ã;ℓρ̃)
±θj

(with the use of eqs. (E.41) and (E.42)), we straightforwardly

find that eqs. (E.45) and (E.46) are equal to eqs. (5.39) and (5.40), respectively.

Type-III STSSH’s of rank 2 for N odd. In order to construct the type-III STSSH’s

of rank 2 on SN , we use the following rank-2 symmetric tensor-spinors on SN−1:

ˆ̃
ψ
(B̃;ℓρ̃)
−θjθk

(θN−1) ≡
1√
2
(1+ iγN )ψ̃

(B̃;ℓρ̃)
−θjθk

(θN−1) (E.47)

ˆ̃
ψ
(B̃;ℓρ̃)
+θjθk

(θN−1) ≡ γN
ˆ̃
ψ
(B̃;ℓρ̃)
−θjθk

(θN−1), (E.48)

where ψ̃
(B̃;ℓρ̃)
±θjθK

(j, k = 1, ..., N −1) are the STSSH’s of rank 2 on SN−1 (satisfying eqs. (5.6)-

(5.8)). Also, note that ψ̃
(B̃;ℓρ̃)
+θjθk

= γN ψ̃
(B̃;ℓρ̃)
−θjθk

. The tensor-spinors
ˆ̃
ψ
(B̃;ℓρ̃)
±θjθk

satisfy

γN /̃∇ ˆ̃
ψ
(B̃;ℓρ̃)
±θjθk

= ±
(
ℓ+

N − 1

2

)
ˆ̃
ψ
(B̃;ℓρ̃)
±θjθk

(E.49)

γ̃θi
ˆ̃
ψ
(B̃;ℓρ̃)
±θiθk

= ∇̃θi ˆ̃ψ
(B̃;ℓρ̃)
±θiθk

= 0 (E.50)

g̃θiθj
ˆ̃
ψ
(B̃;ℓρ̃)
±θiθj

= 0 (E.51)

(i, j, k = 1, ..., N − 1).

By making use of the tensor-spinors
ˆ̃
ψ
(B̃;ℓρ̃)
±θjθk

, we separate variables for the type-III

STSSH’s ψ
(III-B̃;nℓ;ρ̃)
±µν on SN as follows:

ψ
(III-B̃;nℓ;ρ̃)
±θjθk

(θN ,θN−1) =ϕ
(−2)
nℓ (θN )

ˆ̃
ψ
(B̃;ℓρ̃)
−θjθk

(θN−1)± iψ
(−2)
nℓ (θN )

ˆ̃
ψ
(B̃;ℓρ̃)
+θjθk

(θN−1) (E.52)

(j, k = 1, ..., N − 1), while ψ
(III-B̃;nℓ;ρ̃)
±θNθN

= 0 and ψ
(III-B̃;nℓ;ρ̃)
±θNθj

= 0 (by definition). By working

as in the case with N even, we find that the functions ϕ
(−2)
nℓ and ψ

(−2)
nℓ are given by eqs. (3.1)

and (3.2), respectively [and, thus, eq. (E.52) is equal to eq. (5.43)].

F Deriving the formulae for the spin(N+1) transformation of the STSSH’s

of ranks 1 and 2 on SN and determining their normalisation factors

In Subsections F.1-F.3 of this Appendix we derive the transformation formulae (6.10),

(6.15), (6.29) and (6.30) for STSSH’s of rank 1 on SN and we calculate the normalisation

– 66 –



factors c
(I;r=1)
N (n, ℓ) and c

(II;r=1)
N (n, ℓ) [eq. (6.8)]. The derivation of the transformation

formulae and the calculation of the normalisation factors for the STSSH’s of rank 2 have

many similarities with the case of rank-1 STSSH’s and, thus, we discuss them in less detail

in Subsection F.4.

F.1 Calculating c
(II;r=1)
N (n, ℓ) and making the first step towards the calculation

of c
(I;r=1)
N (n, ℓ)

Since it is a quite simple task, let us start by calculating directly the normalisation factor

for type-II STSSH’s of rank 1 for arbitrary N . For N even, we substitute the unnormalised

type-II modes (4.17) (or (4.18)) into the inner product (6.7). Then, by performing the

integration over SN−1 using eq. (4.16), we find

∣∣∣∣∣
c
(II;r=1)
N (n, ℓ)√

2

∣∣∣∣∣

−2

=

∫ π

0
dθN sinN−3 θN

[(
ϕ
(−1)
nℓ (θN )

)2
+
(
ψ
(−1)
nℓ (θN )

)2]

=
1

4

∫ π

0
dθN sinN−1 θN

[(
ϕ
(0)
nℓ (θN )

)2
+
(
ψ
(0)
nℓ (θN )

)2]
, (F.1)

where the functions ϕ
(0)
nℓ and ψ

(0)
nℓ are given by eqs. (3.1) and (3.2), respectively. The integral

in the last line is the same integral that appears in the normalisation of spinor eigenfunctions

on SN in Ref. [21]. Thus, using the result of Ref. [21] we readily find

∣∣∣∣∣
c
(II;r=1)
N (n, ℓ)√

2

∣∣∣∣∣

2

=
1

2N−3

Γ(n− ℓ+ 1)Γ(n+ ℓ+N)

|Γ(n+ N
2 )|2

, (F.2)

which is a special case of eq. (6.8). For N odd, the calculation is similar and we find again

that the normalisation factor is given by eq. (6.8).

The normalisation factor of the type-I modes can be found by calculating the following

integral:

∣∣∣∣∣
c
(I;r=1)
N (n, ℓ)√

2

∣∣∣∣∣

−2

=

∫ π

0
dθN sinN−1 θN

[(
ϕ
(1)
nℓ (θN )

)2
+
(
ψ
(1)
nℓ (θN )

)2]

+

[(
ℓ+

N − 1

2

)2

− (N − 1)(N − 2)

4

]

×
∫ π

0
dθN sinN−3 θN

[(
C

(↑)(1)
nℓ (θN )

)2
+
(
C

(↓)(1)
nℓ (θN )

)2]

+ (N − 1)

∫ π

0
dθN sinN−3 θN

[∣∣∣D(↑)(1)
nℓ (θN )

∣∣∣
2
+
∣∣∣D(↓)(1)

nℓ (θN )
∣∣∣
2
]

+ 2i

(
ℓ+

N − 1

2

)

×
∫ π

0
dθN sinN−3 θN

×
[
C

(↑)(1)
nℓ (θN )D

(↑)(1)
nℓ (θN ) + C

(↓)(1)
nℓ (θN )D

(↓)(1)
nℓ (θN )

]
, (F.3)
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where C
(↑)(1)
nℓ , C

(↓)(1)
nℓ , D

(↑)(1)
nℓ and D

(↓)(1)
nℓ are given by eqs. (4.9), (4.10), (4.11) and (4.12),

respectively. For N even, eq. (F.3) is derived by substituting the expressions (4.5) and

(4.6) for type-I modes into the inner product (6.7) and then performing the integration

over SN−1 (with the use of eqs. (2.23) and (D.7)). For N odd, by working similarly we find

again eq. (F.3). Since the integrals in eq. (F.3) are not as simple as in the case of type-II

modes, we are going to take an indirect route. To be specific, we first obtain by direct

calculation the normalisation factor of the type-I modes with the highest allowed value for

ℓ, i.e. c
(I;r=1)
N (n, ℓ = n). Then, once we have obtained the transformation formulae of the

type-I modes under spin(N+1), the normalisation factor c
(I;r=1)
N (n, ℓ) (for ℓ = 1, 2, ....n−1)

will be constructed in terms of c
(I;r=1)
N (n, n) by exploiting the spin(N +1) invariance of the

inner product (6.4). To calculate c
(I;r=1)
N (n, n) we let ℓ = n in eq. (F.3) and by calculating

the integrals using Mathematica 11.2 we find

∣∣∣∣∣
c
(I;r=1)
N (n, n)√

2

∣∣∣∣∣

2

=
n(N − 2)Γ(n+ N

2 + 1
2)

41−n(1 + n)(N − 1)
√
πΓ(n+ N

2 )
. (F.4)

F.2 Derivation of the transformation formulae of type-I and type-II-I STSSH’s

of rank 1 and calculation of the normalisation factor c
(I;r=1)
N (n, ℓ) for N even

Below we give details for the derivation of the transformation formulae (6.10) and (6.15)

for rank-1 (r = 1) modes with positive spin projection [these modes are given by eqs. (4.7),

(4.8) and (4.18)]. The calculations for the rank-1 modes with negative spin projection are

not presented here, as they can be performed in the same way.

In order to derive the desired transformation formulae (6.10) and (6.15), it is sufficient

to study the following two components of the Lie-Lorentz derivative (6.1): LS ψθN and

LS ψθN−1
. After a straightforward calculation we find

LS ψθN =

(
S

µ∂µ +
sin θN−1

2 sin θN
γNγN−1

)
ψθN +

sin θN−1

sin2 θN
ψθN−1

(F.5)

and

LS ψθN−1
=

(
S

µ∂µ − cot θN cos θN−1 +
sin θN−1

2 sin θN
γNγN−1

)
ψθN−1

− sin θN−1 ψθN ,

(F.6)

where we have substituted eqs. (2.4), (2.9), (2.17) and (6.6) into eq. (6.1). Since N is even,

we express γNγN−1 in eqs. (F.5) and (F.6) as

γNγN−1 =

(
−iγ̃N−1 0

0 iγ̃N−1

)
, (F.7)

where we have used eq. (2.11).

The partial derivatives in eqs. (F.5) and (F.6) act only on the coordinates {θN , θN−1}.
Thus, for later convenience let us introduce the functions ϕ̃

(ã)
ℓm(θN−1) and ψ̃

(ã)
ℓm(θN−1) de-

scribing the θN−1-dependence of the STSSH’s on SN−1 . In analogy to eqs. (3.1) and (3.2),
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these functions are given by

ϕ̃
(ã)
ℓm(θN−1) = κ̃ϕ̃(ℓ,m)

(
cos

θN−1

2

)m+1−ã(
sin

θN−1

2

)m−ã

× F

(
−ℓ+m, ℓ+m+N − 1;m+

N − 1

2
; sin2

θN−1

2

)
, (F.8)

and

ψ̃
(ã)
ℓm(θN−1) = κ̃ϕ̃(ℓ,m)

ℓ+ N−1
2

m+ N−1
2

(
cos

θN−1

2

)m−ã(
sin

θN−1

2

)m+1−ã

× F

(
−ℓ+m, ℓ+m+N − 1;m+

N + 1

2
; sin2

θN−1

2

)
, (F.9)

where the normalisation factor is given by

κ̃ϕ̃(ℓ,m) =
Γ(ℓ+ N−1

2 )

Γ(ℓ−m+ 1)Γ(m+ N−1
2 )

. (F.10)

The number ã in eqs. (F.8) and (F.9) is an integer and m is the angular momentum

quantum number on SN−2 [with ℓ ≥ m, in analogy with eq. (3.4)]. The formulae analogous

to eqs. (3.5) and (3.6) are given by

(
d

dθN−1
+
N + 2ã− 2

2
cot θN−1 +

m+ N−2
2

sin θN−1

)
ψ̃
(ã)
ℓm =

(
ℓ+

N − 1

2

)
ϕ̃
(ã)
ℓm (F.11)

and

(
d

dθN−1
+
N + 2ã− 2

2
cot θN−1 −

m+ N−2
2

sin θN−1

)
ϕ̃
(ã)
ℓm = −

(
ℓ+

N − 1

2

)
ψ̃
(ã)
ℓm , (F.12)

respectively.

Motivated by the techniques used in Refs. [13] and [22], in order to derive the transfor-

mation formulae of our STSSH’s we introduce the ladder operators for ℓ, sending ℓ to ℓ± 1

when acting on the functions ϕ
(a)
nℓ (θN ), ψ

(a)
nℓ (θN ), ϕ̃

(ã)
ℓm(θN−1) and ψ̃

(ã)
ℓm(θN−1). The ladder

operators are given by the following expressions:

T
(+;a)
ϕ =

d

dθN
+

(
−ℓ+ a− 1

2

)
cot θN +

1

2 sin θN
, (F.13)

T
(+;a)
ψ =

d

dθN
+

(
−ℓ+ a− 1

2

)
cot θN − 1

2 sin θN
, (F.14)

T
(−;a)
ϕ =

d

dθN
+

(
ℓ+N + a− 3

2

)
cot θN − 1

2 sin θN
, (F.15)

T
(−;a)
ψ =

d

dθN
+

(
ℓ+N + a− 3

2

)
cot θN +

1

2 sin θN
, (F.16)
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Π̃
(+;ã)

ϕ̃
= sin θN−1

d

dθN−1
+

(
ℓ+ ã+N − 3

2

)
cos θN−1 −

m+ N−2
2

2(ℓ+ N
2 )
, (F.17)

Π̃
(+;ã)

ψ̃
= sin θN−1

d

dθN−1
+

(
ℓ+ ã+N − 3

2

)
cos θN−1 +

m+ N−2
2

2(ℓ+ N
2 )
, (F.18)

Π̃
(−;ã)

ϕ̃
= sin θN−1

d

dθN−1
+

(
−ℓ+ ã− 1

2

)
cos θN−1 +

m+ N−2
2

2(ℓ+ N−2
2 )

, (F.19)

Π̃
(−;ã)

ψ̃
= sin θN−1

d

dθN−1
+

(
−ℓ+ ã− 1

2

)
cos θN−1 −

m+ N−2
2

2(ℓ+ N−2
2 )

. (F.20)

These operators act as follows:

T
(+;a)
f f

(a)
nℓ (θN ) = k(+)f

(a)
n ℓ+1(θN ), (F.21)

T
(−;a)
f f

(a)
nℓ (θN ) = k(−)f

(a)
n ℓ−1(θN ), (F.22)

Π̃
(+;ã)

f̃
f̃
(ã)
ℓm (θN−1) = k̃(+)f̃

(ã)
ℓ+1m(θN−1), (F.23)

Π̃
(−;ã)

f̃
f̃
(ã)
ℓm (θN−1) = k̃(−)f̃

(ã)
ℓ−1m(θN−1), (F.24)

where f
(a)
nℓ (θN ) ∈ {ϕ(a)nℓ (θN ), ψ

(a)
nℓ (θN ) }, f̃

(ã)
ℓm (θN−1) ∈ { ϕ̃(ã)ℓm(θN−1), ψ̃

(ã)
ℓm(θN−1) } and

k(+) = −(n+ ℓ+N), (F.25)

k(−) = n− ℓ+ 1, (F.26)

k̃(+) =
(ℓ+N − 1 +m)(ℓ−m+ 1)

ℓ+N/2
, (F.27)

k̃(−) = −(ℓ+ N−1
2 − 1)(ℓ+ N−1

2 )

ℓ+ (N − 2)/2
. (F.28)

One can straightforwardly prove the ladder relations (F.21)-(F.24) using the raising and

lowering operators for the parameters of the Gauss hypergeometric function given in Ap-

pendix B. (Similar ladder relations have been obtained by the author in Ref. [22] while

studying the Dirac field on dSN .)

Let us now proceed to the derivation of the transformation formulae of the type-I

and type-II-I modes. It is clear from the expressions (F.5) and (F.6) for the Lie-Lorentz

derivative that we need to express the type-I and type-II-I modes in a form where the

dependence on both θN and θN−1 is written out explicitly. By substituting eq. (C.1) into

eqs. (4.7) and (4.8), we express the type-I modes with positive spin projection as

ψ
(I;+;nℓm;ρ)
±θN

(θN , θN−1,θN−2)

=
c̃N−1(ℓ,m)√

2




iψ
(1)
nℓ (θN )

[
ϕ̃
(0)
ℓm(θN−1) ˆ̃χ−mρ(θN−2) + iψ̃

(0)
ℓm(θN−1) ˆ̃χ+mρ(θN−2)

]

±ϕ(1)nℓ (θN )
[
ϕ̃
(0)
ℓm(θN−1) ˆ̃χ−mρ(θN−2) + iψ̃

(0)
ℓm(θN−1) ˆ̃χ+mρ(θN−2)

]




(F.29)
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ψ
(I;+;nℓm;ρ)
±θN−1

(θN , θN−1,θN−2)

=
c̃N−1(ℓ,m)√

2




i
[
E

(1)
nℓm(θN , θN−1) ˆ̃χ−mρ(θN−2) + iΣ

(1)
nℓm(θN , θN−1) ˆ̃χ+mρ(θN−2)

]

±
[
H

(1)
nℓm(θN , θN−1) ˆ̃χ−mρ(θN−2) + iO

(1)
nℓm(θN , θN−1) ˆ̃χ+mρ(θN−2)

]


 ,

(F.30)

where c̃N−1(ℓ,m) is the normalisation factor (C.4) for the eigenspinors on SN−1, while the

spinors ˆ̃χ±mρ(θN−2) on SN−2 are defined by eq. (C.2). Also, we have defined

O
(a)
nℓm(θN , θN−1) = C

(↑)(a)
nℓ (θN )

∂

∂θN−1
ψ̃
(0)
ℓm(θN−1) + iD

(↑)(a)
nℓ (θN ) ϕ̃

(0)
ℓm(θN−1) (F.31)

H
(a)
nℓm(θN , θN−1) = C

(↑)(a)
nℓ (θN )

∂

∂θN−1
ϕ̃
(0)
ℓm(θN−1)− iD

(↑)(a)
nℓ (θN ) ψ̃

(0)
ℓm(θN−1) (F.32)

E
(a)
nℓm(θN , θN−1) = C

(↓)(a)
nℓ (θN )

∂

∂θN−1
ϕ̃
(0)
ℓm(θN−1)− iD

(↓)(a)
nℓ (θN ) ψ̃

(0)
ℓm(θN−1) (F.33)

Σ
(a)
nℓm(θN , θN−1) = C

(↓)(a)
nℓ (θN )

∂

∂θN−1
ψ̃
(0)
ℓm(θN−1) + iD

(↓)(a)
nℓ (θN ) ϕ̃

(0)
ℓm(θN−1). (F.34)

(Recall that C
(↑)(a)
nℓ , C

(↓)(a)
nℓ , D

(↑)(a)
nℓ and D

(↓)(a)
nℓ are given by eqs. (4.9), (4.10), (4.11) and

(4.12), respectively.) Similarly, the type-I modes with negative spin projection are expressed

as

ψ
(I;−;nℓm;ρ)
±θN

(θN , θN−1,θN−2)

=
c̃N−1(ℓ,m)√

2




ϕ
(1)
nℓ (θN )

[
ϕ̃
(0)
ℓm(θN−1) ˆ̃χ−mρ(θN−2)− iψ̃

(0)
ℓm(θN−1) ˆ̃χ+mρ(θN−2)

]

±iψ(1)
nℓ (θN )

[
ϕ̃
(0)
ℓm(θN−1) ˆ̃χ−mρ(θN−2)− iψ̃

(0)
ℓm(θN−1) ˆ̃χ+mρ(θN−2)

]




(F.35)

ψ
(I;−;nℓm;ρ)
±θN−1

(θN , θN−1,θN−2)

=
c̃N−1(ℓ,m)√

2




H
(1)
nℓm(θN , θN−1) ˆ̃χ−mρ(θN−2)− iO

(1)
nℓm(θN , θN−1) ˆ̃χ+mρ(θN−2)

±i
[
E

(1)
nℓm(θN , θN−1) ˆ̃χ−mρ(θN−2)− iΣ

(1)
nℓm(θN , θN−1) ˆ̃χ+mρ(θN−2)

]


 .

(F.36)

Similarly, it is straightforward to express the type-II-I modes with positive spin projec-

tion (4.18) as follows:

ψ
(II-I;+;nℓm;ρ)
±θN

(θN , θN−1,θN−2) =0, (F.37)
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ψ
(II-I;+;nℓm;ρ)
±θN−1

(θN , θN−1,θN−2)

=
c̃
(I;r̃=1)
N−1 (ℓ,m)

√
2




iψ
(−1)
nℓ (θN )

[
ϕ̃
(1)
ℓm(θN−1) ˆ̃χ−mρ(θN−2) + iψ̃

(1)
ℓm(θN−1) ˆ̃χ+mρ(θN−2)

]

±ϕ(−1)
nℓ (θN )

[
ϕ̃
(1)
ℓm(θN−1) ˆ̃χ−mρ(θN−2) + iψ̃

(1)
ℓm(θN−1) ˆ̃χ+mρ(θN−2)

]


 ,

(F.38)

where c̃
(I;r=1)
N−1 (ℓ,m) is the normalisation factor of the STSSH’s of rank 1 on SN−1 and it

will be determined later. The type-II-I modes with negative spin projection (4.17) are

expressed as

ψ
(II-I;−;nℓm;ρ)
±θN

(θN , θN−1,θN−2) = 0, (F.39)

ψ
(II-I;−;nℓm;ρ)
±θN−1

(θN , θN−1,θN−2)

=
c̃
(I;r̃=1)
N−1 (ℓ,m)

√
2




ϕ
(−1)
nℓ (θN )

[
ϕ̃
(1)
ℓm(θN−1) ˆ̃χ−mρ(θN−2)− iψ̃

(1)
ℓm(θN−1) ˆ̃χ+mρ(θN−2)

]

±iψ(−1)
nℓ (θN )

[
ϕ̃
(1)
ℓm(θN−1) ˆ̃χ−mρ(θN−2)− iψ̃

(1)
ℓm(θN−1) ˆ̃χ+mρ(θN−2)

]


 ,

(F.40)

F.2.1 Derivation of the transformation formula (6.10) for type-I modes of rank

1 and calculation of the normalisation factor c
(I;r=1)
N (n, ℓ)

By using the expressions (F.29) and (F.30) for the type-I modes, we express the Lie-Lorentz

derivative (F.5) as

LSψ
(I;+;nℓm;ρ)
±θN

=
c̃N−1(ℓ,m)√

2



i ˆ̃χ−mρ(θN−2)T

(I)
3 (θN , θN−1)− ˆ̃χ+mρ(θN−2)T

(I)
4 (θN , θN−1)

± ˆ̃χ−mρ(θN−2)T
(I)
1 (θN , θN−1)± i ˆ̃χ+mρ(θN−2)T

(I)
2 (θN , θN−1)


 , (F.41)

where

T
(I)
1 = S

µ∂µ

[
ϕ
(1)
nℓ ϕ̃

(0)
ℓm

]
− sin θN−1

2 sin θN
ϕ
(1)
nℓ ψ̃

(0)
ℓm +

sin θN−1

sin2 θN
H

(1)
nℓm, (F.42)

T
(I)
2 = S

µ∂µ

[
ϕ
(1)
nℓ ψ̃

(0)
ℓm

]
+

sin θN−1

2 sin θN
ϕ
(1)
nℓ ϕ̃

(0)
ℓm +

sin θN−1

sin2 θN
O

(1)
nℓm, (F.43)

T
(I)
3 = S

µ∂µ

[
ψ
(1)
nℓ ϕ̃

(0)
ℓm

]
+

sin θN−1

2 sin θN
ψ
(1)
nℓ ψ̃

(0)
ℓm +

sin θN−1

sin2 θN
E

(1)
nℓm, (F.44)

T
(I)
4 = S

µ∂µ

[
ψ
(1)
nℓ ψ̃

(0)
ℓm

]
− sin θN−1

2 sin θN
ψ
(1)
nℓ ϕ̃

(0)
ℓm +

sin θN−1

sin2 θN
Σ
(1)
nℓm. (F.45)
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(Recall that O
(1)
nℓm, H

(1)
nℓm, E

(1)
nℓm and Σ

(1)
nℓm are given by eqs. (F.31), (F.32), (F.33) and (F.34),

respectively.) In order to proceed we need to make use of the following relations:

T
(I)
1 = R

(I)k(+)k̃(+)ϕ
(1)
n ℓ+1ϕ̃

(0)
ℓ+1m + L

(I)k(−)k̃(−)ϕ
(1)
n ℓ−1ϕ̃

(0)
ℓ−1m + κ

(I)ψ
(1)
nℓ ϕ̃

(0)
ℓm, (F.46)

T
(I)
2 = R

(I)k(+)k̃(+)ϕ
(1)
n ℓ+1ψ̃

(0)
ℓ+1m + L

(I)k(−)k̃(−)ϕ
(1)
n ℓ−1ψ̃

(0)
ℓ−1m − κ

(I)ψ
(1)
nℓ ψ̃

(0)
ℓm, (F.47)

T
(I)
3 = R

(I)k(+)k̃(+)ψ
(1)
n ℓ+1ϕ̃

(0)
ℓ+1m + L

(I)k(−)k̃(−)ψ
(1)
n ℓ−1ϕ̃

(0)
ℓ−1m − κ

(I)ϕ
(1)
nℓ ϕ̃

(0)
ℓm, (F.48)

T
(I)
4 = R

(I)k(+)k̃(+)ψ
(1)
n ℓ+1ψ̃

(0)
ℓ+1m + L

(I)k(−)k̃(−)ψ
(1)
n ℓ−1ψ̃

(0)
ℓ−1m + κ

(I)ϕ
(1)
nℓ ψ̃

(0)
ℓm, (F.49)

where k(+), k(−), k̃(+) and k̃(−) are given by eqs. (F.25), (F.26), (F.27) and (F.28), respec-

tively, while κ
(I) is the coefficient defined in eq. (6.13) (with r = 1) and

R
(I) =

ℓ+N

2(ℓ+ N−1
2 )(ℓ+N − 1)

, L
(I) =

1− ℓ

2ℓ(ℓ+ N−1
2 )

. (F.50)

Let us outline the steps required for proving eq. (F.46). (Equations (F.47)-(F.49) are

proved similarly.) First, we express T
(I)
1 on the left-hand side of eq. (F.46) in terms of

ϕ
(1)
nℓ , dϕ

(1)
nℓ /dθN , ϕ̃

(0)
ℓm and dϕ̃

(0)
ℓm/dθN−1 by making use of eqs. (F.42), (F.32), (F.12), (4.9),

(4.11) and (3.6). As for the right-hand side, we express ϕ
(1)
n ℓ±1 and ϕ̃

(0)
ℓ±1m in terms of

ϕ
(1)
nℓ , dϕ

(1)
nℓ /dθN and ϕ̃

(0)
ℓm, dϕ̃

(0)
ℓm/dθN−1, respectively, by making use of the ladder rela-

tions (F.21)-(F.24) and we also express ψ
(1)
nℓ in terms of ϕ

(1)
nℓ and dϕ

(1)
nℓ /dθN by making

use of eq. (3.6). Then, it is straightforward to show that the two sides of eq. (F.46) are

equal. We have verified the calculations using Mathematica 11.2.

Then, by substituting eqs. (F.46)-(F.49) into eq. (F.41), we express the latter as

LSψ
(I;+;nℓm;ρ)
±θN

=
c̃N−1(ℓ,m)√

2

{
R

(I)k(+)k̃(+)




iψ
(1)
n ℓ+1

[
ϕ̃
(0)
ℓ+1m

ˆ̃χ−mρ + iψ̃
(0)
ℓ+1m

ˆ̃χ+mρ

]

±ϕ(1)n ℓ+1

[
ϕ̃
(0)
ℓ+1m

ˆ̃χ−mρ + iψ̃
(0)
ℓ+1m

ˆ̃χ+mρ

]




+ L
(I)k(−)k̃(−)




iψ
(1)
n ℓ−1

[
ϕ̃
(0)
ℓ−1m

ˆ̃χ−mρ + iψ̃
(0)
ℓ−1m

ˆ̃χ+mρ

]

±ϕ(1)n ℓ−1

[
ϕ̃
(0)
ℓ−1m

ˆ̃χ−mρ + iψ̃
(0)
ℓ−1m

ˆ̃χ+mρ

]




− iκ(I)




ϕ
(1)
nℓ

[
ϕ̃
(0)
ℓm

ˆ̃χ−mρ − iψ̃
(0)
ℓm

ˆ̃χ+mρ

]

±iψ(1)
nℓ

[
ϕ̃
(0)
ℓm

ˆ̃χ−mρ − iψ̃
(0)
ℓm

ˆ̃χ+mρ

]




}
(F.51)

and we straightforwardly rewrite this as

LSψ
(I;+;nℓm;ρ)
±θN

= A
(I)ψ

(I;+;n (ℓ+1)m;ρ)
±θN

+ B
(I)ψ

(I;+;n (ℓ−1)m;ρ)
±θN

− iκ(I)ψ
(I;−;nℓm;ρ)
±θN

, (F.52)

as in eq. (6.10), where we have defined

A
(I) ≡ R

(I)k(+)k̃(+) c̃N−1(ℓ,m)

c̃N−1(ℓ+ 1,m)
, (F.53)

B
(I) ≡ L

(I)k(−)k̃(−) c̃N−1(ℓ,m)

c̃N−1(ℓ− 1,m)
. (F.54)
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It easy to verify that these expressions for A (I) and B(I) agree with the expressions given

by eqs. (6.11) (with r = 1) and (6.12) (with r = 1), respectively.

Now, we can determine the normalisation factor c
(I;r=1)
N (n, ℓ) for the type-I modes.

By using the spin(N + 1) invariance of the inner product (6.5) between ψ
(I;σ;nℓm;ρ)
±µ and

ψ
(I;σ;n(ℓ+1)m;ρ)
±µ and using the transformation formula (6.10) we find

∣∣∣∣∣
c
(I;r=1)
N (n, ℓ)

c
(I;r=1)
N (n, ℓ+ 1)

∣∣∣∣∣

2

=
(n− ℓ) ℓ (ℓ+N − 1)

(ℓ+ 1)(ℓ+N)(n+ ℓ+N)
. (F.55)

By iterating this equation and using eq. (F.4), one can straightforwardly find

∣∣∣∣∣
c
(I;r=1)
N (n, ℓ)√

2

∣∣∣∣∣

2

=
1

2N+1

Γ(n− ℓ+ 1)Γ(n+ ℓ+N)

|Γ(n+ N
2 )|2

× (N − 2)ℓ(ℓ+N − 1)

(N − 1)
(
[n+N/2]2 − [N − 2]2 /4

) , (F.56)

which is eq. (6.8) with r = 1 and r̃(B) = r̃(I) = 0. For later convenience, note that we

can easily deduce the form of the normalisation factor for the type-I STSSH’s of rank 1 on

SN−1 by making the replacements N → N − 1, n→ ℓ and ℓ→ m in eq. (F.56), as

∣∣∣∣∣
c̃
(I;r̃=1)
N−1 (ℓ,m)

√
2

∣∣∣∣∣

2

=
1

2N
Γ(ℓ−m+ 1)Γ(ℓ+m+N − 1)

|Γ(ℓ+ N−1
2 )|2

× (N − 3)m(m+N − 2)

(N − 2)(ℓ+ 1)(ℓ+N − 2)
. (F.57)

Let us now discuss the mixing between type-I and type-II-I modes under the spin(N+

1) transformation. By using the equation ψ
(II-I;σ;nℓm;ρ)
±θN

= 0 and eqs. (F.29) and (F.38)

(or eqs. (F.35) and (F.40)), one readily finds that the component given by (F.5) of the

infinitesimal transformation of a type-II-I mode is proportional to a type-I mode, as

LSψ
(II-I;σ;nℓm;ρ)
±θN

=
sin θN−1

sin2 θN
ψ
(II-I;σ;nℓm;ρ)
±θN−1

=K
(II→I)ψ

(I;σ;nℓm;ρ)
±θN

, (F.58)

in agreement with eq. (6.15), where we have defined

K
(II→I) ≡ 1

2

c̃
(I;r̃=1)
N−1 (ℓ,m)

c̃N−1(ℓ,m)
. (F.59)

It is easy to show that this expression for K (II→I) is equal to the expression given by

eq. (6.20) (with r = 1). Then, since type-II-I modes transform into type-I modes under

the spin(N + 1) transformation, the spin(N + 1) invariance of the inner product (6.5)

(between ψ
(I;σ;nℓm;ρ)
±µ and ψ

(II-I;σ;nℓm;ρ)
±µ ) implies that

LSψ
(I;σ;nℓm;ρ)
±µ = ...+ K

(I→II)ψ
(II-I;σ;nℓm;ρ)
±µ , (F.60)
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where all the STSSH’s in ‘...’ are type-I modes, while K (I→II) is given by

K
(I→II) = −K

(II→I)∗

∣∣∣∣∣
c
(II;r=1)
N (n, ℓ)

c
(I;r=1)
N (n, ℓ)

∣∣∣∣∣

2

, (F.61)

where the asterisk denotes complex conjugation. Then, by using the expression for K (II→I)

[eq. (6.20)] and the expressions for the normalisation factors [eq. (6.8)] we find that K (I→II)

in eq. (F.61) is equal to the expression given by eq. (6.14) (with r = 1).

F.2.2 Derivation of the transformation formula (6.15) for type-II-I modes of

rank 1

By substituting the type-II-I mode (F.38) into the Lie-Lorentz derivative (F.6) we find

LSψ
(II-I;+;nℓm;ρ)
±θN−1

=
c̃
(I;r̃=1)
N−1 (ℓ,m)

√
2



i ˆ̃χ−mρ(θN−2)T

(II)
3 (θN , θN−1)− ˆ̃χ+mρ(θN−2)T

(II)
4 (θN , θN−1)

± ˆ̃χ−mρ(θN−2)T
(II)
1 (θN , θN−1)± i ˆ̃χ+mρ(θN−2)T

(II)
2 (θN , θN−1)


 ,

(F.62)

where

T
(II)
1 = (S µ∂µ − cot θN cos θN−1)

[
ϕ
(−1)
nℓ ϕ̃

(1)
ℓm

]
− sin θN−1

2 sin θN
ϕ
(−1)
nℓ ψ̃

(1)
ℓm, (F.63)

T
(II)
2 = (S µ∂µ − cot θN cos θN−1)

[
ϕ
(−1)
nℓ ψ̃

(1)
ℓm

]
+

sin θN−1

2 sin θN
ϕ
(−1)
nℓ ϕ̃

(1)
ℓm, (F.64)

T
(II)
3 = (S µ∂µ − cot θN cos θN−1)

[
ψ
(−1)
nℓ ϕ̃

(1)
ℓm

]
+

sin θN−1

2 sin θN
ψ
(−1)
nℓ ψ̃

(1)
ℓm, (F.65)

T
(II)
4 = (S µ∂µ − cot θN cos θN−1)

[
ψ
(−1)
nℓ ψ̃

(1)
ℓm

]
− sin θN−1

2 sin θN
ψ
(−1)
nℓ ϕ̃

(1)
ℓm. (F.66)

Then, as in the case of the type-I modes, we prove the following relations:

T
(II)
1 = R

(II)k(+)k̃(+)ϕ
(−1)
n ℓ+1ϕ̃

(1)
ℓ+1m + L

(II)k(−)k̃(−)ϕ
(−1)
n ℓ−1ϕ̃

(1)
ℓ−1m + κ

(II)ψ
(−1)
nℓ ϕ̃

(1)
ℓm +

H
(1)
nℓm

2
,

(F.67)

T
(II)
2 = R

(II)k(+)k̃(+)ϕ
(−1)
n ℓ+1ψ̃

(1)
ℓ+1m + L

(II)k(−)k̃(−)ϕ
(−1)
n ℓ−1ψ̃

(1)
ℓ−1m − κ

(II)ψ
(−1)
nℓ ψ̃

(1)
ℓm +

O
(1)
nℓm

2
,

(F.68)

T
(II)
3 = R

(II)k(+)k̃(+)ψ
(−1)
n ℓ+1ϕ̃

(1)
ℓ+1m + L

(II)k(−)k̃(−)ψ
(−1)
n ℓ−1ϕ̃

(1)
ℓ−1m − κ

(II)ϕ
(−1)
nℓ ϕ̃

(1)
ℓm +

E
(1)
nℓm

2
,

(F.69)

T
(II)
4 = R

(II)k(+)k̃(+)ψ
(−1)
n ℓ+1ψ̃

(1)
ℓ+1m + L

(II)k(−)k̃(−)ψ
(−1)
n ℓ−1ψ̃

(1)
ℓ−1m + κ

(II)ϕ
(−1)
nℓ ψ̃

(1)
ℓm +

Σ
(1)
nℓm

2
,

(F.70)
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where κ
(II) is given by eq. (6.18) (with r = 1) and

R
(II) =

ℓ+N − 2

2(ℓ+ N−1
2 )(ℓ+N − 1)

, L
(II) =

−(1 + ℓ)

2ℓ(ℓ+ N−1
2 )

. (F.71)

By substituting eqs. (F.67)-(F.70) into eq. (F.62) we find

LSψ
(II-I;+;nℓm;ρ)
±θN−1

= A
(II)ψ

(II-I;+;n (ℓ+1)m;ρ)
±θN−1

+ B
(II)ψ

(II-I;+;n (ℓ−1)m;ρ)
±θN−1

− iκ(II)ψ
(II-I;−;nℓm;ρ)
±θN−1

+ K
(II→I)ψ

(I;+;nℓm;ρ)
±θN−1

, (F.72)

in precise agreement with the transformation formula (6.15), where we have defined

A
(II) ≡ R

(II)k(+)k̃(+)
c̃
(I;r̃=1)
N−1 (ℓ,m)

c̃
(I;r̃=1)
N−1 (ℓ+ 1,m)

, (F.73)

B
(II) ≡ L

(II)k(−)k̃(−)
c̃
(I;r̃=1)
N−1 (ℓ,m)

c̃
(I;r̃=1)
N−1 (ℓ− 1,m)

. (F.74)

It easy to verify that these expressions for A (II) and B(II) agree with the expressions given

by eqs. (6.16) (with r = 1) and (6.17) (with r = 1), respectively.

F.3 Derivation of the transformation formulae of type-I and type-II-I STSSH’s

of rank 1 and calculation of the normalisation factor c
(I;r=1)
N (n, ℓ) for N odd

The Lie-Lorentz derivative is given by eqs. (F.5) and (F.6), where γNγN−1 is given by

γNγN−1 =

(
0 1

−1 0

)
, (F.75)

where 1 is the identity spinorial matrix of dimension 2
N−1

2 /2.

The type-I modes on SN with positive spin projection index on SN−1 (σN−1 = +) are

found by substituting eq. (C.6) into eqs. (4.20) and (4.21), as

ψ
(I;nℓ;+;m;ρ)
±θN

(θN , θN−1,θN−2)

=
c̃N−1(ℓ,m)√

2

1√
2




(1 + i) iψ̃
(0)
ℓm(θN−1)

[
ϕ
(1)
nℓ (θN )± iψ

(1)
nℓ (θN )

]
χ̃+mρ(θN−2)

(1− i) ϕ̃
(0)
ℓm(θN−1)

[
−ϕ(1)nℓ (θN )± iψ

(1)
nℓ (θN )

]
χ̃+mρ(θN−2)


 ,

(F.76)

ψ
(I;nℓ;+;m;ρ)
±θN−1

(θN , θN−1,θN−2)

=
c̃N−1(ℓ,m)√

2

1√
2




(1 + i)
[
iO

(1)
nℓm(θN , θN−1)∓ Σ

(1)
nℓm(θN , θN−1)

]
χ̃+mρ(θN−2)

(1− i)
[
−H(1)

nℓm(θN , θN−1)± iE
(1)
nℓm(θN , θN−1)

]
χ̃+mρ(θN−2)




(F.77)
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(the functions describing the dependence on θN and θN−1 in eq. (F.77) are given by

eqs. (F.31)-(F.34)). The component ψ
(I;nℓ;−;m;ρ)
±θN

is obtained from eq. (F.76) by making the

replacement χ̃+mρ → χ̃−mρ and exchanging iψ̃
(0)
ℓm and ϕ̃

(0)
ℓm. The component ψ

(I;nℓ;−;m;ρ)
±θN−1

is

obtained from eq. (F.77) by making the replacement χ̃+mρ → χ̃−mρ and exchanging iO
(1)
nℓm

and H
(1)
nℓm, as well as exchanging ∓Σ

(1)
nℓm and ±iE(1)

nℓm. The ladder relations for the functions

ϕ
(a)
nℓ (θN ), ψ

(a)
nℓ (θN ), ϕ̃

(ã)
ℓm(θN−1), ψ̃

(ã)
ℓm(θN−1) are given again by eqs. (F.21)-(F.24). Equations

(F.46)-(F.49) hold as in the even-dimensional case.

The type-II-I modes on SN with positive spin projection index on SN−1 (σN−1 = +)

are expressed as

ψ
(II-I;nℓ;+;m;ρ)
±θN−1

(θN , θN−1,θN−2)

=
c̃
(I;r̃=1)
N−1 (ℓ,m)

√
2

1√
2




(1 + i) iψ̃
(1)
ℓm(θN−1)

[
ϕ
(−1)
nℓ (θN )± iψ

(−1)
nℓ (θN )

]
χ̃+mρ(θN−2)

(1− i) ϕ̃
(1)
ℓm(θN−1)

[
−ϕ(−1)

nℓ (θN )± iψ
(−1)
nℓ (θN )

]
χ̃+mρ(θN−2)


 ,

(F.78)

while ψ
(II-I;nℓ;−;m;ρ)
±θN−1

is obtained from eq. (F.78) by making the replacement χ̃+mρ → χ̃−mρ

and exchanging iψ̃
(1)
ℓm and ϕ̃

(1)
ℓm. Equations (F.67)-(F.70) hold as in the even-dimensional

case.

The rest of the derivation of the transformation formulae is similar to that for the

even-dimensional case. We find that the transformation formulae for the type-I and type-

II-I modes are given by eqs. (6.29) and (6.30), respectively, while the normalisation factor

c
(I;r=1)
N (n, ℓ) is given by eq. (F.56).

F.4 Transformation properties under spin(N + 1) and normalisation factors for

STSSH’s of rank 2 on SN

As mentioned in the beginning of this Appendix, the calculations needed in order to derive

the transformation formulae and determine the normalisation factors for STSSH’s of rank 2

on SN have many similarities with the case of rank-1 STSSH’s, which was presented above.

Therefore, below we just provide a brief description of the basic steps.

Let us begin by determining the normalisation factor for type-III STSSH’s of rank 2,

c
(III;r=2)
N (n, ℓ). In the case with N even, we substitute the rank-2 type-III modes (5.28)-

(5.30) into the inner product (6.7), while in the case with N odd we substitute the type-III

modes (5.41)-(5.43) into the inner product (6.27). By working as in the case of rank-1

type-II modes, we readily find (with the use of eq. (5.9))

∣∣∣∣∣
c
(III;r=2)
N (n, ℓ)√

2

∣∣∣∣∣

2

=
1

2N−5

Γ(n− ℓ+ 1)Γ(n+ ℓ+N)

|Γ(n+ N
2 )|2

, (F.79)

for both N even and N odd, which is eq. (6.8) with r = r̃(III) = 2.

Now we will determine the normalisation factor for type-II STSSH’s of rank 2, c
(II;r=2)
N (n, ℓ).

For N even we substitute eqs. (5.21)-(5.23) into the inner product (6.7), while for N odd we
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substitute eqs. (5.38)-(5.40) into the inner product (6.27). By performing the integration

over SN−1 (using eqs. (D.13) and (4.16)), we straightforwardly find

∣∣∣∣∣
c
(II;r=2)
N (n, ℓ)√

2

∣∣∣∣∣

−2

= 2

∫ π

0
dθN sinN−3 θN

[(
ϕ
(0)
nℓ (θN )

)2
+
(
ψ
(0)
nℓ (θN )

)2]

+ 2

[(
ℓ+

N − 1

2

)2

− N(N + 1)

4

]

×
∫ π

0
dθN sinN−5 θN



(
Γ
(↑)
nℓ (θN )

2

)2

+

(
Γ
(↓)
nℓ (θN )

2

)2



+ 2(N + 1)

∫ π

0
dθN sinN−5 θN



∣∣∣∣∣
∆

(↑)
nℓ (θN )

2

∣∣∣∣∣

2

+

∣∣∣∣∣
∆

(↓)
nℓ (θN )

2

∣∣∣∣∣

2



+ i

(
ℓ+

N − 1

2

)

×
∫ π

0
dθN sinN−5 θN

[
Γ
(↑)
nℓ (θN )∆

(↑)
nℓ (θN ) + Γ

(↓)
nℓ (θN )∆

(↓)
nℓ (θN )

]
, (F.80)

where Γ
(↑)
nℓ ,Γ

(↓)
nℓ ,∆

(↑)
nℓ and ∆

(↓)
nℓ are given by eqs. (5.26), (5.27), (5.24) and (5.25), respectively.

The calculations can be significantly simplified by making use of the following relations:

4

sin2 θ
ϕ
(0)
nℓ (θ) = ϕ

(1)
n′ ℓ′(θ)

∣∣
N→N+2

,

4

sin2 θ
ψ
(0)
nℓ (θ) = ψ

(1)
n′ ℓ′(θ)

∣∣
N→N+2

,

2

sin2 θ
Γ
(b)
nℓ (θ) = C

(b)(1)
n′ ℓ′ (θ)

∣∣
N→N+2

,

2

sin2 θ
∆

(b)
nℓ (θ) = D

(b)(1)
n′ ℓ′ (θ)

∣∣
N→N+2

, (b =↑, ↓) (F.81)

where θ ∈ [0, π], n′ = n− 1 and ℓ′ = ℓ− 1, while on the right-hand sides of the relations in

eq. (F.81) we have denoted the replacement of N by N + 2 as N → N + 2. The relations

in eq. (F.81) can be readily proved by using eqs. (3.1), (3.2), (4.9), (4.10), (4.11), (4.12),

(5.24), (5.25) (5.26) and (5.27). By comparing eqs. (F.80) and (F.3) and by using eq. (F.81),

we straightforwardly find

∣∣∣∣∣
c
(II;r=2)
N (n, ℓ)√

2

∣∣∣∣∣

2

= 23

∣∣∣∣∣
c
(I;r=1)
N+2 (n− 1, ℓ− 1)

√
2

∣∣∣∣∣

2

(F.82)

=
1

2N
Γ(n− ℓ+ 1)Γ(n+ ℓ+N)

|Γ(n+ N
2 )|2

× N(ℓ− 1)(ℓ+N)

(N + 1)
(
[n+N/2]2 −N2/4

) , (F.83)

which is eq. (6.8) with r = 2 and r̃(B) = r̃(II) = 1.
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As for the normalisation of rank-2 type-I modes, by working as in the case of rank-1

type-I modes, we calculate the normalisation factor for ℓ = n using Mathematica 11.2

∣∣∣∣∣
c
(I;r=2)
N (n, n)√

2

∣∣∣∣∣

2

=
(n− 1)(N − 2)Γ(n+ N

2 + 1
2)

42−n(n+ 1)(N + 1)
√
πΓ(n+ N

2 )
, (F.84)

while the normalisation factor c
(I;r=2)
N (n, ℓ) (for ℓ = 2, 3, ..., n− 1) will be determined using

the spin(N + 1) invariance of the inner product (6.5).

In order to derive the transformation formulae (6.10), (6.15), (6.22), (6.29), (6.30) and

(6.31) for the STSSH’s of rank 2 it is sufficient to study the following components of the

Lie-Lorentz derivative (6.1):

LSψθNθN =
(
S

µ∂µ +
sin θN−1

2 sin θN
γNγN−1

)
ψθNθN +

2 sin θN−1

sin2 θN
ψθNθN−1

, (F.85)

LSψθNθN−1
=
(
S

µ∂µ − cos θN−1 cot θN +
sin θN−1

2 sin θN
γNγN−1

)
ψθNθN−1

+
sin θN−1

sin2 θN
ψθN−1θN−1

− sin θN−1ψθNθN (F.86)

and

LSψθN−1θN−1
=
(
S

µ∂µ − 2 cos θN−1 cot θN +
sin θN−1

2 sin θN
γNγN−1

)
ψθN−1θN−1

− 2 sin θN−1 ψθNθN−1
. (F.87)

By working as in the case of rank-1 STSSH’s, we make use of the ladder operators (F.21)-

(F.24) and (after a long calculation) we find the transformation formulae (6.10), (6.15)

and (6.22) for N even, and the transformation formulae (6.29)-(6.31) for N odd. Then,

as in the case of rank-1 type-I modes, the normalisation factor of rank-2 type-I modes is

found by combining the spin(N + 1) invariance of the inner product between ψ
(I;σ;nℓm;ρ)
±µ1µ2

and ψ
(I;σ;n(ℓ+1)m;ρ)
±µ1µ2 with eq. (F.84), as

∣∣∣∣∣
c
(I;r=2)
N (n, ℓ)√

2

∣∣∣∣∣

2

=
1

2N+3

Γ(n− ℓ+ 1)Γ(n+ ℓ+N)

|Γ(n+ N
2 )|2

× N − 2

N + 1

ℓ(ℓ+N − 1)(ℓ− 1)(ℓ+N)(
[n+N/2]2 − [N − 2]2 /4

)(
[n+N/2]2 −N2/4

) , (F.88)

(for both N even and N odd) which is eq. (6.8) with r = 2 and r̃(B) = r̃(I) = 0.

G Pure gauge modes

In this Appendix, we present details for the derivation of the pure gauge expressions (7.13),

(7.15) and (7.18) for N even. The calculations for N odd are similar and, thus, we do not

present them here.

– 79 –



For later convenience, note that by making the replacements θN → x(t) = π/2 − it,

n→ M̃ −N/2 [eq. (7.5)] in the formulae (3.5) and (3.6) we find

(
d

dx
+
N + 2a− 1

2
cotx+

ℓ+ (N − 1)/2

sinx

)
ψ̂
(a)

M̃ℓ
(t) = M̃ ϕ̂

(a)

M̃ℓ
(t) (G.1)

and
(
d

dx
+
N + 2a− 1

2
cotx− ℓ+ (N − 1)/2

sinx

)
ϕ̂
(a)

M̃ℓ
(t) = −M̃ψ̂

(a)

M̃ℓ
(t), (G.2)

respectively, where cotx = i tanh t and sinx = cosh t. Also, let us obtain lowering operators

for M̃ as follows. By making the replacements N → N + 1, θN−1 → x(t) = π/2 − it,

ℓ→ M̃ −N/2, ã→ a and m→ ℓ in the lowering operator (F.19) we find

L̂
(M̃ ;a)
ϕ ϕ̂

(a)

M̃ℓ
(t) ≡

[
sinx

∂

∂x
+

(
−M̃ +

N − 1

2
+ a

)
cosx+

ℓ+ N−1
2

2(M̃ − 1/2)

]
ϕ̂
(a)

M̃ℓ
(t)

=−
M̃
(
M̃ − ℓ−N/2

)

M̃ − 1/2
ϕ̂
(a)

(M̃−1)ℓ
(t), (G.3)

while by making the same replacements in the lowering operator (F.20) we find

L̂
(M̃ ;a)
ψ ψ̂

(a)

M̃ℓ
(t) ≡

[
sinx

∂

∂x
+

(
−M̃ +

N − 1

2
+ a

)
cosx− ℓ+ N−1

2

2(M̃ − 1/2)

]
ψ̂
(a)

M̃ℓ
(t)

=−
M̃
(
M̃ − ℓ−N/2

)

M̃ − 1/2
ψ̂
(a)

(M̃−1)ℓ
(t). (G.4)

G.1 Pure gauge modes for the strictly massless spin-3/2 field, N even

The type-I modes (7.13) for the strictly massless spin-3/2 field (with M̃ = ±(N −2)/2) are

‘pure gauge’ modes. In this Subsection, we prove explicitly the t-component of eq. (7.13)

and we describe the calculations needed in order to prove the rest of the components. Let

us denote the spinors Λ
(ℓ̃)
± in eq. (7.13) as Λ

(σ;ℓ;ρ̃)
± , where we have written out explicitly

the dependence on the spin projection index σ = ± and the angular momentum quantum

number ℓ = 1, 2, ... . Since these spinors satisfy the Dirac equation ( /∇± iN/2)Λ
(σ;ℓ;ρ̃)
± = 0,

they are given by [22]

Λ
(−;ℓ;ρ̃)
± (t,θN−1) =

2

ℓ




ϕ̂
(0)
N
2
,ℓ
(t)χ−ℓρ̃(θN−1)

∓iψ̂(0)
N
2
,ℓ
(t)χ−ℓρ̃(θN−1)


 , (G.5)

Λ
(+;ℓ;ρ̃)
± (t,θN−1) =

2

ℓ



iψ̂

(0)
N
2
,ℓ
(t)χ+ℓρ̃(θN−1)

∓ϕ̂(0)N
2
,ℓ
(t)χ+ℓρ̃(θN−1)


 , (G.6)

where ϕ̂
(0)
N
2
,ℓ
(t) and ψ̂

(0)
N
2
,ℓ
(t) are found by letting M̃ = N/2 in eqs. (7.7) and (7.9), respectively,

while χ±ℓρ̃ are the eigenspinors (2.22) of the Dirac operator on SN−1. The factor of 2/ℓ
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will be motivated naturally below [it arises from the use of the lowering operators (G.3)

and (G.4)]. Below we prove the t-component of eq. (7.13) only for negative spin projection

σ = −. The case with σ = + can be proved in the same way.

The type-I modes Ψ
(I;−;(±N−2

2
)ℓ;ρ̃)

µ for the strictly massless spin-3/2 field (M̃ = ±(N −
2)/2) are found by combining eq. (7.11) with eqs. (4.5) and (4.6), as

Ψ
(I;−;(±N−2

2
)ℓ;ρ̃)

t (t,θN−1) = −i




ϕ̂
(1)

(N−2
2

)ℓ
(t)χ−ℓρ̃(θN−1)

∓iψ̂(1)

(N−2
2

)ℓ
(t)χ−ℓρ̃(θN−1)


 (G.7)

Ψ
(I;−;(±N−2

2
)ℓ;ρ̃)

θj
(t,θN−1)

=




Ĉ
(↑)(1)

(N−2
2

)ℓ
(t) ∇̃θjχ−ℓρ̃(θN−1) + D̂

(↑)(1)

(N−2
2

)ℓ
(t) γ̃θjχ−ℓρ̃(θN−1)

∓iĈ(↓)(1)

(N−2
2

)ℓ
(t) ∇̃θjχ−ℓρ̃(θN−1)∓ iD̂

(↓)(1)

(N−2
2

)ℓ
(t) γ̃θjχ−ℓρ̃(θN−1)


 , (G.8)

where the functions Ĉ
(b)(1)

M̃ℓ
(t) and D̂

(b)(1)

M̃ℓ
(t) (b =↑, ↓) are obtained by making the replace-

ments θN → π/2 − it, n → M̃ − N/2, ϕ
(1)
nℓ (θN ) → ϕ̂

(1)

M̃ℓ
(t), ψ

(1)
nℓ (θN ) → ψ̂

(1)

M̃ℓ
(t) in the

functions C
(b)(1)
nℓ (θN ) and D

(b)(1)
nℓ (θN ) (b =↑, ↓), respectively, in eq. (4.6).

Now, let us prove eq. (7.13) for the t-component of Ψ
(I;−;(±N−2

2
)ℓ;ρ̃)

µ . We will show that

the two sides of eq. (7.13) are equal by making use of the lowering operators (G.3) and

(G.4). We want to show

Ψ
(I;−;(±N−2

2
)ℓ;ρ̃)

t =

(
∂

∂t
± i

2
γt

)
Λ
(−;ℓ;ρ̃)
± (G.9)

which is expressed in terms of upper and lower components as

− i




ϕ̂
(1)

(N−2
2

)ℓ
(t)χ−ℓρ̃(θN−1)

∓iψ̂(1)

(N−2
2

)ℓ
(t)χ−ℓρ̃(θN−1)


 =

2

ℓ




[
∂
∂t ϕ̂

(0)
N
2
,ℓ
(t)− i

2 ψ̂
(0)
N
2
,ℓ
(t)

]
χ−ℓρ̃(θN−1)

∓
[
i ∂∂t ψ̂

(0)
N
2
,ℓ
(t)− 1

2 ϕ̂
(0)
N
2
,ℓ
(t)

]
χ−ℓρ̃(θN−1)



, (G.10)

[where we have used eq. (2.11) and γt = iγN ] or equivalently

ℓ

2
ϕ̂
(1)

(N−2
2

)ℓ
(t) =

ℓ

sinx
ϕ̂
(0)

(N−2
2

)ℓ
(t) =

∂

∂x
ϕ̂
(0)
N
2
,ℓ
(t) +

1

2
ψ̂
(0)
N
2
,ℓ
(t) (G.11)

ℓ

2
ψ̂
(1)

(N−2
2

)ℓ
(t) =

ℓ

sinx
ψ̂
(0)

(N−2
2

)ℓ
(t) =

∂

∂x
ψ̂
(0)
N
2
,ℓ
(t)− 1

2
ϕ̂
(0)
N
2
,ℓ
(t), (G.12)

where we have used eqs. (7.7) and (7.9). Then, by using the formulae (G.1) and (G.2) we

rewrite eqs. (G.11) and (G.12) as

(
sinx

d

dx
− 1

2
cotx+

ℓ+ (N − 1)/2

N − 1

)
ϕ̂
(0)
N
2
,ℓ
(t) =

N ℓ

N − 1
ϕ̂
(0)

(N−2
2

)ℓ
(t) (G.13)
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and
(
sinx

d

dx
− 1

2
cotx− ℓ+ (N − 1)/2

N − 1

)
ψ̂
(0)
N
2
,ℓ
(t) =

N ℓ

N − 1
ψ̂
(0)

(N−2
2

)ℓ
(t), (G.14)

respectively. It is easy to verify that eq. (G.13) is equal to the lowering operator (G.3) acting

on ϕ̂
(0)
N
2
,ℓ
(t), while eq. (G.14) is equal to the lowering operator (G.4) acting on ψ̂

(0)
N
2
,ℓ
(t). Hence,

the two sides of the time component of eq. (7.13) are equal. The rest of the components

of eq. (7.13), i.e. Ψ
(I;−;(±N−2

2
)ℓ;ρ̃)

θj
=
(
∇θj ± i

2γθj
)
Λ
(−;ℓ;ρ̃)
± (j = 1, ..., N − 1), can be proved

straightforwardly just by using eqs. (G.13) and (G.14), as well as formulae (G.1) and (G.2).

G.2 Pure gauge modes for the strictly massless spin-5/2 field, N even

The type-I and type-II modes for the strictly massless spin-5/2 field (with M̃ = ±N/2 -

see eq. (7.15)) are ‘pure gauge’ modes. In this Subsection, we briefly describe how to obtain

the ‘pure gauge’ expression in eq. (7.15). We denote the vector-spinors λ
(B;ℓ̃)
±ν (t,θN−1) in

eq. (7.15) as λ
(B;σ;ℓ;ρ̃)
±ν (t,θN−1) (σ = ±, B = I, II and ℓ = 2, 3, ...). Since the calculations

for σ = − and σ = + are similar, below we discuss only the case with σ = −.

Pure gauge modes of type-I. The type-I modes Ψ
(I;−;(±N

2
)ℓ;ρ̃)

µν for the strictly massless

spin-5/2 field (M̃ = ±N/2) are found by combining eq. (7.11) with eqs. (5.10). The ‘time-

time component’ is

Ψ
(I;−;(±N

2
)ℓ;ρ̃)

tt (t,θN−1) = (−1)×




ϕ̂
(2)
N
2
,ℓ
(t)χ−ℓρ̃(θN−1)

∓iψ̂(2)
N
2
,ℓ
(t)χ−ℓρ̃(θN−1)


 . (G.15)

Similarly, since the TT vector-spinors λ
(B;−;ℓ;ρ̃)
±µ (t,θN−1) in eq. (7.15) satisfy

(
/∇± i

N + 2

2

)
λ
(B;−;ℓ;ρ̃)
±µ = 0,

they are given by the analytic continuation of the type-I STSSH’s of rank 1 in eqs. (4.5)

and (4.6). The ‘time component’ is given by

λ
(I;−;ℓ;ρ̃)
±t (t,θN−1) = − 2i

ℓ− 1




ϕ̂
(1)

(N+2
2

)ℓ
(t)χ−ℓρ̃(θN−1)

∓iψ̂(1)

(N+2
2

)ℓ
(t)χ−ℓρ̃(θN−1)


 . (G.16)

(The factor of 2/(ℓ−1) is inserted for the same reason as the factor of 2/ℓ in eqs. (G.5) and

(G.6).) Then, by using eqs. (G.15) and (G.16), we expand the two sides of Ψ
(I;−;(±N

2
)ℓ;ρ̃)

tt =(
∇t ± i

2γt
)
λ
(I;−;ℓ;ρ̃)
±t [see eq. (7.15)] and find

ℓ− 1

sinx
ϕ̂
(1)
N
2
,ℓ
(t) =

∂

∂x
ϕ̂
(1)

(N+2
2

)ℓ
(t) +

1

2
ψ̂
(1)

(N+2
2

)ℓ
(t) (G.17)

ℓ− 1

sinx
ψ̂
(1)
N
2
,ℓ
(t) =

∂

∂x
ψ̂
(1)

(N+2
2

)ℓ
(t)− 1

2
ϕ̂
(1)

(N+2
2

)ℓ
(t). (G.18)
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These equations are proved in the same way as eqs. (G.11) and (G.12). Thus, we have

verified the ‘time-time component’ of the ‘pure gauge’ expression (7.15). The rest of the

components of eq. (7.15), i.e. Ψ
(I;−;(±N

2
)ℓ;ρ̃)

tθj
=
(
∇(t ± i

2γ(t
)
λ
(I;−;ℓ;ρ̃)
±θj)

and Ψ
(I;−;(±N

2
)ℓ;ρ̃)

θkθj
=

(
∇(θk ± i

2γ(θk
)
λ
(I;−;ℓ;ρ̃)
±θj)

, can be proved using eqs. (G.17) and (G.18).

Pure gauge modes of type-II. By working as in the case of type-I modes presented

above, we find

Ψ
(II-Ã;−;(±N

2
)ℓ;ρ̃)

tθj
(t,θN−1) = (−i)×




ϕ̂
(0)
N
2
,ℓ
(t)ψ̃

(Ã;ℓρ̃)
−θj

(θN−1)

∓iψ̂(0)
N
2
,ℓ
(t)ψ̃

(Ã;ℓρ̃)
−θj

(θN−1)


 (G.19)

and

λ
(II-Ã;−;ℓ;ρ̃)
±θj

(t,θN−1) =
4

ℓ− 1




ϕ̂
(−1)

(N+2
2

)ℓ
(t)ψ̃

(Ã;ℓρ̃)
−θj

(θN−1)

∓iψ̂(−1)

(N+2
2

)ℓ
(t)ψ̃

(Ã;ℓρ̃)
−θj

(θN−1)


 . (G.20)

(Recall that for type-II modes we have Ψ
(II-Ã;σ;(±N

2
)ℓ;ρ̃)

tt = 0 and λ
(II-Ã;σ;ℓ;ρ̃)
±t = 0.) Then,

we can verify the ‘pure gauge’ expression (7.15) by working as in the case of type-I modes

presented above.

G.3 Pure gauge modes for the partially massless spin-5/2 field, N even

The type-I modes [eq. (7.18)] for the partially massless spin-5/2 field (with M̃ = ±(N −
2)/2) are ‘pure gauge’ modes. Below we describe briefly how to obtain the ‘pure gauge’

expression in eq. (7.18) for N even. (We present the proof only for the tt-component of

eq. (7.18).) We denote the Dirac spinors φ
(ℓ̃)
± (t,θN−1) in eq. (7.18) as φ

(σ;ℓ;ρ̃)
± (t,θN−1)

(σ = ± and ℓ = 2, 3, ...). Again, the calculations for σ = − and σ = + are similar and,

thus, we discuss only the case with σ = −.

For later convenience let us write down explicit expressions for lowering operators that

lower the parameter M̃ to M̃ − 2 of the functions f̂
(a)

M̃ℓ
(t) ∈ { ϕ̂(a)

M̃ℓ
(t), ψ̂

(a)

M̃ℓ
(t) }. By applying

each of the lowering operators (G.3), (G.4) twice, we find

L̂
(M̃−1;a)
f L̂

(M̃ ;a)
f f̂

(a)

M̃ℓ
(t) =

[
sin2 x

∂2

∂x2
+ bf (x)

∂

∂x
+ cf (x)

]
f̂
(a)

M̃ℓ
(t)

=
M̃(M̃ − 1)(M̃ − ℓ− N

2 )(M̃ − 1− ℓ− N
2 )

(M̃ − 1
2)(M̃ − 3

2)
f̂
(a)

(M̃−2)ℓ
(t), (G.21)

(recall x = π/2− it) where

bf (x) = sinx cosx
(
−2M̃ + 1 + 2a+N

)
+ sf

(ℓ+ N−1
2 )(M̃ − 1) sinx

(M̃ − 1/2)(M̃ − 3/2)
(G.22)
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and

cf (x) =
(ℓ+ N−1

2 )2

4(M̃ − 1/2)(M̃ − 3/2)

+ sf
(ℓ+ N−1

2 ) cosx

2

(
−M̃ + a+ N−1

2

M̃ − 3/2
+

1− M̃ + a+ N−1
2

M̃ − 1/2

)

+

(
−M̃ + a+

N − 1

2

)(
1− M̃ + a+

N − 1

2

)

− sin2 x

(
−M̃ + a+

N − 1

2

)(
2− M̃ + a+

N − 1

2

)
, (G.23)

with sf = 1 if f̂
(a)

M̃ℓ
(t) = ϕ̂

(a)

M̃ℓ
(t) and sf = −1 if f̂

(a)

M̃ℓ
(t) = ψ̂

(a)

M̃ℓ
(t).

Now we will verify the ‘time-time component’ of eq. (7.18) with negative spin projection

(σ = −), i.e.

Ψ
(I;−;(±N−2

2
)ℓ;ρ̃)

tt (t,θN−1) =

(
∇t∇t ± iγt∇t +

3

4
gtt

)
φ
(−;ℓ;ρ̃)
± (t,θN−1). (G.24)

Since the spinors φ
(σ;ℓ;ρ̃)
± (t,θN−1) satisfy the Dirac equation

[
/∇± i(N + 2)/2

]
φ
(σ;ℓ;ρ̃)
± = 0,

they are given by [22]

φ
(−;ℓ;ρ̃)
± (t,θN−1) =

4

ℓ(ℓ− 1)




ϕ̂
(0)

(N+2
2

)ℓ
(t)χ−ℓρ̃(θN−1)

∓iψ̂(0)

(N+2
2

)ℓ
(t)χ−ℓρ̃(θN−1)


 , (G.25)

φ
(+;ℓ;ρ̃)
± (t,θN−1) =

4

ℓ(ℓ− 1)



iψ̂

(0)

(N+2
2

)ℓ
(t)χ+ℓρ̃(θN−1)

∓ϕ̂(0)
(N+2

2
)ℓ
(t)χ+ℓρ̃(θN−1)


 , (G.26)

where the factor 4/ (ℓ [ℓ− 1]) is motivated naturally below. On the other hand, the tt-

component of the type-I mode of the partially massless spin-5/2 field is given by

Ψ
(I;−;(±N−2

2
)ℓ;ρ̃)

tt (t,θN−1) = (−1)×




ϕ̂
(2)

(N−2
2

)ℓ
(t)χ−ℓρ̃(θN−1)

∓iψ̂(2)

(N−2
2

)ℓ
(t)χ−ℓρ̃(θN−1)


 . (G.27)

By substituting eqs. (G.25) and (G.27) into eq. (G.24) we find

ℓ(ℓ− 1)

4
ϕ̂
(2)

(N−2
2

)ℓ
(t) =

ℓ(ℓ− 1)

sin2 x
ϕ̂
(0)

(N−2
2

)ℓ
(t)

=

(
∂2

∂x2
+

3

4

)
ϕ̂
(0)

(N+2
2

)ℓ
(t) +

∂

∂x
ψ̂
(0)

(N+2
2

)ℓ
(t) (G.28)

ℓ(ℓ− 1)

4
ψ̂
(2)

(N−2
2

)ℓ
(t) =

ℓ(ℓ− 1)

sin2 x
ψ̂
(0)

(N−2
2

)ℓ
(t)

=

(
∂2

∂x2
+

3

4

)
ψ̂
(0)

(N+2
2

)ℓ
(t)− ∂

∂x
ϕ̂
(0)

(N+2
2

)ℓ
(t). (G.29)
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Equation (G.28) is proved using the lowering operator (G.21) as follows. First, we express

∂ψ̂
(0)

(N+2
2

)ℓ
/∂x in eq. (G.28) in terms of ∂ϕ̂

(0)

(N+2
2

)ℓ
/∂x and ϕ̂

(0)

(N+2
2

)ℓ
by making use of the

formulae (G.1) and (G.2). Then, after a long calculation, we rewrite eq. (G.28) as

ℓ(ℓ− 1)

sin2 x
ϕ̂
(0)

(N−2
2

)ℓ
=

(N − 1)(N + 1)

N(N + 2) sin2 x

(
L̂
(N
2
;a=0)

f L̂
(N+2

2
;a=0)

f ϕ̂
(0)

(N+2
2

)ℓ

)
, (G.30)

which is readily verified using the lowering relation (G.21). Equation (G.29) is proved in the

same way. Thus, we have verified the tt-component of the ‘pure gauge’ expression (7.18).

Let us now show that our ‘pure gauge’ expression for the type-I modes Ψ
(I;σ;(M̃=+1)ℓ;ρ̃)
µν

on dS4 in eq. (7.18) is equal to the gamma-traceless part of the gauge transformation that

is proposed in Ref. [8] (for a specific choice of the spinor gauge function in the gauge

transformation of Ref. [8]). In order to compare our results with the results of Ref. [8] we

let N = 4 and M̃ = +(N − 2)/2 = +1 in eq. (7.18). [Now, the spinors φ
(σ;ℓ;ρ̃)
+ in eq. (7.18)

satisfy /∇φ(σ;ℓ;ρ̃)
+ = −3iφ

(σ;ℓ;ρ̃)
+ .] By using units in which the cosmological constant is Λ = 3,

the gauge transformation for the partially massless spin-5/2 field ψµν in Ref. [8] is

δψµν =

(
∇(µ∇ν) −

1

4
γ(µ∇ν) /∇+

15

16
gµν

)
ϵ (G.31)

=

(
∇(µ∇ν) +

3i

4
γ(µ∇ν) +

15

16
gµν

)
ϵ, (G.32)

where we have chosen ϵ to be a solution of the equation /∇ϵ = −3i ϵ. (For this choice it is

clear that our spinors φ
(σ;ℓ;ρ̃)
+ are the mode functions corresponding to the field ϵ.) Note

that for this choice of ϵ the gauge transformation of the auxiliary field is zero - see Ref. [8].

Also, for this choice of ϵ it can be readily verified that gµνδψµν = 0, but γµδψµν ̸= 0. Let

δψ′
µν be the gamma-traceless part of δψµν , i.e.

δψ′
µν = δψµν −

γµ
6
γαδψαν −

γν
6
γαδψαµ, (G.33)

where γαδψ′
αν = 0 and gµνδψ′

µν = 0. Then, we can straightforwardly show that

δψ′
µν =

(
∇(µ∇ν) + iγ(µ∇ν) +

3

4
gµν

)
ϵ, (G.34)

which is in precise agreement with the expression for our type-I modes in eq. (7.18).

References

[1] SUPERNOVA COSMOLOGY PROJECT collaboration, Measurements of Ω and Λ from 42

High-Redshift Supernovae, Astrophys. J. 517, 565 (1999).

[2] SDSS collaboration, Baryon acoustic oscillations in the Sloan Digital Sky Survey Data

Release 7 Galaxy Sample, Mon. Not. Roy. Astron. Soc. 401, 2148 (2010),

https://academic.oup.com/mnras/article-pdf/401/4/2148/3901461/mnras0401-2148.pdf .

[3] PLANCK collaboration, Planck 2018 results - VI. Cosmological parameters, Astron.

Astrophys. 641, A6 (2020).

– 85 –

https://doi.org/10.1086/307221
https://doi.org/10.1111/j.1365-2966.2009.15812.x
https://arxiv.org/abs/https://academic.oup.com/mnras/article-pdf/401/4/2148/3901461/mnras0401-2148.pdf
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910


[4] S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time, Cambridge

Monographs on Mathematical Physics (Cambridge University Press, 1973).

[5] W.-K. Tung, Group Theory in Physics: An Introduction To Symmetry Principles, Group

Representations, And Special Functions In Classical And Quantum Physics (World Scientific,

1985) https://www.worldscientific.com/doi/pdf/10.1142/0097 .

[6] S. Deser and A. Waldron, Null propagation of partially massless higher spins in (A)dS and

cosmological constant speculations, Phys. Lett. B 513, 137 (2001), arXiv:hep-th/0105181 .

[7] S. Deser and A. Waldron, Stability of massive cosmological gravitons, Phys. Lett. B 508, 347

(2001), arXiv:hep-th/0103255 .

[8] S. Deser and A. Waldron, Gauge invariances and phases of massive higher spins in (A)dS,

Phys. Rev. Lett. 87, 031601 (2001), arXiv:hep-th/0102166 .

[9] S. Deser and A. Waldron, Partial masslessness of higher spins in (A)dS, Nuclear Physics

607, 577 (2001).

[10] S. Deser and A.Waldron, Conformal invariance of partially massless higher spins, Physics

Letters B 603, 30 (2004).

[11] S. Deser and R. I. Nepomechie, Anomalous propagation of gauge fields in conformally flat

spaces, Physics Letters B 132, 321 (1983).

[12] S. Deser and R. I. Nepomechie, Gauge invariance versus masslessness in de sitter spaces,

Annals of Physics 154, 396 (1984).

[13] A. Higuchi, Symmetric tensor spherical harmonics on the N -sphere and their application to

the de Sitter group SO(N, 1), J. Math. Phys. 28, 1553 (1987).

[14] S. Deser and A. Waldron, Arbitrary spin representations in de Sitter from dS / CFT with

applications to dS supergravity, Nuclear Physics 662, 379 (2003).

[15] A. Higuchi, Quantum fields of nonzero spin in De Sitter spacetime, PhD dissertation, Yale

University (1987).

[16] T. Basile, X. Bekaert, and N. Boulanger, Mixed-symmetry fields in de Sitter space: a group

theoretical glance, Journal of High Energy Physics 2017, 1 (2016).

[17] K. Pilch, P. van Nieuwenhuizen, and M. F. Sohnius, De Sitter Superalgebras and

Supergravity, Commun. Math. Phys. 98, 105 (1985).

[18] C.-H. Chen, H. T. Cho, A. S. Cornell, and G. Harmsen, Spin-3/2 fields in D-dimensional

Schwarzschild black hole spacetimes, Phys. Rev. D 94, 044052 (2016).

[19] U. Ottoson, A Classification of the Unitary Irreducible Representations of SO0(N, 1),

Commun. Math. Phys. 8, 228 (1968).

[20] F. Schwarz, Unitary Irreducible Representations of the Groups SO0(n, 1), Journal of

Mathematical Physics 12, 131 (1971), https://doi.org/10.1063/1.1665471 .

[21] R. Camporesi and A. Higuchi, On the eigenfunctions of the Dirac operator on spheres and

real hyperbolic spaces, J. Geom. Phys. 20, 1 (1996).

[22] V. A. Letsios, The eigenmodes for spinor quantum field theory in global de Sitter spacetime,

Journal of Mathematical Physics 62, 032303 (2021), https://doi.org/10.1063/5.0038651 .

[23] C. Destri, C. A. Orzalesi, and P. Rossi, Matter fields and metric deformation in

– 86 –

https://doi.org/10.1017/CBO9780511524646
https://doi.org/10.1142/0097
https://doi.org/10.1142/0097
https://arxiv.org/abs/https://www.worldscientific.com/doi/pdf/10.1142/0097
https://doi.org/10.1016/S0370-2693(01)00756-0
https://arxiv.org/abs/hep-th/0105181
https://doi.org/10.1016/S0370-2693(01)00523-8
https://doi.org/10.1016/S0370-2693(01)00523-8
https://arxiv.org/abs/hep-th/0103255
https://doi.org/10.1103/PhysRevLett.87.031601
https://arxiv.org/abs/hep-th/0102166
https://doi.org/https://doi.org/10.1016/0370-2693(83)90317-9
https://doi.org/https://doi.org/10.1016/0003-4916(84)90156-8
https://doi.org/10.1063/1.527513
https://doi.org/10.1007/BF01211046
https://doi.org/10.1103/PhysRevD.94.044052
https://doi.org/10.1007/BF01645858
https://doi.org/10.1063/1.1665471
https://doi.org/10.1063/1.1665471
https://arxiv.org/abs/https://doi.org/10.1063/1.1665471
https://doi.org/10.1016/0393-0440(95)00042-9
https://doi.org/10.1063/5.0038651
https://arxiv.org/abs/https://doi.org/10.1063/5.0038651


multidimensional unified theories, Ann. Phys. (N.Y.); (United States) 147,

10.1016/0003-4916(83)90213-0 (1983).

[24] I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, seventh ed.

(Elsevier/Academic Press, Amsterdam, 2007) pp. xlviii+1171, translated from the Russian,

Translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger, With one

CD-ROM (Windows, Macintosh and UNIX).

[25] A. Barut and R. Raczka, Theory of Group Representations and Applications (WORLD

SCIENTIFIC, 1986) https://www.worldscientific.com/doi/pdf/10.1142/0352 .

[26] V. K. Dobrev, G. Mack, V. B. Petkova, S. G. Petrova, and I. T. Todorov, Harmonic Analysis

on the n-Dimensional Lorentz Group and Its Application to Conformal Quantum Field

Theory , Vol. 63 (1977).

[27] T. Ortín, A note on Lie-Lorentz derivatives, Classical and Quantum Gravity 19, L143 (2002).

[28] A. Higuchi, private communication..

[29] A. Higuchi, Linearized gravity in de Sitter spacetime as a representation of SO(4, 1),

Classical and Quantum Gravity 8, 2005-2021 (1991).

[30] D. Z. Freedman and A. Van Proeyen, Supergravity (Cambridge University Press, 2012).

[31] A. Higuchi, Forbidden mass range for spin-2 field theory in de Sitter spacetime, Nuclear

Physics B 282, 397-436 (1987).

[32] A. Higuchi, Massive symmetric tensor field in spacetimes with a positive cosmological

constant, Nuclear Physics B 325, 745-765 (1989).

[33] M. K. F. Wong, Unitary representations of SO(n, 1), Journal of Mathematical Physics 15, 25

(1974), https://doi.org/10.1063/1.1666496 .

[34] T. Hirai, On infinitesimal operators of irreducible representations of the lorentz group of n-th

order, Proc. Japan Acad. 38, 83 (1962).

[35] T. Hirai, The characters of irreducible representations of the lorentz group of n-th order,

Proc. Japan Acad. 41, 526 (1965).

[36] M. Enayati, J. P. Gazeau, H. Pejhan and A. Wang, The de Sitter group and its

representations: a window on the notion of de Sitterian elementary systems, (arXiv, 2022),

arXiv:2201.11457 .

[37] J. Dixmier, Sur les représentations de certains groupes orthogonaux, Compt. Rend. 250,

3263 (1960).

[38] DLMF, NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov/, Release

1.0.26 of 2020-03-15 (visited on 14th April 2020), f. W. J. Olver, A. B. Olde Daalhuis, D. W.

Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S.

Cohl, and M. A. McClain, eds.

[39] M. A. Rakha, A. K. Rathie, and P. Chopra, On some new contiguous relations for the Gauss

hypergeometric function with applications, Comput. Math. with Appl. 61, 620 (2011).

[40] http://functions.wolfram.com/07.23.03.0024.01 (Last accessed on 14th March 2022).

[41] http://functions.wolfram.com/07.23.03.0026.01 (Last accesed on 14th March 2022).

– 87 –

https://doi.org/10.1016/0003-4916(83)90213-0
https://doi.org/10.1142/0352
https://arxiv.org/abs/https://www.worldscientific.com/doi/pdf/10.1142/0352
https://doi.org/10.1007/BFb0009678
https://doi.org/10.1007/BFb0009678
https://doi.org/10.1007/BFb0009678
https://doi.org/10.1088/0264-9381/19/15/101
https://doi.org/10.1088/0264-9381/8/11/011
https://doi.org/10.1017/CBO9781139026833
https://doi.org/10.1016/0550-3213(87)90691-2
https://doi.org/10.1016/0550-3213(87)90691-2
https://doi.org/10.1016/0550-3213(89)90507-5
https://doi.org/10.1063/1.1666496
https://doi.org/10.1063/1.1666496
https://arxiv.org/abs/https://doi.org/10.1063/1.1666496
https://doi.org/10.3792/pja/1195523460
https://doi.org/10.3792/pja/1195522333
https://arxiv.org/abs/2201.11457
http://dlmf.nist.gov/
https://doi.org/https://doi.org/10.1016/j.camwa.2010.12.008
http://functions.wolfram.com/07.23.03.0024.01 
http://functions.wolfram.com/07.23.03.0026.01 

	Introduction
	Background
	Main aim and strategy
	Main result
	Outline of the paper, notation and conventions

	Geometry of the Nsphere and tensor-spinor fields
	Coordinate system, Christoffel symbols and spin connection
	Gamma matrices and tensor-spinor fields on the N-sphere

	The functions describing the dependence of STSSH's on thetaN
	The STSSH's of rank 1 on the N-sphere
	STSSH's of rank 1 for N even
	STSSH's of rank 1 for N odd

	The STSSH's of rank 2 on the N-sphere
	STSSH's of rank 2 for N even
	STSSH's of rank 2 for N odd

	Normalisation factors and transformation properties under spin(Nplus1) of rank-1 and rank-2 STSSH's
	Lie-Lorentz derivative and spin(N+1) invariant inner product
	Normalisation factors and transformation properties under spin(N+1) of STSSH's of ranks 1 and 2

	Obtaining spin-3/2 and spin-5/2 mode solutions on N-dimensional de Sitter spacetime by the analytic continuation of STSSH's
	Analytic continuation techniques
	Pure gauge modes for the massless spin-3/2 and spin-5/2 theories

	(Non)unitarity of the massless representations of spin(N,1) formed by the analytically continued rank-1 and rank-2 STSSH's
	The massless spin-3/2 and spin-5/2 representations of spin(N,1) are non-unitary for even N>4
	Massless spin-3/2 and spin-5/2 representations of spin(N,1) for N even: norms of the eigenmodes
	The massless spin-3/2 and spin-5/2 representations of spin(N,1) are non-unitary for N odd

	Summary and discussions
	Interpretation of the main result in terms of the classification of the Unitary Irreducible Representations of spin(N,1)
	Classification of the UIR's of spin(N,1)
	The quadratic Casimir for analytically continued STSSH's and some useful information for massless theories with spin s
	Verifying the non-unitarity of the massless theories with spin s for odd N=2p+1
	Verifying that the massless theories with spin s for even N=2p are unitary only for p=2
	Unitary representations of spin(N,1) for fields with spin s and real mass parameter

	Raising and lowering operators for the Gauss hypergeometric function and other useful formulae
	Spinor eigenmodes of the Dirac operator on the N-1-sphere
	Some useful formulae on SN-1
	Constructing the STSSH's of rank 2 on the N-sphere
	Constructing the STSSH's of rank 2 for N even
	Constructing the STSSH's of rank 2 for N odd

	Deriving the formulae for the spin(N+1) transformation of the STSSH's of ranks 1 and 2 on SN and determining their normalisation factors
	Calculating CII and making the first step towards the calculation of CI
	Derivation of the transformation formulae of type-I and type-II-I STSSH's of rank 1 and calculation of the normalisation factor cI for N even
	Derivation of the transformation formula (6.10) for type-I modes of rank 1 and calculation of the normalisation factor cIr=1
	Derivation of the transformation formula (6.15) for type-II-I modes of rank 1

	Derivation of the transformation formulae of type-I and type-II-I STSSH's of rank 1 and calculation of the normalisation factor cI for N odd
	Transformation properties under spinN+1 and normalisation factors for STSSH's of rank 2 on SN

	Pure gauge modes
	Pure gauge modes for the strictly massless spin-3/2 field, N even
	Pure gauge modes for the strictly massless spin-5/2 field, N even
	Pure gauge modes for the partially massless spin-5/2 field, N even


