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A B S T R A C T

In order to produce service compositions, modern web applications now combine both in-house and third-party
web services. Therefore, their performance depends on the performance of the services that they integrate. At
early stages, it may be hard to quantify the performance demanded from the services to meet the requirements
of the application, as some services may not be available or may not provide performance guarantees. The
authors present several algorithms that compute the required performance for each service from a model of a
service composition at an early stage of development. This is also helpful when testing service compositions
and selecting candidate web services, enabling performance-driven recommendation systems for web services
that could be integrated into service discovery. Domain experts can annotate the model to include partial
knowledge on the expected performance of the services. We develop a throughput computation algorithm
and two time limit computation algorithms operating on such a model: a baseline algorithm, based on linear
programming, and an optimised graph-based algorithm. We conduct theoretical and empirical evaluations
of their performance and capabilities on a large sample of models of several classes. Results show that the
algorithms can provide an estimation of the performance required by each service, and that the throughput
computation algorithm and the graph-based time limit computation algorithm show good performance even
in models with many paths.

1. Introduction

The advent of Service-Oriented Architectures (SOAs) has given rise
to the creation of specific technologies to combine external services, of-
ten web services, into new services named service compositions. Several
special-purpose languages, such as the Web Services Business Process
Execution Language (WS-BPEL 2.0) and the Business Process Model and
Notation (BPMN 2.0), have been standardised [1,2]. These languages
allow software engineers to model service compositions concisely in
a workflow-based notation, which is easier to understand by domain
experts with no technical knowledge about their implementation.

Roughly speaking, domain experts just define the elements of the
composition and how they relate to each other, while software engi-
neers integrate the different parts required to make the service com-
position works. In order to quickly develop high-quality applications
and reduce costs, software engineers normally reuse services from third
parties or other parts of the organisation in their service compositions.
Such a combination of internal and external services implies that the
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overall quality of service (QoS) cannot be fully understood during
specification, as it depends on the QoS of the integrated services.
Therefore, QoS is barely controlled at development time and may pose
a threat in production.

Many different strategies have been proposed and combined in
order to deal with dependencies in software systems [3]. One of the
most common approaches is to sign Service Level Agreements (SLAs)
with the external providers and watch the services for performance
degradation. However, defining the parameters of the SLA or what are
the conditions to detect a degradation in performance can be difficult:
asking too much may be expensive for the service consumer, while
asking too little may alienate its customers or users. QoS is usually
assessed dynamically, by constantly monitoring the performance of
services. Existing approaches have focused on computing the expected
global QoS from the local QoS of each service, and using this infor-
mation to select services among several candidates so that the global
requirements are met [4,5].
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However, there are many cases in which either we do not know
in advance the expected QoS for every service involved or better QoS
comes at a higher cost. Perhaps, the data is not published by the service
provider or we simply do not trust it. Alternatively, it may be the case
that the service is not even implemented yet. Monitoring may be not
possible in this context. Then, our only choice is to make an educated
guess. Nevertheless, if we guess wrong, we will have to manually revise
all the estimations, which is tedious and error-prone. Besides, we are
likely to loose money, reputation, or both.

In this context, we propose using an abstract high-level model of
the service composition to statically compute what QoS should be
demanded from the services to be integrated, so that their composition
can meet the global QoS requirement of the service composition.

Needless to say, this is quite a challenging problem. First, a service
composition can be executed concurrently by multiple users, which
affect its workload. Second, we need to enrich the workflow-based
model of the service composition with performance annotations to
provide relevant information concerning performance requirements.
Third, regarding the services that will integrate the composition, the
QoS information can be known, unknown, or partially known. Fourth,
when faced to a decision in the workflow, the domain expert should
be able to provide an estimation of the probabilities with which each
branch is taken. Fifth, QoS might refer to either throughput or time
limits, the latter being considerably more challenging to compute.

The ultimate goal is to ‘‘fill the gaps’’, computing for each service
the QoS that would make possible to meet the performance specifica-
tion of the service composition. Should we develop a reliable method
to estimate this missing information, we would be able to pick the
services that better fit the task from the different web services and
providers available. Aware of this information, service discovery could
incorporate QoS negotiation too.

Recent work in web service recommendation systems takes into ac-
count different characteristics of web services, such as their history [6],
geographic location [7], and isolated QoS [8]. However, to the best of
our knowledge, there is a lack of approaches facing how to compute
the performance of web service compositions from their constituent
web services, particularly when complete information about the QoS
of the web services is not available. This absence is probably due
to two main causes. First, the automatic computation of the relevant
quantities is a difficult task because it has to consider the interaction
between the composition workflow and the different services involved
in the composition. Strongly related to this first issue when the QoS
is not known or it is just partially known, the combinatorial explosion
underlying the possible interactions between services in a composition
diminishes the capability of potential algorithms to compute a feasible
solution in a reasonable amount of time. The need to work with
incomplete information is a rather common situation in this context.

We present an algorithm to compute the throughput of the in-
tegrated services and two algorithms to compute their time limits.
The first time limit computation algorithm transforms the model into
several linear programming (LP) optimisation problems, which can be
solved with standard LP tools. The second one is a graph algorithm that
has been devised for this particular task, achieving better performance
in the average case.

Many different notations and profiles have been defined to specify
models featuring workflows and compositions, but, unfortunately, it is
not always possible to faithfully translate to each other. Our algorithms
work on models that are similar to UML activity diagrams, with some
simplifications and extensions. The use of our own notation for models
is not a restriction for people using a different notation. Our notation
is defined by a metamodel that abstracts away details that are not
necessary for the computations at hand, but it describes models that
are high-level enough so that it is straightforward to translate models
from different notations. For example, we will show how to transform
a BPMN model into a model in our notation. We have chosen BPMN
because it is becoming a de facto standard for developing service

compositions (e.g. jBPM1 and Bonita Platform2 both support BPMN
2.0).

One might argue whether it would be better to stick to one formal-
ism, either UML or BPMN. Although our primary focus is on UML, we
think that our proposal has the potential to serve two communities:
the Software Engineering community, using UML, and the Business-
Process Modelling community, using BPMN. In fact, we would like
to convey the idea that BPMN can be used for high-level modelling
while UML can be used as a lower-level target to map other modelling
paradigms (e.g. those based on OMG MARTE) through UML profiles.
In our case, in order to increase reusability as much as possible, we
have selected a very small subset of UML. This reduced set would allow
users following our approach to automatically transform BPMN/BPEL
models into UML by using transformation languages, such as ATL (the
ATLAS Transformation Language) or ETL (the Epsilon Transformation
Language) [9,10].

Regarding the main contributions of this paper, they can be sum-
marised as follows:

1. Three novel algorithms are presented to compute QoS perfor-
mance characteristics (throughput and time limits) from a high-
level annotated specification. The algorithms have been imple-
mented and evaluated.

2. A metamodel inspired by UML activity diagrams with con-
straints, which is enriched with performance annotations, is pre-
sented. An Eclipse-based model editor can be used to graphically
design new models, verify that they honour the metamodel, and
apply the algorithms, as they are provided as Eclipse plugins.

3. Our models can take into account the number of concurrent
users, which impact the workload of the service composition,
the relative weight of different activities, and how many times
they are repeated.

4. Our algorithms can work in a context where complete informa-
tion concerning the performance of each service in isolation is
not available.

5. The assignment of time limits is fair in a precise sense, so that
slack time is distributed among activities according to their
relative weight and how many times they are repeated.

6. Nested activities are included in the metamodel. Therefore, hi-
erarchical models where a service composition uses another
composition as one of its services can be defined. In particular,
the lack of complete information about services included in
nested compositions can be modelled too.

7. All the relevant source code and software artefacts are available
in the GitHub repository https://github.com/agarciadom/sodmt
under the Eclipse Public License 2.0.

The rest of the paper is structured as follows. Section 2 introduces
our service composition metamodel, the performance annotations that
we use, and a complete example of translation from a model specified
in BPMN 2.0. Next, Section 3 introduces the general approach in an
intuitive manner, explains our algorithms in detail, applies them to a
simple running example, and explains the key optimisations used. Then,
Section 4 discusses their implementation and analyses their theoreti-
cal and empirical performance. Section 5 identifies the limitations of
our approach. Section 6 is devoted to discuss related work. Finally,
Section 7 presents our conclusions and future work.

2. Service composition model for performance

This section presents how we model service compositions. The
models that we use are performance-aware and can be used by our

1 https://www.jbpm.org.
2 https://www.bonitasoft.com.
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algorithms to compute relevant QoS information. These models re-
semble UML activity diagrams, but the available set of elements is
restricted to those required by the algorithms. Besides, the executable
nodes and control flow elements in a model can be annotated with
optional performance annotations, in addition to a mandatory global
performance constraint specified for the whole model.

After describing the core elements of the metamodel and their
semantics, the available performance annotations are presented. This
section concludes with a running example specified in BPMN 2.0 and
its mapping to our notation.

2.1. Core elements and constraints

Fig. 1 shows a UML class diagram with the elements of the meta-
model. The models described by this metamodel can be regarded as a
simplification of UML activity diagrams with some extensions allowing
us to attach performance annotations. For the sake of readability,
classes 𝖠𝖼𝗍𝗂𝗏𝗂𝗍𝗒 and 𝖠𝖼𝗍𝗂𝗏𝗂𝗍𝗒𝖭𝗈𝖽𝖾 have been repeated in the diagram
(please, notice the arrow mark in their upper-right corner).

An 𝖠𝖼𝗍𝗂𝗏𝗂𝗍𝗒 contains a set of 𝖠𝖼𝗍𝗂𝗏𝗂𝗍𝗒𝖭𝗈𝖽𝖾s connected by directed
𝖠𝖼𝗍𝗂𝗏𝗂𝗍𝗒𝖤𝖽𝗀𝖾s modelling their control flow. It also includes one global
𝖯𝖾𝗋𝖿𝗈𝗋𝗆𝖺𝗇𝖼𝖾𝖠𝗇𝗇𝗈𝗍𝖺𝗍𝗂𝗈𝗇, which establishes the global constraint of the
model. Several kinds of 𝖠𝖼𝗍𝗂𝗏𝗂𝗍𝗒𝖭𝗈𝖽𝖾s can be specified:

• An 𝖤𝗑𝖾𝖼𝗎𝗍𝖺𝖻𝗅𝖾𝖭𝗈𝖽𝖾 encapsulates behaviour, which is described by
its name. It may have a 𝖫𝗈𝖼𝖺𝗅𝖯𝖾𝗋𝖿𝗈𝗋𝗆𝖺𝗇𝖼𝖾𝖠𝗇𝗇𝗈𝗍𝖺𝗍𝗂𝗈𝗇 describing the
information known at the time by the modeller. There are two
kinds of executable nodes:

– The 𝖲𝗍𝗋𝗎𝖼𝗍𝗎𝗋𝖾𝖽𝖠𝖼𝗍𝗂𝗏𝗂𝗍𝗒𝖭𝗈𝖽𝖾, which simply acts as containers
of zero or more activity nodes with their internal control
flow.

– The 𝖠𝖼𝗍𝗂𝗈𝗇, which implements some atomic unit of be-
haviour.

Together, they allow for a precise description of the structure of
the workflow and its performance expectations at different levels
of abstraction.
• An 𝖨𝗇𝗂𝗍𝗂𝖺𝗅𝖭𝗈𝖽𝖾 is the single starting point of all execution paths in
the model or in a certain 𝖲𝗍𝗋𝗎𝖼𝗍𝗎𝗋𝖾𝖽𝖠𝖼𝗍𝗂𝗏𝗂𝗍𝗒𝖭𝗈𝖽𝖾.
• A 𝖥𝗂𝗇𝖺𝗅𝖭𝗈𝖽𝖾 terminates the current execution path, as flow final
nodes do in UML. More than one final node is allowed in a
workflow or a 𝖲𝗍𝗋𝗎𝖼𝗍𝗎𝗋𝖾𝖽𝖠𝖼𝗍𝗂𝗏𝗂𝗍𝗒𝖭𝗈𝖽𝖾.
• A 𝖣𝖾𝖼𝗂𝗌𝗂𝗈𝗇𝖭𝗈𝖽𝖾 selects the outgoing branch whose condition holds.
Every outgoing edge from a 𝖣𝖾𝖼𝗂𝗌𝗂𝗈𝗇𝖭𝗈𝖽𝖾 should have a non-
empty condition and probability of activation (a number be-
tween 0 and 1). The sum of all the probabilities across the
outgoing edges of a 𝖣𝖾𝖼𝗂𝗌𝗂𝗈𝗇𝖭𝗈𝖽𝖾 should be equal to 1. Proba-
bilities are set by the domain expert, as they depend on domain
knowledge.
• A 𝖬𝖾𝗋𝗀𝖾𝖭𝗈𝖽𝖾 brings together, at least, two mutually exclusive
paths that diverged at a previous 𝖣𝖾𝖼𝗂𝗌𝗂𝗈𝗇𝖭𝗈𝖽𝖾.
• A 𝖥𝗈𝗋𝗄𝖭𝗈𝖽𝖾 continues execution through several concurrent paths.
• A 𝖩𝗈𝗂𝗇𝖭𝗈𝖽𝖾 brings together, at least, two concurrent paths that
diverged at a previous 𝖥𝗈𝗋𝗄𝖭𝗈𝖽𝖾, waiting for all of them to join.

Valid models have to meet additional constraints too:

1. 𝖥𝗈𝗋𝗄𝖭𝗈𝖽𝖾s and 𝖣𝖾𝖼𝗂𝗌𝗂𝗈𝗇𝖭𝗈𝖽𝖾s must have two or more outgoing
𝖠𝖼𝗍𝗂𝗏𝗂𝗍𝗒𝖤𝖽𝗀𝖾s. 𝖥𝗂𝗇𝖺𝗅𝖭𝗈𝖽𝖾s must not have outgoing edges. The rest
must have exactly one outgoing edge.

2. 𝖩𝗈𝗂𝗇𝖭𝗈𝖽𝖾s must have two or more incoming 𝖠𝖼𝗍𝗂𝗏𝗂𝗍𝗒𝖤𝖽𝗀𝖾s.
𝖨𝗇𝗂𝗍𝗂𝖺𝗅𝖭𝗈𝖽𝖾s must not have any incoming edges. The rest must
have exactly one incoming edge.

3. There must be exactly one 𝖨𝗇𝗂𝗍𝖺𝗅𝖭𝗈𝖽𝖾 outside all
𝖲𝗍𝗋𝗎𝖼𝗍𝗎𝗋𝖾𝖽𝖠𝖼𝗍𝗂𝗏𝗂𝗍𝗒𝖭𝗈𝖽𝖾s and one inside each 𝖲𝗍𝗋𝗎𝖼𝗍𝗎𝗋𝖾𝖽𝖠𝖼𝗍𝗂𝗏𝗂𝗍𝗒𝖭𝗈𝖽𝖾.

4. 𝖩𝗈𝗂𝗇𝖭𝗈𝖽𝖾s and 𝖬𝖾𝗋𝗀𝖾𝖭𝗈𝖽𝖾s must only join paths that diverged at
the same 𝖥𝗈𝗋𝗄𝖭𝗈𝖽𝖾 or 𝖣𝖾𝖼𝗂𝗌𝗂𝗈𝗇𝖭𝗈𝖽𝖾, respectively. Please, notice
that this guarantees that forks and decisions are ‘‘balanced’’.

5. Every execution path in the graph must start at an 𝖨𝗇𝗂𝗍𝗂𝖺𝗅𝖭𝗈𝖽𝖾 and
end at a 𝖥𝗂𝗇𝖺𝗅𝖭𝗈𝖽𝖾, and every node must belong to at least one
execution path (otherwise, it would never be run and therefore
should be removed).

6. Execution paths cannot cross a 𝖲𝗍𝗋𝗎𝖼𝗍𝗎𝗋𝖾𝖽𝖠𝖼𝗍𝗂𝗏𝗂𝗍𝗒𝖭𝗈𝖽𝖾 to directly
leave or enter any contained 𝖠𝖼𝗍𝗂𝗏𝗂𝗍𝗒𝖭𝗈𝖽𝖾: the model has to be
well structured.

7. The underlying directed graph must be acyclic. In order to model
loops, the number of iterations can be specified by using local
performance annotations.

2.2. Performance annotations

There are two kinds of performance annotations:

1. The mandatory global 𝖯𝖾𝗋𝖿𝗈𝗋𝗆𝖺𝗇𝖼𝖾𝖠𝗇𝗇𝗈𝗍𝖺𝗍𝗂𝗈𝗇. The modeller must
set concurrentUsers to how many users per second are expected
to start the workflow. Besides, secsTimeLimit must be set to the
time in seconds in which all the paths in the workflow should
have finished their execution under the specified workload.

2. The optional 𝖫𝗈𝖼𝖺𝗅𝖯𝖾𝗋𝖿𝗈𝗋𝗆𝖺𝗇𝖼𝖾𝖠𝗇𝗇𝗈𝗍𝖺𝗍𝗂𝗈𝗇s for the executable
nodes in the workflow. A relevant feature of our algorithms is
that the local values for concurrentUsers and secsTimeLimit

are automatically computed. In a local performance annotation,
minimumTime is the minimum time in seconds that should
be allotted to the node, while weight is a relative measure of
how computationally intensive the node is. Having a weight
of 3 roughly means that its execution may take up to three
times longer than in nodes with weight 1, after considering all
the minimum times. Finally, reps is the expected number of
iterations (at least, one) the node will go through.

By default, attributes minimumTime, weight and reps are set
to 0, 1, and 1, respectively. These values model the simplest case: a
node with unknown minimum execution time and unit weight, whose
execution is not repeated. We will formally define these concepts in
Section 3.

2.3. Algorithm inputs and high-level behaviour

Our algorithms take as their input a valid model, with respect to the
metamodel given in Fig. 1 and the constraints described in Sections 2.1
and 2.2. Then, they process the model to extract all the necessary input
variables.

1. Workload and time limit, as specified in the global
𝖯𝖾𝗋𝖿𝗈𝗋𝗆𝖺𝗇𝖼𝖾𝖠𝗇𝗇𝗈𝗍𝖺𝗍𝗂𝗈𝗇.

2. Minimum time, weight and number of repetitions specified in
each 𝖫𝗈𝖼𝖺𝗅𝖯𝖾𝗋𝖿𝗈𝗋𝗆𝖺𝗇𝖼𝖾𝖠𝗇𝗇𝗈𝗍𝖺𝗍𝗂𝗈𝗇.

The algorithms update the concurrentUsers and secsTimeLimit at-
tributes of the 𝖫𝗈𝖼𝖺𝗅𝖯𝖾𝗋𝖿𝗈𝗋𝗆𝖺𝗇𝖼𝖾𝖠𝗇𝗇𝗈𝗍𝖺𝗍𝗂𝗈𝗇 for each 𝖤𝗑𝖾𝖼𝗎𝗍𝖺𝖻𝗅𝖾𝖭𝗈𝖽𝖾 with
the computed values. These include local computations in the service
composition, whose cost is usually negligible, and the performance
requirements for each web service in the composition.

The values assigned to minimumTime and weight can model sev-
eral common scenarios depending on what the modeller knows about
the expected time limit of a node. Let 𝑚 ≥ 0 denote the minimum
time and 𝑤 ≥ 0 denote the weight. The following mutually exclusive
situations arise:

• 𝑚 = 0, 𝑤 = 0. In this case, the node execution costs nothing. This
is not used with an 𝖤𝗑𝖾𝖼𝗎𝗍𝖺𝖻𝗅𝖾𝖭𝗈𝖽𝖾. Rather, these are the default
values for every 𝖠𝖼𝗍𝗂𝗏𝗂𝗍𝗒𝖭𝗈𝖽𝖾 that is not an 𝖤𝗑𝖾𝖼𝗎𝗍𝖺𝖻𝗅𝖾𝖭𝗈𝖽𝖾. This
makes them effectively invisible to the algorithms, except for how
they branch and join the execution paths.
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Fig. 1. UML class diagram of our workflow metamodel (simplification of UML activity diagrams).

• 𝑚 > 0, 𝑤 = 0. In this situation, we have a node with a fixed time
limit, as no extra time is allotted beyond the minimum time 𝑚.
This usually means that there is a strict Service Level Agreement
(SLA) for the web service or software component represented
by the node, which ensures that it will finish exactly within 𝑚

seconds.
• 𝑚 = 0, 𝑤 > 0. If we have this combination of values, then time will
be automatically allotted. There is no known SLA or estimate of
how long it could take. Instead, the modeller must compare the
cost of the node with the rest of nodes in the workflow.
• 𝑚 > 0, 𝑤 > 0. In this scenario, part of the allotted time is set
manually and the rest is computed automatically. This can be
useful if we have previous measurements that point to a certain
minimum time, but still want to grant some of the remaining time.

Finally, let us briefly describe a key characteristic of our algorithms:
they support nested activities. First, an initial pass is run on the outer-
most activities, computing their local performance requirements. These
local requirements are then used in later passes as global requirements
for the activities nested inside them. This allows the algorithms to
descend recursively through the model, starting at the outermost layer
and proceeding until only atomic actions are left.

2.4. Notation

Next, we introduce some concepts and notations that will be used
to define our algorithms.

• 𝑠(𝑒) and 𝑔(𝑒) are the source and target 𝖠𝖼𝗍𝗂𝗏𝗂𝗍𝗒𝖭𝗈𝖽𝖾s of 𝖠𝖼𝗍𝗂𝗏𝗂𝗍𝗒𝖤𝖽𝗀𝖾
𝑒, respectively.
• 𝑖(𝑛) and 𝑜(𝑛) are the incoming and outgoing edges of node 𝑛,
respectively.
• 𝑇 (𝐼) denotes the throughput, that is, the number of requests per
second (henceforth, ‘‘req/s’’) entering the outermost 𝖨𝗇𝗂𝗍𝗂𝖺𝗅𝖭𝗈𝖽𝖾 𝐼 .
• 𝑆𝑤(𝑝𝐴) denotes the additional time per unit of weight beyond the
minimum time needed for the actions appearing in 𝑝𝐴. That is,
this is the slack available per unit of weight.
• 𝐿 > 0 is the global time limit of the model, in seconds.

• 𝐶(𝐿) = {(𝑚,𝑤) ∣ 0 ≤ 𝑚 ≤ 𝐿 ∧𝑤 ≥ 0} is the set of all valid min-
imum time and weight constraints under a global time limit
𝐿.
• 𝑐(𝑛) = (𝑚(𝑛), 𝑤(𝑛)) ∈ 𝐶(𝐿) is the constraint associated to node 𝑛,
where 𝑚(𝑛) is the minimum time limit of 𝑛 and 𝑤(𝑛) is its weight.
• 𝑟(𝑛) is the number of times that node 𝑛 is run (see Section 2.2). If
𝑛 is inside a 𝖲𝗍𝗋𝗎𝖼𝗍𝗎𝗋𝖾𝖽𝖠𝖼𝗍𝗂𝗏𝗂𝗍𝗒𝖭𝗈𝖽𝖾, it is the number of times that
𝑛 will be run each time its container is run.
• 𝑐(𝑝) = (𝑚(𝑝), 𝑤(𝑝)) ∈ 𝐶(𝐿) is the constraint associated to path 𝑝,
where 𝑚(𝑝) =

∑
𝑛∈𝑝 𝑚(𝑛)𝑟(𝑛) (the total minimum time through 𝑝)

and 𝑤(𝑝) =
∑

𝑛∈𝑝 𝑤(𝑛)𝑟(𝑛) (the total weight through 𝑝). Please,
notice that the number of iterations corresponding to each node
in 𝑝 is taken into account in 𝑚(𝑝) and 𝑤(𝑝).
• 𝑃𝑆 (𝑛) is the set of all paths starting at the node 𝑛.
• 𝑑(𝑛) is the depth of the node 𝑛. This value is defined as 0 when
𝑛 does not belong to any 𝖲𝗍𝗋𝗎𝖼𝗍𝗎𝗋𝖾𝖽𝖠𝖼𝗍𝗂𝗏𝗂𝗍𝗒𝖭𝗈𝖽𝖾, and as 1 + 𝑑(𝑛𝑠)

when 𝑛 belongs to the 𝖲𝗍𝗋𝗎𝖼𝗍𝗎𝗋𝖾𝖽𝖠𝖼𝗍𝗂𝗏𝗂𝗍𝗒𝖭𝗈𝖽𝖾 𝑛𝑠.
• We define layer 𝐷 of the model as the set of nodes 𝑛 such that
𝑑(𝑛) = 𝐷. Layer 0 is the global layer, containing the topmost
𝖨𝗇𝗂𝗍𝗂𝖺𝗅𝖭𝗈𝖽𝖾.

2.5. Running example

In the previous sections we described the core elements that con-
stitute our models, the information stored by our performance anno-
tations, as well as the relevant parameters and high-level behaviour of
our algorithms. Next, we show how to derive a non-trivial model in our
notation from a web service composition modelled in BPMN 2.0, and
explain the graphical notation used.

The original BPMN 2.0 model is shown in Fig. 2. It is a collabora-
tion between several partners: the client that invokes the web service
composition implementing the model, the order processing system
(‘‘Orders’’) that executes the composition, the web services provided
by the billing department (‘‘Billing’’), and the web services provided
by the logistics department (‘‘Logistics’’). Each partner is shown in a
different pool.

The current web service composition is contained in the ‘‘Orders’’
pool, which is the only executable pool. Its contents may be either
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Fig. 2. Running example with a BPMN collaboration between web services for processing an order.

natively executed by the execution engine or mapped first to a different
language, like WS-BPEL 2.0.

This web service composition follows these steps:

1. Receive a message from the client with the order.
2. Evaluate the order using a set of internal business rules.
3. If the order is rejected, then close the order and notify the client.
4. If the order is accepted, then:

(a) Divide the order into segments, to ensure that the cus-
tomer receives each item as soon as possible.

(b) For each segment, create the invoice and perform the
payment at the same time the shipment order is sent.
This is done by invoking the web services provided by
the other departments.

(c) Close the order and notify the client.

Mapping the previously described BPMN 2.0 model to the notation
used by our algorithms is straightforward. The resulting model can be
seen in Fig. 3. We can study the performance needed by the different
tasks and the invoked web services by executing our algorithms on this
model. The model includes a global annotation with the global time
limit 𝐿 for all execution paths, and the throughput 𝑇 (𝐼) specified as
the number of requests per second entering the outermost 𝖨𝗇𝗂𝗍𝗂𝖺𝗅𝖭𝗈𝖽𝖾 𝐼 .
Every 𝖤𝗑𝖾𝖼𝗎𝗍𝖺𝖻𝗅𝖾𝖭𝗈𝖽𝖾 includes an (𝑚,𝑤, 𝑟) tuple with the minimum time,
weight and number of repetitions, corresponding to its local perfor-
mance annotations. Decision branches include the estimated traversal
probabilities.

Next, we describe the steps followed to obtain this model from the
BPMN 2.0 model given in Fig. 2:

1. The model was created from the contents of the only executable
pool, ‘‘Orders’’. This is the actual process to be executed: the
other pools only provide contextual information.

2. Start and end events were mapped to 𝖨𝗇𝗂𝗍𝗂𝖺𝗅𝖭𝗈𝖽𝖾s and 𝖥𝗂𝗇𝖺𝗅𝖭𝗈𝖽𝖾s,
respectively.

3. Atomic tasks were mapped to 𝖠𝖼𝗍𝗂𝗈𝗇 nodes, and tasks containing
other tasks within them were mapped to 𝖲𝗍𝗋𝗎𝖼𝗍𝗎𝗋𝖾𝖽𝖠𝖼𝗍𝗂𝗏𝗂𝗍𝗒𝖭𝗈𝖽𝖾s.

4. The pair of exclusive gateways (marked with ×) were mapped to
a 𝖣𝖾𝖼𝗂𝗌𝗂𝗈𝗇𝖭𝗈𝖽𝖾 and a 𝖬𝖾𝗋𝗀𝖾𝖭𝗈𝖽𝖾.

5. The pair of parallel gateways (marked with +) were mapped to
a 𝖥𝗈𝗋𝗄𝖭𝗈𝖽𝖾 and a 𝖩𝗈𝗂𝗇𝖭𝗈𝖽𝖾.

6. Local performance annotations were added to the
𝖤𝗑𝖾𝖼𝗎𝗍𝖺𝖻𝗅𝖾𝖭𝗈𝖽𝖾s. Most annotations had minimumTime set to 0

and weight set to 1, as we did not have any solid estimates
of their execution times or computational cost. This is quite
common at an early stage of development, when the actual
services have not been implemented yet.

In addition, we set minimumTime to 0.4 s for ‘‘Evaluate Order’’,
ensuring it receives at least 0.4 s. Since its weight is set to 0, it will not
get any more time than that: it will be allotted exactly 0.4 s. We use
this combination of values to represent the situation in which a strict
SLA saying that it should never take longer than 0.4 s had been signed.

Finally, all 𝖠𝖼𝗍𝗂𝗈𝗇 nodes have reps set to 1. However, the
𝖲𝗍𝗋𝗎𝖼𝗍𝗎𝗋𝖾𝖽𝖠𝖼𝗍𝗂𝗏𝗂𝗍𝗒𝖭𝗈𝖽𝖾 ‘‘Process Segments’’ was originally a loop, as
indicated by its circular arrow symbol on the bottom edge in the
BPMN 2.0 model. For that reason, we set 𝗋𝖾𝗉𝗌 to an estimate of the
maximum number of segments that we would expect to see in an order
(in this case, 5).

3. Algorithms

In the previous section, we described the formalism and metamodel,
based on annotated UML activity diagrams, for our models. Next,
we introduce the algorithms that will take one of these models and
compute the desired figures.

First, we give an intuitive explanation to describe the general ap-
proach underlying the behaviour of our algorithms, together with some
notation that will be used in their definitions. Then, we design and im-
plement three algorithms. The first one computes the expected through-
put of each 𝖤𝗑𝖾𝖼𝗎𝗍𝖺𝖻𝗅𝖾𝖭𝗈𝖽𝖾. The remaining two algorithms compute the
time limit of each 𝖤𝗑𝖾𝖼𝗎𝗍𝖺𝖻𝗅𝖾𝖭𝗈𝖽𝖾, the latter being a more complex,
but also more efficient, alternative to the former. A textual example is
provided in Section 3.3.4. Additional graphical animations illustrating
a step-by-step execution for each algorithm presented in Sections Sec-
tion 3.2, 3.3.2 and 3.3.3 are available at https://agarciadom.github.io/
sodmt/algorithms.

https://agarciadom.github.io/sodmt/algorithms
https://agarciadom.github.io/sodmt/algorithms
https://agarciadom.github.io/sodmt/algorithms
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Fig. 3. Annotated model for the running example, mapped from BPMN and defined using the metamodel in Fig. 1.

3.1. Intuitive approach

First, we will provide an intuitive description of what the algorithms
try to achieve, based on the running example depicted in Fig. 3.

3.1.1. Throughput computation
To begin with, we focus on the global layer (zero depth) and consider

the global requirement associated with the number of requests per
second. In our case, we have 𝑇 (𝐼) = 1 (see the dotted box in Fig. 3),
that is, 1 req/s will come through the 𝖨𝗇𝗂𝗍𝗂𝖺𝗅𝖭𝗈𝖽𝖾 (depicted as a black
circle) and reach ‘‘Evaluate Order’’. Therefore, its expected throughput
will be 1 req/s too. Then, we observe that the domain expert has
estimated that 80% of the requests will go through the 𝖣𝖾𝖼𝗂𝗌𝗂𝗈𝗇𝖭𝗈𝖽𝖾

to ‘‘Divide into Segments’’, while 20% of the requests will end up
in ‘‘Close Order’’ (see value of ‘‘prob’’ associated to each branch in
Fig. 3). Therefore, the expected throughput of ‘‘Divide into Segments’’
will be 0.8 req/s. Obviously, this is also the amount corresponding to
‘‘Process Segments’’. Finally, all the incoming requests will merge into
the 𝖬𝖾𝗋𝗀𝖾𝖭𝗈𝖽𝖾 preceding ‘‘Close Order’’, so that its required throughput
is again 1 req/s.

After the global layer is done, it is possible to obtain the throughput
for the actions within ‘‘Process Segments’’ (depth one). Since we already
know that 0.8 req/s will come through its nested 𝖨𝗇𝗂𝗍𝗂𝖺𝗅𝖭𝗈𝖽𝖾 and both
inner paths need to be concurrently executed, we can conclude that
‘‘Ship Order’’, ‘‘Create Invoice’’ and ‘‘Perform Payment’’ must all be able
to handle 0.8 req/s.

Therefore, it can be observed that the process to compute the
throughput from our models is quite simple and can be easily auto-
mated by traversing the graph in topological order. The algorithm for
throughput computation will be given in Section 3.2.

3.1.2. Time limit computation
In order to compute time limits, every possible path starting from

the 𝖨𝗇𝗂𝗍𝗂𝖺𝗅𝖭𝗈𝖽𝖾 has to be taken into account. However, some paths
may impose stricter constraints than others. Returning to our running
example, there are two paths: one for rejected orders (that we call 𝑝𝑅)
that skips over ‘‘Divide into Segments’’ and ‘‘Process Segments’’, and
one for accepted orders (that we call 𝑝𝐴) that passes through them.
Clearly, 𝑝𝐴 is stricter, as it runs everything in 𝑝𝑅 and more.

In order to decide the time limits for the actions appearing in 𝑝𝐴, we
just need to sum their minimum times and weights, after multiplying
them by the number of times that the corresponding action is repeated.
The total minimum time through 𝑝𝐴 is 𝑚(𝑝𝐴) = (0.4 ⋅ 1 + 0 ⋅ 1 + 0 ⋅ 5 +

0 ⋅ 1) s = 0.4 s. Therefore, we know that we have 𝐿 − 𝑚(𝑝𝐴) = 0.6 s left
to distribute among the actions in 𝑝𝐴. Since the total weight through
𝑝𝐴 is 𝑤(𝑝𝐴) = 0 ⋅ 0 + 1 ⋅ 1 + 1 ⋅ 5 + 1 ⋅ 1 = 7, we conclude that the slack
available per unit of weight is given by 𝑆𝑤(𝑝𝐴) = 0.6∕7 ≈ 0.086 s.

The last step is using 𝑆𝑤(𝑝𝐴) to compute the time limits of each
action in 𝑝𝐴. For ‘‘Evaluate Order’’, it is exactly 0.4 s, as it has zero
weight. For ‘‘Divide into Segments’’ and ‘‘Close Order’’, it is 0.086 s, as
their minimum time is 0. For ‘‘Process Segments’’, the minimum time
is also 0, but each of the 5 repetitions gets 0.086 s for a total of 0.43 s.

This process can be now repeated within ‘‘Process Segments’’, using
the 0.086 s time limit as its ‘‘global’’ constraint. There are only two
paths, which do not share any activities. We will visit the bottom
path first, as it has a higher total weight (2 instead of 1). The bottom
path allocates 0.086∕2 = 0.043 s of slack per unit of weight to ‘‘Create
Invoice’’ and ‘‘Perform Payment’’, and the top path allocates 0.086 s
per unit of weight to ‘‘Ship Order’’. The resulting time limits will be
0.043 s for ‘‘Create Invoice’’ and ‘‘Perform Payment’’ and 0.086 s for
‘‘Ship Order’’.

While this process is simple, it is somewhat complex to automate
fully in an efficient manner. Our first approach (described in Sec-
tion 3.3.1) is to produce an optimisation problem and solve it with
standard linear programming machinery. Unfortunately, time can grow
fast as the number of overlapping subpaths increases. In the worst
scenario, the number of paths could grow exponentially with the size of
the model, producing a combinatorial explosion. The second approach
(described in Section 3.3.2) can discard uninteresting paths as soon as
possible, keeping the size of the problem under control and avoiding
the combinatorial explosion.

3.2. Throughput computation

The algorithm source code is publicly available at file concurrent_
users.eol under repository https://github.com/agarciadom/sodmt.
Next, we describe the algorithm in detail.

https://github.com/agarciadom/sodmt/blob/master/workspace-metamodels/bundles/es.uca.modeling.performance.sodmt.eol/eol/concurrent_users.eol
https://github.com/agarciadom/sodmt/blob/master/workspace-metamodels/bundles/es.uca.modeling.performance.sodmt.eol/eol/concurrent_users.eol
https://github.com/agarciadom/sodmt/blob/master/workspace-metamodels/bundles/es.uca.modeling.performance.sodmt.eol/eol/concurrent_users.eol
https://github.com/agarciadom/sodmt
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We will define 𝑇 as a function which takes a node or edge and
produces its expected throughput. The formula to be applied depends
on the type of element passed to it. Formally:

• For an 𝖠𝖼𝗍𝗂𝗏𝗂𝗍𝗒𝖤𝖽𝗀𝖾 𝑒, 𝑇 (𝑒) = (𝑒) ⋅ 𝑇 (𝑠(𝑒)), where (𝑒) is the
probability of 𝑒 being traversed.
• For the 𝖨𝗇𝗂𝗍𝗂𝖺𝗅𝖭𝗈𝖽𝖾 𝐼 , 𝑇 (𝐼) is equal to the throughput of the global
performance annotation if 𝐼 is not part of any
𝖲𝗍𝗋𝗎𝖼𝗍𝗎𝗋𝖾𝖽𝖠𝖼𝗍𝗂𝗏𝗂𝗍𝗒𝖭𝗈𝖽𝖾. Otherwise, 𝑇 (𝐼) is equal to the throughput
of the 𝖲𝗍𝗋𝗎𝖼𝗍𝗎𝗋𝖾𝖽𝖠𝖼𝗍𝗂𝗏𝗂𝗍𝗒𝖭𝗈𝖽𝖾 it belongs to.
• For a 𝖩𝗈𝗂𝗇𝖭𝗈𝖽𝖾 𝑛, 𝑇 (𝑛) = min𝑒∈𝑖(𝑛) 𝑇 (𝑒), since requests in the least
performing branch set the pace.
• For a 𝖬𝖾𝗋𝗀𝖾𝖭𝗈𝖽𝖾 𝑛, 𝑇 (𝑛) =

∑
𝑒∈𝑖(𝑛) 𝑇 (𝑒), as requests from mutually

exclusive branches are reunited.
• For any other type of node 𝑛, 𝑇 (𝑛) = 𝑇 (𝑒1), where 𝑒1 ∈ 𝑖(𝑛) is its
only incoming edge.

The algorithm traverses the model in breadth-first order, starting
from the 𝖨𝗇𝗂𝗍𝗂𝖺𝗅𝖭𝗈𝖽𝖾 and continuing through its outgoing edges. This
breadth-first order avoids computing the same values several times by
annotating each edge 𝑒 and node 𝑛 with its value for 𝑇 (𝑒) and 𝑇 (𝑛),
respectively. The concurrentUsers attribute of the local performance
annotation of each 𝖤𝗑𝖾𝖼𝗎𝗍𝖺𝖻𝗅𝖾𝖭𝗈𝖽𝖾 𝑛 is updated to 𝑇 (𝑛).

For example, let us compute 𝑇 (Create Invoice) for the model shown
in Fig. 3, which needs to handle 𝑇 (𝐼) = 1 request per second. The result
can be computed as follows.

𝑇 (Create Invoice) = 𝑇 (𝖥𝗈𝗋𝗄𝖭𝗈𝖽𝖾𝑖𝑛𝑃 𝑟𝑜𝑐𝑒𝑠𝑠𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠)

= 𝑇 (𝖨𝗇𝗂𝗍𝗂𝖺𝗅𝖭𝗈𝖽𝖾𝑖𝑛𝑃 𝑟𝑜𝑐𝑒𝑠𝑠𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠)

= 𝑇 (Process Segments)

= 𝑇 (Divide Segments)

= 0.8 ⋅ 𝑇 (Evaluate Order)

= 0.8 ⋅ 𝑇 (𝐼)

= 0.8

As we will see in Section 4.2.1, complexity is linear in the size
of the model (the number of nodes and edges) in the model graph,
as the algorithm time is dominated by the topological sorting stage,
which can be efficiently implemented by depth-first search, or ob-
tained as a byproduct of Tarjan’s algorithm for strongly-connected
components [11].

3.3. Time limit computation

Computing the time limits of actions inside activities is considerably
more complex than computing their required throughput. We will
first devise an algorithm that produces time limits by solving a linear
programming problem. This algorithm can be used as a test oracle and
performance baseline for better algorithms. In particular, later in this
section, an optimised graph-based algorithm will be defined. Finally,
both algorithms will be applied to our running example.

3.3.1. Linear programming-based algorithm

The algorithm source code is publicly available at file generate-
glpk-input.egl in repository https://github.com/agarciadom/sodmt.
Next, we describe the algorithm in detail.

The simplest way to describe the computation of time limits is
expressing the problem declaratively by translating its goal and con-
straints into an optimisation problem. Next, we will formulate time
limit computation as a linear programming problem, which is quite
convenient as efficient tools for solving linear programs are readily
available. First, we present the problem if we only consider one layer
and then we generalise to several layers.

Linear programming-based algorithm: one layer
For the sake of simplicity, let us assume for a moment that the model

has only one layer, that is, that there are no 𝖲𝗍𝗋𝗎𝖼𝗍𝗎𝗋𝖾𝖽𝖠𝖼𝗍𝗂𝗏𝗂𝗍𝗒𝖭𝗈𝖽𝖾s and,
thus, there is only one 𝖨𝗇𝗂𝗍𝗂𝖺𝗅𝖭𝗈𝖽𝖾, 𝐼 , at zero depth. Let 𝑁 be the set of
all 𝖤𝗑𝖾𝖼𝗎𝗍𝖺𝖻𝗅𝖾𝖭𝗈𝖽𝖾s, 𝑃 = 𝑃𝑆 (𝐼) be the set of all the reachable paths from
𝐼 , and 𝑃𝐶 (𝑛) = {𝑝 ∣ 𝑝 ∈ 𝑃 ∧ 𝑛 ∈ 𝑝} be the set of all the paths in 𝑃 that
contain 𝑛.

In order to formulate the optimisation problem, we will need to
associate a value, 𝑆𝑤(𝑛), to every 𝑛 ∈ 𝑁 . 𝑆𝑤(𝑛) denotes the slack per unit
of weight of node 𝑛. In other words, this figure indicates the additional
time beyond 𝑚(𝑛) that is assigned to 𝑛 per unit of weight. Therefore,
the resulting time limit for a single execution of node 𝑛 is given by
𝑚(𝑛) + 𝑆𝑤(𝑛) ⋅𝑤(𝑛) and the activity associated to the (executable) node
𝑛, which can be repeated 𝑟(𝑛) times, should terminate its execution in
the following time interval:

[𝑚(𝑛) ⋅ 𝑟(𝑛), (𝑚(𝑛) + 𝑆𝑤(𝑛) ⋅𝑤(𝑛)) ⋅ 𝑟(𝑛)]

Therefore, the time available can be maximised over all paths for
𝑥𝑛 = 𝑆𝑤(𝑛), resulting in more lenient time limits whenever possible:

argmax
∑

𝑝∈𝑃

∑

𝑛∈𝑝

(𝑚(𝑛) + 𝑥𝑛 ⋅𝑤(𝑛)) ⋅ 𝑟(𝑛) (1)

However, there are two validity constraints to be taken into account:

R1. 𝑆𝑤(𝑛) ≥ 0, for all 𝑛 ∈ 𝑁

R2.
∑

𝑛∈𝑝(𝑚(𝑛) + 𝑆𝑤(𝑛) ⋅𝑤(𝑛)) ⋅ 𝑟(𝑛) ≤ 𝐿, for all 𝑝 ∈ 𝑃

The first validity constraint just denotes that the assigned times
must not be negative. The second validity constraint guarantees that
the assigned times cannot make a path to violate the global time limit.

However, these two constraints are not enough, because we could
obtain unfair and undesired solutions. For example, it would be valid
(but not fair) to assign all the slack time to the first node in a path,
sharing no time with the rest of the nodes. In order to avoid this
situation, we introduce fairness constraints ensuring that time values are
evenly distributed according to the weight of each activity.

First, it is clear that if an executable node 𝑛 belongs to a single path
𝑝, then an optimal value for 𝑆𝑤(𝑛) is:
{ 𝐿 − 𝑚(𝑝)

𝑤(𝑝)
if 𝑤(𝑝) > 0

0 if 𝑤(𝑝) = 0

This would evenly distribute the remaining time after taking into
account the minimum time limits, 𝐿−𝑚(𝑝), in proportion to the relative
weight of the nodes belonging to 𝑝 over their sum, that is, 𝑤(𝑝). Please,
notice that if 𝑤(𝑝) = 0 then 𝑆𝑤(𝑛) = 0, as no time can be distributed.

However, an executable node might appear in several paths. For-
tunately, this scheme can be extended to nodes appearing in multiple
paths by introducing two fairness constraints and taking into account the
strictest path for the node under consideration:

R3. 𝑆𝑤(𝑛) ≥ min𝑝∈𝑃𝐶 (𝑛)

{
(𝐿 − 𝑚(𝑝))∕𝑤(𝑝)

||| 𝑤(𝑝) > 0
}
, for all 𝑛 ∈ 𝑁 .

R4. 𝑆𝑤(𝑚) = 𝑆𝑤(𝑛), for all 𝑚, 𝑛 ∈ 𝑁 such that 𝑃𝐶 (𝑚) = 𝑃𝐶 (𝑛).

The first fairness constraint guarantees that the slack per unit of
weight is not shorter than the slack available on the strictest path that
𝑛 belongs to. The second fairness constraint ensures that whenever two
nodes appear in the same set of paths, the time remaining is distributed
among them in proportion to their weights.

This formulation induces the linear programming problem in
Eq. (2), which can be readily solved for a single layer of the model
graph. Please, notice that if the linear problem is unfeasible, then
the model contains inconsistent requirements on the composition. For
instance, if the global time limit is 10 s and one of our actions requires
at least 15 s, no assignment of time will ever be possible. Therefore,
our algorithms could be used to check the validity of a model from a
semantic point of view, and developers can get reported of inconsistent

https://github.com/agarciadom/sodmt/blob/master/workspace-metamodels/bundles/es.uca.modeling.performance.sodmt.egl.glpk/egl/generate-glpk-input.egl
https://github.com/agarciadom/sodmt/blob/master/workspace-metamodels/bundles/es.uca.modeling.performance.sodmt.egl.glpk/egl/generate-glpk-input.egl
https://github.com/agarciadom/sodmt/blob/master/workspace-metamodels/bundles/es.uca.modeling.performance.sodmt.egl.glpk/egl/generate-glpk-input.egl
https://github.com/agarciadom/sodmt
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Listing 1: GMPL model used by the LP algorithm.

set A; # All executable nodes
set P; # All paths
param G; # Global time limit
param m{a in A}, default 0; # Minimum times
param w{a in A}, default 1; # Weights
param r{a in A}, default 1; # Repetitions

param paths{a in A, p in P}, default 0, binary;
# Paths (1 if action belongs to path)

# Total minimum time and weight of each path
param mp{p in P} := sum{a in A} paths[a, p] * m[a] * r[a];
param tw{p in P} := sum{a in A} paths[a, p] * w[a] * r[a];

# Minimum slack per unit of weight by task
param msuw{a in A} := min{p in P: paths[a, p] == 1 && tw[p] > 0} (G - mp[p]) / tw[p];

# Slack per unit of weight for each action (must be positive)
var suw{a in A} >= 0;

maximise usage: sum{a in A, p in P} (paths[a, p] * (suw[a] * w[a] + m[a]) * r[a]);

subject to glimit {p in P}: sum{a in A} (paths[a, p] * (suw[a] * w[a] + m[a]) * r[a]) <= G;
subject to minslack {a in A}: suw[a] >= msuw[a];
subject to samepaths {a in A, b in A: a < b && forall {p in P} paths[a, p] == paths[b, p]}: suw[a] == suw[b];

solve;

or too demanding temporal requirements at an early stage of the
development process.

argmax
∑

𝑝∈𝑃

∑

𝑛∈𝑝

(𝑚(𝑛) + 𝑥𝑛 ⋅𝑤(𝑛)) ⋅ 𝑟(𝑛)

subject to:

𝑥𝑛 ≥ 0, for all 𝑛 ∈ 𝑁
∑

𝑛∈𝑝

(𝑚(𝑛) + 𝑥𝑛 ⋅𝑤(𝑛)) ⋅ 𝑟(𝑛) ≤ 𝐿, for all 𝑝 ∈ 𝑃

𝑥𝑛 ≥ min
𝑝∈𝑃𝐶 (𝑛)

{
𝐿 − 𝑚(𝑝)

𝑤(𝑝)

||| 𝑤(𝑝) > 0

}
, for all 𝑛 ∈ 𝑁

𝑥𝑚 = 𝑥𝑛, for all 𝑚, 𝑛 ∈ 𝑁 such that 𝑃𝐶 (𝑚) = 𝑃𝐶 (𝑛)

(2)

Linear programming-based algorithm: multiple layers
Generalising this approach to models with more than one layer of

depth is simple: our algorithm first runs on layer 0, producing time lim-
its for each topmost 𝖤𝗑𝖾𝖼𝗎𝗍𝖺𝖻𝗅𝖾𝖭𝗈𝖽𝖾 (including any
𝖲𝗍𝗋𝗎𝖼𝗍𝗎𝗋𝖾𝖽𝖠𝖼𝗍𝗂𝗏𝗂𝗍𝗒𝖭𝗈𝖽𝖾). Then, it is run on the contents, lying in layer 1,
of each 𝖲𝗍𝗋𝗎𝖼𝗍𝗎𝗋𝖾𝖽𝖠𝖼𝗍𝗂𝗏𝗂𝗍𝗒𝖭𝗈𝖽𝖾 in layer 0, using the previously computed
time limits as its ‘‘global’’ constraint. This process continues layer by
layer, until the whole model has been annotated.

The above formulation can be implemented in any of the existing
mathematical programming languages. In our case, we have selected
GMPL (GNU MathProg Language), which is included in the GNU Lin-
ear Programming Kit.3 GMPL is a very concise notation for linear
programming and a subset of the AMPL language [12].

In GMPL, the problem can be split into two sections. The model
section describes the available parameters, variables, constraints and
objective function. The data section provides values for some of the
parameters. This is useful for reusing the same problem with different
data. The final result appears in Listing 1.

3 http://www.gnu.org/software/glpk.

3.3.2. Graph-based algorithm
While the formulation based on linear programming is easy to

understand and implement, it suffers from an exponential grow in the
size of problem instances, since it needs to check every path from the
𝖨𝗇𝗂𝗍𝗂𝖺𝗅𝖭𝗈𝖽𝖾. In this section, we will introduce a graph-based algorithm
that builds the set of paths under study incrementally, by culling
uninteresting subpaths as soon as possible, therefore mitigating the
impact of a potential combinatorial explosion.

The algorithm source code is publicly available at file time_limits.eol
under https://github.com/agarciadom/sodmt. A detailed account of
the algorithm follows.

Again, in order to present the algorithm, we will simplify the
description by assuming that the model has only one layer. Multiple
layers are handled in the same way as in the previous algorithm: once
we have computed the values for all the layer 𝑖 𝖤𝗑𝖾𝖼𝗎𝗍𝖺𝖻𝗅𝖾𝖭𝗈𝖽𝖾s, we
apply our algorithm to the contents of each 𝖲𝗍𝗋𝗎𝖼𝗍𝗎𝗋𝖾𝖽𝖠𝖼𝗍𝗂𝗏𝗂𝗍𝗒𝖭𝗈𝖽𝖾 in
layer 𝑖 by using the previously computed time limits as its ‘‘global’’
requirement.

We will first introduce some additional notation. First, in this sec-
tion we say that the available time ‘‘flows’’ from the 𝖨𝗇𝗂𝗍𝗂𝖺𝗅𝖭𝗈𝖽𝖾. If a
node 𝑛 receives 0 ≤ 𝑡(𝑛) ≤ 𝐿 seconds, then every path 𝑝 ∈ 𝑃𝑆 (𝑛) receives
𝑡(𝑝) = 𝑡(𝑛) seconds to distribute among its nodes. Initially, we only know
that 𝑡(𝐼) = 𝐿.

If the local and global annotations are consistent with each other,
then 𝑡(𝑝) ≥ 𝑚(𝑝) for every path 𝑝: the minimum time constraints of all
actions are always met. The value 𝑠(𝑝) = 𝑡(𝑝) −𝑚(𝑝) ≥ 0 is known as the
slack of the path 𝑝 and it is distributed over 𝑝 according to the weight of
each node: the slack per unit of weight initially assigned to each node,
denoted by 𝑆𝑤(𝑝), is given by
{ 𝑠(𝑝)

𝑤(𝑝)
if 𝑤(𝑝) > 0

0 if 𝑤(𝑝) = 0

Please, notice that 𝑤(𝑝) = 0 implies 𝑆𝑤(𝑝) = 0 because all nodes in
𝑝 have a zero weight and, therefore, no slack can be distributed.

http://www.gnu.org/software/glpk
https://github.com/agarciadom/sodmt/blob/master/workspace-metamodels/bundles/es.uca.modeling.performance.sodmt.eol/eol/time_limits.eol
https://github.com/agarciadom/sodmt
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The algorithm must ensure that whenever 𝑤(𝑝) > 0, we also have
𝑠(𝑝) > 0, so that every path 𝑝 with a non-zero weight has some
slack to distribute. If this condition is not met or the annotations are
inconsistent, then the user will be notified and the execution will abort.

With these definitions, we can describe the algorithm as a recursive
function taking a node 𝑛 and the time assigned to it, 𝑡(𝑛). Initially, 𝑛 = 𝐼

and 𝑡(𝑛) = 𝐿, the global time limit. The algorithm follows these steps:

1. Select two paths from 𝑃𝑆 (𝑛) that, respectively, fulfil the follow-
ing properties:

• Let 𝑝𝑚𝑠(𝑛) be the path with the minimum value of 𝑆𝑤(𝑝)

when 𝑡(𝑛) seconds are available. In case of a tie, pick the
path with maximum 𝑤(𝑝).
• Let 𝑝𝑀𝑚(𝑛) be the path with the maximum 𝑚(𝑝).

2. If 𝑠(𝑝𝑀𝑚(𝑛)) < 0, then the minimum time limits cannot be
satisfied: notify the user and abort the execution.

3. If 𝑠(𝑝𝑚𝑠(𝑛)) = 0 and 𝑤(𝑝𝑚𝑠(𝑛)) > 0, then there is no slack in a path
with a non-zero weight: notify the user and abort the execution.

4. Set the time limit of 𝑛, that is, 𝑙(𝑛), to 𝑚(𝑛) + 𝑆𝑤(𝑝𝑚𝑠(𝑛)) ⋅ 𝑤(𝑛).
The remaining time will be 𝑇𝑅 = 𝑡(𝑛) − 𝑙(𝑛) ⋅ 𝑟(𝑛) seconds. Mark 𝑛

as visited.
5. Sort each edge outgoing from 𝑛, that is, all edges such that

𝑒 ∈ 𝑜(𝑛), in increasing order of 𝑆𝑤(𝑝𝑚𝑠(𝑔(𝑒))) with 𝑡(𝑔(𝑒)) = 𝑇𝑅.
This ensures that we continue through the subpath starting at 𝑛
that has the minimum slack per unit of weight when 𝑇𝑅 seconds
are available.

6. Visit each edge in 𝑜(𝑛), as previously sorted:

(a) If the target of 𝑒 has been visited before, then check
whether the time which was sent to it, that is, 𝑇 ′

𝑅
, is

strictly less than 𝑇𝑅, the time which would have been sent
through 𝑒. In that case, use the surplus 𝑇𝑅 − 𝑇 ′

𝑅
seconds

on the source of 𝑒 and its ancestors, and send 𝑇 ′
𝑅
seconds

through 𝑒. Go back in the graph from the source of 𝑒,
collecting nodes with non-zero weights into 𝐶 until a
node with more than one incoming or outgoing edge is
found. Increase the time limit of each collected node by

(𝑇𝑅 − 𝑇 ′
𝑅
) ⋅𝑤(𝑛)

𝑤(𝐶)

where 𝑤(𝐶) =
∑

𝑛∈𝐶 𝑤(𝑛) ⋅ 𝑟(𝑛).

(b) If the target of 𝑒 has not been visited before, then invoke
this algorithm recursively, setting 𝑛 to the target of 𝑒 and
𝑡(𝑛) = 𝑇𝑅.

We will justify that the graph-based algorithm produces the same re-
sults as the algorithm based on linear programming. In order to do this,
we will show that the graph-based algorithm ensures the validity and
fairness constraints of the linear program (R1 to R4 in Section 3.3.1),
and that the graph traversal order fulfils its maximisation objective.

The algorithm ensures R1 (slacks per weight are not negative) by
checking, in Step 2, that the slack of the path with the highest minimum
time is not negative. The corner case where there is no slack in a path
with a non-zero weight is considered in Step 3.

The algorithm ensures R2 (time limits cannot make a path to violate
the global time limit) by transferring the remaining time from node
to node. That is, each node receives all the available time and passes
unassigned time (the amount of time not assigned to it) to the next.
When time limits are increased, see Step 6a, we take into account
the time that was not used by the nodes reached after the currently
analysed node.

Concerning R3 (slacks per weight are greater than or equal to the
one corresponding to the most strictest path containing the correspond-
ing node), the algorithm uses 𝑚(𝑛) + 𝑆𝑤(𝑝𝑚𝑠(𝑛)) ⋅ 𝑤(𝑛), in Step 4, to
compute the time limit. In addition, in Step 5, the algorithm traverses
the outgoing edges in decreasing order of strictness. Therefore, node 𝑛

is traversed for the first time when 𝑝𝑚𝑠(𝑛) (the strictest path including
𝑛) is being analysed, and the assigned value is given by the minimum
in R3.

R4 (slacks per weight of two nodes appearing in the same set of
paths is the same) is also ensured by Step 4. Essentially, two nodes 𝑎
and 𝑏 will be in the same paths if they are consecutive nodes and there
are no alternatives. In this situation, it can be proved that 𝑆𝑤(𝑝𝑚𝑠(𝑎)) =

𝑆𝑤(𝑝𝑚𝑠(𝑏)).
Finally, the maximisation of the available time computed in Eq. (2)

is achieved in Step 6a. Once the strictest path has been completely
covered, the algorithm will consider pending edges, traversing less
strict subpaths. Note that these paths might have nodes whose time
limits where previously computed as part of stricter paths, leaving
additional time available to the nodes that are traversed for the first
time as part of the corresponding path. In compliance with R4, this
extra time is distributed in Step 6a by using an ordering between edges
so as to guarantee that the same slack per weight is assigned to nodes
appearing in the same path.

This could be named the exhaustive version of the graph-based
algorithm. However, an incremental version is also possible if we care-
fully apply some key optimisations. Next, we describe this incremen-
tal approach, which considerably improves the performance of the
algorithm.

3.3.3. Key optimisations of the graph-based algorithm
The graph-based algorithm uses several optimisations to improve its

performance. First of all, a path 𝑝 is not represented by its sequence of
nodes, but by its constraint 𝑐(𝑝) = (𝑚(𝑝), 𝑤(𝑝)), saving much memory.

Second, in order to select 𝑝𝑀𝑚(𝑛) at each node we need to know
the maximum 𝑚(𝑝) for each path 𝑝 ∈ 𝑃𝑆 (𝑛), which we will denote by
𝑚(𝑝𝑀𝑚(𝑛)) or simply 𝑀𝑚(𝑛). We can compute it in advance using with
the following equation:

𝑀𝑚(𝑛) = 𝑚(𝑝𝑀𝑚(𝑛))

= 𝑚(𝑛) ⋅ 𝑟(𝑛) + max
{
𝑀𝑚(𝑔(𝑒)) ∣ 𝑒 ∈ 𝑜(𝑛)

} (3)

Since (3) is recursive, we can evaluate it incrementally, starting
from the 𝖥𝗂𝗇𝖺𝗅𝖭𝗈𝖽𝖾s (for which 𝑀𝑚(𝑛) = 0) and going back up to the
𝖨𝗇𝗂𝗍𝗂𝖺𝗅𝖭𝗈𝖽𝖾 in reverse topological order.

Third, to select 𝑝𝑚𝑠(𝑛) at each node we need to know the strictest
path starting from it. We cannot compute it in advance, as it depends on
the time received by the node, 𝑡(𝑛), which is not known a priori. Instead,
we will remove redundant paths from 𝑃𝑆 (𝑛). We will call this reduced
set 𝑃 ′

𝑆
(𝑛). A path 𝑝𝑎 ∈ 𝑃𝑆 (𝑛) is removed when it is said to be always less

or just as strict than some other path 𝑝𝑏 ∈ 𝑃𝑆 (𝑛), independently of the
time received by 𝑛 or the common ancestors of 𝑝𝑎 and 𝑝𝑏. We denote
this by 𝑐(𝑝𝑎)⪯𝑠(𝐿)𝑐(𝑝𝑏), and define it formally as follows:

(𝑎, 𝑏)⪯𝑠(𝐿)(𝑐, 𝑑) ≡

∀𝑡 ∈ [0, 𝐿] ∀𝑥 ∈ [0, 𝐿] ∀𝑦 ≥ 0

𝑎 + 𝑥 ≤ 𝑡 ∧ 𝑐 + 𝑥 ≤ 𝑡 ∧

𝑏 + 𝑦 > 0 ∧ 𝑑 + 𝑦 > 0 ⇒

𝑡 − (𝑎 + 𝑥)

𝑏 + 𝑦
≥

𝑡 − (𝑐 + 𝑥)

𝑑 + 𝑦

(4)

After a lengthy simplification, the right side of (4) can be replaced
by:

𝑎 ≤ 𝑐 ∧ (𝑏 ≤ 𝑑 ∨ (𝑏 − 𝑑) ⋅ 𝐿 ≤ 𝑏 ⋅ 𝑐 − 𝑎 ⋅ 𝑑) (5)

Eqs. (4) and (5) would consider all pairs of the form (𝐿, 𝑥) to be just
as strict. We could further reduce the number of paths to be evaluated
and still obtain the same results by considering the (𝐿, 𝑥) pair with the
highest value of 𝑥 as the strictest one. This results in our revised and
final definition of ⪯𝑠(𝐿):

𝑎 ≤ 𝑐 ∧ (𝑏 ≤ 𝑑 ∨ (𝑎 < 𝐿 ∧ (𝑏 − 𝑑) ⋅ 𝐿 ≤ 𝑏 ⋅ 𝑐 − 𝑎 ⋅ 𝑑)) (6)
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Listing 2: GMPL data for layer 0 of the example in Fig. 3.

set A := "Evaluate Order", "Divide into Segments", "Close Order", "Process Segments";
set P := p_1 p_2;
param G := 1.0;
param m := "Evaluate Order"0.4;
param w := "Evaluate Order"0.0;
param r := "Process Segments"5.0;
param paths :=
[*, p_1] "Evaluate Order"1 "Close Order"1
[*, p_2] "Evaluate Order"1 "Divide into Segments"1 "Process Segments"1 "Close Order"1;

end;

Listing 3: GMPL data for layer 1 of the example in Fig. 3.

set A := "Perform Payment", "Create Invoice", "Ship Order";
set P := p_1 p_2;
param G := 0.08571428571428572;
param paths :=
[*, p_1] "Create Invoice"1 "Perform Payment"1
[*, p_2] "Ship Order"1;

end;

It can be proved that this defines a partial order (a reflexive,
antisymmetric, and transitive binary relation) on 𝐶(𝐿). The proof is
omitted for the sake of brevity.

Finally, like 𝑀𝑚(𝑛), 𝑃
′
𝑆
(𝑛) can also be computed incrementally by

traversing the graph in reverse topological order. Let 𝑛𝑖 be a child
of 𝑛. Let 𝑝𝑎 and 𝑝𝑏 be two paths in 𝑃𝑆 (𝑛𝑖), so that 𝑐(𝑝𝑎)⪯𝑠(𝐿)𝑐(𝑝𝑏). By
definition, 𝑝𝑎 is less or just as strict as 𝑝𝑏 regardless of their common
ancestors, so ⟨𝑛⟩+𝑝𝑎 will also be discarded from 𝑃 ′

𝑆
(𝑛) over ⟨𝑛⟩+𝑝𝑏. This

means that instead of comparing every path in 𝑃𝑆 (𝑛) for every node 𝑛,
we can build 𝑃 ′

𝑆
(𝑛) by adding 𝑛 at the beginning of the paths in 𝑃 ′

𝑆
(𝑛𝑖),

for every child 𝑛𝑖 of 𝑛, and then filtering the redundant paths using
⪯𝑠(𝐿).

Let max⪯𝑠(𝐿)
𝑆 select the paths in 𝑆 which are not always less strict

than any other (the maximal elements according to ⪯𝑠(𝐿)). We define
𝑃 ′
𝑆
(𝑛) as:

𝑃 ′
𝑆 (𝑛) = max

⪯𝑠(𝐿)

{
𝑡 ∣ 𝑒 ∈ 𝑜(𝑛) ∧ (𝑀,𝑊 ) ∈ 𝑃 ′

𝑆 (𝑔(𝑒))
}

(7)

where 𝑡 = (𝑚(𝑛) ⋅ 𝑟(𝑛) +𝑀,𝑤(𝑛) ⋅ 𝑟(𝑛) +𝑊 ).
Finally, please notice that 𝑃 ′

𝑆
(𝑓 ) = 𝑃𝑆 (𝑓 ) = {(0, 0)} when 𝑓 is a final

node.
The source code of the resulting algorithm, which includes all the

optimisations, is publicly available at file time_limits_new.eol under
https://github.com/agarciadom/sodmt.

3.3.4. Examples
In this section we apply the two previous algorithms to our running

example given in Fig. 3. The global time limit will be set in both cases
to 𝐿 = 1 second. We will shorten action names to their initials when
necessary. For example, ‘‘Evaluate Order’’ will be simply ‘‘EO’’.

Concerning the LP algorithm, we need to encode our model into
GMPL for each layer of the model. This is straightforward as can be
seen in Listing 2 (where layer 0 is defined). As for the time limits,
the results for this layer were of 0.086 s for ‘‘Evaluate Order’’ (EO),
‘‘Divide into Segments’’ (DS), ‘‘Close Order’’ (CO) and each repetition
of ‘‘Process Segments’’ (PS). Using these results, we produce the code
given in Listing 3, where minimum times, weights and repetitions use
the default values of 0, 1 and 1, respectively. The resulting time limits
were of 0.043 s for ‘‘Perform Payment’’ (PP) and ‘‘Create Invoice’’ (CI)
and 0.086 s for ‘‘Ship Order’’ (SO). Therefore, we have obtained a time

limit for each of the six basic actions that conform our model (please,

notice that the value for ‘‘Process Segments’’, computed at layer 0, is

used to compute the values corresponding to the three basic actions

processes at layer 1).

The execution trace of the graph-based algorithm over layers 0 and

1 of the running example is shown in Fig. 4. In the upper part of

Fig. 4, showing layer 0, we consider 𝐿 = 1 s. Every 𝖤𝗑𝖾𝖼𝗎𝗍𝖺𝖻𝗅𝖾𝖭𝗈𝖽𝖾 is

annotated with its minimum time limit 𝑚, its weight 𝑤 and its number

of repetitions 𝑟. The first pass will produce, from all subpaths starting

at each node 𝑛, the maximum total minimum time limit 𝑀𝑚(𝑛) and the

maximal constraints 𝑃 ′
𝑆
(𝑛).

First, 𝑀𝑚(𝑛) and 𝑃 ′
𝑆
(𝑛) are precomputed over layer 0:

• 𝑀𝑚(CO) = 0, 𝑃 ′
𝑆 (CO) = {(0, 1)}.

• 𝑀𝑚(PS) = 0, 𝑃 ′
𝑆 (PP) = {(0, 6)} (since PS has 𝑟 = 5).

• 𝑀𝑚(DS) = 0, 𝑃 ′
𝑆 (DS) = {(0, 7)}.

• 𝑀𝑚(EO) = 0.4, 𝑃 ′
𝑆 (EO) = {(0.4, 7)}.

Using the maximal constraint (0.4, 7), we know that the slack per

unit of weight on the strictest path will be equal to 1−0.4

7
≈ 0.086

seconds. After that, the algorithm sends the available time (𝐿 = 1 s) into

the 𝖨𝗇𝗂𝗍𝗂𝖺𝗅𝖭𝗈𝖽𝖾 and then into EO. EO takes 0.4 s and sends the remaining

0.6 s through the 𝖣𝖾𝖼𝗂𝗌𝗂𝗈𝗇𝖭𝗈𝖽𝖾 to DS, which takes 0.086 s and sends the

remaining 0.514 s to PS. PS takes 0.086 s for each of its 5 repetitions

and sends the remaining 0.086 s to CO through the 𝖩𝗈𝗂𝗇𝖭𝗈𝖽𝖾.

The algorithm then continues over the contents of ‘‘Process Seg-

ments’’, using its time limit as the new global time limit. In the lower

part of Fig. 4, we can see that layer 1 is comprised of the contents of

‘‘Process Segments’’ and its global time limit 𝐿 = 0.086, as computed in

layer 0. 𝑀𝑚(𝑛) and 𝑃 ′
𝑆
(𝑛) are computed in the same way as before. SO

takes the full 0.086 s, being the only 𝖤𝗑𝖾𝖼𝗎𝗍𝖺𝖻𝗅𝖾𝖭𝗈𝖽𝖾 in its path. CI and

PP take half of 𝐿 each: 0.043 s.

As expected, both algorithms return the same results. However,

in this simple example we are not able to appreciate the exponen-

tial explosion underlying the LP algorithm. In the next section we

will perform a thorough evaluation of the algorithms to analyse their

performance.

https://github.com/agarciadom/sodmt/blob/master/workspace-metamodels/bundles/es.uca.modeling.performance.sodmt.eol/eol/time_limits_new.eol
https://github.com/agarciadom/sodmt
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Fig. 4. Execution traces for the graph-based time limit algorithm on layers 0 and 1 of the running example in Fig. 3.

4. Evaluation of the algorithms

In the previous sections we have described the models used by the
algorithms and the algorithms themselves. We will devote this section
to evaluating their performance on our reference implementations.

4.1. Implementation

We have implemented the models and algorithms in this paper
as a set of Eclipse plug-ins. The source code uses a mix of several
task-specific model handling languages from the Epsilon family [13].

The models corresponding to our web service compositions can be
created using a graph-oriented graphical editor. To ensure that the
algorithms can be applied, our tool is able to validate the models
automatically, providing error and warning markers and ‘‘quick fixes’’
to assist the user in correcting invalid models. The algorithms can be
launched from the contextual menu of our graphical editor (see Fig. 5).

The throughput computation algorithm and the graph-based time
limit computation algorithm have been tested on a set of manually de-
signed test cases, using the EUnit framework [14] included in Epsilon.4

In addition, the graph-based time limit computation algorithm has been
tested with a large set of automatically generated models, ensuring
that its results were equivalent to those of the linear programming-
based algorithm (barring negligible differences due to floating-point
propagation errors).

4.2. Theoretical performance

Before evaluating the empirical performance of our algorithms, we
will compute some upper bounds on their execution costs from their
definitions. In this section we will also define several graph shapes
for our models. We will use these shapes throughout the theoretical
and empirical performance analyses of the time limit computation
algorithms.

4 http://www.eclipse.org/epsilon/doc/eunit.

http://www.eclipse.org/epsilon/doc/eunit


Computer Standards & Interfaces 83 (2023) 103664

12

A. García-Domínguez et al.

Fig. 5. Screenshot of the Eclipse-based model editor.

4.2.1. Throughput computation

The performance of this algorithm is quite simple to analyse. If we
visit the nodes in topological order, then the algorithm will only need
to visit each node once. For each node, the algorithm will compute
a constant-time expression on every incoming edge (multiplications
for conditional edges, scalar comparisons for 𝖩𝗈𝗂𝗇𝖭𝗈𝖽𝖾s and sums for
𝖬𝖾𝗋𝗀𝖾𝖭𝗈𝖽𝖾s). These operations are executed with finite precision and
are, thus, in 𝛩(1).

Consider a model with 𝑛 nodes and 𝑒 edges. Since the algorithm
visits each node and edge exactly once and spends a constant amount
of time on each of them, the algorithm will require 𝑂(𝑛+ 𝑒) operations.
If the underlying graph is dense, then 𝑒 ∈ 𝛩(𝑛2) and 𝑂(𝑛 + 𝑒) becomes
simply 𝑂(𝑛2).

4.2.2. LP-based time limit computation

The time limit computation algorithms are harder to analyse than
the throughput computation algorithm, as their performance depends
on the structure of the underlying graph. For this reason, we will define
three graph shapes for our models.

1. Sequencemodels consist of an 𝖨𝗇𝗂𝗍𝗂𝖺𝗅𝖭𝗈𝖽𝖾 followed by one or more
𝖠𝖼𝗍𝗂𝗈𝗇 nodes in sequence, with a 𝖥𝗂𝗇𝖺𝗅𝖭𝗈𝖽𝖾 at the end. Sequence
models have 1 path each. A graphical representation is shown in
Fig. 6(a).

2. Decision-merge models have an 𝖨𝗇𝗂𝗍𝗂𝖺𝗅𝖭𝗈𝖽𝖾, followed by a se-
quence of 𝑓 levels. Each level has a 𝖣𝖾𝖼𝗂𝗌𝗂𝗈𝗇𝖭𝗈𝖽𝖾 with two
branches with a single 𝖠𝖼𝗍𝗂𝗈𝗇, merged before the next level. The
model has 2 + 4 ⋅ 𝑓 nodes and 1 + 5 ⋅ 𝑓 edges in total, and there
are 2𝑓 paths from the 𝖨𝗇𝗂𝗍𝗂𝖺𝗅𝖭𝗈𝖽𝖾 to the 𝖥𝗂𝗇𝖺𝗅𝖭𝗈𝖽𝖾.

3. Dense models have an 𝖨𝗇𝗂𝗍𝗂𝖺𝗅𝖭𝗈𝖽𝖾, followed by a sequence of 𝑓
levels, like the decision-merge models. However, the structure of
each level is different: a 𝖣𝖾𝖼𝗂𝗌𝗂𝗈𝗇𝖭𝗈𝖽𝖾 picks between running an
𝖠𝖼𝗍𝗂𝗈𝗇 or jumping to any of the following levels. The model has
2+3⋅𝑓 nodes and 1+3⋅𝑓+

∑𝑓

𝑖=1
𝑖 edges. Finally, there are (𝑓+1)!

paths from the 𝖨𝗇𝗂𝗍𝗂𝖺𝗅𝖭𝗈𝖽𝖾 to the 𝖥𝗂𝗇𝖺𝗅𝖭𝗈𝖽𝖾. These models have
many more edges and paths than the decision-merge models: in
fact, they represent the densest graph that we can build with this
combination of nodes.

Fig. 6. Graph shapes used in the performance analyses.

Table 1
Restriction counts, individual generation time and total time for the LP-based algorithm,
by component.

Component O(RC) O(IGT) O(TT)

Objective function 𝑛 ⋅ 𝑝 𝑛 ⋅ 𝑝

R1.: 𝑆𝑤(𝑛) ≥ 0 𝑛 1 n
R2.: 𝐿 per path 𝑝 𝑛 𝑛 ⋅ 𝑝

R3.: minimum 𝑆𝑤 𝑛 𝑛 ⋅ 𝑝 𝑛2 ⋅ 𝑝

R4.: same paths 𝑛2 𝑝 𝑛2 ⋅ 𝑝

Total 𝑛2 + 𝑝 𝑛2 ⋅ 𝑝

With these shapes in mind, let us go back to analysing the per-

formance of the linear programming-based time limit computation

algorithm. Since there are many methods for solving LP problems (some

of them are very efficient on the average case), we will focus instead on

the size of the resulting LP problem. If we have a model with 𝑛 nodes
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Table 2
Nodes, Paths, Restriction Counts and Total Time for the LP-based algorithm, by graph
shape, using the results from Table 1.

Shape O(N) O(P) O(RC) O(TT)

Sequence, 𝑛 nodes 𝑛 1 𝑛2 𝑛2

Decision-merge, 𝑓 levels 𝑓 2𝑓 2𝑓 𝑛2 ⋅ 2𝑓

Dense, 𝑓 levels 𝑓 (𝑓 + 1)! (𝑓 + 1)! 𝑛2 ⋅ (𝑓 + 1)!

and 𝑝 paths from the 𝖨𝗇𝗂𝗍𝗂𝖺𝗅𝖭𝗈𝖽𝖾 to the 𝖥𝗂𝗇𝖺𝗅𝖭𝗈𝖽𝖾, then the LP problem
will have 𝑛 variables and will consist of an objective function which
can be generated in 𝑂(𝑛 ⋅ 𝑝) time and the following restrictions:

• The slack per unit of weight must be positive R1.: one per node.
Each restriction can be generated in 𝑂(1) time.
• The global time limit must be honoured R2.: one per path, gen-
erated in 𝑂(𝑛) time by traversing every node in the path.
• The lower bound on the slack per unit of weight for every node
R3.: one per node, generated in 𝑂(𝑛 ⋅ 𝑝) time by traversing every
path and computing 𝑚(𝑝) and 𝑤(𝑝) for it.
• The slack per unit of weight must be equal for all (𝑚, 𝑛) pairs of
nodes in the same paths R4.: one for every such pair, generated
or discarded in 𝑂(𝑝) time by comparing 𝑃𝐶 (𝑚) and 𝑃𝐶 (𝑛).

These results are aggregated in Table 1. We can conclude that we
will generate 𝑂(𝑛2+𝑝) restrictions in 𝑂(𝑛2 ⋅𝑝) operations. Table 2 applies
these results to each of the three graph shapes in Fig. 6. We can see that
the rapidly increasing number of paths in the model is the main limiting
factor for applying the algorithm to more complex models.

4.2.3. Graph-based time limit computation
Analysing the graph-based time limit computation algorithm is

harder than analysing the LP-based algorithm. Actually, most models
found in practice are sparse, not dense: the number of edges is linear
in the number of nodes. Within these sparse models, the worst sce-
nario arises when diamond-like structures (decision-merge or fork-join)
chain together in long sequences. Then, the number of paths grows
exponentially with the number of nodes. Regarding complexity, graph-
based algorithms traversing paths to compute time limits are heavily
impacted by an exponential increase in the number of paths. Thus,
decision-merge models represent a worst case for sparse models.

Consequently, we will limit our analysis in this case to decision-
merge models. Let us analyse the algorithm in the worst case by
parts:

• Computing 𝑀𝑚(𝑛) in advance for each node always takes 𝑂(1) ⋅

𝑂(𝑛) = 𝑂(𝑛) operations, as it requires evaluating an arithmetic
expression over the 𝑂(1) incoming edges of each of the 𝑛 nodes.
• Computing 𝑃 ′

𝑆
(𝑛) in advance for each node is actually the most

expensive part of the algorithm: in the worst case, 𝑂(2𝑓 ) paths
need to be considered at every node and selecting the strictest
ones takes 𝑂(4𝑓 ) operations per node and 𝑂(𝑛 ⋅ 4𝑓 ) in total.
• The last step depends on the number of elements of 𝑃 ′

𝑆
(𝑛) for each

node 𝑛 in the graph: in the worst case, |𝑃 ′
𝑆 (𝑛)| = |𝑃𝑆 (𝑛)| (no paths

have been removed) for every node 𝑛 and 𝑂(𝑛 ⋅2𝑓 ) operations are
required.

Joining the three parts of the algorithm yields a time of 𝑂(𝑛 ⋅ 4𝑓 )

operations in the worst case for a decision-merge model. The absolute
worst case is very expensive. However, it is also very rare, as we will
see in Section 4.3.4.

4.3. Empirical performance

In the previous section we studied the definitions of the algorithms
to derive several upper bounds for their execution times. We concluded
that the throughput algorithm required 𝑂(𝑛2) operations, the LP-based

Fig. 7. Average execution times over 10 runs for the throughput computation algo-
rithm, by graph shape and size. X axis step was 1 for dense/sequence graphs, and 2
for decision-merge graphs.

time limit computation algorithm required 𝑂(𝑛2 ⋅ 2𝑓 ) operations for
decision-merge models with 𝑓 levels and the graph-based time limit
computation algorithm required 𝑂(𝑛 ⋅ 4𝑓 ) operations for the same
decision-merge models.

However, we also concluded that these were very loose upper
bounds, due to limitations in our analysis. For this reason, in this
section we will discuss the results of several experiments based on the
actual execution of the algorithms on a set of automatically generated
models.5 We will show that the graph-based algorithm requires much
less time to run in practice than the LP-based algorithm, and that it does
not show the exponential growth which would be expected from the
previous upper bound. This is because the worst case becomes harder
to find as models become more complex, as we show at the end of this
section.

The performance tests were run in an inexpensive laptop computer,
based on an Intel CPU at 1.73GHz with 4GiB DDR3 RAM, using
Eclipse and Epsilon. Wall clock times were measured using the facilities
provided by the Java Virtual Machine (JVM), ensuring other processes
remained idle during the tests. The studies in Sections Section 4.3.1,
4.3.2 and 4.3.3 were conducted using an Eclipse plug-in that we built
for this study. We ported parts of the graph-based time limit algorithm
to C++ for the study in Section 4.3.4.

4.3.1. Throughput computation
Fig. 7 shows the average execution times corresponding to the

throughput computation algorithm for the three graph shapes described
in Fig. 6. The generated models had between 0 and 50 actions: decision-
merge models had between 0 and 25 levels, and dense models had
between 0 and 50 levels.

The algorithm shows the expected level of performance for decision-
merge and sequence models. A model with 50 actions in a sequence
model only takes 0.04 s, and a decision-merge model with 50 actions
takes 0.07 s. A dense model with 50 actions takes somewhat longer,
requiring 0.46 s. This confirms our previous 𝑂(𝑛 + 𝑒) bound for the
algorithm: sparse graphs exhibit linear growth in the number of nodes
and edges, while dense graphs show quadratic growth in the number
of nodes.

4.3.2. Comparison between the time limit algorithms
Fig. 8 compares the times required by the LP-based and graph-based

time limit computation algorithms for the three graph shapes listed in

5 The models were produced using purpose-built Java code that generated
models with the desired shapes and added random performance annotations.
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Fig. 8. Average execution times over 10 runs for the time limit computation algorithms, by graph shape and size, with 𝐿 = 100 s. X axis step was 1 for dense/sequence graphs,
and 2 for decision-merge graphs.

Fig. 9. Average execution times over 100 runs for the graph-based time limit computation algorithm. X axis step was 1 for dense/sequence graphs, and 2 for decision-merge
graphs.

Fig. 6. All 𝖠𝖼𝗍𝗂𝗈𝗇 nodes were annotated with uniform random minimum
times (between 0 and 0.5𝐿) and weights (up to 10). Execution times are
represented in a base-10 logarithmic scale. In this case, because of the
rapid increase in cost of the LP-based algorithm, we had to limit the
maximum size of the models. Decision-merge models were limited to
20 actions (10 levels), and dense models were limited to 20 actions (20
levels).

From the results for the sequence models, it may seem that the
graph-based algorithm may be better than the LP-based algorithm even
for small models. However, it is important to remark that the LP-based
algorithm needs to invoke an external program (the LP solver), while
the graph-based algorithm runs entirely within the JVM. Using a Java-
based LP solver could make the LP algorithm faster for small inputs, but
it would not change the result for larger ones, as problem sizes grow
very fast for the LP-based algorithm.

During these tests, we checked that the results produced by both
algorithms were the same, except for a minimal error margin (0.1%)
due to floating-point rounding and error propagation. More formally,
if 𝑟𝑙 and 𝑟𝑔 were the results of the LP-based and graph-based algorithm

for the same input model, we verified that
|𝑟𝑙−𝑟𝑔 |

max{𝑟𝑙 ,𝑟𝑔}
≤ 0.001.

4.3.3. Influence of annotations on the graph-based time limit algorithm
After concluding that the graph-based time limit algorithm was

clearly superior to the LP-based algorithm, we decided to study the
effect of the manual performance annotations on the graph-based time
limit algorithm. Depending on the actual values used in this annotation,
the algorithm may be unable to discard some paths, reducing the
effectiveness of its optimisations over the LP-based algorithm.

To study the impact of this issue on performance, we measured the
average time required by the graph-based time limit algorithm over
100 runs for each graph shape and size. We annotated either 0%, 50%
or 100% of all 𝖤𝗑𝖾𝖼𝗎𝗍𝖺𝖻𝗅𝖾𝖭𝗈𝖽𝖾s with randomly generated performance
annotations. Results are shown in Fig. 9. We present the results by

graph shape, graph size and percentage of 𝖠𝖼𝗍𝗂𝗏𝗂𝗍𝗒 nodes with uniformly
random performance annotations. We have set 𝐿 to 100 s, minimum
time limits ranged between 0 and 0.5𝐿 and weights ranged between 0

and 10. Finally, please notice that execution times are represented in a
decimal logarithmic scale.

It is interesting to mention that only decision-merge models show
notable differences between annotating 0%, 50% or 100% of all
𝖤𝗑𝖾𝖼𝗎𝗍𝖺𝖻𝗅𝖾𝖭𝗈𝖽𝖾s. This is obvious for sequence models, which only have
one path, but it might be surprising for dense models, which have 𝑓 !

paths for a model with 𝑓 levels. This is because of Eq. (6) and the
structure of our dense models. If we need to choose between a subpath
(𝑚,𝑤) that does not run a certain node with minimum time 𝑚𝑎 and
weight 𝑤𝑎, and a subpath (𝑚 + 𝑚𝑎, 𝑤 + 𝑤𝑎) that does, by Eq. (6) we
will discard (𝑚,𝑤) and only keep (𝑚 + 𝑚𝑎, 𝑤 + 𝑤𝑎). For this reason, at
each 𝖣𝖾𝖼𝗂𝗌𝗂𝗈𝗇𝖭𝗈𝖽𝖾 we will only need to consider one subpath to find the
strictest path from the 𝖨𝗇𝗂𝗍𝗂𝖺𝗅𝖭𝗈𝖽𝖾 to the 𝖥𝗂𝗇𝖺𝗅𝖭𝗈𝖽𝖾. The observed faster-
than-linear growth for dense models can be attributed to the need to
traverse all 𝑂(𝑓 2) edges to precompute 𝑀𝑚(𝑛) for each node.

Going back to decision-merge models, we can see that annotating
all 𝖤𝗑𝖾𝖼𝗎𝗍𝖺𝖻𝗅𝖾𝖭𝗈𝖽𝖾s with custom local performance annotations is more
expensive than always using the default zero minimum time and unit
weight. This can also be explained through Eq. (6): when using the
default performance annotations, it is always the case that 𝑎 = 𝑐 = 0

and Eq. (6) can be simplified into 𝑏 ≤ 𝑑, which is a total order. In that
case, we can remove many more paths and the optimisations are much
more effective. Otherwise, some paths may not be comparable (as ⪯𝑠(𝐿)

is a partial order) and execution costs will increase. Nevertheless, even
when all 𝖤𝗑𝖾𝖼𝗎𝗍𝖺𝖻𝗅𝖾𝖭𝗈𝖽𝖾s are annotated, execution times do not show
the exponential growth of the LP-based algorithm.

4.3.4. Worst case of the graph-based time limit computation algorithm
So far, we have shown that removing redundant paths is effective

in avoiding the exponential growth in cost that affected the LP-based
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Fig. 10. Percentages of sampled 3-level decision-merge models with a certain number
of top-level incomparable paths, 4 incomparable paths at the second level and 2
incomparable paths at the last level, by values of the global time limit 𝐿.

time limit computation algorithm. However, its effectiveness depends
on the values of the annotations used in the model. Taking a closer look
at Eq. (6), we can see that it depends on the relative magnitude of the
minimum time limits and weights with regards to the global time limit
𝐿. The left operand of (𝑏− 𝑑) ⋅𝐿 < 𝑏 ⋅ 𝑐 − 𝑎 ⋅ 𝑑, part of Eq. (6), grows as
𝐿 increases and reduces the number of comparable pairs of paths.

We performed an additional study to clarify how common the
absolute worst case was and study its relationship with 𝐿. We sam-
pled with 𝐿 = 0.5 s and 𝐿 = 1.5 s the space of all decision-merge
models with 3 levels which contained a 2-level decision-merge with
4 incomparable paths. Minimum times for the 𝖤𝗑𝖾𝖼𝗎𝗍𝖺𝖻𝗅𝖾𝖭𝗈𝖽𝖾s ranged
from 0 to min{𝐿, 1}, in steps of 0.1 s. Weights ranged from 0 to 10, in
steps of 1 unit. Inconsistent models were discarded. For each model, we
measured the number of incomparable paths at the initial node (‘‘top-
level paths’’): in a 3-level decision-merge model, there can be between
1 and 23 = 8 such paths.

Evaluating 1.99 × 106 decision-merge activities for 𝐿 = 0.5 s and
7.16×109 for 𝐿 = 1.5 s produced the results in Fig. 10. For 𝐿 = 0.5 s, less
than 10% of these models had more than 1 incomparable path. With
𝐿 = 1.5 s, less than 20%s of the models had more than 2 incomparable
paths.

Furthermore, it is interesting to remark that for 𝐿 = 1.5 s, while
31.8% of all 1-level decision-merge models were in the worst case, only
2.5% 2-level decision-merge models were in the worst case. With 3
levels, it was further reduced to 0.05%. This suggests that the absolute
worst case becomes harder to find as models become more complex,
explaining why average times did not grow exponentially in Fig. 9.
Additionally, it indicates that the worst case becomes more common
as 𝐿 grows in relation to the values used in the annotations.

5. Threats to the validity and usability of the framework

In this section we briefly review some potential issues that might
hinder the applicability of our proposal. Please see Section 7 for future
work on some of these issues.

First of all, our framework considers a static workflow. This allows
us to accurately estimate some parameters from the model, e.g. bounds
on the number of iterations that might be performed. However, if our
framework is to be applied to dynamic compositions, then it should be
expected that the accuracy will decrease, as there are some parameters
that cannot be statically inferred. As a mitigation, our algorithms could
be run in the background periodically and fed with information from
the execution of services. Of course, this is a delicate balance and it is
not easy to determine in advance how often the estimation algorithms
should be executed, so that they do not drain too many resources

from the execution environment and degrade the performance of the
composition. That would certainly improve the results, but precise es-
timation in the presence of dynamic compositions would likely require
a different approach.

Second, we currently rely on the user to provide the relative mea-
sure of the computational intensity of each node, that is, the node
weight. This assumes that our user is a domain expert or, at least, she
has enough knowledge of the services involved. Although weights are
optional parameters in our framework, it would be desirable to have
a (semi-)automatic process to set them to plausible values. In absence
of service provider information on expected execution times, and given
the likely variability of execution times for the same service on different
inputs, a statistical or machine learning (ML) approach would probably
be the most appropriate.

Third, in their current form, the algorithms do not take into account
the fact that the same web service may be invoked several times from
different points in a composition or in different composition. In fact, in
BPMN, there can be call activities invoking a global process or a global
task from different points and it would be useful that our framework
could cope with these situations. One approach is changing the under-
lying model into labelled graphs, where the edges would be labelled
to keep track of the inbound and outbound activity nodes during the
traversal of an execution node. However, adapting the algorithms to
this model may not be trivial, particularly the iterative version of the
graph-based algorithm, which is our most efficient version developed so
far. In this line, the LP-based time limit inference algorithm could be ex-
tended by including new constraints in the linear programs. However,
the graph-based algorithm would not accommodate those additional
constraints, but it could assign the strictest time limit inferred among
all its occurrences. We discuss this in more detail in Section 7.

Fourth, we have considered dense decision-merge models up to 50
levels and this might be, in principle, a limitation in the experimental
justification of our framework. However, this number of levels allowed
us to consistently obtain execution times in the order of seconds with
mainstream computers. In our experience, models with less than this
number of levels are quite common. In fact, we think that creating huge
models instead of structuring them hierarchically may not be the best
modelling practice. Over a certain size, models should be decomposed
into manageable ones that can be easier to understand both by the
modeller and the stakeholders. Moreover, if we couple the model size
with the complexity of the corresponding algorithms and the experi-
mental execution times obtained for the test data under consideration,
we expect that scalability is guaranteed for models bigger than those
present in our test data.

Finally, our framework relies on fairness to allocate slack and this
might lead to potential inaccuracy in estimates. There are several
techniques to cope with this, from sensitivity analysis to ML, that can
be considered for future work. Also related to this, it is not easy to
estimate the number of iterations in a process loop. In this case, we
take into account that, usually, underestimation is more dangerous than
overestimation. There are often two ways to get more precise estimates:
expert reviews and sampling profiling. We discuss this in more detail
in Section 7.

6. Related work

Obtaining the desired level of performance has been a regular
concern since the development of the first computer systems, as shown
by an early survey [15]. There are basically two approaches: eval-
uating a model of a system (known as performance engineering), or
measuring the performance of an implemented system (performance
testing). These approaches are complementary: using analytic models
reduces the risk of implementing an inefficient software architecture,
which is expensive to rework [16]. When the system is implemented,
measuring its performance is more accurate, and can detect not only
design issues, but also bad coding practices and unexpected workloads
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or platform issues [17]. Some authors have proposed overloading ‘‘per-
formance engineering’’ to point to both model- and measuring-based
approaches [18].

Throughout this section, we will briefly review some of the works
that are more closely related to ours. We will first visit the existing
notations, mainly focusing on well-established standards. Later on, we
will discuss some of the performance analysis algorithms that are more
closely related to ours. Finally, we will point to some works in service
selection.

6.1. Notations

Widespread adoption of UML as a de facto standard notation has
prompted researchers to derive their analytic models from UML mod-
els, first with custom annotations and later consolidating on standard
extensions to UML, such as the Schedulability, Performability and Time
(SPT) profile [19]. When UML 2.0 was published, OMG saw the need
to update the SPT profile and harmonise it with other new concepts.
This resulted in the MARTE (Modelling and Analysis of Real-Time
and Embedded Systems) profile [20]. The MARTE profile defines a
general framework for describing QoS aspects. Our work uses models
based on UML activity diagrams with custom extensions to simplify the
discussion away from the technical details of the MARTE notation and
its VSL sublanguage.

Performance engineering usually involves building a simplified rep-
resentation (a model) with information on each part of the system, from
which the expected global performance is derived. There is a large num-
ber of works dealing with model-based testing, i.e. ‘‘the automatable
derivation of concrete test cases from abstract formal models, and their
execution’’ [21,22]. Although most of the work considers functional
testing, model-based testing can be used to analyse performance aspects
in distributed environments such as the cloud [23]. Unfortunately, the
notations and methods usually considered in model-based testing are
very far from the focus of this article: we consider a UML-like notation
to infer quantities of interest.

Queueing networks were among the first formalisms used for per-
formance engineering. A classical example of this formalism is the
PRIMA-UML methodology [24]. While our work is focused on produc-
ing local performance requirements, PRIMA-UML is oriented towards
validating the early design of the system using the EQNM. Therefore,
we believe that both works complement each other.

Currently, the most common formalisms in performance engineer-
ing are layered queuing networks [25], stochastic Petri Nets [26] and
stochastic Process Algebras [27]. These formalisms are backed by in-
depth research and the last two have solid mathematical foundations
in Markov chain theory. However, they introduce an additional layer
of complexity which might discourage some users from applying these
techniques. This burden might be ameliorated by using recent work that
shows progress in learning some of these models [28].

Recently, we have considered provenance graphs to log changes to a
run-time model [29]. However, the notation is far from ours and the
focus is on showing how provenance graphs can support the validation
of systems.

6.2. Algorithms

Our algorithms compute local performance constraints for the var-
ious pieces of software that participate in a web service composition.
Web Service compositions are modelled using UML activity diagrams,
which define a workflow from an initial node to a set of final nodes.

There are many other works on performance estimation based on
workflows. However, to the best of our knowledge, they focus on
computing the global performance of the workflow from a set of local
annotations. Our approach works in the opposite direction: it estimates
the local performance which should be required of the composed web
services from the global performance constraint set by the user.

The SWR algorithm [30] computes the expected QoS of the work-
flow given the QoS of the services involved. In a sense, its goal is the
opposite to ours: our algorithms compute performance requirements
for the services from their compositions, while this work computes the
expected QoS of the entire composition from the known QoS of its
services by iteratively reducing its graph model to a single task.

Moving beyond workflows, and into entire software systems,
MARTE was extended with the Dependability and Analysis Modelling
sub-profile [31]. Our work also handles time limits, but our focus is
different: we help the user ‘‘fill in the blanks’’ using the available
partial information. It is possible to generate intermediate performance
models from a set of UML diagrams annotated with the MARTE profile,
describing a service-oriented architecture [32]. In this approach, activ-
ity diagrams model the workflows, component diagrams represent the
architecture and sequence diagrams detail the behaviour of each action
in the workflows. Our approach does not model the resources used by
the system: we assume performance tests will be run in an environment
that mimics the production environment.

Finally, Integer Linear Programming (ILP) has been previously used
in the context of WS-BPEL compositions. In particular, we have used it
to reduce the size of test suites [33]. ILP has been also used to select
which services should be used in a web service composition [34]. Nev-
ertheless, the aim of these approaches is quite different to ours: while
they focus on selecting test cases/services from a pool of candidates, we
intend to provide a first estimate of performance requirements during
early analysis and design.

6.3. Service selection

Although in this paper we are mainly interested on performance, a
related problem is to select services according to certain criteria [35,
36], which can be done using different approaches. For example, a
global optimal selection strategy can be implemented by using dynamic
programming [37] while other approaches consider algorithms such
that QoS constraints guide the selection of services [38,39]

7. Conclusions and future work

Modern software architecture design has seen a rise in the ap-
plication of the SOA paradigm to the implementation of large scale
software applications, in particular, web service compositions integrat-
ing both in-house and third-party services. One of the main issues when
designing these compositions is the fair estimation of their required
performance in a context where QoS information may be incomplete or
even missing. Along these lines, this approach introduces dependencies
on the performance of the integrated services, which instead determines
the overall performance of the whole composition. Although QoS in-
formation of an in-house service may be available through its SLA or
inferred from statistical data (historical data or data provided by moni-
toring), reliable performance-related information can be more difficult
to obtain in the case of third-party services. Besides, this information
is often unavailable when designing new service compositions from the
ground up.

The expected performance of web services may be hard to assess and
it is easy to wrongly estimate the related QoS information that is really
required by the client without conducting proper stress testing, which is
not always possible. In fact, when using third-party web services there
may be not enough information available to make anything beyond an
educated guess. If the guess is wrong, revising all the estimations and
how they affect the web service composition integrating these services
soon becomes a long, tedious, and error-prone process.

In this paper, we have presented three algorithms for computing
the local performance requirements of services from the global perfor-
mance requirements of the service composition that integrates them.
The composition is modelled in a workflow-based graphical language,
formally defined by a metamodel based on UML activity diagrams with
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performance annotations. This language is simple enough to allow for
translations from other workflow-based languages like BPMN 2.0.

Each of the three algorithms receives a model of the service compo-
sition annotated with the required throughput, that is, the peak number
of concurrent users or requests per second that should be processed, and
the global time limit or maximum execution time. The first algorithm
is based on topological sorting and computes the throughput (requests
per second) corresponding to each service. The second algorithm is
based on linear programming (LP) and computes the time limit for each
service, which provides an upper bound of the time available to process
each request. The time limits assigned are fair in a precise sense. The
third algorithm is a time limit computation algorithm too and yields
the same results that the second algorithm. This graph-based algorithm
it is more efficient than its LP counterpart.

The time limit computation algorithms can combine the global
performance annotation with optional local performance annotations
that model the partial knowledge of the developer about the expected
performance and computational cost of the services. The algorithms
have been implemented using several languages from the Epsilon fam-
ily [13], a set of high-level interpreted languages running on top of the
JVM and specialised for working with models. The LP-based algorithm
uses the GLPK linear programming solver under the hood.

Regarding performance, the first algorithm is 𝑂(𝑛+𝑒), that is, linear
in the size of the model graph. The performance of the second and
third algorithms can be analysed for a decision-merge model with 𝑓

levels. The parameter 𝑓 is small in practice, as it represents the number
of nested activities in a model. In the context of service compositions
each nested activity is typically a service composition used as a service
inside another composition. The generation of the linear program with
the LP-based algorithm requires 𝑂(𝑛2 ⋅ 2𝑓 ) operations and the linear
program has to be solved with an external LP solver. An initial analysis
of the optimised graph-based algorithm reports a theoretical upper
bound of 𝑂(𝑛 ⋅ 4𝑓 ) operations. When 𝑓 is a small constant their fixed-
parameter complexity is polynomial in the worst-case. This is precisely
the case with well-structured models. Our experiments show good
performance for reasonably large and complex graphs representing
service compositions.

Concerning future work, we envision several research lines and
extensions to our proposal.

First, there are some intrinsic limitations to static methods when the
dynamics of a service composition is taken into account. This is espe-
cially true for parameter estimation. That is why domain information
is so valuable in this context. This information can be obtained from
different sources: domain experts, historical data, statistical inference,
machine learning (ML), etc. However, it is not always the case that
these sources are available, particularly when the composition enters
production for the first time. The same happens at specification or
design time, where these static methods are also useful even when there
is still nothing to execute. Sampling profiling is another technique that
can be used to obtain precise estimates, but it requires low-level access
to the execution environment, which is not always possible. We think
that the following approach could be promising in the particular case
of iteration bounds: an initial bound is guessed beforehand, and the
composition is then monitored during its execution; if the bound is
exceeded, this will trigger the execution of the algorithms to recompute
the throughput and time limits.

Second, in our opinion, a similar hybrid technique combining static
estimations and dynamic corrections could be applied to other param-
eters too. Besides, the possibility of implementing the algorithms in a
natively compiled language could provide the efficiency boost to enable
the execution of the algorithms computing the performance require-
ments on demand. This is important for highly dynamic compositions,
where web services are hot-swapped between different providers, like
in metasearch and global booking services.

Third, we are considering using ML techniques to estimate
performance-related QoS information. There exists an initial step in this

direction [40], where the reliability of web services is estimated by ML.
As discussed previously, there are scenarios in which this approach does
not apply, but it could prove a useful addition to our toolkit in others.

Fourth, we would also like to extend our framework so that we can
reuse execution nodes, providing a functionality similar to call activities
in BPMN models. For example, different call activities can invoke the
same task, such as a web service. We think that a promising approach
would imply a model transformation splitting paths corresponding
to different invocations and replicating the task in each new path.
Then, the graph-based algorithm has to be modified to keep track of
these artificial replicas that, indeed, represent the original task. By
construction, the graph-based algorithm assigns time limits to each
node the first time the node is traversed, which is always done on the
strictest path. When an execution node is assigned a time limit, this
will be also assigned to each of its replicas, once and for all. All the
remaining steps in the algorithm have now to be aware of the replicas
and the time limits assigned to them. Of course, some of these changes
are not trivial to implement and the impact on complexity is also to be
assessed.

Fifth, as some of the parameters needed to execute the algorithms
will necessarily come from estimations, business or domain-specific
knowledge, it would be interesting to place the whole approach in the
context of the current DevOps approach, where a dashboard is used to
fine-tune the algorithm by controlling a few parameters, particularly
the number of execution replicas of each service. Let us illustrate this
with a simple example. Assume that our algorithm determines that, in
order to meet a given total time limit, it is enough that a given service
(with 𝑛 replicas) finishes within a time limit that is less strict than the
times it is currently incurring. In this case, we could reduce 𝑛, while
checking average response times, so that we can reduce the bill charged
by the provider. This saving could be used to increase the number of
execution replicas of another service that it is requiring more time than
initially thought and is therefore struggling to meet its local time limit.

Finally, we would like to adapt our algorithms to estimate the
amount of time needed to test systems with distributed components
whose specifications include temporal information [41–43].
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