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Abstract

Measurements of the time of arrival of shock waves from explosions can serve as powerful markers of the evolution of the

shock front for determining crucial parameters driving the blast. Using standard theoretical tools and a simple ansatz for

solving the hydrodynamics equations, a general expression for the Mach number of the shock front is derived. Dimensionless

coordinates are introduced allowing a straightforward visualization and direct comparison of blast waves produced by a variety

of explosions, including chemical, nuclear, and laser-induced plasmas. The results are validated by determining the yield of

a wide range of explosions, using data from gram-size charges to thermonuclear tests.

Keywords Blast · Sedov–Taylor–von Neumann · Strong shock · Time of arrival · Yield estimation

List of symbols

a0 Speed of sound in undisturbed air

Em Specific energy per unit mass

E0 Blast energy

f Dimensionless pressure

K Dimensionless energy

K0 Dimensionless energy in the strong-shock regime

K1 Dimensionless energy in the far field

MS Mach number

P Pressure

P0 Atmospheric pressure

�P Peak hydrostatic overpressure

r Radial coordinate

R Shock front radius

R0 Characteristic explosion length

t Time

u Particle radial velocity

W Explosive mass

z Dimensionless scaled shock radius
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zlow Lower value for range of strong-shock validity

zupp Upper value for range of strong-shock validity

Z Scaled distance (cube-root scaling)

γ Heat capacity ratio

η Dimensionless radial coordinate

κi Auxiliary exponents of hydrodynamic

functions in the strong-shock regime (i = 1, . . . , 4)

λ Dimensionless inverse squared Mach number

φ Dimensionless particle speed

ψ Dimensionless density

ρ Density

ρ0 Atmospheric density

τ Dimensionless scaled time

ζ Jacobian factor

1 Introduction

Recent large-scale industrial accidents such as those in Tian-

jin (2015; 173 deaths) and Beirut (2020; 218 deaths) provide

stark illustrations of the devastating potential of explosions.

In addition to the tragic loss of human lives, the latter caused

an estimated $15B in property damage: complete destruc-

tion of buildings extended to a few hundred metres from the

source of the explosion, and broken glass and debris was

observed at distances up to 3 km from the explosion center,

encompassing an area with more than 750,000 inhabitants

[1]. Clearly, in order for engineers to design structures for

resilience against explosions, the properties of the blast wave
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must be known both relatively close to (where the structure

should be designed to avoid/limit progressive and dispropor-

tionate collapse) and relatively far from the source (where

the majority of injuries are caused by either lacerations from

airborne glass fragments or by damage to hearing from failed

glass panels [2]).

Knowledge of the arrival time of a blast wave at various

distances from the source enables a radius–time relationship

to be developed, from which other key parameters such as

peak pressure can be derived [3–5]. Thus, the ability to deter-

mine this relationship a priori, from a known explosive yield,

will provide vital information on the properties of the blast

wave as it propagates. Further, a well-defined relationship

that is valid for any distance permits the yield of an explo-

sive to be determined through inverse analysis [6].

Theoretical studies of blast wave physics date back to the

first half of the last century. Some of the most widely known

works correspond to the early studies of intense explosions

by Taylor [7], von Neumann [9], and Sedov [8]; and further

characterizations of the fireball and blast wave solutions in

different environments and explosive charge geometries can

be found in the literature [4,10–15].

This article presents a description of the propagation of a

shock wave produced by an explosion in free air, an exten-

sion of the standard strong-shock solution to its later phase

transitioning into an acoustic wave, and the applications

of the results for estimating the yield of a wide variety of

explosions.

2 Theoretical description of the blast wave

Let us model the shock wave produced by an explosion in

free air as a sphere of time-dependent radius R.

Let us call E0 the energy released in the explosion that is

transferred to the surrounding air producing the shock wave.

For simplicity, the energy release is assumed to occur instan-

taneously and the air is characterized by undisturbed ambient

conditions of atmospheric pressure P0 and density ρ0. Con-

servation of energy and the equation of state of an ideal gas

can be used to write the blast energy in the form [3–5,12,13]

E0 = 4π

∫ R

0

(

1

2
ρu2 +

P − P0

γ − 1

)

r2dr , (1)

where r represents a radial coordinate measuring the distance

from the center of the explosion to the shock front R. The

first integrand represents the kinetic energy density of the gas,

whereas the second term corresponds to the thermal energy

of the gas contained within a radius R. The factor γ is the

heat capacity ratio, assumed to be unaffected by the passing

of the shock; its value for air in normal conditions described

as a diatomic gas is γ = 1.4. The radial particle velocity u,

pressure P , and density ρ of the air behind the shock front

satisfy well-known hydrodynamics equations, which must be

solved to determine their radial dependence before perform-

ing the integration in (1). Since the integration over the radial

coordinate starts from zero, it is important to emphasize that

a point source for the energy E0 has been assumed.

The system of partial differential equations describing the

motion, continuity, and equation of state of the fluid are,

respectively, given by [3–5,12,13]

∂u

∂t
+ u

∂u

∂r
= −

1

ρ

∂ P

∂r
, (2)

∂ρ

∂t
+ u

∂ρ

∂r
+ ρ

(

∂u

∂r
+

2u

r

)

= 0, (3)

(

∂

∂t
+ u

∂

∂r

)

(

Pρ−γ
)

= 0, (4)

subject to the boundary conditions at the shock front given

by the Rankine–Hugoniot relations. In terms of the Mach

number of shock front MS = a−1
0

dR
dt

, these relations are

[3–5,12,13]

u(R) =
2a0 MS

γ + 1

(

1 − M−2
S

)

, (5)

ρ(R) =
(γ + 1)ρ0

γ − 1 + 2M−2
S

, (6)

P(R) =
(

2γ M2
S − (γ − 1)

γ + 1

)

P0, (7)

where a0 =
√

γ P0/ρ0 is the speed of sound at ambient

conditions.

Let us characterize the motion of the shock front by intro-

ducing the dimensionless variables

η =
r

R
, λ = M−2

S , (8)

where η specifies the distance from the explosion center

(η = 0) to the shock front (η = 1), whereas λ character-

izes the speed of the shock front from high Mach number

(λ → 0) to the ambient speed of sound (λ = 1). Let us now

write the ratios of the three quantities of interest in terms of

the new variables as

u

a0 MS
= φ(η, λ),

ρ

ρ0
= ψ(η, λ),

P

P0
=

f (η, λ)

λ
. (9)

The notation for the dimensionless functions has been

chosen so that in the strong-shock regime (MS ≫ 1) the

definitions introduced by Taylor [7] are recovered. Also fol-

lowing Taylor’s notation, we have isolated the asymptotically

divergent part of the pressure ratio in the strong-shock limit
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(λ → 0) discussed in more detail in Sect. 3. Using the func-

tions (9), the energy equation (1) can be rewritten as

z−3 + K1 = λ−1 K (λ), (10)

where we have introduced the dimensionless scaled distance

z = R/R0, which measures distance in units of the explo-

sion characteristic length R0 = (E0/P0)
1/3 [16]. Notice that

z differs from the standard scaled distance Z = R/W 1/3 used

in blast engineering; the latter normalizes the distance by the

cube root of the mass W of the explosive charge, whereas

z removes cumbersome units and, more importantly, elimi-

nates sometimes problematic TNT equivalence of different

explosive materials. The function K (λ) is defined as

K (λ) = 4π

∫ 1

0

(

γ

2
ψ(η, λ)φ2(η, λ) +

f (η, λ)

γ − 1

)

η2dη.

(11)

In the limit R → ∞, the blast wave decays to an acous-

tic wave (λ → 1), hence the constant K1 ≡ K (1) in (10)

corresponds to the boundary value of K in the far field. The

Jacobian of the coordinate transformation (r , t) → (η, λ)

produces a term proportional to dλ
dR

that parametrizes the

decay of the blast wave. This term appears several times in

the hydrodynamic equations and the notation gets simplified

by introducing the Jacobian term

ζ(λ) =
R

3λ

dλ

dR
= −

2R

3MS

dMS

dR
. (12)

In the last expression, the definition (8) has been used;

this shows that the Jacobian factor describes how the speed

of the shock front decreases as it moves away from the explo-

sion center. From the energy equation (10), it follows that the

Jacobian term (12) and K (λ) are related by the ordinary dif-

ferential equation

K − λK1 = ζ(λ)

(

K − λ
dK

dλ

)

. (13)

This relation implies that the Jacobian term must satisfy

the boundary conditions ζ(0) = 1, ζ(1) = 0. Up to this

point, we have only made use of standard equations, intro-

duced useful coordinates, and declared definitions to derive

and expand well-known results from the blast wave litera-

ture. The last two differential equations are obtained, which

must be simultaneously satisfied, and commonly numerical

methods are introduced for their solution. Nonetheless, in an

attempt to go one step further and derive an analytical expres-

sion for the Mach number MS we propose an ansatz for the

Jacobian factor. The simplest description of the blast decay

that allows for an analytical description of the Mach number

of the shock front and satisfies the boundary conditions is the

linear decay ζ(λ) = 1 − λ. Numerical analysis and experi-

mental observations suggest that the decay is nonlinear, with

the Mach number decaying more rapidly at early times. In

this work, we intend to provide an approximate description

of the phenomena; therefore, the linear choice will suffice.

Since the boundary conditions are satisfied, our approximate

description will match the exact solutions in the early and

late regimes, whereas some small deviation can appear in the

mid-range where the strong shock transitions to the acoustic

wave. In Sect. 4, we will see that the linear ansatz provides

a sufficiently accurate descriptions of the blast wave for all

ranges.

The linear form of the Jacobian term ζ(λ) leads to a simple

solution of (13) given by

K (λ) = (1 − λ)K0 + λK1, (14)

where the integration constant has been chosen so that K0

denotes K (λ) evaluated at λ = 0. This solution allows invert-

ing the energy equation (10) to write the Mach number in

terms of the scaled distance as

MS(z) =
dz

dτ
=

(

1 +
1

K0z3

)1/2

, (15)

where we have introduced the dimensionless scaled time

τ = a0t/R0 [16]. Another reason for using these dimen-

sionless variables (τ, z) is that they allow direct comparison

of a wide range of experiments independent of the yield of

the explosion under consideration. This enables us to visu-

alize the results from gram-sized charges to megaton yields

from thermonuclear explosions in the same plot, as is done

in this article. Notice that the definition of λ in (8), the

Jacobian term (12), and its linear form can also be used to

write a nonlinear differential equation for MS(z) in the form
dMS
dR

+ 3MS
2R

= 3
2RMS

. This equation is of the Bernoulli type so

that it can be analytically solved; its solution is again given

by (15), which confirms the mathematical self-consistency

of the system. A Bernoulli differential equation has the form

y′ + p(x)y = q(x)yα for a real valued α. The substitution

w = y1−α reduces the equation to the linear differential

equation w′ + (1 − α)p(x)w = (1 − α)q(x) that can be

easily solved using standard methods. In the case above, we

find p(R) = q(R) = 3
2R

and α = −1.

The solution for the Mach number (15) shows that only

the numerical value of the function K (λ) (11) at λ = 0

is needed for fully describing the propagation of the shock

front. This observation in turn implies that the solutions of

the hydrodynamics functions φ(η, λ), ψ(η, λ), and f (η, λ)

are necessary only at λ = 0, which significantly simplifies

the system of ordinary differential equations (2–4). Using the

definitions (9), the solution to the system (2–4) with boundary

conditions given by the Rankine–Hugoniot relations (5–7) at

λ = 0 is
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φ(η, 0) =
η

γ
+

(

γ − 1

γ 2 + γ

)

ηκ1 , (16)

ψ(η, 0) =
(

γ + 1

γ − 1

)

ηκ2

γ κ3

(

γ + 1 − ηκ1−1
)κ3, (17)

f (η, 0) =
(

2γ 1−κ4

γ + 1

)

(

γ + 1 − ηκ1−1
)κ4 , (18)

where the exponents κi , i = 1, . . . , 4 are only functions of

the heat capacity ratio γ :

κ1 =
7γ − 1

γ 2 − 1
, κ2 =

3

γ − 1
, κ3 =

2γ + 10

γ − 7
,

κ4 =
2γ 2 + 7γ − 3

γ − 7
. (19)

The three functions in terms of the dimensionless radial

coordinate are shown in Fig. 1. We can now use these solu-

tions in the definition of K (λ) to determine K0 in the form

K0 = 4π

∫ 1

0

(

γ

2
ψ(η, 0)φ2(η, 0) +

f (η, 0)

γ − 1

)

η2dη

= 7.86, (20)

where the heat capacity ratio for air has been used since we

have assumed the explosion to take place in free air. Once

this value is determined, the Mach-number equation (15)

can be used to describe the growth of the spherical shock

front as a function of the distance from the explosion center.

The structure of (15) does not accept an analytical solution

and a numerical integration is required; however, it must be

noted that (15) is a first-order differential equation that can be

trivially solved via computational methods. The numerical

solution accompanies this article as Supplementary Mate-

0.0

0.5

1.0
φ(η) = u/U

0.0

2.5

5.0 ψ(η) = ρ/ρ0

0.0 0.2 0.4 0.6 0.8 1.0
η = r/R

0.0

0.5

1.0 f (η) = M−2
S P/P0

Fig. 1 Solutions of the hydrodynamics equations as functions of the
dimensionless radial coordinate η

rial and it is shown in Fig. 2 together with the strong-shock

solution discussed in Sect. 3 and the acoustic wave that the

general solution must asymptotically approach. We empha-

size that (15) represents the key result presented in this article.

Instead of using piece-wise semi-empirical definitions, we

have obtained an analytical expression for the speed of the

shock front that, as shown in Fig. 2, smoothly transitions from

the strong-shock solution into the acoustic regime. The con-

tinuous decay of the Mach number is displayed in bottom

panel of Fig. 2, that approaches MS → 1 as the numeri-

cal solution of (15) evolves from an intense explosion to an

acoustic wave. This equation is obtained from conservation

of energy (1), which requires the evaluation of the solutions

for u, P , and ρ inside the shock front using the Rankine–

Hugoniot relations as boundary conditions for solving the

hydrodynamic equations (2–4).

Given the analytical form of the Mach number (15), the

Rankine–Hugoniot relations can be used to write a simple

expression for the peak hydrostatic overpressure behind the

shock front as

�P =
7P0

6

(

M2
S − 1

)

=
7P0

6K0z3
=

7Em

6K0
Z−3, (21)

where the last form is relevant for chemical explosions. The

energy of the explosion has been related to the mass of a

charge by E0 = EmW , where Em is the specific energy

per unit mass that characterizes the chemical energy con-

Fig. 2 Blast wave solutions: the solution of (15) smoothly transitions
from the strong-shock limit to the acoustic regime characterizing the
decay of the blast wave to an acoustic wave. Bottom: analytical expres-
sion for the shock’s Mach number decreasing by several orders of
magnitude
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verted into kinetic and thermal energy after the explosion. For

example, considering a TNT explosion (Em ≈ 4.3 MJ/kg)

the oversimplified expression (21) leads to an overpressure

barely distinguishable from the Brode formula for spherical

blasts [12]. Being an approximation, the overpressure (21)

captures only some of the features of its decay with distance.

The absence of the logarithmic dependency with distance is

a sign of a deviation from other standard description of the

blast wave in the far field [3,4,49,50].

3 Sedov–Taylor–von Neumann Blast Wave

The well-known Sedov–Taylor–von Neumann (STvN) solu-

tion [7–9], also known as the strong-shock limit, assumes

an intense explosion so that the ambient pressure of the

undisturbed gas P0 is negligible compared to the pressure

behind the shock front. Both Taylor and von Neumann stud-

ied spherical explosions, whereas Sedov obtained a more

general solution applicable to other geometries. Here we only

focus on the spherical case for an instantaneous release of

the explosive energy. This limit corresponds to λ → 0 and

neglects the thermal energy of the gas before the explosion.

This is equivalent to solving the blast wave equation (15) for

the early stages of the explosion when z3 ≪ K −1
0 , simplify-

ing the Mach number equation to the reduced form

MS(z) =
dz

dτ
≈ K

−1/2
0 z−3/2, (22)

whose solution is

z(τ ) =
(

25

4K0

)1/5

τ 2/5, (23)

shown in Fig. 2 as a straight line of slope 2/5 in the log-log

plane. In standard coordinates, we recover the more familiar

form

dR

dt
=

(

γ E0

K0ρ0

)1/2

R−3/2, (24)

whose solution is the well-known STvN blast wave

R =
(

25γ

4K0

)1/5(
E0t2

ρ0

)1/5

. (25)

The constant factor for air is

S(γ ) =
(

25γ

4K0

)1/5

= 1.022, (26)

which is moderately closer to the exact value

S(1.4) = 1.033 than the approximate result S(1.4) = 1.014

found by Chernyi [17]. It should be emphasized that this

description of a blast wave is only valid in the early stages

of expansion and where the explosion can be assumed to

originate as point-source energy release, such as a nuclear

explosion or in the mid-range for a chemical explosion. In

a later stage, a blast wave will decay and the strong-shock

approximation will no longer be valid (and in the early stages

of a chemical explosion the energy release will not be from

a point-source). For a full description of the blast wave, and

more crucially, including the transition from a strong shock to

an acoustic wave we must solve the equation for the general

Mach number (15).

As shown in (22), the STvN solution is obtained when

neglecting the thermal energy of the undisturbed air before

the explosion via the strong-shock condition (P ≫ P0). Sim-

ilarly, by comparing the general differential equation (15)

describing the blast wave and the STvN limit (22), we can

write an upper value for the validity of the STvN solution

from the general expression (15) in the form

zupp � K
−1/3
0 = 0.50. (27)

For scaled distances higher than zupp, deviations from the

STvN solution are expected due to the decay of the shock

wave. This behavior is independent of the type of explosion:

chemical or nuclear.

In the other direction, there is also a lower value zlow for

the range of validity of the STvN solution for chemical explo-

sions. The solution neglects the mass of the explosive charge

W compared to the mass of the surrounding air over which

energy has to be transferred. For this reason, there is a min-

imum distance from the center of the explosion where the

mass of the charge can no longer be neglected. Imposing the

condition mair � 2W , we find

(

3P0

2πρ0 Em

)1/3

� zlow, (28)

where Em is the specific energy per unit mass introduced in

the previous section. In standard dimensions, the range of

validity of the STvN solution can be written in the form

(

3W

2πρ0

)1/3

< R <

(

EmW

K0 P0

)1/3

. (29)

Using scaled distance Z = R/W 1/3, the range of validity

of the STvN solution in air becomes

0.73 m/kg1/3 < Z <
(

1.3 Em

)1/3
m/kg1/3, (30)

where the specific energy per unit mass Em must be in

MJ/kg. This range is consistent with the experimental results
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410 J. S. Díaz, S. E. Rigby

Table 1 Range of validity of the STvN solution for some explosives

TNT PE4/C4 AN

Em (MJ/kg) 4.294 5.621 1.447

zlow 0.21 0.19 0.30

zupp 0.50 0.50 0.50

Z low (m/kg1/3) 0.73 0.73 0.73

Zupp (m/kg1/3) 1.77 1.94 1.23

Values of Em from [18,19]

presented in [7]. Explicit values for TNT, PE4, and ammo-

nium nitrate are presented in Table 1.

4 Experiments

As mentioned in the previous section, a useful property of

the dimensionless scaled coordinates (τ, z) is that we can

visualize explosions from multiple different yields in a single

plot. In this section, we consider measurements of the arrival

time of the shock front at different distances for a variety

of explosions and show how these measurements agree with

the analytical results from the previous sections. For nuclear

explosions, the units kt and Mt refer to 103 and 106 tonnes of

TNTe, respectively. Note that in all cases E0 is determined

in joules and the relation 1 kt = 4.18 TJ is subsequently used

to convert units.

4.1 Early nuclear explosions

From the first nuclear test (Trinity), nuclear explosions with

yields in the dozens of kilotons were abundant during the

late 1940s through the 1950s. Many unclassified technical

reports of these tests include information of the pressure mea-

surements at different distances from ground zero [33,34]. In

particular, Trinity is the only test for which early data is avail-

able and this is in fact what G.I. Taylor used in his second

paper [35]; however, the far-field data is missing. General

Leslie Groves requested many first-hand accounts describing

the reactions of people who witnessed the Trinity test [36].

These accounts include information of the writer’s location

and arrival time of the blast wave, which we have used to

map the evolution of the Trinity blast in the far-field region

shown in Fig. 3.

For all later nuclear tests, only mid- to far-field data are

available, whereas early-time measurements at millisecond

scales remain unpublished. A team of scientists, histori-

ans, and filmmakers at Los Alamos and Livermore National

Laboratories are currently working on the restoration and

digitization of old nuclear-tests films and it is expected that

fireball data will be published in the near future.

Fig. 3 Blast wave data of the Trinity test. As described by Taylor [35],
the fireball data follows the STvN solution. The measurements reported
by witnesses of the test from different locations follow the curve in the
acoustic regime

4.2 Gram-sized explosive charges

The explosion of gram-sized charges offers the possibility

of studying the very early stages of a blast as well as the

influence of different charge geometries. High-speed cam-

eras allow for recording of the early shock wave and pressure

gauges can measure overpressure histories from which arrival

time can be determined. In recent years, researchers at the

University of Sheffield (UoS) Blast and Impact Laboratory

have conducted approximately 80 far-field arena tests using

hemispheres of PE4 explosive [20–24], and a smaller number

of near-field tests using spheres of PE4 [25,26]. The results

are shown in the top-left panel of Fig. 4. For comparison, the

figure also includes the curve of the ConWep data for 1 kg of

TNT [27]. One important observation to make is that in deriv-

ing the blast wave (15) the explosive is considered a point

source and the energy is released within an infinitesimally

small volume. For nuclear explosions, this approximation is

valid; however, it breaks down in the near field of chemical

explosions because the size of the explosive charge cannot be

neglected. For this reason, the solution of (15) fails to prop-

erly capture the close-in behavior of chemical explosions and

the semi-empirical ConWep curve works better, as shown in

Fig. 4.

4.3 Large chemical explosions

Many tests of significant amounts of explosives have been

carried out using TNT and ANFO to mimic the effects of

kiloton-range nuclear explosions [28,29]. Accidental explo-

sions, such as the Beirut blast [30–32], also allow for studies

in this range. The data for a selection of explosions in this

range are shown in the top-right panel of Fig. 4. Similar to

small explosive charges, in the near field the ConWep curve

works better than the solution of (15).
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4.4 Laser-induced shock waves

Shock waves can be generated by the fast deposition of

energy in different materials by laser pulses. A second laser

can be used for diagnostics of the produced plasma, and some

of its properties can be inferred by studying the time evolu-

tion of the shock as well as the plasma plume in a variety of

geometries. These laser-induced shocks are usually charac-

terized by the STvN solution [37]. Data of a spherical shock

produced by a joule-range laser are included in the bottom-

left panel of Fig. 4.

4.5 Thermonuclear explosions

During the Cold War, the development of advanced nuclear

weapons pushed the yield from kilotons to megaton ther-

monuclear tests [38–40]. The formidable amount of energy

released by these explosions allows for reliable measure-

ments only very far from ground zero; however, the high

yields lead to short-scaled distances and times into the mid-

field region. Results from a selection of thermonuclear test

are shown in Fig. 4. Note that in this figure, error bars are

either not available or are indistinguishable at this scale.

5 Applications

One useful application of the results of the previous sections

is the determination of the yield, E0, of an explosion from a

set of (t, R) pairs. It is tempting to simply fit the solution of

(15) to data; nonetheless, there are a few considerations to

keep in mind to avoid falling into conceptual traps:

1. One aspect to take into account is the behavior of the

curve at different ranges. As shown in Fig. 2, the solution

coincides with the STvN line in the short range, meaning

that for very early times and short distances the solution

might fail to properly describe a chemical explosion; this

is not an issue for nuclear explosions, as mentioned in

Sect. 3.

2. Additionally, the solution in the long range asymptotically

approaches the acoustic wave (MS → 1) independent

of the energy E0. This feature translates into a highly
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degenerate solution, making the use of long-range-only

data unreliable for determining E0. This degeneracy is

broken in the short range, and for this reason short-range

data are crucial for a reliable determination of E0.

3. Fitting the solution of (15) to data in the (t, R) space

makes the analysis highly sensitive to the values of the

long-range data, where large uncertainties can render the

analysis useless. Furthermore, the breaking of degener-

acy described in the previous point is negligible on a

linear scale. Instead, the fit ought to be carried out in the

(log τ, log z) space, where the log-log scale eliminates the

problems from the linear scale.

4. A consequence of using the (log τ, log z) space for the fit

is that the individual uncertainties (measured in the (t, R)

space) become large in the short range and small in the

long range.

As an illustrative example, let us consider the dataset of

(t, R) pairs from the Beirut explosion [31,32] and use the

results from Sect. 2 to estimate the yield that caused this blast.

We can relate the physical quantities t and R to the dimen-

sionless variables τ and z using the unknown parameter E0

and then minimize a loss function with respect to the numer-

ical solution of (15). A robust method is obtained by using

emcee, a Python implementation of the affine-invariant

ensemble sampler for Markov chain Monte Carlo (MCMC)

[41,42]. Using the combined datasets from Refs. [31,32],

the resulting posterior probability distribution of the model

parameter E0 is shown in Fig. 5. The value E0 = 514+41
−43

tonne TNTe represents the median of the distribution, and

the uncertainties are based on the 16th and 84th percentiles

of the sample.

This value accounts for the fact that the Beirut explosion

took place at ground level rather than in free air (assumed in

previous sections). The correction is obtained by dividing E0

by the reflection factor to account for the enhancement of the

shock wave due to the ground-reflected hemisphere and the

350 400 450 500 550 600 650 700
E0 (t TNTe)

0.000

0.004

0.008

0.012

N
or

m
al

iz
ed

fr
eq

u
en

cy

Fig. 5 Posterior probability distribution of the model parameter E0.
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tribution and the uncertainties are based on the 16th and 84th percentiles
of the sample, shown in the plot
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was used for scaling the data (top) in the dimensionless coordinates
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energy loss due to cratering and ground shock. In this study,

we deem a reflection factor of 1.8 to be most suitable [43],

due to ground conditions and the built-up nature of the Port

of Beirut and its surroundings. For explosions near sea level,

during nuclear tests on the Pacific Proving Grounds it was

found that the reflection factor is closer to 1.6 due to extra

energy dissipation in the form of large water displacements

[44]. Indeed, the reflection factor is known to be a function

of radius, ranging from as low as 1.26 and asymptotically

approaching 2.0 at very large distances. The analyst is free

to use any reflection factor they deem suitable.

Figure 6 shows the data and the corresponding scaling

using the value E0 = 514 tonne TNTe. Note that the first

plot shows the (log τ, log z) space so the curves are scale

independent, whereas the data are scaled. On the contrary,

the second plot shows the (log t, log R) space, in which the

curves rather than the data are scaled. For comparison, in the

same figure the curve of the ConWep data for 1 kg of TNT

has also been included (top panel) as well as the Dewey fit for

this particular explosion [45]. Dewey’s fit properly describes

the data after the shock speed drops below Mach 2; moreover,

it exhibits the logarithmic decay into the acoustic limit that

(15) does not capture. As a trade off, the shock described

by (15) is generic and it corresponds to a unique solution
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Fig. 7 Comparison between fitted and accepted yield E0 for thirteen explosions over a wide range of energies shown in kilotons

valid for any explosion, whereas Dewey’s approach requires

fitting the free parameters for each explosion individually.

Additionally, (15) is valid over the whole transition range

from the strong shock to the acoustic limit.

The value of E0 found above is in excellent agreement with

other yield determinations of the Beirut explosion, includ-

ing those performed independently by each of the present

authors [31,32] and others. As a more general validation of

the method, we have applied it for estimating the yield of

a selection of high-explosives and nuclear tests over a wide

range of energies, from a few tonnes of TNTe to the high

yields of thermonuclear tests [28,33,34,38–40,46–48]. The

results of the fit of E0 for thirteen historical explosions are

shown in Fig. 7, where the fits are compared to the “accepted”

yield in tonnes of TNTe (since the “true” yield may not be

known). As indicated earlier, the accuracy of the parameter

fit relies on the availability of data in the early stages. Simi-

larly, the precision of the parameter fit depends on the noise

level of the dataset. These features are noticeable in the fig-

ure for the noisiest datasets corresponding to the tests Bee

(Operation Teapot) and Harry (Operation Upshot-Knothole).

The excellent agreement between the fitted and accepted

yields over several orders of magnitude confirms that (15)

provides an acceptable description of the shock front, despite

the unrefined approximation of a linear decay of the Mach

number. We remark in passing that an evident deviation from

the exact description of the Mach number appears as the

decay into the acoustic regime according to (15) does not

include the logarithmic dependency found both theoretically

[49] and semi-empirically [50].

6 Summary and conclusions

This article illustrates the results of a general characterization

of a blast wave in free air, extendable to other configurations

by using a reflection factor. A linear ansatz for the decay of

the Mach number of the shock front as it expands allows for

analytical solutions of the hydrodynamics equations that lead

to a concise expression for the Mach number of shock front

in terms of the distance from the explosion center. Despite

the unsophisticated approximation for the deceleration of the

shock front, the subsequently obtained expressions show an

excellent agreement with experimental data.

A simple formula for the Mach number was derived in

the form of an ordinary differential equation, whose solu-

tion describes the position versus time development of the

shock front. Here is where time of arrival measurements can

be used for estimating the energy E0 producing the shock

wave, a crucial parameter that determines the shock evo-

lution and the loading developed on obstacles with which

it interacts. The general solution found contains the well-

known strong-shock solution as a limit in the early stage

of the shock development, beyond this regime the solution

describes the transition to an acoustic wave in the far-field.

In the near field, the solution is only valid for nuclear explo-

sions because a point source was assumed. Experimental data

from gram-sized charges were used to verify the validity of

the results and later archival data from large-scale explosions

were also employed using dimensionless coordinates for time

and distance so that explosions from grams of PE4 to ther-

monuclear blasts can be visualized in a single diagram. The

123



414 J. S. Díaz, S. E. Rigby

solution found serves as a generalization of other descrip-

tions of the decaying blast wave, in this case, valid from the

early (strong) stage to the asymptotically acoustic behavior

at the far field. In a similar fashion, an interesting new scal-

ing to dimensionless coordinates has been recently proposed

that allows visualizing explosions in air and underwater in

the same plot [51].

A discussion about the validity of the strong-shock solu-

tion was presented that can serve a valuable resource for

blast engineers. The yields of over a dozen explosions were

estimated as way to validate the results found in this work

and the main aspects of a fit to time-of-arrival data are dis-

cussed. Our results show that one of the key features when

fitting the yield to time-of-arrival data is that this must be

performed in a log-log space; otherwise, slight errors in far-

field data will dramatically affect the estimate of E0 and can

possibly render the analysis useless. This property is due to

the highly degenerate nature of the blast wave solution in

the far field, where all solutions asymptotically approach to

an acoustic wave independent of the yield E0. Additionally,

when applied to laser-induced shocks, the method outlined

in this work becomes a direct diagnostic of the laser energy

deposited in the material.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00193-022-01089-
z.

Acknowledgements J.S.D. was supported in part by the Indiana Uni-
versity Center for Spacetime Symmetries. He also acknowledges the
delightful company of H. Fry and A. Rutherford with their Curious

Cases during most of this work, and thanks J.C. Valenzuela for bring-
ing laser-induced shock waves to our attention.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Agapiou, A.: Damage proxy map of the Beirut explosion on 4th
of August 2020 as observed from the Copernicus sensors. Sensors
20(21), 6382, 1–21 (2020). https://doi.org/10.3390/s20216382

2. Norville, H.S., Harvill, N., Conrath, E.J., Shariat, S., Mallonee,
S.: Glass-related injuries in Oklahoma City bombing. J. Per-
form. Constr. Fac. 13(2), 50–56 (1999). https://doi.org/10.1061/
(ASCE)0887-3828(1999)13:2(50)

3. Dewey, J.M.: The air velocity in blast waves from T.N.T. explo-
sions. Proc. R. Soc. Lond. A279, 366–385 (1964). https://doi.org/
10.1098/rspa.1964.0110

4. Dewey, J.M.: The properties of a blast wave obtained from an anal-
ysis of the particle trajectories. Proc. R. Soc. Lond. A324, 275–299
(1971). https://doi.org/10.1098/rspa.1971.0140

5. Dewey, J.M.: The Rankine–Hugoniot equations: their extensions
and inversions related to blast waves. Sochet, I. (ed.) Blast Effects:
Physical Properties of Shock Waves, Chapt. 2. Springer Nature
(2018). https://doi.org/10.1007/978-3-319-70831-7

6. Gallet, A., Rigby, S.E., Tallman, T.N., Kong, X., Hajirasouliha, I.,
Liew, A., Liu, D., Chen, L., Hauptmann, A., Smyl, D.: Structural
engineering from an inverse problems perspective. Proc. R. Soc.
Lond. A478, 20210526 (2022). https://doi.org/10.1098/rspa.2021.
0526

7. Taylor, G.I.: The formation of a blast wave by a very intense explo-
sion, I: theoretical discussion. Proc. R. Soc. Lond. A201, 159–174
(1950). https://doi.org/10.1098/rspa.1950.0049

8. Sedov, L.I.: Similarity and Dimensional Methods in Mechan-
ics. Academic Press, New York (1957). https://doi.org/10.1016/
C2013-0-08173-X

9. von Neumann, J.: Collected Works, vol. 6. Pergamon, New York
(1963). https://doi.org/10.2307/2003380

10. Sakurai, A.: On the propagation and structure of the blast wave.
I. J. Phys. Soc. Jpn. 8, 662–669 (1953). https://doi.org/10.1143/
JPSJ.8.662

11. Sakurai, A.: On the propagation and structure of the blast wave.
II. J. Phys. Soc. Jpn. 9, 256–266 (1954). https://doi.org/10.1143/
JPSJ.9.256

12. Brode, H.L.: Numerical solution of spherical blast waves. J. Appl.
Phys. 26, 766–775 (1955). https://doi.org/10.1063/1.1722085

13. Brode, H.L.: Blast wave from a spherical charge. Phys. Fluids 2,
217–229 (1955). https://doi.org/10.1063/1.1705911

14. Brode, H.L.: Fireball Phenomenology. RAND Corporation, Santa
Monica (1964). https://www.rand.org/pubs/papers/P3026.html

15. Bach, G.G., Lee, J.H.S.: An analytical solution for blast waves.
AIAA J. 8, 271–275 (1970). https://doi.org/10.2514/3.5655

16. Baker, W.E., Westine, P.S., Dodge, F.T.: Similarity methods in engi-
neering dynamics: theory and practice of scale modeling. Spartan
Books (1973). https://doi.org/10.1016/c2009-0-12656-9

17. Zel’dovich, Y.B., Raizer, Y.P.: Physics of Shock Waves and High-
Temperature Hydrodynamic Phenomena. Dover Books on Physics,
New York (1967). https://doi.org/10.1016/b978-0-12-395672-9.
x5001-2

18. Dobratz, B.M.: LLNL explosives handbook—properties of chem-
ical explosives and explosive stimulants. Technical Report UCRL-
51319, LLNL, University of California, CA, USA (1972). https://
doi.org/10.2172/4285272

19. Oommen, C., Jain, S.R.: Ammonium nitrate: a promising rocket
propellant oxidizer. J. Hazard. Mater. 67(3), 253–281 (1999).
https://doi.org/10.1016/S0304-3894(99)00039-4

20. Rigby, S.E., Tyas, A., Bennett, T., Clarke, S.D., Fay, S.D.: The
negative phase of the blast load. Int. J. Prot. Struct. 5(1), 1–20
(2014). https://doi.org/10.1260/2041-4196.5.1.1

21. Rigby, S.E., Fay, S.D., Tyas, A., Warren, J.A., Clarke, S.D.: Angle
of incidence effects on far-field positive and negative phase blast

123

https://doi.org/10.1007/s00193-022-01089-z
https://doi.org/10.1007/s00193-022-01089-z
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s20216382
https://doi.org/10.1061/(ASCE)0887-3828(1999)13:2(50)
https://doi.org/10.1061/(ASCE)0887-3828(1999)13:2(50)
https://doi.org/10.1098/rspa.1964.0110
https://doi.org/10.1098/rspa.1964.0110
https://doi.org/10.1098/rspa.1971.0140
https://doi.org/10.1007/978-3-319-70831-7
https://doi.org/10.1098/rspa.2021.0526
https://doi.org/10.1098/rspa.2021.0526
https://doi.org/10.1098/rspa.1950.0049
https://doi.org/10.1016/C2013-0-08173-X
https://doi.org/10.1016/C2013-0-08173-X
https://doi.org/10.2307/2003380
https://doi.org/10.1143/JPSJ.8.662
https://doi.org/10.1143/JPSJ.8.662
https://doi.org/10.1143/JPSJ.9.256
https://doi.org/10.1143/JPSJ.9.256
https://doi.org/10.1063/1.1722085
https://doi.org/10.1063/1.1705911
https://www.rand.org/pubs/papers/P3026.html
https://doi.org/10.2514/3.5655
https://doi.org/10.1016/c2009-0-12656-9
https://doi.org/10.1016/b978-0-12-395672-9.x5001-2
https://doi.org/10.1016/b978-0-12-395672-9.x5001-2
https://doi.org/10.2172/4285272
https://doi.org/10.2172/4285272
https://doi.org/10.1016/S0304-3894(99)00039-4
https://doi.org/10.1260/2041-4196.5.1.1


Blast wave kinematics: theory, experiments, and applications 415

parameters. Int. J. Prot. Struct. 6(1), 23–42 (2015). https://doi.org/
10.1260/2041-4196.6.1.23

22. Tyas, A., Warren, J., Bennett, T., Fay, S.: Prediction of clearing
effects in far-field blast loading of finite targets. Shock Waves 21(2),
111–119 (2011). https://doi.org/10.1007/s00193-011-0308-0

23. Tyas, A.: Blast loading from high explosive detonation: what we
know and what we don’t know. 13th International Conference on
Shock and Impact Loads on Structures, Guangzhou, China (2019)

24. Rigby, S.E., Tyas, A., Fay, S.D., Clarke, S.D., Warren, J.A.: Val-
idation of semi-empirical blast pressure predictions for far field
explosions: Is there inherent variability in blast wave parameters?
6th International Conference on Protection of Structures Against
Hazards (PSH14), 16–17 October, Tianjin, China (2014)

25. Rigby, S.E., Tyas, A., Clarke, S.D., Fay, S.D., Reay, J.J., Warren,
J.A., Gant, M., Elgy, I.: Observations from preliminary experiments
on spatial and temporal pressure measurements from near-field free
air explosions. Int. J. Prot. Struct. 6(2), 175–190 (2015). https://doi.
org/10.1260/2041-4196.6.2.175

26. Rigby, S.E., Knighton, R., Clarke, S.D., Tyas, A.: Reflected near-
field blast pressure measurements using high speed video. Exp.
Mech. 60(7), 875–888 (2020). https://doi.org/10.1007/s11340-
020-00615-3

27. Hyde, D.W.: Conventional Weapons Program (ConWep), U.S.
Army Waterways Experimental Station, Vicksburg, MS, USA

28. Reisler, R.E., Keefer, J.H., Giglio-Tos, L.: Basic air blast mea-
surements from a 500-ton TNT detonation, Project 1.1, Opera-
tion Snowball. Ballistic Research Laboratories, Report No. 1818
(1966). https://apps.dtic.mil/sti/citations/AD0814989

29. Murrell, D.W.: Earth motion and stress measurements. Opera-
tion Prairie Flat, Project LN302, U.S. Army Engineer Waterways
Experiment Station (1972). https://www.osti.gov/biblio/4665747

30. Pilger, C., Gaebler, P., Hupe, P., Kalia, A.C., Schneider, F.M., Stein-
berg, A., Sudhaus, H., Ceranna, L.: Yield estimation of the 2020
Beirut explosion using open access waveform and remote sensing
data. Sci. Rep. 11, 14144 (2021). https://doi.org/10.1038/s41598-
021-93690-y

31. Rigby, S.E., Lodge, T.J., Alotaibi, S., Barr, A.D., Clarke, S.D.,
Langdon, G.S., Tyas, A.: Preliminary yield estimation of the 2020
Beirut explosion using video footage from social media. Shock
Waves 30, 671–675 (2020). https://doi.org/10.1007/s00193-020-
00970-z

32. Díaz, J.S.: Explosion analysis from images: Trinity and Beirut. Eur.
J. Phys. 42, 035803 (2021). https://doi.org/10.1088/1361-6404/
abe131

33. Swift, L.M., Sachs, D.C.: Air pressure and ground shock
measurements, Operation Upshot-Knothole, Project 1.1b. Stan-
ford Research Institute, WT-711 (1953). https://apps.dtic.mil/sti/
citations/AD0373321

34. Swift, L.M., Sachs, D.C., Kriebel, A.R.: Airblast phenomena in the
high pressure region (U). Operation Plumbbob, Project 1.3. Stan-
ford Research Institute, WT-1403 (1957). https://apps.dtic.mil/sti/
citations/AD0611257

35. Taylor, G.I.: The formation of a blast wave by a very intense explo-
sion, II: the atomic explosion of 1945. Proc. R. Soc. Lond. A201,
175–186 (1950). https://doi.org/10.1098/rspa.1950.0050

36. Dannen, G.: Trinity. U.S. National Archives, Record Group 227,
OSRD-S1 Committee, Box 82 folder 6. http://www.dannen.com/
decision/trin-eye.html (1995). Accessed 17 April 2021

37. Gatti, M., Palleschi, V., Salvetti, S., Vaselli, M.: Spherical shock
waves in laser produced plasmas in gas. Opt. Commun. 69, 141–
146 (1988). https://doi.org/10.1016/0030-4018(88)90299-4

38. Haskell, N.A., Vann, J.O., Gast, P.R.: Free-air atomic blast pressure
and thermal measurements. Operation Ivy Project 6.11, WT-361
(1952). https://apps.dtic.mil/sti/citations/AD0363575

39. Kingery, C.N., Hoover, C.H., Keefer, J.H.: Ground surface air blast
pressure vs distance (U). Operation Redwing, Project 1.1, Ballistic
Research Laboratories, WT-1301 (1956). https://apps.dtic.mil/sti/
citations/ADA995110

40. Meszaros, J.J., Kingery, C.N.: Ground surface air pressure vs dis-
tance from high-yield detonations (U), Operation Castle, Project
1.2b. Ballistic Research Laboratories, WT-905 (1957). https://
www.osti.gov/biblio/6032132

41. Foreman-Mackey, D., Hogg, D.W., Lang, D., Goodman, J.: Emcee:
the MCMC Hammer. PASP 125(925), 306–312 (2013). https://doi.
org/10.1086/670067

42. Goodman, J., Weare, J.: Ensemble samplers with affine invariance.
Commun. Appl. Math. Comput. Sci. 5, 65–80 (2010). https://doi.
org/10.2140/camcos.2010.5.65

43. Smith. P., Cormie, D.: Blast loading. In: Cormie, D., Mays, G.,
Smith, P. (eds.) Blast Effects on Buildings, 2nd edn. ICE Publishing
(2009). https://doi.org/10.1680/beob2e.35218.0003

44. Coleman, K.D., Higgs, A.H., Killion, L.E., Bingham, H.T., Kelso,
J.R., Facer, G.C., Chiment, J.A., Van Lint, V.A.J., Clarke, J.F.,
Bankes, C.W., O’Brien, F.E., Shilling, S.G., Black, H., Linton,
W.C., James, J.G., Sheahan, W.M., Isengard, W.S., Forsyth, G.P.,
Williams, P.W., Miller, W.J., Jennings, E.R., McNeill, D.A.: Oper-
ation Castle: Summary report of Military Effects, Task Unit 13,
Programs 1-9 (1954). https://www.osti.gov/opennet/servlets/purl/
16039007

45. Dewey, J.M.: The TNT and ANFO equivalences of the Beirut
explosion. Shock Waves 31, 95–99 (2021). https://doi.org/10.1007/
s00193-021-00992-1

46. Kingery, C.N., Keefer, J.H., Day, J.D.: Surface air blast mea-
surements from a 100-ton TNT detonation. Ballistic Research
Laboratories, Report No. 1410 (1962). https://apps.dtic.mil/sti/
citations/AD0285599

47. Technical summary of Military Effects Programs 1–9, Sanitized
Version, Operation Hardtack preliminary report ITR-1660-(SAN)
(1959). https://apps.dtic.mil/sti/citations/ADA369152

48. Sachs, D.C., Swift, L.M., Sauer, F.M.: Air blast overpressure and
dynamic pressure over various surfaces. Operation Teapot, Project
1.10, Stanford Research Institute, WT-1109 (1955). https://www.
osti.gov/biblio/4828931

49. Bethe, H., Fuchs, K., Hirschfelder, J.O, Magee, J.L., Peierls, R.E.,
von Neumann, J.: Blast Wave. Los Alamos Scientific Labora-
tory, Technical Report LA-2000 (1958). https://apps.dtic.mil/sti/
citations/ADA384954

50. Dewey, J.M.: Measurement of the physical properties of blast
waves. In: Igra, O., Seiler, F. (eds.) Experimental Methods of Shock
Wave Research. Springer, Cham, pp. 53–86 (2016). https://doi.org/
10.1007/978-3-319-23745-9

51. Wei, T., Hargather, M.J.: A new blast wave scaling. Shock
Waves 31, 231–238 (2021). https://doi.org/10.1007/s00193-021-
01012-y

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1260/2041-4196.6.1.23
https://doi.org/10.1260/2041-4196.6.1.23
https://doi.org/10.1007/s00193-011-0308-0
https://doi.org/10.1260/2041-4196.6.2.175
https://doi.org/10.1260/2041-4196.6.2.175
https://doi.org/10.1007/s11340-020-00615-3
https://doi.org/10.1007/s11340-020-00615-3
https://apps.dtic.mil/sti/citations/AD0814989
https://www.osti.gov/biblio/4665747
https://doi.org/10.1038/s41598-021-93690-y
https://doi.org/10.1038/s41598-021-93690-y
https://doi.org/10.1007/s00193-020-00970-z
https://doi.org/10.1007/s00193-020-00970-z
https://doi.org/10.1088/1361-6404/abe131
https://doi.org/10.1088/1361-6404/abe131
https://apps.dtic.mil/sti/citations/AD0373321
https://apps.dtic.mil/sti/citations/AD0373321
https://apps.dtic.mil/sti/citations/AD0611257
https://apps.dtic.mil/sti/citations/AD0611257
https://doi.org/10.1098/rspa.1950.0050
http://www.dannen.com/decision/trin-eye.html
http://www.dannen.com/decision/trin-eye.html
https://doi.org/10.1016/0030-4018(88)90299-4
https://apps.dtic.mil/sti/citations/AD0363575
https://apps.dtic.mil/sti/citations/ADA995110
https://apps.dtic.mil/sti/citations/ADA995110
https://www.osti.gov/biblio/6032132
https://www.osti.gov/biblio/6032132
https://doi.org/10.1086/670067
https://doi.org/10.1086/670067
https://doi.org/10.2140/camcos.2010.5.65
https://doi.org/10.2140/camcos.2010.5.65
https://doi.org/10.1680/beob2e.35218.0003
https://www.osti.gov/opennet/servlets/purl/16039007
https://www.osti.gov/opennet/servlets/purl/16039007
https://doi.org/10.1007/s00193-021-00992-1
https://doi.org/10.1007/s00193-021-00992-1
https://apps.dtic.mil/sti/citations/AD0285599
https://apps.dtic.mil/sti/citations/AD0285599
https://apps.dtic.mil/sti/citations/ADA369152
https://www.osti.gov/biblio/4828931
https://www.osti.gov/biblio/4828931
https://apps.dtic.mil/sti/citations/ADA384954
https://apps.dtic.mil/sti/citations/ADA384954
https://doi.org/10.1007/978-3-319-23745-9
https://doi.org/10.1007/978-3-319-23745-9
https://doi.org/10.1007/s00193-021-01012-y
https://doi.org/10.1007/s00193-021-01012-y

	Blast wave kinematics: theory, experiments, and applications
	Abstract
	1 Introduction
	2 Theoretical description of the blast wave
	3 Sedov–Taylor–von Neumann Blast Wave
	4 Experiments
	4.1 Early nuclear explosions
	4.2 Gram-sized explosive charges
	4.3 Large chemical explosions
	4.4 Laser-induced shock waves
	4.5 Thermonuclear explosions

	5 Applications
	6 Summary and conclusions
	Acknowledgements
	References


