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Background: There has been a rapid increase in the number of Artificial

Intelligence (AI) studies of cardiac MRI (CMR) segmentation aiming to

automate image analysis. However, advancement and clinical translation in

this field depend on researchers presenting their work in a transparent and

reproducible manner. This systematic review aimed to evaluate the quality of

reporting in AI studies involving CMR segmentation.

Methods: MEDLINE and EMBASE were searched for AI CMR segmentation

studies in April 2022. Any fully automated AI method for segmentation of

cardiac chambers, myocardium or scar on CMR was considered for inclusion.

For each study, compliance with the Checklist for Artificial Intelligence in

Medical Imaging (CLAIM) was assessed. The CLAIM criteria were grouped into

study, dataset, model and performance description domains.

Results: 209 studies published between 2012 and 2022 were included in the

analysis. Studies were mainly published in technical journals (58%), with the

majority (57%) published since 2019. Studies were from 37 different countries,

with most from China (26%), the United States (18%) and the United Kingdom

(11%). Short axis CMR images were most frequently used (70%), with the left

ventricle the most commonly segmented cardiac structure (49%). Median

compliance of studies with CLAIM was 67% (IQR 59–73%). Median compliance

was highest for the model description domain (100%, IQR 80–100%) and

lower for the study (71%, IQR 63–86%), dataset (63%, IQR 50–67%) and

performance (60%, IQR 50–70%) description domains.
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Conclusion: This systematic review highlights important gaps in the literature

of CMR studies using AI. We identified key items missing—most strikingly poor

description of patients included in the training and validation of AI models and

inadequate model failure analysis—that limit the transparency, reproducibility

and hence validity of published AI studies. This review may support closer

adherence to established frameworks for reporting standards and presents

recommendations for improving the quality of reporting in this field.

Systematic Review Registration: [www.crd.york.ac.uk/prospero/], identifier

[CRD42022279214].

KEYWORDS

artificial intelligence, machine learning, cardiac MRI, segmentation, systematic

review, quality, reporting

Introduction

Cardiac MRI (CMR) is the gold standard for non-invasive

assessment of cardiac structures. Quantitative measurement of

cardiac volumes can be achieved with CMR and relies on

accurate segmentation of structures on CMR images. Manual

segmentation is routinely performed by cardiac imaging experts

but suffers from a number of drawbacks. In addition to being

laborious and time-intensive, manual segmentation is operator-

dependent, potentially impacting interobserver agreement. As

the demand for cardiac imaging continues to grow and outpaces

the supply of trained readers, there is an increasing need for

automation (1, 2).

Artificial intelligence (AI) is changing medical imaging

through the automation of complex and repetitive tasks,

including the segmentation of anatomical structures (3).

Machine learning is a subfield of AI that is commonly used for

image analysis and processing in medical applications. Machine

learning algorithms learn by experience, typically in a supervised

manner: the algorithm is trained on labeled data, such as a

set of manually segmented CMR images, where the manual

segmentation provides the reference standard or ground truth.

The algorithm identifies discriminative features and patterns in

this image data, which are incorporated to generate a model

that can perform the task—such as segmentation of the cardiac

chambers—on new unlabeled data without the need for explicit

programming. Machine learning itself encompasses a diverse

range of techniques, including deep learning, which can be

applied to the segmentation of structures in imaging (4).

Abbreviations: AI, artificial intelligence; CLAIM, checklist for artificial

intelligence in medical imaging; CMR, cardiac MRI; CT, computer

tomography; DSC, dice similarity coefficient; PRISMA, preferred

reporting items for systematic reviews and meta-analyses; PROSPERO,

international prospective register of systematic reviews; MICCAI, medical

image computing and computer-assisted intervention.

A growing number of studies have reported the use of

AI methods for segmentation in CMR. The manner in which

these studies are reported is important. Transparent reporting

of methods and results facilitates reproducibility and allows

proper evaluation of validity. Equally, a consistent standard of

reporting aids comparison between studies and may improve

accessibility of the literature, which may be of particular

benefit in a rapidly expanding field such as AI. The need for

consistency in reporting medical research is well recognized

and reflected in various guidelines and checklists for different

study types. The Checklist for Artificial Intelligence in Medical

Imaging (CLAIM), (5) has adopted the validated and widely

used Standards for Reporting of Diagnostic Accuracy Studies

(STARD) guidelines and incorporated domains specific to AI

studies, including detailed descriptions of data sources, model

design and performance evaluation. This systematic review

aimed to evaluate the quality of reporting of studies involving

AI CMR segmentation by assessing compliance with CLAIM.

Materials and methods

The study protocol was registered with The International

Prospective Register of Systematic Reviews (PROSPERO;

registry number CRD42022279214). The study was undertaken

and is presented in accordance with the Preferred Reporting

Items for Systematic reviews and Meta-Analyses (PRISMA)

guidelines (6). No ethical approval was required.

Inclusion and exclusion criteria

Studies reporting the use of AI for segmentation of

structures in CMR were considered for inclusion. Studies

were deemed eligible if they reported: (1) any type of fully
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automated AI method (including machine learning, deep

learning and neural networks), (2) segmentation of cardiac

chambers, myocardium or scar tissue and (3) use of adult

human CMR images, regardless of acquisition methods (such

as use of intravenous contrast), parameters, post-processing

methods and software. Exclusion criteria were as follows:

absence of a newly developed segmentation model (e.g., studies

assessing existing methods), use of semi-automated AI methods

(where the segmentation process required manual input),

multiorgan segmentation, combined segmentation of multiple

imaging modalities (e.g., CMR and CT), segmentation of

cardiac vessels (e.g., aorta, pulmonary artery, coronary arteries)

or pericardial tissue, use of non-human or ex vivo images,

and conference publications. Figure 1 shows an example of

automatic biventricular (7) (Figure 1A) and four-chamber (8)

(Figure 1B) segmentation on CMR.

Search method

The MEDLINE and EMBASE databases were searched

for relevant studies on April 20 2022. The search strategy is

outlined in the SupplementaryMaterial. Non-English language

publications were excluded.

Study selection

Figure 2 indicates the flow of study identification and

inclusion. Duplicate studies were removed following the initial

database search. The titles and abstracts of the remaining studies

were screened for relevance. The full texts of all potentially

relevant studies were retrieved and assessed for eligibility against

the inclusion and exclusion criteria. Conference abstracts

and studies lacking sufficient information for evaluation were

excluded at this point. Screening was performed independently

by (SA) and by (SD, AM2, MS2) and full texts were assessed for

eligibility by SA, AM1 and MS, with SA acting as an arbitrator.

Data extraction

Three authors extracted data from the included studies

(SA, AM1, MS1) according to a standardized checklist. Half

of the included studies were also evaluated independently by

an additional five authors (SD, AM2, SJ, MG, HA) for the

purpose of quality control. All discrepancies were resolved

with discussion, with SA acting as an arbitrator, and the final

extracted data confirmed. Descriptive information about each

study was recorded, including publication details (type, source,

country, year), data used (type of data set, type of CMR

image, segmented structures) and AI model (validation and

performance evaluation methods). The studies were assessed

for compliance against the 42 criteria of CLAIM, which were

grouped into four domains: study description (9 criteria),

dataset description (17 criteria), model description (6 criteria)

and model performance (10 criteria). Supplementary Table 2

indicates all CLAIM criteria and their assignment to the

domains. For each criterion, compliance was marked as yes, no

or not applicable (N/A). Studies deemed N/A were excluded

when evaluating the proportion of studies compliant with

CLAIM criteria. For studies using solely public datasets,

the following criteria were marked as N/A, as they can be

considered implicit in the use of publicly available data sources:

retrospective or prospective study, source of ground truth

annotations, annotation tools, de-identification methods and

inter- and intra-rater variability. Additionally, the following

criteria were marked as N/A for all studies: rationale for

choosing the reference standard (as manual expert contouring is

the standard in the field) and registration number and name of

registry. Descriptive data and the number of studies compliant

with CLAIM criteria are presented as proportional values (%).

Results

Search results

The database search yielded 2,855 hits from which the

title and abstract screening identified 364 relevant studies.

The subsequent full-text assessment deemed 209 eligible for

inclusion in the analysis (Figure 2).

Included studies

Descriptive information for all of the 209 included studies

are provided in Supplementary Table 1. Selected metrics are

highlighted in Figure 3. The majority of studies (57%) were

published since 2019 (Figure 3A). Most studies were published

in technical journals (58%), with a minority published in

medical (31%) or hybrid (11%) journals. The studies were

undertaken in 37 different countries (Figure 3B), with just over

half coming from China (26%), the United States (18%) and the

United Kingdom (11%).

Publicly available datasets were used in 49% of studies,

and single or multicenter non-public datasets used in 61%,

17% of studies used multiple or combined datasets (including

multiple public datasets and a combination of public and non-

public datasets). A minority of studies (6%) did not report

their data source (Figure 3C). Of the public datasets used, the

majority (86%) had been made available throughMedical Image

Computing and Computer-Assisted Intervention (MICCAI)

challenges or the Cardiac Atlas Project (9) (Figure 3D). Most

studies reported the number of cases used (95%), with a range of

3–12,984 and a median of 78. Short axis CMR images were most
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FIGURE 1

Examples of AI cardiac MRI segmentation. Examples of automatic (A) biventricular and (B) four-chamber segmentation. The colored contours in

green and red show the left ventricular epi- and endocardium, respectively. The contours in dark blue and yellow show the right ventricular epi-

and endo- cardium, respectively. The pink and turquoise contours outline the left and right atria, respectively.

frequently used (70%), while 14% of studies did not report the

specific type of CMR image used for segmentation (Figure 3E).

The left ventricle was the most commonly segmented structure,

either alone or in combination (49%, Figure 3F). Segmentation

of multiple structures was reported in 23% of studies.

Model validation was mostly reported using internal

holdout methods (78%), such as cross-validation. A minority

reported testing on external and mainly public datasets

(22%, Figure 3G). The Dice similarity coefficient (DSC)

was used to assess model performance in 79% of studies,

Frontiers in Cardiovascular Medicine 04 frontiersin.org
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FIGURE 2

PRISMA flow chart. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses flow chart of literature search.

either alone or in combination with other metrics such as

the Hausdorff distance or the Jaccard index (Figure 3H).

Few studies (10%) provided working links to publicly

available code, with a further 1% indicating that code was

available on request.

Compliance with CLAIM

Results for compliance with the domains and selected

individual criteria of CLAIM are summarized in Figure 4.

The complete results are presented in Supplementary Table 2.

The median compliance of all studies with all 42 criteria of

CLAIM was 67% (IQR 59–73%). Notable results excluding non-

applicable criteria are as follows.

Study description

Median compliance with the study description domain was

71% (IQR 63–86%). Almost all studies clearly indicated the use

of AI methods (91%) and their objectives (94%). Where non-

public datasets were used, only a minority of studies (36%)

indicated whether these were prospective or retrospective. No

studies provided access to a full study protocol. Sources of

funding were declared in 82% of studies.

Dataset description

Median compliance with the dataset description domain

was 63% (IQR 50–67%), the lowest of the four domains. The

source of the dataset was reported in most studies (94%).

While most studies provided eligibility criteria for included

cases (74%), few studies reported their demographic and clinical

characteristics (18%) or indicated the flow of these cases (10%)

in sufficient detail. Details regarding the calculation of the

intended sample size (4%) and how missing data were handled

(9%) were also infrequently reported. The definition of the

ground truth reference standard was provided in 68% of studies.

Where non-public datasets were used, the source of ground

truth annotations and annotation tools were stated in 55%

Frontiers in Cardiovascular Medicine 05 frontiersin.org
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FIGURE 3

Descriptive information. Descriptive information for the 209 included studies. (A) Publication dates; five studies (2.4%) were included from early

2022 and are not indicated here. (B) Location of origin of studies. (C) Data sources; the proportion of studies which used public and non-public

datasets is shown, with some studies having used multiple or combined datasets. (D) Public datasets used by studies, where relevant. (E) Type of

CMR images used. (F) Cardiac structures segmented; some studies performed segmentation on multiple structures. (G) Method of model

validation. (H) Method of model performance evaluation.

and 31% of studies respectively, with inter- and intra-rater

variability reported in 42%. The majority of studies reported

data preprocessing steps (94%), definitions of data elements

(99.5%), how data were assigned to partitions (89%) and the

level at which partitions were disjoint (87%).

Model description

Median compliance with the model description domain

was 100% (IQR 80–100%), the highest of the four domains.

The majority of studies provided details about the model

used (95%), initialization of model parameters (92%), training

Frontiers in Cardiovascular Medicine 06 frontiersin.org
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FIGURE 4

Compliance with CLAIM. (A) Violin plot showing compliance of the 209 included studies with the CLAIM criteria, grouped into domains of study,

dataset, model and performance description. Median (solid line) and 1st and 3rd quartile (dashed lines) values are indicated. (B) Proportion of

studies compliant with selected CLAIM criteria, grouped by domain (the titles of the individual criteria have been shortened for ease of reading).

approach (78%) and method of selecting the final model (92%).

The software libraries, frameworks and packages used were

reported in 74%.

Model performance

Median compliance with the performance description

domain was 60% (IQR 50–70%). A minority of studies

reported testing on external data (22%) Almost all studies

provided metrics of model performance (99.5%). Most studies

provided statistical measures of significance and uncertainty

when reporting results (78%). Many studies provided forms

of robustness or sensitivity analysis (61%) and methods for

explainability and interpretability (64%). A minority of studies

reported failure analysis for incorrectly classified cases (32%).

Most studies discussed their limitations (76%) and implications

for practice (76%).

Discussion

Poor reporting is a major source of research waste (10, 11)

and ultimately may hinder advancement of AI research in the

medical field. This systematic review evaluated the quality of

reporting in AI studies involving automatic segmentation of

Frontiers in Cardiovascular Medicine 07 frontiersin.org
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structures on cardiac MRI. 209 studies were included from 2012

to early 2022. Each study was assessed for compliance with

CLAIM, a checklist that attempts to provide a “best practice”

framework for the reporting and publication of AI research in

medical imaging (5). We identified major gaps in reporting and

make a number of recommendations in order for this to be

addressed (Table 1).

Accurate and sufficiently detailed descriptions of study

materials and methods are of particular importance for

AI studies in medical imaging to allow the assessment of

reproducibility and reliability of results. Overall compliance

with CLAIM was highest for the model description domain,

with most studies providing a description of the model and

details of training approaches. However, this was lowest for the

dataset description domain, which indicated variable reporting

of the data sources used to train and evaluate models.

A good understanding of data sources is a prerequisite

for evaluating the validity of AI models. Although most

studies identified their data sources, this was a significant

omission in the studies that did not and one which greatly

limits their interpretability. Public datasets were used in

almost half of the studies, with the majority of these made

available through segmentation challenges hosted by MICCAI

(Supplementary Table 3). Public datasets contain previously

de-identified and expertly contoured images, making them

attractive to researchers. The proportion of studies using

datasets from MICCAI challenges underlines its role as a

driver for advancing the field. Importantly, the use of public

datasets facilitates reproducibility and aids comparison between

segmentationmethods. However, public sources are not without

their limitations. Public datasets consist of entirely retrospective

data, which may place constraints on study design and model

training. They are often small in size with limited demographic

and clinical diversity, and therefore have inherent selection bias.

Systematic biases affecting patient demographics are of serious

concern in the application of AI methods to clinical practice.

For example, a previous analysis of AI-based segmentation in

CMR using a large-scale database found systematic bias for both

sex and race (12) and similar biases have been reported for

AI in radiographic imaging (13). The use of diverse datasets

when training, validating and testing models is essential for

generalizability and translation to clinical practice. A model

trained on a dataset from one population does not guarantee

equal performance on another. Multiple data sets, such as both

retrospective and prospective, could be used in combination

to improve the generalizability of AI models being trained.

Even accounting for the use of public datasets, we found

that few studies reported the intended sample size (which

influences statistical power and reliability of results) or the

demographic and clinical characteristics of the cases in each

partition, (which indicates selection bias, confounders and

generalizability). Providing summary information about the

age and sex of cases is important, but may be insufficient

in isolation. We noted that studies often lacked details about

the proportions of cases with different pathologies, and the

demographics for these groups. Furthermore, studies should

not assume that readers are familiar with public datasets,

and if these are used then detailed demographics and clinical

characteristics should still be reported. The performance and

validity of any model depend on the data on which it is

trained and the data sources, including the rationale behind

their choice and the intended sample size, should be clearly

indicated. Study methodology must be reported in sufficient

detail to enable accurate reproduction of results. Notably, the

TABLE 1 Recommendations for study reporting. Main recommendations for AI study reporting are based on the gaps in the literature identified in

this systematic review.

Recommendation Importance

General Utilize a reporting framework (e.g., CLAIM). Comparability of studies.

Use of consistent and descriptive terminology. Accessibility and comparability of studies.

Data sources Describe the source of data, including patients’ eligibility criteria,

their numbers and demographic and clinical characteristics.

Contextualizing model performance and generalizability.

Clarify the number of scans and the flow of both patients and scans

into different datasets (e.g., training, validation, and testing).

Understanding model performance and generalizability.

Use publicly available datasets. Comparability of models against a common benchmark.

Model training and evaluation Describe the neural network, software packages and libraries in

sufficient detail.

Study reproducibility.

Define how the reference contours were generated, the experience of

the annotator and annotation tools used.

Understanding model performance and generalizability.

Explain the method of model training and performance. Understanding model performance and generalizability.

Test the model performance on external data with different

characteristics to the training data.

Study and model reliability.

Understanding model generalizability.

Implementation in clinical practice.

Perform failure analysis and report the limitations of the model. Understanding model performance and generalizability.

Publication of open-source code. Understanding model performance and generalizability.
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definition of the ground truth reference standard, the source

of ground truth annotations and the annotation tools used

were absent in a substantial number of studies. Understanding

the structures included in the ground truth contours and the

expertise of the annotator is essential in evaluating the training

process and ultimately contextualizing themodel’s performance.

The proportions of studies that provided sufficiently detailed

descriptions of the ground truth and its source were lower than

expected for the field. For example, judging from the figures

present in the included studies, ventricular trabeculations were

usually included in the blood pool contours, although few

studies described this process. Similarly, many studies failed

to report the specific type of image used for ground truth

annotation and model training and testing. While this could

be inferred from figures, it remains essential information

for understanding models and their generalizability. Finally,

only a handful of studies indicated how missing data were

handled and no studies indicated where a full study protocol

could be accessed.

Detailed description of model training and performance is

expected in this field. Testing model performance on external

data was performed in less than a quarter of all studies. Model

generalizability can only be fully evaluated when performance

is assessed in demographic and clinical populations different

from the original training cohort. The reported external datasets

were small and captured only limited variations in imaging

appearances. This represents a major hurdle to overcome

before AI models can be implemented in clinical practice. We

also noted subjectively that many publications used the terms

“validation” and “test” interchangeably, or failed to distinguish

these methods clearly. Regarding the use of data in AI studies,

a validation set is used to optimize hyperparameters and

performance between training epochs, while a testing set is

used to assess the performance of the final model. The lack of

consistent terminology in studies can limit the interpretability of

their models and blur the distinction between internal holdout

and external testing methods. Additionally, few studies reported

failure analysis of incorrectly classified cases, suggesting that

most did not explore the reasons for model underperformance.

Furthermore, the vast majority of studies did not discuss the

limitations of their methods, limiting their transparency. Open

publishing of source code is a contentious topic in AI research

and was only provided in one in ten of all studies. The public

availability of code aids transparency, assists peer review and

facilitates the development of new models, but bears important

implications for ownership and rights.

The use of reporting frameworks, such as CLAIM, can

be beneficial. For example, they may help to inform study

design and highlight areas that may require rectification prior

to dissemination of results. Frameworks assist standardization

in reporting, improving comparability and interpretability by

the wider scientific community. Study accessibility is also an

important consideration in advancing the field. Regardless of

journal type, AI studies in medical imaging need to cater

for a broad potential readership, from clinicians to computer

scientists. More standardized reporting and the use of consistent

and accessible terminology are important in this regard.

We acknowledge limitations in this systematic review.

Firstly, this review focused solely on AI segmentation in CMR

studies. However, these findings are likely to apply to AI studies

in other cardiac imaging modalities, such as echocardiogram,

CT coronary angiography or nuclear myocardial perfusion

studies. Furthermore, given that AI studies in chest imaging

have shown similar shortcomings in reporting quality (14),

our findings may be more broadly relevant to AI studies in

medical imaging. Secondly, while our systematic search aimed to

identify all published AI CMR segmentation studies, the body of

unpublished, pre-print or technical conference literature is vast.

A Github or arxiv.org search reveals numerous segmentation

attempts of varying levels of reporting quality and beyond the

scope of this review to capture. Thirdly, even despite the use of

structured tools such as CLAIM, there remains an element of

subjectivity in determining report quality, such as the amount

of information required for a study to be deemed reproducible.

Conclusion

This systematic review highlights the variability in reporting

and identifies gaps in the existing literature of studies using

AI segmentation of CMR images. We identified several key

items that are missing in publications—most strikingly poor

description of patients included in the training and validation

of AI models and inadequate model failure analysis—which

may limit study transparency, reproducibility and validity. This

review supports closer adherence to established frameworks for

reporting standards, such as CLAIM. In light of these findings,

we have presented a number of recommendations for improving

the quality of reporting of AI studies in both CMR and the wider

field of cardiac imaging.
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