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Abstract: In precision agriculture, effective monitoring of corn pest regions is crucial to developing

early scientific prevention strategies and reducing yield losses. However, complex backgrounds

and small objects in real farmland bring challenges to accurate detection. In this paper, we propose

an improved model based on YOLOv4 that uses contextual information and attention mechanism.

Firstly, a context priming module with simple architecture is designed, where effective features of

different layers are fused as additional context features to augment pest region feature representation.

Secondly, we propose a multi-scale mixed attention mechanism (MSMAM) with more focus on

pest regions and reduction of noise interference. Finally, the mixed attention feature-fusion module

(MAFF) with MSMAM as the kernel is applied to selectively fuse effective information from additional

features of different scales and alleviate the inconsistencies in their fusion. Experimental results show

that the improved model performs better in different growth cycles and backgrounds of corn, such as

corn in vegetative 12th, the vegetative tasseling stage, and the overall dataset. Compared with the

baseline model (YOLOv4), our model achieves better average precision (AP) by 6.23%, 6.08%, and

7.2%, respectively. In addition, several comparative experiments were conducted on datasets with

different corn growth cycles and backgrounds, and the results verified the effectiveness and usability

of the proposed method for such tasks, providing technical reference and theoretical research for the

automatic identification and control of pests.

Keywords: early pest control; pest region; small object; context; attention mechanism; feature fusion

1. Introduction

Corn is one of the most cultivated planted crops worldwide and a crucial source of
grain in the world. It was estimated that, by 2020, about a third of global farms were
cultivating corn [1]. Ensuring production is of great importance for world food security.
Corn yield is subject to various factors, among which the influence of pests is prominent.
For instance, the corn borer, a very menacing pest, first eats the mesophyll during the
growth of corn, and then damages the leaves. After being gnawed, the yield of the crop
is seriously reduced, and the stalk is easily broken in windy conditions. As a result,
early meticulous pest control has great significance. Moreover, a prerequisite for control is
accurate monitoring of the degree of pest damage. In traditional agriculture, this monitoring
behavior depends on agricultural experts, but manual investigation has many drawbacks:
low efficiency, strong subjectivity, and being error prone. Fortunately, the development
of information science provides new problem-solving ideas [2]; for example, precision
agriculture combines information technology and agricultural production. In precision
agriculture, a crucial issue is that of to accurately detecting pest regions and applying
pesticides in a targeted and precise manner according to the degree of damage in different
areas. As shown in Figure 1, crop images are first taken at fixed points according to the

Agriculture 2022, 12, 1104. https://doi.org/10.3390/agriculture12081104 https://www.mdpi.com/journal/agriculture



Agriculture 2022, 12, 1104 2 of 19

flight path planned by the UAV. The images are then preprocessed and the pest regions are
detected by computer vision techniques. Finally, the severity of damage to different regions
is assessed using clustering algorithms, which produce a heat map of degree of infestation.
The key to this entire set of algorithms for automatically assessing the damage degree of
the pest regions is the ability to accurately identify targets. Therefore, an automatic pest
region detection model with accurate identification and fast localization is required.

 

Figure 1. Schematic diagram of the overall technical route of the automatic assessment algorithm for

the damage degree of the pest regions.

In previous studies, computer vision techniques based on machine learning received
attention in order to develop accurate and fast methods for pest monitoring. Qin et al. [3]
proposed extracting edge features of stored-grain pests by the spectral residual (SR) method
and used this feature to perform saliency edge detection. Camargo et al. [4] extracted the
image features of cotton-crop disease areas, retained the main features and used the features
as the input of the Support Vector Machine to identify cotton crop diseases. The above
models based on traditional machine learning achieved good results. However, their
performance mainly depended on the accuracy of manually extracted target region features
and the controllability of the external environment. There are often several problems
in the actual farmland, such as a complex environment and the small size of the pest
region in the collected image; the detection accuracy of traditional methods are, therefore,
adversely affected.

Deep learning technology developed rapidly in recent years, achieving much bet-
ter performance than traditional machine learning, so it is being widely applied in the
agricultural field. As early as 2016, Ding et al. [5] proposed a sliding-window detection
algorithm with a convolutional neural network to automatically detect and count pests.
Huang et al. [6] proposed a Multi-Attention and Multi-Part convolutional neural Network
(MAMPNet) for citrus fly identification, combined with electronic traps for monitoring.
Wang et al. [7] proposed a sampling-balanced region proposal network and introduced
an attention mechanism into the residual network to enhance the features of small-object
pest regions. In addition to the improvement of the network, many scholars discussed the
issues from the perspective of data. Li et al. [8] proposed an effective data augmentation
strategy for the CNN-based method, which rotates images to various degrees and crops
them to different grids during the training phase to obtain a large number of multi-scale
representations. In the final step, the detection results of different scale images are fused.
By so doing, they demonstrated the effectiveness of the strategy in four pest datasets.
Dai et al. [9] proposed a generative adversarial network with multiple attention, residual,
and dense fusion mechanisms to upscale low-resolution pest images to increase spatial
resolution and reconstruct high-frequency details of images, resulting in the recall rate of
pest detection being observably improved.

Most pest detection tasks are special subtasks of small-object detection, similar to the
study in this paper; small objects are difficult to detect due to low resolution and limited
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pixels [10]. The object on the top left of Figure 2a is hard to identify on its own; however,
by considering the surrounding information, such as a row of small holes appearing to
its right, the target on the left can be recognized as a pest region. Therefore, we believe
that reinforcing the target feature context can alleviate the difficulty of small pest region
detection shown in Figure 2. In the research of small object detection, the context-priming
method is the currently popular and is being applied in various fields. Lim et al. [9]
proposed FA-SSD based on SSD [11]; the model consists of an attention block and a feature-
fusion module, introducing high-level context information to improve the accuracy of small
target detection. Wang et al. [12] presented a two-stage, mobile-vision-based cascading
pest detection approach (DeepPest), which uses the multi-scale context information of
images to build a context-aware attention network, and fuses features from different
layers through a multi-projection pest detection model (MDM). Xu et al. [13] introduced a
knowledge graph into object detection, encoded the context by constructing the knowledge
graph which enhanced the features with the prior context information, and verified the
superiority of the model through experiments. Ilyas et al. [14] adopted a multi-scale context
aggregation approach for strawberry recognition, where the size of the receptive field
was dynamically modified by the adaptive receptive field module to aggregate context
information at different scales.

 

Figure 2. Example pictures showing detection difficulties; (a,b) The characteristics of pest regions of

corn in V12 stage; (c–f) The characteristics of pest regions of corn in VT stage.

However, the above approaches either tend to build complicated models to learn con-
textual information, or when learning the information at different scales, the feature fusion
methods adopted are not sufficient to fully utilize the features to overcome semantic gap.
This paper, therefore, proposes a context-priming module with a simple structure, which
introduces additional contextual information to augment the features of a corn-borer pest
region. On the other hand, to suppress the interference similar to the complex background
shown in Figure 2, a multi-scale mixed attention mechanism (MSMAM) is developed to
strengthen the representation ability of effective features and reduce interference. Finally,
fusing the additional contextual information at different scales by simple operations, such
as add or concatenation, only provides fixed linear aggregation of feature maps, and often
fails to take full advantage of these features [15,16], so a non-linear fusion method based
on MSMAM, mixed attention feature fusion (MAFF) is adopted, to fully fuse effective
multi-scale features and mitigate their inconsistency.
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In terms of baseline models, the YOLO [17–20] series is an advanced single-stage
object-detection algorithm. Lippi et al. [21] used YOLOv4 to detect pests collected by traps
arranged in orchards; Liu et al. [22] improved YOLOv3 based on the idea of feature fusion
for the detection of tomato diseases and pests in the natural environment; Fang et al. [23]
proposed an improved YOLOv3 network and improved the detection speed by a pruning
operation for fast and accurate detection of ginger images. The above research results
demonstrate that the YOLO series of algorithms produce good results in the agricultural
field, so we selected YOLOv4 as the baseline model, and our proposed methods were
incorporated to improve the original network.

The main contributions of this paper are as follows:

1. A simple yet effective context-priming module is proposed for intensifying pest region
feature representation by fusing shallow fine-grained features with deep semantic
features as additional contextual information.

2. MSMAM further improves the feature representation of a pest region through spatial
dependence of different locations and channel dimensions of different scales. Based
on this, MAFF is proposed to alleviate the inconsistencies in the context feature fusion
of different scales by learning fusion weights and retaining useful features for fusion,
these methods being applied to improve YOLOv4.

3. To comprehensively evaluate the improved model, we conducted extensive experi-
ments on data from a variety of corn growth cycles. The experimental results show
that our approach achieves better performance and robustness. It can provide a
technical reference for future pest monitoring projects in precision agriculture.

2. Materials and Methods

The aim objective of this paper is to improve the detection performance of corn-borer
pest regions in a complex background, and to obtain a unified model with better detection
performance in different corn growth cycles to meet the requirements of early control of
corn pests in precision agriculture. In this section, we present the material used in the
study, and briefly discuss the baseline YOLOv4, followed by our proposed approaches for
enhancing detection capability. First, we introduce proposed MSMAM that enables the
model to focus on important information. Second, we elaborate on the context-priming
module and the proposed MAFF based on MSMAM, for fusing additional contextual
information to augment pest region feature representation. Finally, these are combined to
improve YOLOv4, named MAF–YOLOv4.

2.1. Dataset

The dataset of the corn-borer pest region used in this study was collected in the
demonstration area of an unmanned farm in Bozhou City, Anhui Province, China. The data
collection equipment was a DJI spirit 4RTK UAV; Figure 1 illustrates the image collection
process for this study. To effectively detect borer pest regions in different corn growth
cycles, we used UAV to shoot at five meters in the low air and collect representative data:
the vegetative 12th (V12) and vegetative tasseling (VT) stages of the corn. The resolution
size of images was 4864× 3648 and 1424 valid samples were selected. Of these, 502 samples
of the V12 stage were named DV12, and 922 samples of the VT stage were named DVT.
DV12 and DVT were randomly divided into sets, as follows: training set, validation set,
and test set according to the ratio of 8:1:1, respectively. We then used data augmentation
to expand DV12 and DVT to 1720 and 3217 images, respectively, and combined them to
obtain a total of 4937 samples for model training.

In this paper, we use part of an image (Figure 2) representation from the training set. At
the V12 stage, there are many corn leaves and the background is relatively pure, as shown
in Figure 2a,b. The main problem is that the size of the pest region is small. Figure 2c–f
all belong to the VT stage. The occurrence of pollination, heading and other phenomena
during this stage results in a more complex background in the image. Leaves bitten by the
corn borer can be broken by a strong wind, forming different features from the common
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corn-borer pest region, as shown in Figure 2c. Different physiological phenomena in each
corn growth cycle have different effects on the detection task; for example, stamens growing
after heading may cause occlusion to the target, as shown in Figure 2d. Following this, a
large amount of pollen is emitted, as shown in Figure 2e,f, which will overlap the target,
and the distribution of some pollen is very similar to the features of the pollen-stained pest
region, which will interfere with detection. These complex backgrounds impact greatly on
the detection of pest regions belonging to small targets, which is a huge challenge.

2.2. Data Augmentation

There are few samples of corn-borer pest regions in real environments, and differ-
ent imaging conditions, such as light intensity and angle during data collection, lead to
variations in data quality. Data have a substantial impact on deep learning. Several data
augmentation methods were applied to expand the diversity and richness of the training
samples as follows: rotation, flipping, brightness transform, Gaussian blur processing, re-
sampling and padding. The first four methods (Figure 3b–g) were randomly combined and
used for data augmentation for each training sample, while the corresponding annotation
files were transformed. The samples of DV12 were expanded from 401 to 1604, and the
samples of DVT were expanded from 737 to 2948. In the latter two methods (Figure 3h–j),
116 and 269 samples were selected from the DVT and DV12 for padding and resampling,
respectively. The final training data contain 4937 images.

 

° °
°

Figure 3. Image preprocessing: (a) original image of (b–g), (b) 90◦ clockwise rotation, (c) 180◦

clockwise rotation, (d) 270◦ clockwise rotation, (e) flipping, (f) brightness transform, (g) Gaussian

blur processing, (h) padding, (i,j) resampling sample examples.

2.2.1. Data Augmentation: Image Rotation and Flipping

Rotation and flipping are common data augmentation techniques used in deep learn-
ing to effectively extend data samples and improve model detection performance [24]. In
this study, the original images were rotated by 90◦, 180◦, 270◦ and flipping.

2.2.2. Data Augmentation: Image Brightness and Gaussian Blur Processing

Different angles and intensities of sunlight exposure and crop-induced shadows may
occur during data collection in natural environments, so the image-brightness transform
technique was used to perform data augmentation on training samples. A randomly se-
lected scale factor from 0.5 to 1.5 was multiplied by the original image RGB, causing the
image brightness to change (the brightness remains constant when the factor equals 1). In
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addition to lighting conditions, the detection performance of the neural network is also
affected by the blurring of the images due to different imaging conditions, so we blurred
the training samples using Gaussian blur processing, where the standard deviation of the
Gaussian kernel was randomly sampled from the interval (0.0, 3.0). These methods simu-
lated images of pest regions under various lighting and imaging conditions, strengthening
the robustness of the model.

2.2.3. Data Augmentation: Resampling and Padding

To further enrich the training samples, some of the images were chosen for padding or
resampling. In the target detection, different imaging conditions, such as shooting angle
and camera distance, usually result in different target scales. For larger targets, as shown in
Figure 3h, we padded their edges, expanded the image to 1.5 times the original size, and
then resized back to the original size. During image preprocessing, we found that some pest
regions had few features, such as Figure 3i,j—only a single row of white dots developed
when the corn borer began to consume the leaves. There are few samples containing such
features in the original data, so we used resampling to enrich the number of target features.
The padding and resampling expanded the number of training samples and the diversity
of the samples was further enhanced, which had a positive effect on detection performance.

2.3. YOLOv4

YOLOv4 was formed by the continuous optimization of YOLO series algorithms.
Compared with two-stage detection algorithms, such as Faster R-CNN [25], the detection
speed is greatly improved since no proposal regions are required. YOLOv4 consists of three
parts: backbone, neck, and head, as shown in Figure 4. The backbone is CSPDarknet53 [20],
which is composed as follows: small residual blocks are formed by stacking CBM modules
(convolutional layer, BN layer, Mish activation function layer), and then stacking small
residual blocks to form five large residual blocks (Resblock) (C1, C2, C3, C4, C5), which
extracts the deep features of input. The neck consists of SPP [26] and PAN; the former is
similar to SPP in YOLOv3, which expands the receptive field of network. The latter draws
on the idea of PANet [27] on the basis of FPN, improves information utilization, and better
integrates the three feature maps’ (C3, C4, C5) output by the backbone. By altering the
neck structure, as shown in Figure 5, the detection accuracy was improved without much
increase in computational cost. The head is inherited from the YOLOv3 head.

 

Figure 4. Structure diagram of YOLOv4 model; the red cube represents C4(CSP_1), which is the

intermediate feature map output by the first small residual block in the C4 layer.
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Figure 5. Improvement of the feature map.

2.4. Multi-Scale Mixed Attention Mechanism

When viewing a picture, human beings pay attention to its more critical information
and skip the irrelevant parts. The deep learning-based attention mechanism is designed
to mimic the human visual attention process. Hu et al. [28] proposed for the first time the
channel attention mechanism, Squeeze-and-Excitation Networks (SENet), in the process
of convolution network operation, through learning weights and giving different weights
to different features that achieve the purpose of better feature selection. Inspired by the
operation of Non-local means, Wang et al. [29] proposed Non-local Neural Networks
(NLNN), which directly captures long-range dependencies by computing the interaction
between any two locations to obtain an enlarged receptive field. Fu et al. [30] proposed
Dual Attention Network (DANet); this model establishes semantic correlations in spatial
and channel dimensions through different attention mechanisms to obtain better feature
representation. Recently, scholars considered the scale problem in the attention mechanism
and combined the feature contexts of multiple scales in the attention module to achieve
a multi-scale attention mechanism [16]. For example, the pyramid attention mechanism
extracts different scale feature contexts inside the attention module, which effectively
enhances the significance representation [31].

The above attention mechanisms achieved good results in various detection tasks;
however, there are challenges in this study, such as small targets, complex background,
and scale change. This means that capturing long distance contexts is more effective
for detecting pest regions with a global distribution, but that multi-scale attention is
unable to extract sufficient context due to the limitations of convolution operations. We,
therefore, combined position attention block (PAB) and multi-scale channel attention block
(MS-CAB) to form a multi-scale mixed attention mechanism (MSMAM), as shown in
Figure 6. PAB obtains more sufficient long-distance context by calculating the spatial
dependencies of any two positions in the feature map, while MS-CAB comprises global
attention and local attention composition to aggregate different scale feature contexts along
a channel dimension.
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𝑋 ∈ 𝑅×ு×ௐ𝐻 × 𝑊 𝑋ᇱ 𝑋ᇱ 𝑋ᇱᇱ 
𝑋ᇱ ൌ 𝑋 ⊕ 𝑄ሺ𝑋ሻ𝑋ᇱᇱ ൌ 𝑋ᇱ ⊗ 𝐶𝐴ሺ𝑋ᇱሻ⊕ ⊗ 𝑄  𝐶𝐴

 

Figure 6. Schematic diagram of MSMAM. GAP represents the global average pooling, and BN

represents the Batch Normalization.

Given an intermediate feature map X ∈ RC×H×W as input where the feature map size
is H × W and the channel dimension is C, X′ derives X′ and X′′ sequentially through PAB
and MS-CAB, and the shape remains unchanged. The main process can be summarized as:

X′ = X ⊕ Q(X) (1)

X′′ = X′
⊗ CA

(

X′
)

(2)

where ⊕ denotes Broadcast addition, ⊗ denotes element-wise multiplication. Q, CA
represent PAB and MS-CAB, respectively.

2.4.1. Position Attention Block

When an image is used as input in a neural network, the receptive field of the feature
map obtained after several convolutions gradually becomes larger, and any position in the
feature map usually contains some surrounding information. However, convolution is a
local operation and captures limited information; also, multiple overlays cannot capture
features at all locations, especially those far away. For example, in Figure 2f, the pest
regions in the two locations have similar features; it is hard to capture the relationship
between the two only through convolution, due to the distance. Thus, we applied PAB to
calculate the spatial dependence of any two locations in the feature map and obtained the
weight determined by regional similarity, as shown in Figure 7. The overall process can be
summarized as:

qi ,j = σ(I(xi, j)
T M(xk,l))N(xk,l) (3)

In short, the position attention is computed as:

Q(X) = σ(I(X)T M(X))N(X) (4)

Q(X) = σ((WI X)TWMX)N(X) (5)

Q(X) = σ(XTWT
I WMX)N(X) (6)

where (i, j) represents the coordinates to compute the dependencies between the current po-
sition and other positions, q is the output signal, (k, j) are the coordinates of any possible po-
sition in the feature map, σ represents sigmoid function, I

(

xi,j

)

= WI xi,j, M(xk,l) = WMxk,l ,
and N(xk,l) = WN xk,l . I

(

xi,j

)

, M(xk,l), N(xk,l) are the outputs of the corresponding convo-

lutional layer, respectively. WI , WM, WN ∈ R
C
r1
×

C
r1 are the corresponding convolutional

layer parameters, respectively.
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𝑞 , ൌ 𝜎ሺ𝐼ሺ𝑥,ሻ்𝑀ሺ𝑥,ሻሻ𝑁ሺ𝑥,ሻ
𝑄ሺ𝑋ሻ ൌ 𝜎ሺ𝐼ሺ𝑋ሻ்𝑀ሺ𝑋ሻሻ𝑁ሺ𝑋ሻ𝑄ሺ𝑋ሻ ൌ 𝜎ሺሺ𝑊ூ𝑋ሻ்𝑊ெ𝑋ሻ𝑁ሺ𝑋ሻ𝑄ሺ𝑋ሻ ൌ 𝜎ሺ𝑋்𝑊ூ் 𝑊ெ𝑋ሻ𝑁ሺ𝑋ሻሺ𝑖, 𝑗ሻ ሺ𝑘, 𝑗ሻ𝜎  𝐼ሺ𝑥,ሻ ൌ𝑊ூ𝑥,  𝑀ሺ𝑥,ሻ ൌ 𝑊ெ𝑥, 𝑁ሺ𝑥,ሻ ൌ 𝑊ே𝑥, 𝐼ሺ𝑥,ሻ 𝑀ሺ𝑥,ሻ 𝑁൫𝑥,൯𝑊ூ , 𝑊ெ, 𝑊ே ∈ 𝑅 ೝభ× ೝభ

 ଵభ  ଵଶ ଵସ ଵ଼ଵଵ

1 × 1
1 × 1

𝐺ሺ𝑋ᇱሻ ∈ 𝑅×ଵ×ଵ 𝐿ሺ𝑋ᇱሻ ∈ 𝑅×ு×ௐ

𝐺ሺ𝑋ᇱሻ ൌ 𝐵𝑁ሺ𝐶ଶሺሺ𝐿𝑅ሺ𝐵𝑁ሺ𝐶ଵሺ𝑔ሺ𝑋ᇱሻሻሻሻሻሻሻ
𝐿ሺ𝑋ᇱሻ ൌ 𝐵𝑁ሺ𝐶ଶሺ𝐿𝑅ሺ𝐵𝑁ሺ𝐶ଵሺ𝑋ᇱሻሻሻሻሻ𝐺ሺ𝑋ᇱሻ 𝐿ሺ𝑋ᇱሻ 𝐶𝐴ሺ𝑋ᇱሻ

Figure 7. PAB structure diagram. 1
r1

is the channel reduction rate, which can be assigned as 1
2 , 1

8 , 1
16 .

2.4.2. Multi-Scale Channel Attention Block

Based on the idea of the multi-scale attention mechanism mentioned in 2.4, MS-CAB
was designed for aggregating feature contexts at different scales via 1 × 1 convolution in
the attention module, and it extracts context along the channel dimension and controls
the scale variation by varying spatial pooling size. The structure consists of two branches,
a global branch and a local branch, implementing via global average pooling and 1 × 1
convolution, respectively, as shown in Figure 8. The two scales are aggregated to obtain a
feature context, which aids the network detect locally distributed small pest regions. Global
context G(X′) ∈ RC×1×1 and local context L(X′) ∈ RC×H×W can be expressed, respectively,
as follows:

𝐶𝐴ሺ𝑋ᇱሻ ൌ 𝜎ሺ𝐺ሺ𝑋ᇱሻ ⊕ 𝐿ሺ𝑋ᇱሻሻ𝐶ଵ 𝐶ଶమ × 𝐶 × 1 × 1 𝐶 × మ × 1 × 1𝑔 

 ଵభ ଵଶ ଵସ ଵ଼ଵଵ
Figure 8. PAB structure diagram. 1

r1
is the channel reduction rate, which can be assigned as 1

2 , 1
4 , 1

8 , 1
16 .

Global:
G
(

X′
)

= BN
(

C2

((

LR
(

BN
(

C1

(

g
(

X′
)))))))

(7)

Local:
L
(

X′
)

= BN
(

C2

(

LR
(

BN
(

C1

(

X′
)))))

(8)

Combining the output of G(X′) and L(X′), the output of CA(X′) is obtained as follows:

CA
(

X′
)

= σ

(

G
(

X′
)

⊕ L
(

X′
))

(9)

where C1 and C2 represent convolution operations with the convolution kernel parameters
of C

r2
× C × 1 × 1 and C ×

C
r2
× 1 × 1, respectively. LR is the Leaky ReLu activation function,

g represents global average pooling.
The neck of YOLOv4 was modified by embedding MSMAM, to obtain a new network,

MA–YOLOv4, as shown in Figure 5.
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2.5. Fusing Context by MAFF

Due to the small size, low resolution, and limited information contained in the corn-
borer pest region, we provided additional context features to augment the feature repre-
sentation of the pest region. We fused high layer, more abstract, and stronger semantic
information with low layer containing more detailed location information, and extracted
the pest region feature connected with the multi-scale context features. YOLOv4 adopts the
idea of hierarchical prediction to generate three feature maps of different sizes, as shown in
Figure 4. The order of map sizes from small to large is C5, C4, C3. C3 is relatively large
and includes more small-target information. We considered using C3 as the target feature
map and fused extra context features to intensify it. The additional context features to be
fused came from the shallow layer C2 (CSP_2) and the deep layer C4 (CSP_1). However,
we directly provided different layers of contextual information to augment the small target
features, but this also brought much invalid information. Thus, MSMAM was used to
reduce unnecessary information in the feature maps. The shapes of these two feature maps
were inconsistent so we downsampled C2 (CSP_2) and upsampled C4 (CSP_1), respectively,
so that both were the same size as C3. First, multi-scale features from different layers
were fused; the features were then refined by convolution to remove redundant informa-
tion, thereby preventing the target features from being overwhelmed by the additional
features, and finally fused with the target features. Figure 9 shows how we connected
contextual information.

 

 𝑌 ∈ 𝑅×ு×ௐ 
𝑌 ൌ 𝑀𝑆𝑀𝐴𝑀ሺ𝑋 ⊕ 𝑋ሻ ⊗ 𝑋  ሺ1 െ 𝑀𝑆𝑀𝐴𝑀ሺ𝑋 ⊕ 𝑋ሻሻ ⊗ 𝑋 𝑋 ∈ 𝑅×ு×ௐ 𝑋 ∈ 𝑅×ு×ௐ𝑀𝑆𝑀𝐴𝑀ሺ𝑋 ⊕ 𝑋ሻ 1 െ 𝑀𝑆𝑀𝐴𝑀ሺ𝑋 ⊕ 𝑋ሻ

Figure 9. Schematic diagram of the context-priming module.

For feature fusion, common methods, such as addition or concatenation, are often
unable to fully integrate multi-scale features. Recently, several improved feature fusion
methods were proposed, such as ASFF [15], BiFPN [32], and NAS-FPN [33]; these tend to
fuse features from different layers by constructing complex paths or methods. We applied
MAFF with a simpler structure; this uses MSMAM as the kernel to select effective fusion
features by calculating the fusion weights of different scale feature maps, alleviate semantic
inconsistency, and scale inconsistency caused by multi-scale feature fusion in pest region
detection, as shown in Figure 10. The computing process of the output Y ∈ RC×H×W of
MAFF can be summarized as:

Y = MSMAM(Xl ⊕ Xh)⊗ Xl + (1 − MSMAM(Xl ⊕ Xh))⊗ Xh (10)
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where Xl ∈ RC×H×W is the low layer feature map, Xh ∈ RC×H×W is the high layer feature
map, the value range of MSMAM(Xl ⊕ Xh) and 1− MSMAM(Xl ⊕ Xh) are between (0, 1),
which are the fusion weights.

 𝑌 ∈ 𝑅×ு×ௐ 
𝑌 ൌ 𝑀𝑆𝑀𝐴𝑀ሺ𝑋 ⊕ 𝑋ሻ ⊗ 𝑋  ሺ1 െ 𝑀𝑆𝑀𝐴𝑀ሺ𝑋 ⊕ 𝑋ሻሻ ⊗ 𝑋 𝑋 ∈ 𝑅×ு×ௐ 𝑋 ∈ 𝑅×ு×ௐ𝑀𝑆𝑀𝐴𝑀ሺ𝑋 ⊕ 𝑋ሻ 1 െ 𝑀𝑆𝑀𝐴𝑀ሺ𝑋 ⊕ 𝑋ሻ

 

Figure 10. MAFF structure.

3. Results and Discussion

In this section, we verify and analyze the method proposed in this paper through dif-
ferent combined comparative experiments on different growth cycle data; the experimental
datasets are DV12, DVT, and DV12&DVT—a combination of the former two. The specific
experimental environment is shown in Table 1.

Table 1. Experimental environment.

Configuration Parameter

CPU Intel Xeon Gold 5220
GPU NVIDIA Tesla V100

Operating system Ubuntu 18.04
Accelerated environment CUDA10.2 CUDNN7.6.5

Due to limited GPU resources, we set the batch-size to eight and the initial learning
rate to 0.001, which gradually decays according to the initial settings. Parameters, such
as momentum and weight decay, refer to the initial parameters in YOLOv4; the number
of training iterations was 50,000. For the sample size, 608 × 608 resolution which is more
difficult to detect was selected for experiments to verify the effect of the model on small
pest region detection.

To accurately evaluate the detection performance of a model, the following evaluation
metrics are usually adopted in object detection: precision, recall, F1-score, and average
precision (AP); accordingly, we used these to evaluate the performance of our proposed
model. The specific calculation method was as follows:

Precision =
TP

TP + FP
(11)

Recall =
TP

TP + FN
(12)

F1-score = 2 ×
Precision × Recall

Precision + Recall
(13)

AP =
∫ 1

0
Precision × recall dr (14)

where TP is true positive samples, FP is false positive samples, TN is the true negative
samples, FN is false negative samples, and AP is the area under the PR curve. The precision
rate and recall rate obtain different values due to different IoU thresholds; we set the
threshold to 0.5 in this paper. In the evaluation index, the AP or F1-score is usually used
to comprehensively evaluate the detection performance of an algorithm. In this paper,
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we considered AP as the reference metric in order to evaluate model performance more
comprehensively and fairly.

The PR curves for YOLOv4, MA–YOLOv4 and MAF–YOLOv4 are shown in Figure 11.
The area under the PR curve represents the AP. It can be seen from Figure 11 that the area of
MAF–YOLOv4 is the largest, which represents the improved model with better performance.

608 × 608

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൌ 𝑇𝑃𝑇𝑃  𝐹𝑃𝑅𝑒𝑐𝑎𝑙𝑙 ൌ 𝑇𝑃𝑇𝑃  𝐹𝑁 
F1 െ score ൌ 2 ×  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  𝑅𝑒𝑐𝑎𝑙𝑙 

𝐴𝑃 ൌ න 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙ଵ
  𝑑𝑟

𝐼𝑜𝑈

Figure 11. PR curve for detection models.

3.1. Performance Comparison of the Improved Model

The main defect of YOLOv4 in detection of corn-borer pest regions was the omission
of small target pest regions or difficult regions, as mentioned in Section 2.1; the examination
results are shown in Figure 12. The most intuitive performance in the evaluation metric was
the low recall rate. The fundamental reason for this phenomenon is the limited information
for the small target and interference from complex backgrounds; it was difficult for the
original network to obtain sufficient and effective features in this case. To solve this prob-
lem, we proposed MSMAM and contextual information to improve YOLOv4, and obtained
MA–YOLOv4 and MAF–YOLOv4. The performance of different models was verified on
DV12&DVT; to assess, comprehensively, the performance of the improved models, the
state-of-the-art detection models currently widely applied in agriculture were chosen for
comparison experiments. These included the one-stage algorithms, SSD, YOLOv3, and
YOLOv4; the two-stage algorithms, Faster-rcnn, Cascade-rcnn [34], and Dynamic-rcnn [35].
The algorithms were run in the same experimental environment, the parameters being
consistent with the original models. The quantitative comparison results are reported in
Table 2. It can be seen that the improved models significantly improved the performance
of pest region detection. Moreover, for the main shortcoming, the lower recall rate, the
model with additional contextual information, MAF–YOLOv4 outperformed MA–YOLOv4
by 9.88% with only the attention mechanism, compared with the original model. Com-
pared to the two-stage algorithm, the recall is only lower than Dynamic-rcnn with the
ResNet50 backbone. The detection speed (FPS), computational complexity (GFLOPS), and
average precision (AP) of each model were analyzed in parallel: our model showed a
significant advantage in all aspects compared with the two-stage algorithms. Compared
with the one-stage algorithm, MA–YOLOv4 demonstrated an increase of 0.55 GFLOPS over
YOLOv4, with a slight decrease in detection speed, but an improvement of 5.53% in AP
over YOLOv4, achieving a balance of speed, computational complexity, and performance;
thus the proposed model has a better overall performance.
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Figure 12. Annotated images and detection results; The first row belongs to DV12, the rest belong

to DVT.

Influence of Different Growth Cycle Data

Data from different corn growth cycles have different backgrounds and pose different
challenges. To analyze the influence of these data on model performance, models were
first trained with DV12&DVT; these were then used to detect different cycles of the test
set (DV12_test, DVT_test). Next, the models were trained with DV12 and DVT, separately;
these were then used to detect the same cycle of the test set. Table 3 presents the exper-
imental results: it can be seen that different growth cycle data have a strong influence
on the model detection. The main challenge arises from the effect of the natural envi-
ronment and the various physiological phenomena of corn, leading to low accuracy in
detecting DVT; DV12 has a minimal effect on improving the detection accuracy of DVT. For
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MAF–YOLOv4, it performs better in both the DV12_test with a relatively pure background
and the DVT_test with a complex background and more interference, whether trained
uniformly or separately.

Table 2. Experimental results; score_threshold = 0.5; IoU = 0.5; GFLOPS indicates Giga Floating-point

Operations Per Second; FPS indicates Frames Per Second.

Models Backbone Precision (%) Recall (%) AP (%) GFLOPS FPS

Faster-rcnn ResNet50 53.83 60.7 57.2 83.49 16
Cascade-rcnn ResNet50 59.63 64.2 60.8 111.3 9
Dynamic-rcnn ResNet50 40.60 70.4 64.0 83.49 14

SSD VGG16 93.33 6.91 59.50 123.38 51
YOLOv3 Darknet53 81.56 56.79 69.93 69.98 44
YOLOv4 CSPDarknet53 81.54 60.00 72.96 63.82 41

MA–YOLOv4 CSPDarknet53 83.85 66.67 78.49 64.37 39
MAF–

YOLOv4
CSPDarknet53 81.79 69.88 80.16 74.9 34

Table 3. APs of different models in different growth cycle data (unit: %); DV12&DVT, DV12, and

DVT are the selected training sets.

Different Growth
Cycles Data

DV12 DVT DV12&DVT

DV12_test DVT_test DV12_test DVT_test

YOLOv4 80.22 65.78 82.15 64.40
MA–YOLOv4 84.1 70.26 86.79 70.55

MAF–YOLOv4 86.43 71.86 88.17 72.31

3.2. Visualization

In this paper, a number of test samples was selected as input to visualize the detection
results and feature activation. The former is shown in Figure 12; it can be seen that the
improved model can accurately detect more complex pest regions in different corn growth
cycles. The latter adopted the feature visualization method, Class Activation Mapping
(CAM) [36], to improve model interpretability and qualitative analysis. The importance
of different regions of input image is determined through CAM, which is displayed in
the form of a heat map. Owing to the working mechanism of the baseline model, CAM
was introduced into output3 and the results are shown in Figure 13. From the heat maps,
we observe that the improved model covers target regions more comprehensively than
does the original model. Furthermore, in the same mask areas, such as the dense pest
region in Figure 13, they are more highlighted in the MAF–YOLOv4 CAM, which means
that the network is more sensitive to such features and can extract more effective features
from them. Thus, with the two visual analysis methods, for the pest region detection
task, adopting the attention mechanism to refine the features, and introducing additional
contextual information to enhance the pest region features using the nonlinear feature
fusion method, can make the model better aggregate effective information and improve
detection performance.

3.3. Influence of Attention Mechanism on Detection Performance

To ensure the integrity of comparative experiments, we considered the effectiveness
and optimal combination of the various components of MSMAM. First, the effects of PAB
and MS-CAB on the overall model performance were verified under the same experi-
mental conditions for different growth cycle data; the results are shown in Table 4. Both
make beneficial contributions to the model for each growth cycle data. Due to different
learned emphases, MS-CAB, which aggregates information at different scales along channel
dimension through different branches, outperforms PAB, which captures long-distance
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information by computing arbitrary-position responses, the former focusing more on ‘what’
and the latter on ‘where’.

 

Figure 13. CAM visualization results; (a–c) are heat maps for YOLOv4, MA–YOLOv4,

MAF–YOLOv4, respectively.

Table 4. Influence of different attention modules on the overall model performance in different

growth cycle data (AP, unit: %).

Attention Modules DV12 DVT DV12&DVT

YOLOv4 80.22 65.78 72.96
With PAB 82.65 67.14 76.47

With MS-CAB 83.15 68.43 77.09

Second, to make MSMAM work more effectively, we explored the channel reduction
rates 1

r1
and 1

r2
mentioned in Section 3.2, and which affect the number of parameters and

the feature extraction capacity of MSMAM. We set 1
r1

and 1
r2

to 2, 4, 8, and 16, respectively,
to determine the optimal channel reduction rate. The experimental results are shown in
Table 5 and take into account the computational costs. The 1

r1
and 1

r2
were set to 4 and 16,

respectively, for better robustness and performance.

Table 5. Influence of attention channel size on detection results (AP; unit: %). r = 2, 4, 8, 16,

representing the values of r1 and r2.

Channel Proportions r = 2 r = 4 r = 8 r = 16

With PAB 75.88 76.47 75.73 75.27
With MS-CAB 76.44 75.06 75.13 77.09

Finally, we considered the critical factor affecting performance in MSMAM and how
to combine different components to better capture information. There were three main
arrangements, sequential PAB+MS-CAB, sequential MS-CAB+PAB, and a parallel combina-
tion of the two, PAB&MS-CAB. Different blocks performed different functions, so various
arrangements had different effects on overall performance. Table 6 summarizes the impact
of different arrangements, with sequential PAB+MS-CAB having the best performance. By
analyzing the functions of the two modules and results, we found that although PAB can
capture long-distance information, due to the complexity of data and inability of PAB to
refine the captured features, there may be more redundant contexts that overwhelm truly
effective features. While MS-CAB is limited by locality of convolution, it captures context
features through global and local branches to refine features more effectively. Therefore,
sequential PAB+MS-CAB can generate finer features.
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Table 6. Influence of attention combination on detection results.

Different Combinations PAB+MS-CAB MS-CAB+PAB PAB&MS-CAB

AP (%) 78.49 76.41 77.57

3.4. Influence of Attention Mechanism in Context Priming Module

MAF–YOLOv4 is an improved version of YOLOv4 that integrates the MSMAM with
the context-priming module. MSMAM optimizes the feature map before additional multi-
scale contextual features are fused, reducing invalid information and preventing additional
information from overwhelming the target features. To analyze the performance influence
of MSMAM on MAF–YOLOv4, the model with and without the integrated attention
mechanism were compared in different growth cycle data. Table 7 presents the experimental
results, and combined with the results in Table 3, it can be seen that MSMAM is essential
in the context-priming module. MAF–YOLOv4 without the attention mechanism still
outperforms the other models on DV12 because DV12 has less noise interference. On DVT,
MAF–YOLOv4 without the attention mechanism performs worse than MA–YOLOv4 due
to its inability to reduce noise and unnecessary information. Although the integration of
MSMAM increases the computational cost, it is able to effectively improve the detection
accuracy of DVT with complex backgrounds.

Table 7. Influence of attention mechanism in context-priming module on detection results.

Model
No Attention With Attention

DV12 DVT DV12&DVT DV12 DVT DV12&DVT

AP (%) 84.95 68.27 77.60 86.43 71.86 80.16

3.5. Influence of Feature-Fusion Modules on Detection Performance

In the context-priming module, when fusing multi-scale features associated with pest
regions, MAFF was utilized as the feature-fusion method, providing a more refined fusion
of effective features at different scales. To analyze and verify the effectiveness of MAFF
in MAF–YOLOv4, we compared the two commonly used linear fusion methods (add and
concatenate) with MAFF on different growth cycle data. Experimental results are shown in
Figure 14, and combined with the results in Table 3, it can be seen that the context-priming
module using the linear fusion method outperforms MA–YOLOv4, YOLOv4 on DV12. It
is weaker than MA–YOLOv4 on DVT because of its insufficient fusion ability, which may
bring redundant information to the target feature map. Moreover, MAFF with MSMAM
as the kernel, which selectively fuses multi-scale features by calculating fusion weights,
performed better on each growth cycle data, because it is difficult for linear fusion methods
to make full use of contextual information and mitigate the semantic gaps brought by
different scale features during fusion.

3.6. Generalizability and Robustness of the Improved Model in Different Growth Cycle Data

Although the backgrounds and detection difficulties of data on pest regions that are
in different corn growth cycles are different, they have similar features. To verify the
generalizability and robustness of the improved model for different growth cycle data, we
conducted cross-tests using DV12 and DVT, with the model trained by DV12 for detecting
DVT_test and the model trained by DVT for detecting DV12_test. Figure 15 presents the
results, and combined with the results of MAF–YOLOv4 in Table 3, it can be seen that it has
better generalizability and robustness compared with YOLOv4 in different corn growth
cycle data because of its stronger feature-extraction capability. After training with DV12,
it still performed well on the DVT_test, with a 9.47% improvement in AP compared with
YOLOv4 under the same conditions. Combined with the above experiments, it illustrates
the practical significance of the improved model, which is able to obtain a unified model
for detecting pest regions in corn with different growth cycles and backgrounds.
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Figure 14. The detection results of different feature-fusion methods in different growth cycle data

(AP, unit: %).

 

Figure 15. Ddetection results of DV12 and DVT cross-tests (AP, unit: %).

4. Conclusions

To overcome the difficulty of detecting pest regions with complex backgrounds in
different corn growth cycles, in this paper, we propose strengthening target contextual
information and using MSMAM to improve YOLOv4. First, a simple-structured context-
priming module was proposed, which strengthens the pest region contextual information
by introducing additional multi-scale features. Second, MSMAM based on PAB and
MS-CAB was designed to extract effective features for the network. Finally, MAFF was
proposed based on MSMAM, which learns the fusion weights of pest region features
and fuses valid information from additional contextual features of different scales and
alleviating their semantic gaps. Experiments showed that the improved model outperforms
YOLOv4. We demonstrated effectiveness of the proposed method through multiple sets
of comparative experiments and visualization analysis, exploring it in depth to reveal its
impact on detection performance. The generalizability and robustness were illustrated by
the performance of the improved model on different growth cycle datasets. The proposed
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algorithm is advanced and effective for detecting pest regions in real environments; it will
provide a technical support for the automation of pest monitoring in precision agriculture.
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