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ABSTRACT

In close exoplanetary systems, tidal interactions drive orbital and spin evolution of planets and stars over long timescales.

Tidally-forced inertial waves (restored by the Coriolis acceleration) in the convective envelopes of low-mass stars and giant

gaseous planets contribute greatly to the tidal dissipation when they are excited and subsequently damped (e.g. through viscous

friction), especially early in the life of a system. These waves are known to be subject to nonlinear effects, including triggering

differential rotation in the form of zonal flows. In this study, we use a realistic tidal body forcing to excite inertial waves through

the residual action of the equilibrium tide in the momentum equation for the waves. By performing 3D nonlinear hydrodynamical

simulations in adiabatic and incompressible convective shells, we investigate how the addition of nonlinear terms affects the tidal

flow properties, and the energy and angular momentum redistribution. In particular, we identify and justify the removal of terms

responsible for unphysical angular momentum evolution observed in a previous numerical study. Within our new set-up, we

observe the establishment of strong cylindrically-sheared zonal flows, which modify the tidal dissipation rates from prior linear

theoretical predictions. We demonstrate that the effects of this differential rotation on the waves neatly explains the discrepancies

between linear and nonlinear dissipation rates in many of our simulations. We also highlight the major role of both corotation

resonances and parametric instabilities of inertial waves, which are observed for sufficiently high tidal forcing amplitudes or low

viscosities, in affecting the tidal flow response.

Key words: planet-star interactions – stars: low-mass – planets and satellites: gaseous planets – hydrodynamics – waves –

instabilities

1 INTRODUCTION

Over the last 25 years or so, nearly 5000 exoplanets have been dis-

covered around mostly late-type stars from M to F spectral types,

thanks to spatial and ground-based observational campaigns (see

e.g. Perryman 2018, for a review). Several hundred of these exoplan-

ets1, known as Hot Jupiters, are giant gaseous planets orbiting in

less than 10 days around their host stars. In such compact systems,

tides inside the star and the planet are very likely to have played

a major role in modifying their rotational periods, their obliquities

(also known as spin-orbit angles) and shaping the orbital architecture

of the planet (typically the eccentricity and the semi-major axis; see

e.g. Ogilvie 2014, 2020; Mathis 2019). In addition to these secular

dynamical modifications, star-planet tidal interactions can also bring

about internal structural changes by tidal heating, and are for example

suspected to affect the size of the planet by inducing radius inflation

(e.g. Millholland 2019, for close sub-Neptune planets).

One component of the tidal response in a body due to the tidal

gravitational potential of its perturber (the star or the planet) is

the quasi-hydrostatic tidal bulge, and its associated large-scale flow,

★ E-mail: a.a.v.astoul@leeds.ac.uk
† E-mail: A.J.Barker@leeds.ac.uk
1 e.g. from the database http://exoplanet.eu/.

which is the so-called equilibrium tide (Love 1911; Zahn 1966a,

1989; Eggleton et al. 1998; Hansen 2010, 2012). Signatures of el-

lipsoidal deformations and equilibrium tides have for example been

detected by photometry at the surfaces of HAT-P 7, WASP-18, and

WASP-12, around the latter of which orbits a Hot Jupiter undergoing

orbital decay (Welsh et al. 2010; Shporer et al. 2019; Maciejewski

et al. 2016, 2020; Yee et al. 2020; Turner et al. 2021). The inward

migration of WASP-12 b is thought to be due to the second type of

tides, the dynamical tides, which are the oscillatory responses to the

tidal potential that arise when considering the non-hydrostatic (i.e.

inertial) terms in the equations of motion for tidal flows (Zahn 1966c,

1970, 1975; Ogilvie & Lin 2004). In the case of WASP-12, tidally-

excited gravity waves (which are restored by the buoyancy force) are

thought to propagate within the radiative zone, and if the star has a

radiative core they can geometrically focus towards the stellar cen-

tre, and break nonlinearly, thus dissipating their kinetic energy (e.g.

Goodman & Dickson 1998; Ogilvie & Lin 2007; Barker & Ogilvie

2010, 2011; Weinberg et al. 2017; Barker 2020). The exchange of

angular momentum with the planet due to the tidal dissipation in-

side the star is what is causing the planetary infall in this picture.

However, this dissipative mechanism is likely to be most efficient in

systems featuring old (towards the end of the main sequence) and

slowly rotating stars hosting a massive planet (Barker 2020; Lazovik

2021).

© 2022 The Authors



2 A. Astoul & A. J. Barker

Another powerful mechanism to transfer angular momentum is

the dissipation of inertial waves (restored by the Coriolis accelera-

tion), which can propagate in the convective envelopes of low-mass

stars and giant gaseous planets (e.g. Ogilvie & Lin 2004, 2007; Wu

2005a,b). The dissipation of tidal inertial waves in stars is particu-

larly efficient in the early stages of the life of a star (typically during

the pre-main sequence of late-type stars) as was shown for exam-

ple by Mathis (2015), Barker (2020) and Lazovik (2021) using the

frequency-averaged formalism developed by Ogilvie (2013). It can

then have major consequences for example on the planetary semi-

major axis, hastening the infall of the planet if it orbits inside the coro-

tation radius (where the planetary orbital period equals the rotational

period of the star), or contribute significantly to pushing it away in

the opposite case (in comparison with dissipation of the equilibrium

tide alone, see also Bolmont & Mathis 2016; Gallet et al. 2017).

It can also explain the circularisation periods of solar-type binary

stars, which was a long-standing theoretical problem (Barker 2022).

Inertial waves excited inside planets are also believed to be important

in explaining the preferentially circular orbits of the shortest-period

hot Jupiters through tidally-driven orbital circularisation (Ogilvie &

Lin 2004; Barker 2016).

However, giving robust predictions for the dynamical evolution of

a close star-planet system is particularly challenging. The assessment

of the tidal dissipation has been shown to significantly depend on

many parameters like the stellar angular velocity and metallicity, and

the masses of both the star and the planet (e.g. Mathis 2015; Gallet

et al. 2017; Bolmont et al. 2017; Barker 2020; Lazovik 2021). More-

over, the current formalism used for tidal inertial waves is based on

a frequency average of the tidal dissipation, even though the dissipa-

tion is known to be strongly dependent on the tidal forcing frequency

in the linear regime when these waves are excited (Ogilvie & Lin

2004; Ogilvie 2005, 2009; Rieutord & Valdettaro 2010). Although

this formalism is an efficient and rather straightforward tool to pro-

vide information on the long-term tidal evolution of exoplanetary

(and close binary) systems, the frequency-dependent tidal dissipa-

tion gives us an instant picture of tidal effects at a given evolutionary

stage of the system featuring specific tidal forcing frequencies. The

resonance locking mechanism, for instance, relies on the continuous

match over time between the forcing frequencies of the perturber

and some resonant and highly dissipative modes inside the perturbed

body (Witte & Savonije 1999; Fuller et al. 2016). This mechanism

has been successfully applied to the Saturnian system to provide an

explanation for the high tidal dissipation rate in Saturn inferred from

the rapid orbital expansion measured for Titan (using inertial modes,

with important consequences for the formation scenario of Saturn’s

satellites, Lainey et al. 2020) and also applied to extra-solar giant

gaseous planets orbiting F-type stars with convective cores (using

gravity modes, Ma & Fuller 2021). Furthermore, the nature, propa-

gation, and dissipation properties of tidal flows are also modified by

the magnetism and differential rotation both present in the convective

envelopes of low-mass stars and giant gaseous planets (Wei 2016,

2018; Lin & Ogilvie 2018; Baruteau & Rieutord 2013; Guenel et al.

2016b,a). Different powerful and frequency-dependent tidal dissi-

pation mechanisms can then emerge, like the Ohmic dissipation of

magnetic energy overtaking the viscous dissipation of kinetic energy

in various low-mass stars throughout their lives (see Astoul et al.

2019), or enhanced dissipation at corotation resonances (or critical

layers, where the phase speed of the wave matches the local velocity

of the background flow) in differentially-rotating bodies (see Astoul

et al. 2021, for an analytical characterisation of this phenomenon).

Inertial wave propagation also depends strongly on the geometry

of the container. While in the special case of a uniformly-rotating ho-

mogeneous full sphere (or spheroid) the governing Poincaré equation

for inertial oscillations is separable in the coordinates, and allows for

a complete set of regular solutions (i.e. normal modes, Bryan 1889;

Ogilvie & Lin 2004; Wu 2005a,b; Lee 2020), the problem is in

general ill-posed in other geometries due to the conflicting bound-

ary conditions (Rieutord et al. 2000, 2001). In uniformly-rotating

spherical shells (relevant for models of the convective envelopes of

stars and planets), singular modes show up in the inviscid limit, tak-

ing the form of limit cycles, which are periodic and straight paths

of characteristics (also called attractors), reflecting from the shell

boundaries. In the presence of viscosity, these singular solutions are

regularised and both their energy and viscous dissipation are focused

along attractors, developing oscillating shear layers, which are cen-

tred around them with a certain width depending on the viscosity

(Kerswell 1995; Rieutord & Valdettaro 1997, 2018). The activation

of these shear layers is determined by the size of the shell compared to

the core and by the forcing frequency. They are often associated with

intense peaks of tidal dissipation when integrating over the shell (e.g.

Ogilvie 2009), and these resonant peaks could be associated with the

presence of hidden global modes, by analogy with those observed in

full sphere geometry (Lin & Ogilvie 2021).

On top of the effects listed above, non-linear fluid effects should

start to play a role in (at least) the most compact exoplanetary sys-

tems. For instance, the nonlinear interactions between the large-scale

equilibrium tide and smaller-scale inertial waves gives rise to the

elliptical instability. This is thought to be a highly dissipative mech-

anism able to synchronise the planet and damp its obliquity (but not

excite it) and eccentricity, but probably only for the very-shortest

Hot Jupiters, and which has been extensively studied in experiments

and numerical simulations (e.g. Kerswell 2002; Le Bars et al. 2010;

Cébron et al. 2013; Barker & Lithwick 2013, 2014; Barker 2016).

Interestingly, non-linear effects are likely to affect small-scale tidal

waves for even smaller tidal amplitudes than for the large-scale equi-

librium tidal flows, as discussed for gravity modes in e.g. Barker &

Ogilvie (2010), Barker (2011), and see also the astrophysical discus-

sion of Sect. 4 later in this paper. In his pioneering work, Tilgner

(2007) demonstrated in numerical computations that the nonlinear

self-interaction of inertial waves in shear layers in spherical shells can

generate strong axisymmetric zonal (or geostrophic) flows in spher-

ical shells. Along these lines, Morize et al. (2010) and Favier et al.

(2014, hereafter Paper I) verified through experiments and numeri-

cal simulations, respectively, that tidal forcing is able to trigger this

nonlinear phenomenon, through the non-uniform deposition of angu-

lar momentum inside a convective tidally-deformed sphere or shell,

akin to the convective regions of stars and giant planets. In such a

previously poorly-studied and complicated differentially-rotating en-

vironment, the dissipative properties of tidal inertial waves can be

deeply affected (as was also shown in the linear study of Baruteau &

Rieutord 2013, with cylindrical differential rotation, which depends

only on the distance from the axis of rotation). Moreover, approaching

astrophysically-relevant regimes for compact exoplanetary systems,

which have low viscosities and high tidal forcing amplitudes, favours

such nonlinear effects and is also conducive to the occurrence of var-

ious kind of fluid instabilities, like parametric or shear instabilities

(Jouve & Ogilvie 2014, Paper I).

In this paper, we revisit the effects of nonlinearities on tidally-

forced inertial waves in direct numerical simulations of a convective

shell, modelling the convective envelopes of a low-mass star or a

giant gaseous planet subjected to an imposed tidal potential. In this

study, we continue along the lines of Paper I by simulating an incom-

pressible shell, relegating a study of realistic density profiles to future

work. In contrast to previous numerical studies, we use a more real-

MNRAS 000, 1–24 (2022)



Nonlinear tidal inertial waves in spherical shells 3

istic tidal forcing to excite inertial waves, through the residual action

of the equilibrium tide acting as an effective body force (e.g. Ogilvie

2013). In this way, it is possible to analytically and numerically un-

veil the role of the nonlinear terms in redistributing energy between

the different scales and components of the tidal flows, uncovering

the origin of some unexpected evolution of angular momentum ob-

served for some tidal frequencies in Paper I. In addition, more robust

predictions (in the astrophysical context) can be made for the impact

of nonlinearities on tidal dissipation rates and on scaling laws for the

emerging zonal flows.

In Section 2, we describe the analytical model governing the exci-

tation, propagation, and dissipation of tidal inertial waves in an adia-

batic and incompressible convective shell. We also derive the energy

and angular momentum balances of tidal flows in this framework.

Then, in Section 3, we perform and describe new results obtained

from direct numerical simulations of tidal waves in spherical shells,

comparing our results with the prior study of Paper I. Therein, we also

identify the formation and effects of differential rotation, including

corotation resonances, and the occurrence of parametric instabilities

of inertial waves. Finally, we evaluate the relevance of our work for

exoplanetary systems in Section 4, and we discuss the limitations of

our model and conclude in Sect. 5.

2 MODEL FOR TIDALLY-FORCED INERTIAL WAVES

2.1 Tidal flow decomposition and governing equations

We consider the convective shell of an undistorted spherical body, an

idealised representation of the convective envelope of a low-mass star

or a giant gaseous planet, which is subjected to the tidal potential Ψ

due to an orbiting companion. The thickness of the convective shell

is determined by the radial aspect ratio (the ratio of the inner to outer

radii) which is set to U = 0.5 in the rest of this study. This choice

is directly relevant for the envelopes of certain low-mass stars and

giant planets with extended dilute cores (e.g. as observed for Jupiter),

and is made so that the peculiar inertial wave behaviour in shells is

captured without adopting a very thin shell. The body is assumed

to have an initial uniform rotation 
 = ΩeI along the vertical axis

with unit vector eI , with constant Ω that is small compared to the

critical angular velocity of the body in order to neglect centrifugal

effects. Inertial waves, which are restored by the Coriolis pseudo-

force, can thus be excited between the cut-off frequencies ±2Ω in

the fluid frame. For their treatment, the convection inside the shell

is treated only insofar as it is assumed to have led to an adiabatic

stratification (and it possibly provides a turbulent viscosity), which is,

for instance, a reasonable assumption for most of the solar convective

envelope (e.g. Christensen-Dalsgaard 2021), and probably also for

the outermost convective envelope of Jupiter and Saturn (Debras

& Chabrier 2019; Militzer et al. 2019). Indeed, the squared Brunt-

Väisälä frequency2, is in reality probably negative in the bulk of the

convective envelope, thus driving convective motions, but is mostly

negligible in absolute value compared to Ω2, except possibly in a

small region near the surface where the density is very low and

the convection is no longer efficient. The convective shell is also

considered incompressible as a first approach, with a uniform density

d.

In our model, tidal flows are treated as Eulerian perturbations of the

hydrostatic equilibrium of the body using the non-wavelike/wavelike

2 The characteristic frequency associated with buoyancy forces.

decomposition (equivalent to the equilibrium/dynamical tide3) in-

troduced by Ogilvie (2013). Accordingly, we use in the rest of the

paper the subscripts w and nw to designate the tidal response related

to the wavelike (dynamical) and non-wavelike (equilibrium) tides,

respectively. In the frame co-rotating with angular frequency 
 and

spherical polar coordinates (A, \, i) centred on the body at time C,

the tidal potential can be written as

Ψ(A, \, i, C) = �Re

[( A
'

);
.<
;
(\, i)e−8lC

]
, (1)

where we introduce the tidal amplitude � = �"2'
2/03, which

depends on the mass "2 and semi-major axis 0 of the perturber (with

� the gravitational constant), ' the radius of the tidally-perturbed

body, .<
;

the orthonormalised spherical harmonic of degree ; and

order < (the azimuthal wavenumber) with < ≤ ;, and l the tidal

forcing frequency in the rotating frame. Note that we only consider

the dominant quadrupolar tidal component of Ψ for ; = < = 2.

This approximation is valid for quasi-coplanar and quasi-circular

systems (i.e. for asynchronous tides, e.g. Ogilvie 2014), but is also

the dominant component for an eccentric orbit. The tidal potential

satisfies Laplace’s equation (ΔΨ = 0) inside the perturbed body

whose tidally-modified gravitational potential is Φnw.

As its name suggests, the non-wavelike tide is the non-oscillatory,

instantaneous and hydrostatic, fluid response to the tidal potential,

and its associated flow. By defining its displacement /nw, flow veloc-

ity unw = mC/nw, pressure perturbation ?nw, and density perturbation

dnw, the non-wavelike tide thus satisfies the closed set of linearised

equations:

mCunw = −∇
(
?nw

d
+Φnw + Ψ

)
, ?nw = −d (Φnw + Ψ) ,

dnw = −d∇ · /nw, ΔΦnw = 4c�dnw,

(2)

where the equations correspond respectively to the momentum, hy-

drostatic equilibrium, continuity, and Poisson equations. These are

completed by the inner and outer boundary conditions:




/nw · n = 0 at A = U',

/nw · n = −Φnw + Ψ

6
at A = ',

(3)

with n the unit vector normal to the boundaries and 6 the constant

surface gravitational acceleration of the body. Note that here we

adopt an impermeable inner boundary, which more appropriately

describes tides in the envelopes of giant planets containing a solid

core than in a low-mass star, where we must match the non-wavelike

tidal displacement to the equilibrium tide in the radiative core (e.g.

Barker 2020).

From Eqs. (2) and (3) the non-wavelike displacement can be de-

rived from a potential such that /nw = −∇- (Ogilvie 2013) where

- (A, \, i, C) = �t'
2

2(1 − U5)

[( A
'

)2
+ 2

3
U5

(
'

A

)3
]

e−8lC.2
2 (\, i), (4)

with �t a constant embodying the amplitude of the tidal forcing. The

dimensionless parameter �t can be expressed as

�t = (1 + :2)n, (5)

3 Due to the incompressibility, the definitions of the equilibrium tide made

by Zahn (1966a) and Goldreich & Nicholson (1989) are equivalent, since the

non-wavelike flow as defined by Eq. (4) hereafter is both divergence-free and

curl-free.

MNRAS 000, 1–24 (2022)



4 A. Astoul & A. J. Barker

introducing two useful astrophysical quantities: the usual dimension-

less tidal amplitude parameter n = ('/0)3"2/"1 with "1 the mass

of the perturbed body (Ogilvie 2014; Barker 2016), along with the

real part of the quadrupolar Love number :2 =
3d

5d−3d
with d the

mean density in the whole body (core plus envelope). The quantity

n quantifies the ratio of the amplitude of the tidal potential over the

self-gravity of the perturbed body at its surface, while :2 accounts

for its non-dissipative tidal deformation and is determined by calcu-

lating the real part (in-phase component) of the ratio of the amplitude

of the perturbed gravitational potential to the tidal potential, Φnw/Ψ,

for ; = < = 2 (Love 1911; Ogilvie 2013). Since :2 is constrained

such that 0 < :2 ≤ 3/2, with its maximum reached for a full homo-

geneous sphere (when d = d), the value of �t using U = 0.5 is also

a measure of the magnitude of the tidal forcing with a similar value

to n (their astrophysical values will be discussed further in Sect. 4).

With the non-wavelike perturbation now being defined as above,

the remaining vortical action of the rotation on this tide ft = −2
 ∧
unw is used to excite the non-zero frequency (i.e. wavelike) tidal

response (Ogilvie & Lin 2004; Ogilvie 2005, 2013). The nonlinear

equation of motion for the wavelike (dynamical) tides in the fluid

frame is thus:

mCuw + 2
 ∧ uw + (u · ∇)u = −∇?w

d
+ aΔuw + ft, (6)

where u = uw + unw is the total perturbed flow and a is an effective

viscosity accounting for the sum of the molecular kinematic viscosity

and an eddy viscosity modelling the action of turbulent convective

motions on tidal flows. We point out that the molecular viscosity in

convective regions may be negligible compared to the turbulent one.

While realistic values of the kinematic Ekman number E = a/(Ω'2)
usually range between4 E = 10−10 − 10−20 in convective envelopes,

the turbulent one is often taken to be 10−4 − 10−6 when calculated

from mixing-length theory in stellar evolution models (e.g. as in

Astoul et al. 2019; Fournier et al. 2022). It should also be stressed that

while the action of turbulent convective motions on the equilibrium

tides has long been modelled as a turbulent eddy viscosity5, whether

or not this is fully justified, the modelling of the action of turbulent

motions on the wavelike tides is still (even more) highly speculative.

In Eq. (6), we neglect the dissipative term associated with the

non-wavelike tidal flow (aΔunw) since this term is estimated to be

small relative to those retained when inertial waves are excited (see

also the last paragraph of Sect. 2.2). In addition, we assume that the

non-wavelike tide is perfectly maintained on the timescale of our sim-

ulations, which are much shorter than tidal evolutionary timescales

and thus probe the “instantaneous" tidal response for a given system

(similar reasoning has been used in Barker & Astoul 2021). However,

it is worth noting that we have so far kept the non-wavelike tidal flow

in the nonlinear advection term (u ·∇)u, which thus consists of four

terms, and we will discuss this choice in Sect. 3.2. The equation of

motion Eq. (6) is also combined with the continuity equation for the

wavelike perturbations ∇ · uw = 0, assuming incompressibility. To

complete this model, we adopt stress-free and impenetrable bound-

ary conditions for the wavelike flow at both the inner A = U' and

outer A = ' boundaries. Namely, no tangential stress (n∧([f]n) = 0

with [f] the viscous stress tensor) and no radial velocity uw · n = 0

4 For example E = 10−11−10−12 for the Sun (e.g. Charbonneau 2013), while

E = 10−18 − 10−19 for Jupiter (e.g. Gastine et al. 2014).
5 It has been introduced in the analytical studies of Zahn (1966a,b), Goldre-

ich & Nicholson (1977) and Zahn (1989) using mixing length theory, and

supported by the numerical analysis of Duguid et al. (2020a,b, in local box

models) and Vidal & Barker (2020a,b, in global spherical models).

at the boundaries (e.g. Rieutord 2015). Though a no-slip boundary

condition might be preferred at the inner boundary in giant gaseous

planets if they possess a solid core, this choice of boundary condition

does not seem to significantly affect the propagation of inertial modes

in a spherical shell (Rieutord & Valdettaro 2010, Paper I), and our

choice is also more appropriate for modelling stars.

We non-dimensionalise our simulations using the length-scale ',

the time-scale Ω−1 and the density value d.

2.2 Kinetic and angular momentum balances

We derive in this section the energy and angular momentum balances

in our model, and analyse the energetic redistribution and exchanges

between the wavelike and non-wavelike tidal flows, which are of

prime importance for analysing our non-linear simulations (Sect.

3), and motivate our choices for neglecting certain non-linear terms

driving unrealistic fluxes through the boundary (Sect. 3.2).

From the scalar product between duw and the momentum equation

Eq. (6) and after spatial integration 〈·〉 over the shell’s volume+ , one

can get the kinetic energy  = 〈du2
w/2〉 balance for tidal inertial

waves:

mC = �nw−w + �w−nw − �a + %t, (7)

where we have introduced the nonlinear energy transfer terms �i−j =

−〈duw · (u8 · ∇)u 9 〉 with 8, 9 ∈ {w, nw} between the wavelike and

non-wavelike flows, the tidal power

%t = 〈duw · ft〉, (8)

reflecting the energy injected into the wavelike flows by the tidal

work, which is damped by the tidal viscous dissipation

�a = −〈dauw · Δuw〉, (9)

of the wavelike flow.

In the derivation of Eq. (7), several terms have vanished due to

the assumptions of our model. The energy transfer term involving the

wavelike/wavelike nonlinearity does not appear in the energy balance

because:

�w−w = −〈duw · (uw · ∇)uw〉 = − d
2

∫

X+
u2

w uw · n d( = 0, (10)

when applying the divergence theorem with a surface element d(

and a unit vector n normal to the shell boundaries, together with

incompressibility and impenetrability at the boundaries X+ for the

wavelike flow (∇ · uw = 0 and uw · n = 0, respectively). For the

same reasons, there is no term associated with the wavelike pressure.

The transfer term associated with the non-wavelike/non-wavelike

nonlinear advection also cancels out:

�nw−nw = −〈duw · (unw · ∇)unw〉

= −
〈
duw ·

[
∇(u2

nw/2) − unw ∧ (∇ ∧ unw)
]〉

= − d
2

∫

X+
u2

nw uw · n d( = 0,

(11)

where we use in the second line standard vector calculus identities

as in Barker & Astoul (2021, Eq. (7)), along with the fact that the

non-wavelike flow is curl-free and the wavelike flow is impenetrable

at the boundaries.

By using the divergence-free assumption for the non-wavelike flow

∇ · unw = 0, the first "mixed" energy transfer term �nw−w in Eq. (7)

can be recast as

�nw−w = −〈duw · (unw · ∇)uw〉 = − d
2

∫

X+
u2

wunw · n d(. (12)

MNRAS 000, 1–24 (2022)



Nonlinear tidal inertial waves in spherical shells 5

In a tri-axial ellipsoidal body, which more realistically corresponds

to a centrifugally and tidally deformed star or planet, the streamlines

of the non-wavelike flow are supposed to be tangent to the surface

boundary in the bulge frame (rotating with the orbit, for asynchronous

tides). Thus, we expect that the surface integral in Eq. (12) also

vanishes on average in such a deformed geometry in the bulge frame,

since unw ·n = 0 there (Barker et al. 2016; Barker & Astoul 2021). In

the fluid frame, we do not expect this term to vanish identically but we

will explain later that its magnitude is expected to be much smaller

than �w−w (in a point-wise sense). This integral does not vanish in our

undeformed spherical shell model, due to advection of kinetic energy

through the spherical boundaries by the non-wavelike flow. This has

important consequences for the evolution of the angular momentum,

as will be seen in the following. Finally, the last non-zero energy

transfer term gives

�w−nw = −〈duw · (uw · ∇)unw〉 = 〈dunw · (uw · ∇)uw〉, (13)

using the same arguments as for Eq. (10). The quantity �w−nw hence

features the Reynolds stresses involving correlations between wave-

like flows components and gradients of the non-wavelike flow.

Note that, if we define K8 = d |u2
8
|/2 where 8 ∈ {w, nw},

−〈duw · (u · ∇)u〉 =
∑

8, 9∈{w,nw}
�i,j

= −
∫

X+
Kw unw · n d( + �w−nw,

(14)

and similarly

−〈dunw · (u · ∇)u〉 = −
∫

X+
(Knw + unw · uw) unw · n d( − �w−nw.

(15)

From these two equations, �w−nw is clearly identified as an energy

transfer term between the wavelike and non-wavelike flows. It takes

the opposite sign in the equation for the energy of the non-wavelike

flow, if we were to allow this component to evolve. Eqs. (14) and (15)

together imply

−〈du · (u · ∇)u〉 = −
∫

X+
Ktot unw · n d(, (16)

where Ktot = d |uw + unw |2/2. Note also that

〈duw · unw〉 = −〈duw · ∇ ¤-〉 = −
∫

X+
d ¤-uw · n d( = 0, (17)

upon applying the divergence theorem and the boundary conditions,

implying that

 tot = 〈Ktot〉 = 〈d |uw + unw |2〉/2 = 〈Kw + Knw〉 =  +  nw, (18)

where  = 〈Kw〉 (as above) and  nw = 〈Knw〉.
If we were to impose a radial velocity DA at the outer boundary,

like in Ogilvie (2009) or Paper I, instead of a tidal body force, the

(nonlinear) energy balance would be:

mC tot = −
∫

X+ (A=')
(Ktot + ?w) DA d( − �a , (19)

where the first term inside the integral is omitted in linear calculations

(since it comes from nonlinear terms), and the second term represents

tidal forcing in their model.

The total angular momentum of the fluid in the shell is

R =

∫

+
dr ∧ u d+, (20)

where r is the position vector. By taking the vector product between r

and the momentum equation Eq. (6) and integrating over the volume,

we get the angular momentum balance

mC R = −2

∫

+
dr ∧ (
 ∧ u) d+ −

∫

+
dr ∧ (u · ∇u) d+, (21)

where the pressure torque vanishes, as well as the viscous torque by

the adoption of stress-free boundary conditions (Jones et al. 2011,

Paper I; with the difference that u = uw +unw here). By injecting the

new variable ũ = u +
 ∧ r similarly as in Paper I, Eq. (21) yields

mC R = −
∫

+
1A∧[(ũ · ∇)ũ] d+ =

∫

m+
d(r∧ũ)unw ·n d( ≠ 0, (22)

where the incompressibility of the total flow u has been used in both

equalities along with the impenetrability condition for uw. Therefore,

the total angular momentum is not conserved over time in our spher-

ical model, and its evolution is entirely controlled by the surface flux

sustained by the "unrealistic" radial non-wavelike flow through the

boundaries in our spherical model (since we look at short intervals

of time relative to tidal evolutionary timescales, and thus assume

unw to be perfectly maintained). As we will show partly below and

in the next section, this non-vanishing flux term, due to either im-

posed radial velocity boundary conditions, as in Paper I (see Eq.

(19)), or through inclusion of the nonlinearity terms involving the

non-wavelike tide in our spherical model, is important and causes

unexpected tidal evolution, such as the sustained unrealistic tidal de-

synchronisation observed in the aforementioned study. Note that the

tidal effective forcing itself does not contribute to changing the total

angular momentum (in the context of our model that focuses on an

“instantaneous snapshot" of the system’s evolution) since 〈r∧ ft〉 = 0

(due to the integral over azimuthal angles).

We can crudely estimate the importance of �nw−w compared to the

other terms in the energy balance in Eq. (7) using physical scaling

arguments. The non-wavelike tide has a typical velocity magnitude

Dnw ∼ 'l�t and lengthscale ! ∼ ', because it represents large-

scale flows in the convective envelope, its timescale is the inverse of

the tidal frequency l, and its displacement scales as bnw ∼ '�t (Eq.

(4)). In a spherical shell, the scales of the wavelike tide are controlled

by the structure of the inertial wave shear layers, whose thicknesses

depend on the Ekman number (in linear theory). The wavelike tide has

corresponding velocity Dw ∼ E−V'l�t and a lengthscale ℓ ∼ EU',

where U, V > 0 are coefficients depending on the particular (singular)

mode in the shell: for shear layers U = 1/3 (if ℓ is the wavelength of

the oscillation inside the shear layer) or U = 1/4 (if ℓ is the width

of the shear layer) and V = 1/6; for Ekman boundary layers near

the critical latitude6 U = 2/5 and V = 1/5 (these scaling have been

analytically and numerically verified for instance in Kerswell 1995;

Rieutord & Valdettaro 2018, and Paper I). Given the low values of

the turbulent or microscopic Ekman number E ≪ 1, in any of these

cases we have ℓ ≪ ! and Dw ≫ Dnw in spherical shells. Furthermore,

we also have the following point-wise approximations

Inw−w ∼ dD2
wDnw/ℓ, Iw−nw ∼ dD2

wDnw/!,
Iw−w ∼ dD3

w/ℓ, Inw−nw ∼ dDwD
2
nw/!,

Da ∼ daD2
w/ℓ2, Pt ∼ ΩDwDnw,

where Ii−j and Pt are the energy transfer terms (and Da the viscous

term) before computing the volume integral. Hence, we typically

expect the local ordering

Iw−w ≫ Inw−w ≫ Iw−nw ≫ Inw−nw, (23)

6 It is the latitude where the shear layer emerges from the surface of the inner

boundary.
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in magnitude for shear layers and critical latitudes, for the typical

Ekman numbers and tidal amplitudes in stars and planets. In addition,

while these orderings are also expected to hold in our simulations for

the typical values of the Ekman number E ∼ 10−4 − 10−6 and tidal

forcing parameters �t ∼ 10−2 − 10−1 we use in our simulations, we

may not expect Inw−w ≪ Iw−w. By consequence, if no cancellations

in the surface integral of �nw−w occur, it is expected that this term

will play a prominent role in the energy and angular momentum

balances Eqs. (7) and (22), and could drive unrealistic evolution.

This provides a first reason to motivate our neglect of the mixed

(non-wavelike/wavelike and wavelike/non-wavelike) nonlinearities

over the wavelike/wavelike one in simulations. If we neglect this

term, we emphasise that the total angular momentum is conserved

over time mC R = 0, and the energy balance now reads:

mC = −�a + %t. (24)

Morever, given the integral and local relationships Eqs. (11) and

(23), the non-wavelike/non-wavelike non-linearity contributes neg-

ligibly to the energy exchanges in the body. It only modifies the

pressure, which is constrained by incompressibility, and therefore

this term has no effect in our model with our adopted boundary

conditions. Finally, assuming the same magnitude of the viscos-

ity holds for both the wavelike and non-wavelike flows, our ne-

glect of the dissipative term for the latter is further justified since

aΔDnw/aΔDw ∼ E2U+V ≪ 1.

3 NONLINEAR SIMULATIONS

We now describe and analyse nonlinear simulations of tidally-forced

inertial waves governed by Eq. (6) for an incompressible flow satisfy-

ing stress-free boundary conditions in a convective shell, performed

by the open-source code MagIC.

3.1 Numerical model

We use version 5.10 of the pseudo-spectral code MagIC7 designed

for 3D (magneto-)hydrodynamical simulations of fluid motions in

a spherical shell or full sphere (e.g. Christensen et al. 2001; Wicht

2002, for Boussinesq implementation and benchmarks). We employ

Chebyshev polynomials in the radial direction and a spherical har-

monic decomposition in the azimuthal and latitudinal directions.

The code supports a number of mixed implicit/explicit time-stepping

schemes, where the nonlinear terms and the Coriolis force are treated

explicitly in real (spatial) space to avoid inverting a large matrix (re-

sulting from nonlinear mode coupling), while the remaining linear

terms are treated implicitly in spectral space (hence the name pseudo-

spectral). The chosen time-stepping is based on an IMEX multistep

method, choosing specifically the canonical combination of second-

order Crank-Nicolson and Adams-Bashforth schemes to treat the

implicit and explicit terms, respectively. The choice of Chebyshev

polynomials evaluated at the Gauss-Lobatto collocation gridpoints,

instead of low-order finite differences in radius, for example, al-

lows for much better accuracy for smooth solutions for the same

number of points, and it is also well adapted to resolve thin (vis-

cous) layers near the boundaries thanks to a denser grid of points

close to the inner and outer radii. All of our simulations have ben-

efited from the MKL and SHTns (Schaeffer 2013) libraries for fast

Fourier, Legendre and spherical harmonics transforms between real

7 Available at https://magic-sph.github.io/.

and spectral space, and vice versa, along with MPI parallelisation on

high performance computing clusters, which significantly improves

the speed of our calculations. Like in the code PARODY used in

Paper I, the wavelike velocity is decomposed using poloidal-toroidal

potentials, which automatically ensure that the flow is a solenoidal

(i.e. divergence-free) field. Details about this decomposition and the

spherical harmonic and Chebyshev representations can be found in

the manual of the MagIC code, at https://magic-sph.github.

io/numerics.html#secnumerics. Spectral projections of the un-

forced momentum equation for the poloidal and toroidal potentials,

and the associated stress-free boundary conditions, in this formalism

are also described there.

We have modified MagIC subroutines to implement in real space

the tidal forcing ft and each of the non-linear terms involving the

non-wavelike flow which contributes to the energy exchanges accord-

ing to Sect. 2.2, namely the mixed non-linear terms (unw ·∇)uw and

(uw ·∇)unw. Since these changes are highly non-trivial (particularly

for the mixed nonlinear terms using the code variables), we ensured

that we had done this correctly by comparing results obtained inde-

pendently with an implementation for all of these terms (and subsets

of these terms) computed using the spectral element code Nek5000

(which we also used for some of the simulations in Paper I). This

detailed comparison is omitted here to save space. We have also

modified the viscous dissipation routines to calculate the appropri-

ate viscous dissipation and tidal power, and implemented routines to

enable volume integrals (of products) of real space quantities to be

computed, so that, for example, we can evaluate each of the terms

that contribute to Eq. (7).

In most of our simulations8, we adopted a maximum spherical

harmonic degree of ;max = 85 (meaning =i = 256 longitudinal grid

points and =\ = 128 latitudinal grid points), along with a num-

ber of radial grid points =A = 97 (other spatial resolution choices

will be specified later). This spatial resolution is sufficient to allow

more than three orders of magnitude difference in the kinetic en-

ergy spectrum between the low and high order harmonic degrees and

azimuthal wavenumbers, while maintaining a fairly good speed for

the simulations9. We also used a time step of XC = 10−2 in most of

our simulations, and checked that this value is low enough to ensure

both accuracy (by checking results for convergence using smaller

XC) and stability according to the Courant–Friedrichs–Lewy condi-

tion. Lastly, we checked that strictly enforcing conservation of the

total (equatorial and axial) angular momentum at every time step,

which is an option in MagIC, does not change our results with only

wavelike-wavelike non-linearities.

3.2 Surface versus body forcing

The main difference in our model with Paper I, apart from the use

of a different numerical code, is the way inertial waves are forced.

They imposed an outer radial velocity at the surface A = ' to model

the non-wavelike tidal flow and how it forces inertial waves, which

we will refer to as “surface forcing" in the following. In that case the

impenetrability condition only applies at the inner radius A = U'.

When studying the linear tidal response, surface forcing and the

body forcing that we use are equivalent in the asymptotic limit of

small tidal forcing frequencies compared to the dynamical frequency

8 Typically for simulations with E & 10−5 and � . 5 · 10−2.
9 On the order of a few hours with our choice of time step with 96 cores to

reach several thousand rotation times.
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Figure 1. Contributions to the energy balance in Eq. (7) as a function of time for three different forcing frequencies l, all with E = 10−5 and �t = 10−2/l. A

running average with a period 2c/l has been performed to smooth the curves. All y-axis quantities have been re-scaled by a factor �2 × 32c/15 ≈ 10−4 by

taking � = 0.00386 so as to provide a comparison with Fig. 6 of Paper I.
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Figure 2. Comparison between the left and right hand sides of the energy balance Eq. (7) for l = 1.1 without the transfer term �w−nw involving wavelike

correlations and gradients of the non-wavelike flow. Left: for different amplitudes of the tidal forcing�t, at fixed Ekman number E = 10−5 (not re-scaled). Right:

for different values of the Ekman number E at fixed tidal forcing amplitude �t ≈ 0.009 (re-scaled as in Fig. 1).

ld =
√
6/', and they are approximately similar for astrophysically-

relevant small but nonzero values of l/ld. This regime is valid

for slowly-rotating stars or planets for which centrifugal effects can

be neglected (e.g. Ogilvie 2009). Within this limit, both forcing

mechanisms can be related by equating the amplitude of the non-

wavelike velocity in both models, i.e.,

√
32c

15
� ≈ l�t, (25)

where � is the forcing amplitude in Paper I and�t was defined above.

For the purposes of recovering the results of Paper I, our tidal forcing

amplitude �t must be scaled with frequency, since they chose to fix

� instead.

We now discuss nonlinear simulations performed for three initial

tidal forcing frequencies l = 1.05, 1.1, 1.15, which were those

initially analysed in the linear regime by Ogilvie (2009) and in the

prior nonlinear simulations of Paper I. These three cases were chosen

because they exhibited drastically different behaviours of the dissi-

pation rate as a function of Ekman number, and had correspondingly

different flow structures, despite having similar tidal frequencies.

The tidal forcing amplitude �t has been chosen to satisfy Eq. (25)

with � = 10−2/
√

32c/15 ≈ 0.00386 (e.g. for comparison with Fig.

6 of Paper I), but which is slightly different in our simulations for

the three tidal frequencies (but �t ≈ 0.009). Fig. 1 shows each of the

terms appearing in the energy balance Eq. (7) over time, for the three

nonlinear simulations with different frequencies and E = 10−5.

First, we checked that the energy balance as described in Eq. (7)

is well satisfied in these simulations. Moreover, in all three cases,

the energy transfer term �w−nw is negligible compared to the vis-

cous dissipation and tidal power, while the term �nw−w sustaining

the unphysical non-wavelike flux through the boundaries contributes

significantly to the energy balance for l = 1.05 and 1.1. For the

l = 1.15 case, the energy injected by the tidal forcing is mainly

viscously dissipated, without important transfers of energy between

wavelike and non-wavelike flows. These observations are consistent

with our discussion of how the terms in the energy balance scale

in the last paragraph of Sect. 2.2, by noting that highly dissipative

shear layers are excited in linear simulations for l = 1.05 and 1.1

unlike l = 1.15 (as described in Ogilvie 2009), making the scaling

laws most relevant for the first two frequencies there. However, one

may wonder whether the "physical" transfer term �w−nw is always

negligible for our parameters (as seen in Fig. 1) or not. In Fig. 2,

we investigate how the omission of �w−nw impacts the energy bal-

ance for different tidal forcing amplitudes �t and Ekman numbers

E at l = 1.1. In the left panel, one can observe that this term is

important for very high tidal forcing amplitudes �t & 0.1 (the en-
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ergy transfer has been checked beforehand), but for moderate to low

�t, typically �t . 0.05, the energy balance without �w−nw remains

almost unchanged for these parameters (similar results are found for

l = 1.05). Changes in Ekman number (right panel), from E = 10−4

to E = 2 · 10−6, show that �w−nw is also playing a negligible role in

the energy balance for �t ≈ 0.009.

Since the non-wavelike flux through the boundaries described by

�nw−w in these simulations is artificial, we wish to remove the contri-

bution from this term from our simulations. To do so we can remove

both of the nonlinear terms involving the non-wavelike tide in Eq. (6),

which is justified to represent the dominant balance of terms in the

astrophysical regime based on the physical scaling arguments we

outlined in Sect. 2.2. However, this approach is only justified in our

simulations if �w−nw also does not contribute significantly to the en-

ergy balance (since we also remove this term in our approach). From

the above discussion, this is likely to be valid for �t . 0.05 and

E ∼ 10−6 − 10−4.

It is thus of interest to compare simulations which feature all of the

nonlinear terms with ones that include only the wavelike/wavelike

nonlinearity. This is done in Fig. 3, displaying the kinetic energy and

dissipation over time for the same three tidal forcing frequencies as in

Fig. 1. Linear predictions computed with an independent spherical

spectral code (similar to e.g. Ogilvie 2009) are also displayed in

both panels as the horizontal dashed lines for each frequency. When

all nonlinear terms are included, we recover the kinetic energy and

dissipation shown in Fig. 6 of Paper I after appropriate re-scaling

by a factor �2 × 32c/15, except that our model doesn’t include the

non-wavelike tide dissipation daΔunw which is included in their

model. However, in all three simulations, this term has been checked

to be at least one order of magnitude smaller than the term daΔuw.

Our quantitative agreement with Paper I (for the times shown in their

Fig. 6) verifies that our implementation of tidal forcing and nonlinear

terms is correct.

The difference in kinetic energy and dissipation between linear

and full nonlinear simulations keeps increasing with time, without

a steady state being reached at the end of the simulation (here for

ΩC = 5000) when all nonlinear terms are included, contrary to the

case with only wavelike/wavelike nonlinear terms in which  and

�a are closer to the corresponding linear predictions. This is likely

to be due to the evolution of the total angular momentum R in

the full nonlinear case (primarily due to unphysical non-wavelike

fluxes through the outer boundary, as demonstrated in Eq. (22)). The

vertical component of angular momentum is shown in the left panel

of Fig. 4, which shows that the angular momentum is increasing with

time, as would be expected due to tidal spin-synchronisation, while

R is conserved in wavelike/wavelike nonlinear simulations (since we

are not then modelling long-term tidal evolution, just “instantaneous

transfers" in a snapshot of the system).

Furthermore, the fact that the difference between linear and non-

linear  and �a is more pronounced for l = 1.05 and 1.1 compared

to the l = 1.15 case seems to be linked to the strong focusing of

waves into localised shear layers for the two lowest frequencies, as

described in Ogilvie (2009, as opposed to the more diffuse “space-

filling" distribution of inertial wave beams for l = 1.15). While

for the linear l = 1.1 case, the excitation of a periodic wave at-

tractor has been identified, the linear l = 1.05 case rather features

large-scale structures hidden beneath shear layers (see Lin & Ogilvie

2021, and possibly visible in the top left panel of Fig. 8). These have

been shown to be potentially related to global modes in full sphere

geometry, explaining the resonant peak in linear dissipation rates10.

The nonlinear self-interactions of inertial waves in such localised

shear layers favour the emergence of strong zonal flows through the

non-uniform deposition of angular momentum in the shell (Tilgner

2007, Paper I). These zonal flows can be identified by calculating the

energy of the differential rotation

�dr =
d

2

∫ [
〈Di〉i − XΩA sin \

]2
d+, (26)

where 〈Di〉i is the azimuthally-averaged azimuthal component of

the flow, and

XΩ =
1

+

∫
Di

A sin \
d+, (27)

is the newly created volume-averaged rotation rate of the fluid in the

rotating frame. The latter is superimposed upon the mean rotation rate

Ω such that the volume-averaged rotation rate in the inertial frame

is Ω∗ = Ω + XΩ. In this new differentially-rotating environment, the

propagation and dissipation of inertial waves are significantly modi-

fied, as was also shown in the linear studies of Baruteau & Rieutord

(2013) and Guenel et al. (2016b,a), which could be primarily respon-

sible for explaining the discrepancies we find in tidal dissipation rates

between linear and nonlinear regimes (this will be further discussed

in the next section).

The right panel of Fig. 4 shows the tidal dissipation rate as a func-

tion of normalised frequency l/Ω∗ from nonlinear simulations that

include all nonlinear terms (bottom curves, shifted downwards by

a factor 10−2) compared with simulations including only the wave-

like/wavelike nonlinearity (upper curves). Since XΩ evolves with

time, particularly in the full nonlinear simulations, it means that the

simulations also explore a range of tidal frequencies as they progress.

We also identify �dr by the colour of each line, which shows that

differential rotation develops in each of these simulations. Especially,

the removal of mixed nonlinear terms does not prevent the develop-

ment of zonal flows which are only driven by the wavelike/wavelike

nonlinearity in that case, as is also shown in Fig. 6. In that figure,

we display snapshots in the meridional (A, \) plane of azimuthally-

averaged zonal flows for the three frequencies. The energy in the

differential rotation is similar or even greater on long time scales for

l = 1.05 and 1.1, compared with the cases where all nonlinearities

are included, though the change in the rotation rate XΩ is much less

important, as shown in both panels of Fig. 5. Note that nonzero val-

ues of XΩ can still occur in simulations with only wavelike/wavelike

nonlinearities despite the conservation of !I because the flow is dif-

ferentially rotating. We have checked that simulations including only

wavelike/wavelike nonlinearities conserve !I to an accuracy better

than 10−10.

In the right panel of Fig. 4, we have also added the normalised

constant �̂/�2
t (horizontal dotted lines), which is the energy transfer

in an impulsive interaction (Ogilvie 2013, Eq. (112))

�̂

�2
t

=
1

2c

∫ +∞

−∞
%t (l)

dl

l2
=

20

189

U5

1 − U5
d'5

Ω
2, (28)

with d, ', and Ω fixed to unity in our simulations. This quantity

gives a measure of a typical dissipation rate over one time unit

10 It is however not clear to what extent this relation holds in our nonlinear

simulation for the lowest frequency, where the zonal flow leads to both a

detuning effect by shifting the frequency of the wave away from the resonant

linear mode, but also presumably changing the location of the resonant peak

itself (e.g. Guenel et al. 2016a).
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Figure 3. Kinetic energy  (left) and dissipation �a (right) over time for three different forcing frequencies (colour), comparing linear calculations (horizontal

dotted lines) with simulations including wavelike/wavelike (w-w, solid lines) nonlinearities, or all nonlinear terms (all nl, dashed lines). Kinetic energy and

dissipation have been re-scaled as in Fig. 1. The Ekman number is set to E = 10−5 and the forcing amplitude �t = 10−2/l.
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Figure 4. Left: Vertical component of the total angular momentum in the rotating frame, !I , as a function of time ΩC in simulations including all nonlinearities

(w-w, nw-w and w-nw) for three initial forcing frequencies l. Right: Nonlinear dissipation �a (solid lines) as a function of normalised frequency l/Ω∗ in

simulations from ΩC = 20 to 5000, with all (bottom) or only wavelike/wavelike (top) nonlinear terms (blue pale bullets indicate the final dissipation when an

average steady state is reached). The colour of each line indicates the kinetic energy in the differential rotation �dr. For comparison, the frequency-dependent

linear dissipation for a uniformly rotating body is plotted as the dashed black lines and the impulsive energy injected �̂ as the horizontal dotted line. All the

dissipation rates are re-scaled by a factor �2
t (contrary to previous figures showing dissipation where a different scaling is used to match with Paper I) and the

bottom curves are shifted downwards by a factor 10−2 for ease of visualisation. The tidal power term computed from the final steady-state attained in linear

simulations with a background cylindrical zonal flow are also added as blue stars.

(in units of Ω−1) and is close to a (unweighted) mean value of the

linear frequency-dependent tidal dissipation across most of spectrum.

It is related to the frequency-averaged tidal dissipation of inertial

waves, which is commonly applied to study dynamical evolution of

exoplanetary systems (e.g. Mathis 2015; Bolmont & Mathis 2016),

given by11:

Λ =

∫ +∞

−∞
Im

[
 2

2 (l)
] dl

l
=

16c

63
n2
Ω
(1 + :2)2

U5

1 − U5
, (29)

where n2
Ω

= Ω2/l2
3
. The integrand is the imaginary part of the

11 For a fully homogeneous body, :2 = 3/2, and one recovers Eq. (113) of

Ogilvie (2013).

quadrupolar potential Love number, related to the impulsive energy

transfer as Λ = (12cn2
Ω
/(5n2)) �̂ .

Final dissipation rates for wavelike/wavelike nonlinear simula-

tions shown in the right panel of Fig. 4 (bullets) tend to be closer

to the mean tidal dissipation proxy given by Eq. (28), compared to

the highly resonant frequency-dependent linear dissipation (dashed

lines), which can be one order of magnitude (or more) lower or higher

than the mean value. At the beginning of all nonlinear simulations,

the energy injected into the differential rotation increases as the dis-

sipation approaches the value predicted by linear theory. Then, the

establishment of zonal flows (in particular) causes the dissipation to

deviate from its linear prediction, even more so in the simulations

where all nonlinearities are included since R is not conserved (see

the left panel of Fig. 4). As expected, forl = 1.15 where strong shear
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Figure 5. Left: Energy in the differential rotation �dr versus time for three initial forcing frequencies and for all (dotted lines) or only wavelike/wavelike (w-w)

nonlinearities (solid lines). Right: Evolution of the mean rotation rate of the fluid normalised by the initial uniform rotation XΩ/Ω versus time for the same

nonlinear simulations.

layers are not activated and which corresponds to a lower level of dis-

sipation in the linear regime, zonal flows are hardly generated (note

the order of magnitude of difference for 〈Di〉i in Fig. 6, right panel,

compared to the other frequencies shown in the left and middle pan-

els). There are no appreciable departures in the tidal dissipation rates

from the linear regime in this case. From these three cases, it would

appear that the closer we are to a “resonant peak" in which the dis-

sipation is enhanced, the differential rotation excited is stronger and

the gap between the linear and wavelike/wavelike nonlinear regimes

(upper curves in the right panel of Fig. 4) is larger.

As shown in Fig. 6, but also in Paper I, Tilgner (2007), Morize

et al. (2010), or Subbotin & Shiryaeva (2021), zonal flows produced

by nonlinear self-interaction of non-axisymmetric inertial waves al-

ways take the form of nested and axisymmetric cylinders with dif-

ferent angular velocity profiles depending upon cylindrical radius

inside the shell. The radial distribution, magnitude and direction of

the flow at a given location (prograde or retrograde, i.e. red or blue

in meridional snapshots of azimuthal velocities, respectively) can be

very different depending on the tidal frequency. For instance, high-

amplitude prograde flows can develop near the equator or near the

rotation axis, as we show in the left and middle panels of Fig. 6, re-

spectively, even though the tidal forcing frequencies are quite similar.

While it is difficult to straightforwardly predict the final magnitude

and structure of these columnar flows, it is clear that the strongest

zonal flows preferentially develop at the points of reflection between

the inertial wave beams and the outer boundary or rotation axis.

These are locations characterised by large amplitudes in the veloc-

ity components or dissipation, as we can see from the meridional

cuts of the radial component of the linear velocity in Fig. 8 (top

panels) and the dissipation in Fig. 7 based on complementary lin-

ear calculations (computed using the spectral code LSB, Valdettaro

et al. 2007). Powerful shear layers emerge from the critical latitude

at \ = arcsin(l/(2Ω)) tangent to the inner sphere, approximately at

latitudes of 32°, 33°, and 34°, respectively, from the left to the right

panels of Figs. 8 and 7. These are recurring features of forced inertial

waves in 3D rotating spherical shells (e.g. Rieutord & Valdettaro

2010, 2018). In meridional cuts displaying the nonlinear radial ve-

locity for l = 1.05 and 1.1 (left and middle bottom panels of Fig. 8),

we observe that shear layers are attenuated compared to their linear

counterparts (upper panels), presumably due to the development of

zonal flows. Though cylindrical zonal flows are the dominant patterns

when looking at the i−average of the azimuthal velocity in nonlinear

simulations, the imprints of shear layers are still visible in snapshots

in the three panels of Fig. 6 when comparing with the same panels

showing linear dissipation in Fig. 7. The key role of shear layers and

critical latitudes in the establishment of these geostrophic flows have

already been pointed out for example in the experimental study of

Subbotin & Shiryaeva (2021).

From now on and throughout the rest of this paper, we analyse

simulations with wavelike/wavelike nonlinearities only.

3.3 Effects of the zonal flows on tidal dissipation

In this section, we demonstrate that the development of differen-

tial rotation can explain the discrepancies between linear and wave-

like/wavelike nonlinear tidal dissipation rates in many of these sim-

ulations, as we observe in the rights panels of Figs 3 and 4. At

late times in our nonlinear simulations (several thousand rotation

times), these simulations reach an approximate steady state for  ,

�a , �dr and XΩ/Ω, in which zonal flows are fully developed and

hardly evolve any more. To further analyse these simulations we ex-

tract a i− and I−average of the azimuthal component of the velocity

〈Di〉i,I when the simulation reaches such a steady state (as done

e.g. in Fig. 9, showing this quantity for the three frequencies stud-

ied earlier). We then investigate the energy exchanges in new linear

simulations of tidally-forced inertial waves, where we apply the fi-

nal zonal flow from nonlinear simulations as a “background flow".

This allows us to determine whether the most important nonlinear

effect in our simulations is the generation of differential rotation and

the back-reaction of this on the tidally forced waves, as opposed to

triadic wave interactions (or parametric instabilities) involving iner-

tial waves, for example. We adopt a similar approach to the linear

calculations of Baruteau & Rieutord (2013) with initial cylindrical

differential rotation, except that inertial waves are tidally forced in

our model and we perform these as an initial value problem using

simulations (while they studied free inertial modes as an eigenvalue

problem).

In our model, the azimuthal background flow is [ = r ∧ 
 =

BΩB (B) ei , where the rotation ΩB (B) is a function of the cylindrical
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Figure 6. Azimuthally averaged zonal flows 〈Di 〉i for three different frequencies when a steady state is reached in wavelike/wavelike nonlinear simulations.

The colormaps are invariant with respect to the equator and the rotation axis in each of these simulations.

Figure 7. Viscous dissipation in the meridional plane in linear calculations computed with LSB for three different tidal forcing frequencies l = 2lf . Note the

amplitude is arbitrary as this is from a linear calculation.

radius12 B = A sin \. The rotation can be decomposed into a constant

mean rotation Ω plus an B-dependent small departure XΩB , such

that ΩB (B) = Ω + XΩB (B). Since the numerical simulations are in

the co-rotating frame, the correct initial zonal flow to choose is

given by XΩB = 〈Di〉i,I/B. Unlike in Baruteau & Rieutord (2013)

where a quadratic function of B is used to describe the cylindrical

rotation (chosen to maintain matrix sparsity as much as possible), the

rotation profile obtained is not a simple function of B in our models

(see Fig. 9). We have made the choice to reconstruct the zonal flow

〈Di〉i,I as a degree = polynomial such that 〈Di〉i,I =
∑=
8=0

08B
8

(with = = 10 − 20) and where 08 are fitted constants.

In the frame rotating at the rate Ω, the linearised momentum

equation for inertial waves excited by the effective tidal forcing ft, and

propagating in our background zonal flow, reads (see also Baruteau

& Rieutord 2013):

(mC+XΩBmi)uw+2ΩBeI∧uw+Bei (uw·∇)XΩB = −∇?w

d
+aΔuw+ ft.

(30)

12 Any meridional circulation is neglected since 〈DA 〉i and 〈D\ 〉i have been

found to be negligible in most of the nonlinear simulations, or at least they

are weaker (with such cases to be emphasised in the following), compared to

〈Di 〉i .

The terms on the left hand side of Eq. (30, except for mCuw) come

from the linear development of the inertial terms ([ + uw) · ∇([ +
uw) in the co-rotating frame, remembering that [ = B(Ω + XΩB)ei
and keeping the first order perturbation only. Thus, these new terms

directly originate from the initial differential rotation imposed here.

We can also derive an energy balance as we did in Eq. (7), here for

linear inertial waves in a cylindrically, differentially rotating back-

ground flow (to avoid any confusion, we add the subscript dr):

mC dr = �w−dr − �a,dr + %t,dr. (31)

We have also introduced the energy transfer term (involving Reynolds

stresses) between the wavelike and zonal flows:

�w−dr = −〈dBDi (uw · ∇)XΩB〉. (32)

Since we also have �w−dr = 〈dXΩ(uw ·∇)BDi〉 using the divergence-

free constraint and the boundary conditions on the wavelike flow, a

negative �w−dr means energy is transferred from inertial waves to the

zonal flow, while a positive �w−dr means energy is extracted from the

zonal flow towards the waves.

In the right panel of Fig. 4, we have added the tidal power (fea-

tured by stars) from the new linear simulations solving Eq. (30) with

MagIC, with the initial zonal shear flow coming from the end of the

associated nonlinear simulations with the same tidal forcing frequen-

ciesl = 1.05, 1.1 and 1.15 (see Fig. 9). Interestingly, the dissipation

rates at the end of the nonlinear simulations (when an overall steady
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Figure 8. Radial component of the wavelike velocity in the meridional plane for the same three frequencies as in Fig. 6. Top: in linear simulations computed

with LSB. Bottom: in nonlinear simulations computed with MagIC where i ≡ lC/< [2c ] − c/2 (the c/2 factor is necessary to find the correct phase for

comparison). The extrema of the colorbars are chosen to be the same values as those in the above panels.
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Figure 9. Vertically and azimuthally averaged wavelike azimuthal velocity

〈Di 〉i,I ("output") at the end of the non-linear simulations (ΩC = 5000)

against cylindrical radius for three different forcing frequencies. The fitting

curves ("fit") are degree 10 polynomials computed using a least squares

method.

state is reached, given by blue circles) match very well with the linear

tidal power terms for all three cases. For these simulations, it means

that the lower rates of nonlinear dissipation compared to linear pre-

dictions are fully explained by the setting up of zonal flows inside

the shell, and of their effects on the waves. We emphasise that the

presence of the transfer term �w−dr in the energy balance Eq. (32)

means that all of the energy injected by the tidal flows is not entirely
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Figure 10. Dissipation �a as a function of the normalised frequency l/Ω∗.
Nonlinear dissipation with wavelike/wavelike nonlinearities (reddish curves

and pale blue bullets indicating the final dissipation) is computed from

ΩC = 20 to more than 8000 (when an average steady state is reached) for

a tidal amplitude�t = 10−2 and initial tidal forcing frequency l in the range

[−1, 0]. The nonlinear dissipation is rescaled by a factor�2
t to compare with

the linear predictions for a uniformly rotating body of frequency-dependent

(dashed lines). The colorbar indicates the kinetic energy in the differential

rotation �dr. The tidal power rates %t,dr computed from the final steady-state

reached in linear simulations with an initial cylindrical zonal flow (corre-

sponding to the one attained in nonlinear simulations) are also added as blue

stars.
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Figure 11. Same as in Fig. 10 but for initial tidal frequencies spanning the range [0, 1] and for two tidal forcing amplitudes �t. The simulations for the highest

�t are shifted upwards by a factor 103 for ease of visualisation (upper curves).

dissipated by viscosity, but can also be transferred to (or extracted

from) zonal flows.

We have further explored the range of frequencies for which iner-

tial waves can be excited by the tidal forcing, between -1 and 1 in Figs

10 and 11 (with our choice of time unit, we can excite inertial waves

between −2 and 2). For a tidal amplitude of �t = 10−2, there are no

significant departures in nonlinear dissipation rates from linear pre-

dictions (dashed line), though the simulations having an initial tidal

forcing frequency close to a (linear) resonant peak of dissipation

have more energy inside the differential rotation and a dissipation

rate that differs more from the linear one, as was already observed in

Fig. 4 (right panel). Moreover, the tidal power term %t,dr agrees quite

nicely in all cases with the final nonlinear dissipation. For a tidal

amplitude forcing of �t = 5 · 10−2, this is no longer systematically

true, with simulations having a notable mismatch between �a and

%t,dr for example, are l = 0.192, 0.2, and 0.7, or even no steady

linear tidal power %t,dr, which still wildly oscillates at late times for

l = 0.8 and 0.9, as we can see in the left panel of Fig. 12. Some of

these cases are investigated in further detail in the following.

We show in Fig. 13 the tidal power %t,dr and the dissipation �a,dr

for the linear simulations with background zonal flows for which %t,dr

differs by more than 5% from �a,dr, for the two tidal forcing ampli-

tudes �t = 10−2 and 5 · 10−2 (left and right panels, respectively). In

all cases presented in these panels, we observe that the amplitude of

the tidal power input is greater than the viscous dissipation, confirm-

ing that part of the energy injected by tides is redirected to the zonal

flows via the energy transfer term �w−dr. The difference between %t,dr

and �a,dr, i.e. the value of �w−dr, is even more important for higher

tidal forcing amplitudes (right vs left panel), so for stronger zonal

flows13. The maximum differences for steady cases are forl = 0.824

(more than 50%), as is shown in the left panel of Fig. 12. In the linear

simulations with l = 0.8 and l = 0.9, %t,dr > �a,dr is not satisfied

at late times, as soon as the kinetic energy and tidal power start to

diverge, implying that energy is being extracted from the zonal flow

due to the positive sign of �w,dr.

In fact, these two last cases exhibit an instability; the kinetic energy

 dr grows exponentially soon after the beginning of the simulation,

13 This might be partly because inertial waves are primarily damped near a

corotation resonance, as we investigate later in this Section.

as we can see in the left panel of Fig. 12. We have verified that this

behaviour is not due to unphysical numerical effects by varying the

spatial and temporal resolution (as well as by using a different time-

stepping scheme). We have also run again these linear simulations

but with a random noise in the velocity field, but without tidal forcing

(namely �t = 0). We found that such a random noise is not able to

destabilise these flows and produce an exponential growth of the

kinetic energy. We also point out that no instabilities leading to

a diverging kinetic energy are found in the associated nonlinear

simulations for l = 0.8 and l = 0.9. Nonlinearities may have a

stabilising effect here by slightly modifying the zonal flows while

this is not possible in these linear simulations.

To understand the nature of this instability, we consider first

whether our zonal flows could be centrifugally unstable. In the invis-

cid limit, cylindrical differentially rotating flows depending only on

cylindrical radius (albeit which is an imperfect approximation of our

flow) can be destabilised by axisymmetric perturbations if the spe-

cific angular momentum decreases outwards in magnitude from the

rotation axis, or in other words if the Rayleigh discriminant, defined

here as

Φ(B) = 1

B3

d(B2ΩB)2
dB

, (33)

is negative inside the shell (the condition is necessary and sufficient

from the work of Synge 1933; Billant & Gallaire 2005, generalises

this result to local non-axisymmetric perturbations). In Fig. 14, the

Rayleigh discriminant Φ is plotted versus B using the zonal flows ex-

tracted from the nonlinear simulations of Fig. 11 for�t = 5·10−2. For

these columnar flows, Φ is always positive inside the shell, mean-

ing that they are centrifugally stable to any inviscid axisymmetric

perturbations.

However, it is unclear whether non-axisymmetric perturbations

(like < = 2 inertial waves) are able to destabilise these zonal flows.

Considering an inertial mode of complex frequency l = lr + ili of

real part lr and growth (damping) rate li, if this is positive (neg-

ative), the temporal dependence of its velocity scales as exp(−ilC),
and thus its kinetic energy is proportional to exp(2liC). Hence, the

"linear" slopes for l = 0.8 and l = 0.9 in the plot showing log( dr)
(right panel of Fig. 12) after the early transient phase, would cor-

respond to twice the growth rate of the triggered unstable mode,

here li ≃ 8 · 10−3 for l = 0.8 and li ≃ 4 · 10−3 for l = 0.9.
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Figure 13. Tidal power %t,dr and dissipation �a,dr versus time ΩC in linear simulations (for tidal forcing frequencies l of Figs 10 and 11) for which the

difference between %t,dr and �a,dr is larger than 5% (except for l = 0.8, 0.824, and 0.9 with �t = 5 · 10−2 shown in the left panel of Fig. 12). Left: The tidal

forcing amplitude is set to �t = 10−2 Right: �t = 5 · 10−2.

For comparison, the maximum shear rate BmBΩB for these cases is

of the order of 10−1. The knowledge of unstable eigenmodes in the

shell with our particular differential rotation profiles could help us

to know whether the growth of the kinetic energy in the linear sim-

ulations with 0.8 and 0.9 is related to their presence or not. In the

analytical study of Dandoy et al. in prep., the authors looked at the

destabilisation of a columnar convective vortex located near the ro-

tation axis that is interacting with (tidal) inertial waves. They found

that when vortices are centrifugally-unstable under the Rayleigh cri-

terion (Eq. (33)), tidal inertial waves can trigger the most unstable

(non-axisymmetric) mode of the vortex and its destabilisation. Since

the Rayleigh criterion for stability is satisfied here, such a complex

analysis is beyond the scope of this paper and should be postponed

to a future study.

Another possible cause of the sharp increase of the kinetic energy

observed in some linear simulations with zonal flows is the presence

of corotation resonances inside the shell. For the initial< = 2 inertial

wave perturbation of frequencyl in the corotating frame (i.e. rotating

with Ω), a corotation resonance (or “critical layer") happens when

the Doppler-shifted frequency of the wave in the zonal flow frame14

f = l − <XΩB , (34)

vanishes, namely at a cylindrical radius B = Bc, when:

XΩB (Bc) = l/2. (35)

One should note that the definition of the Doppler-shifted frequency

Eq (34, and thus of the corotation resonance) differs from the one in

Baruteau & Rieutord (2013) for example, due to the different sign

convention for the wavelike part of the solution (Eq. (4)) and the

different reference frames used (they worked in an inertial frame). In

Fig. 15, we show the different zonal flows XΩB produced in nonlinear

simulations for the same tidal forcing frequencies and amplitudes

as in Figs 11. We first notice that some flows exhibit one corotation

resonance at a critical cylinder Bc satisfying Eq. (35), usually close to

14 A wave with a frequency l̃ in the inertial frame has a frequency in the Ω-

rotating frame of l = l̃−<Ω, and in the zonal flow frame it is f = l̃−<ΩB

which gives Eq. (34).
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all determined by Eq. (38).

the rotation axis. These corotation resonances are more likely to be

present in strong zonal flows, arising when the tidal forcing amplitude

is high and the (non-)linear dissipation is strong (e.g. which can be

seen by comparing the left and right panels of Figs 11 and 15).

When present, the corotation resonance seems to have an effect

on the zonal flow profile by perturbing it in most cases, producing

a small bump around B = Bc. When approaching a corotation reso-

nance, a wave can exchange (deposit or extract) energy (or angular

momentum) with the zonal flow, which is in turn modified. It has

been analytically and numerically studied in great detail for (inertia-

)gravity waves in (rotating) stratified shear flows (e.g. Booker &

Bretherton 1967; Grimshaw 1975; Lindzen & Barker 1985; Barker

& Ogilvie 2010; Barker 2011; Alvan et al. 2013; Su et al. 2020)

and also for inertial waves in a differentially rotating shell or box

(Baruteau & Rieutord 2013; Guenel et al. 2016a,b; Astoul et al.

2021). For the simulations for which a corotation resonance exists

for both�t = 10−2 and�t = 5 ·10−2, the location of the resonance Bc
appears to move away from the rotation axis for higher tidal forcing

amplitudes. As we can see in Baruteau & Rieutord (2013) for cylin-

drical differential rotation, free inertial waves are often very strongly

damped at the corotation resonance. We can thus expect that the suc-

cessive deposition of energy from inertial waves emitted from the

critical latitudes at these corotation points can efficiently contribute

to modifying the zonal flow at this location. This process can po-

tentially move the location of the corotation resonance, as has been

observed for example in Barker & Ogilvie (2010) and Su et al. (2020)

in their local simulations of gravity waves breaking nonlinearly.

The role of corotation resonances is clear from Fig. 16, which

shows the azimuthally-averaged kinetic energy for three linear sim-

ulations containing corotation resonances close to the poles at early

times. In each of the three panels, inertial waves are emitted from

the inner and possibly outer critical latitudes, whose expressions (de-

tailed at the end of the section) are modified by differential rotation.

When approaching the corotation resonance at the critical cylinder,

shear layers bend as a result of the differential rotation. In the left and

right panels (for which the kinetic energy diverge in these linear sim-

ulations at later times, see Fig. 12) the kinetic energy is concentrated

along the critical cylinder on both sides, while in the middle panel

(for which the kinetic energy reaches a steady state at late times) the

critical cylinder seems to act like an absorbing barrier for incoming

inertial waves which do not cross the corotation resonance.

Since we observe instabilities inside the simulations (left and right

panels of Fig. 16), we first investigate the possibility of an insta-

bility similar to the “Papaloizou-Pringle instability” (Papaloizou &

Pringle 1984, 1985, 1987), which occurs in Rayleigh-stable (i.e. with

Φ > 0, just like here) Keplerian disks, and has been observed e.g. in

Barker et al. (2016). For this kind of instability to occur, the inertial

wave needs to be sent multiple times into the corotation region to

exhibit amplification. Since in our cases, the differential rotation is

not strong enough to confine the waves in a portion of the domain15

(i.e. for turning points to exist in the differential equation governing

inertial wave propagation, where it changes character from hyper-

bolic/wavelike to elliptic/evanescent), it is the spherical boundaries

and the rotation axis that could reflect the waves back towards the

corotation region. This has the potential to lead to instability if the

waves can “over-reflect" and be amplified at corotation.

This phenomenon is also similar to the over-reflection mechanism

described in the review of Lindzen (1988) in the case of internal

gravity waves in shear flows and leading to shear instability (see also

e.g. Jones 1968; Lindzen & Tung 1978; Lindzen & Barker 1985;

Alvan et al. 2013; Baines & Mitsudera 1994; Harnik & Heifetz

2007, for Rossby waves). Several conditions on the “wave geometry”

are required for such an instability to happen. The bounded domain

where the waves propagate must be divided into three regions: two

“propagative” regions with wavelike solutions where the Richardson

number16 Ri is greater than 1/4, surrounding a region containing the

critical layer where Ri < 1/4 (a necessary condition for instability,

Miles & Howard 1964). Under suitable boundary conditions for the

waves to be reflected back to the critical cylinder and interfere con-

structively with waves on the other side of corotation (i.e. with wave

quantization on the phase speed or frequency), a shear instability can

occur after multiple amplifications of the waves at corotation.

In Astoul et al. (2021), an analogous criterion to the Richardson

criterion (also known as the Miles-Howard theorem, and establishing

a necessary condition for instability when Ri≤1/4) but for inertial

waves has been derived in the context of a local model of cylindri-

cal differential rotation. They demonstrate that over-reflection and

over-transmission are also possible for inertial waves in a similar

three layer model, which opens the way to possible shear instabilities

(though their study did not investigate these instabilities directly). In

Appendix A, we demonstrate that this criterion, based on an inviscid

analysis of free inertial waves with cylindrical rotation, may predict

the stable regime for all zonal flows investigated in this study. In such

case, we expect waves to be strongly damped at corotation, which

would rule out shear-type instabilities. However, the derivation of this

criterion in Appendix A and Astoul et al. (2021) does not take into

account viscous dissipation and tidal forcing, which could modify the

criterion. For gravito-inertial waves, viscosity is able to destabilise

stratified shear flows and allow instabilities even if the Richardson

number is greater than 1/4 (e.g. Miller & Lindzen 1988). For inertial

waves, Baruteau & Rieutord (2013) and Guenel et al. (2016a) numer-

ically observed unstable modes triggered below a certain viscosity

threshold for shellular and conical differential rotation. Tidal forc-

15 The condition for turning surfaces to exist is not met for the zonal flows

presented here i.e. where f2 = Φ (see Eq. (37)), and hence we only observe

what Baruteau & Rieutord (2013) refer to as “D modes”.
16 It is the ratio of the squared Brunt-Vaïsälä frequency with the squared

shear rate.
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Figure 15. Zonal flows XΩB produced in the nonlinear simulations presented in Fig. 11 (left and right panels) in terms of the cylindrical radius B for �t = 10−2

(dashed lines) and �t = 5 · 10−2 (solid lines). For each zonal flow (of different colour and linestyle), the corotation resonance is indicated by a bullet when it

exists (i.e. when it satisfies Eq. (35)).

0.0 0.2 0.4 0.6 0.8 1.0
Ωt = 320

0.2

0.4

0.6

0.8

1.0
ω = 0.8

0.00

0.35

0.70

1.05

1.40

1.75

2.10

2.45

2.80

3.15

×10−3

〈u2〉ϕ

0.0 0.2 0.4 0.6 0.8 1.0
Ωt = 465

0.2

0.4

0.6

0.8

1.0
ω = 0.824

0.0

0.9

1.8

2.7

3.6

4.5

5.4

6.3

7.2

8.1
×10−4

〈u2〉ϕ

0.0 0.2 0.4 0.6 0.8 1.0
Ωt = 370

0.2

0.4

0.6

0.8

1.0
ω = 0.9

0.0

0.6

1.2

1.8

2.4

3.0

3.6

4.2

4.8

5.4

×10−4

〈u2〉ϕ

Figure 16. Azimuthal average of the wavelike kinetic energy 〈D2 〉i in the meridional plane in linear simulations with initial zonal flows for the same three tidal

frequencies as in Fig. 12 at early times (indicated by black dots on that figure). The critical cylinder corresponding to the corotation resonance is indicated by a

vertical dashed line and the critical latitudes \ defined by Eq. (38) on the inner and outer shells are featured by the inclined black ticks.

ing could also modify this criterion, as highlighted in Appendix A,

but a more detailed analysis is postponed to a future study. In either

case (whether it is a shear or “Papaloizou-Pringle”-like instability),

the mechanism leading to non-axisymmetric instability looks simi-

lar: incoming inertial waves launched from the critical latitude(s) (or

elsewhere) propagate towards the corotation resonance, partly tunnel

through, partly (over-)reflect and are partly damped (Narayan et al.

1987; Goldreich & Narayan 1985; Lindzen 1988). The transmitted

wave reflects from the rotation axis, and the reflected wave reflects

from outer boundary (or core) and back. These waves potentially

sustain a positive growth of the kinetic energy where they meet near

the corotation resonance (near B = B2 as in Fig. 16).

An important point to stress about the linear simulations involving

these kind of instabilities, is that the meridional circulation observed

in the associated nonlinear simulations are not negligible, as assumed

in Eq. (30). In the snapshots showing the i−average of the nonlinear

velocity components for l = 0.8 in Fig. 17, the azimuthal average

of the radial velocity 〈DA 〉i is not negligible anymore compared to

the zonal flow 〈Di〉i , especially close to the corotation resonance,

though it is still weaker in amplitude. This also demonstrates that

radial (vertical) angular momentum flux is efficiently deposited at

the corotation resonance and contributes to the creation of a strong

radial meridional flow there17. We also observed strong meridional

(and especially radial) flows close to the corotation resonance in

the nonlinear simulations for l = 0.7 and l = 0.9 (not shown

in this study). Whether these meridional flows are responsible for

the departure of the nonlinear dissipation from linear predictions in

Fig. 11 is an open question. We emphasise however that no strong

meridional flows have been observed for the nonlinear simulations

for l = 0.192 and l = 0.2 where a departure in the dissipation

rate is also observed. In these simulations, the corotation resonance

is extremely close to the rotation axis (see Fig. 15) and does not

appear to play an important role in the redistribution and dissipation

of inertial wave kinetic energy, as shown in the meridional snapshots

and averages of DA and Di displayed in Fig. 19 for l = 0.2. This is

presumably because the inner critical latitude is close to the equatorial

plane, from which the waves propagate in almost vertical shear layers

and deposit their energy preferentially close to the equator.

We finally compute the location of the critical latitudes which differ

17 This also has been derived and observed in the preliminary study

of V. Skoutnev et al., as part of the Kavli Summer Program in Astro-

physics 2021 (https://kspa.soe.ucsc.edu/sites/default/files/

KSPA_VSkoutnev.pdf).
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Figure 17. Azimuthal average in one quadrant of the three components of the wavelike velocity uw at the end of the nonlinear simulation with l = 0.8. As in

Fig. 16, the ticks indicate the critical latitudes and the dashed line the corotation resonance.

from the uniform rotation case when the zonal flows are strong. The

critical latitudes \ for which rays (inertial wave shear layers) are

tangent to the shell’s inner core and outer surface satisfy the equation

in the first quadrant in the meridional plane

dI

dB
= − B

I
, (36)

at A =

√
B2 + I2 = U' or ', respectively. Moreover, following

Baruteau & Rieutord (2013, Eq. (3.8)), the paths of characteristics

for inviscid and free inertial waves are defined here by:

dI

dB
= ±

√
^2 (B)
f2 (B)

− 1, (37)

with ^ =
√
Φ the epicyclic frequency (commonly used in astrophys-

ical disks). Combining Eqs. (36) and (37), we obtain the expression

for the critical latitudes in the first quadrant:

sin \ =
f(B)
^(B) , (38)

at A = U' for the inner shell and A = ' for the outer shell, with

\ measured from the equator, where I = U' sin \, B = U' cos \

describes the inner critical latitude (and I = ' sin \, B = ' cos \ the

outer critical latitude). One should note that for weak amplitudes of

the zonal flow and shear, f ≃ l, ^ ≃ 2Ω, i.e. Φ ≃ 4 in our time unit,

as we can observe in Fig. 14 and 15 (it concerns notably the outer

critical latitudes), and Eq. (38) tends towards the classical definition

of the critical latitude with uniform rotation sin \ = l/2Ω. For strong

enough zonal flows, the difference between Eq. (38) and the latter

definition is quite important (note also that inner and outer critical

latitudes are the same with uniform rotation). For example, for a tidal

forcing frequency l = 0.8, \ ≃ 23.6° with uniform rotation, while

the inner critical latitude is \ ≃ 39.6° and the outer critical latitude

is \ ≃ 20.4° using Eq. (38) derived with the zonal flows at this

frequency (note that the outer critical latitude is closer to the critical

latitude with uniform rotation for the reason explained above). These

inner and outer critical latitudes nicely match the locations of the

high amplitudes in kinetic energy in Fig. 16 (black ticks across inner

and outer surfaces show the predicted \’s).

3.4 Parametric instability of inertial waves

In this section we focus on the nonlinear simulation withl = 0.2 and

�t = 5 · 10−2. After an early transient phase, the kinetic energy of

this simulation reaches a steady state, and then an instability sets in

producing oscillations with several different periods for C & 10000,

as we can see on the left panel of Fig. 18. To understand what is

happening here, we analyse the azimuthal kinetic energy spectrum

in the right panel of Fig. 18 as a function of azimuthal order < at

different times (before and after the oscillations start), which we also

compare with the �t = 10−2 simulation. When �t = 10−2, < = 2

(of the initial tidally-forced waves) is the dominant component in the

energy spectrum, but when �t = 5 · 10−2, the < = 0 component is of

the same order of magnitude (both at early and late times), implying

a strong zonal flow, and < = 1 is also strong at late times.

We examine in further detail the Fourier transform of the nonlinear

radial velocity DA (after applying a Hamming window function) at

two points inside the shell (indicated by crosses in Fig. 19): one in the

equatorial plane where the amplitude of the zonal flow is strong, the

other in a shear layer directly emerging from the inner critical latitude.

This is done in the left panel of Fig. 20 at the early time indicated. As

expected, the contribution of the tidal forcing at l = 0.2 is dominant

for the point inside the shear layer. Interestingly, superharmonics of

the frequency l are also excited before the instability is triggered,

with particularly high power in the region where the zonal flow is

strong (point 1) compared to inside the shear layer (point 2). These

oscillations have a frequency =l and azimuthal order <= = 2= with

= ≤ 10, a positive integer which must satisfy =l ≤ 2 in our time units,

corresponding to the upper limit of propagation of inertial waves.

We also observe superharmonics in the simulation for �t = 10−2.

Superharmonics have been clearly reported for gravity waves (e.g.

Baker & Sutherland 2020; Boury et al. 2021; Ivanov et al. 2022), but

have not been observed in many prior studies of inertial waves, though

they have been predicted analytically, and observed, for instance in

Barik et al. (2018). One reason could be the limited frequency range

allowed for inertial waves, imposing |l| ≪ 2Ω to observe multiple

higher harmonics of the main frequency l.

In the right panel of Fig. 20, we perform a Fourier transform (ap-

plying again a Hamming window) of the poloidal velocity potential

, (;, <) at the mid-shell for the whole time range, to explore the

properties of the waves (frequency, < and degree ;) excited after

the instability becomes important for C ≥ 10000. In addition to the

primary wave with a frequency l and its (self-excited) superhar-

monics, we also observe a strong peak at the frequency l1 ≃ 0.13

with wavenumbers (;, <) = (1, 1), along with a number of even

; + < modes (due to symmetry; with odd ; + < being excited for the

toroidal velocity potential). This provides clear evidence for triadic

resonances (theorised and observed for inertial waves in e.g. Ker-

swell 1999; Barik et al. 2018) since all of the excited modes can
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Figure 19. Snapshots of one quadrant for the nonlinear simulation with l = 0.2 and �t = 5 · 10−2. Critical latitudes and the corotation resonance are indicated

as in Fig. 16 (the inner critical is almost in the equatorial plane); crosses are the locations of the points where the Fourier transform of DA has been performed

(in the left panel of Fig. 20). Left: i-slice of the radial component of the wavelike velocity DA at early time. Middle: i-average of the azimuthal component of

the wavelike velocity 〈Di 〉i at the same time. Right: i-average of the azimuthal component of the wavelike velocity 〈Di 〉i at a later time.

be recovered using only linear combinations of l and l1, and their

corresponding azimuthal orders and degrees. In particular, we have

la ± lb = lc, <a ± <b = <c, and ;a ± ;b = ;c, (39)

with for example a parent primary wave la = l with (;a, <a) =

(2, 2), interacting with two secondary/daughter waves, one withlb =

l1 with (;b, <b) = (1, 1), and another with lc = l − l1 = l2

with (;c, <c) = (;a − ;b, <a − <b) = (1, 1). In this case, we have

a parametric instability of the primary wave involving these three

components, as is shown in the right panel of Fig. 20. It should be

noted that there are also superharmonics of these daughter waves (for

example with frequencies 2l2 and 2l1).

The exponential growth of the parametric instability involving

these< = 1 modes is clear from Fig. 21, which shows the time series

of the logarithm of the poloidal velocity potential for (;, <) = (1, 1),
(2, 2) and (3, 3). Indeed, the dashed green curved with linear slope

∼ 0.033 indicates that the secondary waves with wavenumbers (1, 1)
and (3, 3) are exponentially growing at the expense of the primary

wave by draining its energy, until a saturation level is reached after

ΩC & 10500. Thanks to viscous dissipation, the simulation reaches

a quasi-steady state, similarly to Cui & Latter (2022), where an

inertial mode also triggers wave-wave interactions and parametric

instabilities in their local simulations of protoplanetary disks.

Parametric instabilities typically transfer energy to waves excited

close to reflection points, with lower frequencies and shorter wave-

lengths, as observed in nonlinear simulations of inertial wave attrac-

tors in 2D Cartesian geometry (Jouve & Ogilvie 2014). It is possible

that the mode of frequency l1 is related to this phenomenon. As the

Ekman number is lower (for which nonlinearities are expected to be

enhanced), the frequency of the secondary could become closer to

exact subharmonics with l/2 for the fastest growing modes (though

this has not always been found in related problems in spherical ge-

ometry, e.g. Lin et al. 2015, wherel/3 and 2l/3 have been obtained

instead for moderate Ekman numbers, similar to our case), as ob-

tained in the inviscid theoretical parametric subharmonic instability

study in the aforementioned paper, and as also expected for the re-
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lated elliptical instability (e.g. Kerswell 2002; Barker 2016, which is

usually analysed for simple elliptical flows). This kind of instability

was not observed in Paper I, perhaps because of the strong zonal

flows that dominated their simulations.

It is clear from the energy spectrum in the right panel of Fig.

18, that kinetic energy is cascaded towards high values of azimuthal

wavenumbers< (when comparing blue and orange curves at different

tidal forcing amplitudes). This is initially due to superharmonics of

the main frequency l, that correspond with even < (orange), and

then to odd values of < (green curve) presumably due to the triadic

resonances with secondary waves with < = 1, which subsequently

initiate an inertial wave turbulent cascade (e.g. Le Reun et al. 2017).

Finally, we emphasise that undertaking the eigenvalue problem for

this differentially rotating shell18, could help us to understand which

modes are likely to be excited and cause the particular instability we

observe.

3.5 Scaling laws for tidally-generated differential rotation:

effects of the viscosity

In this section we analyse how the energy inside the tidally-generated

differential rotation, �dr, varies as we vary the viscosity/Ekman num-

ber E. In fig. 22, we display �dr in terms of E when an overall steady

state is reached in our nonlinear simulations for the three frequencies

studied in Sect. 3.2. For the simulations with E ≤ 5 ·10−6, the spatial

resolution is increased to ;max = 170 (so =i = 512) and =A = 161.

Looking at �dr for l = 1.05 and 1.1 (for which the linear dissipa-

tion is close to a resonant peak), we observe that �dr ∝ E−2, while

for l = 1.15 (for which the linear dissipation is at a trough), the

scaling is less steep, closer to �dr ∝ E−1. At low Ekman numbers,

such as E ≤ 5 · 10−6, there is a break in the E−2 law for l = 1.05. At

such a low viscosities, the amplitude of prograde zonal flows starts

to become large (for E = 5 ·10−6) or even dominant (for E = 2 ·10−6)

close to the rotation axis for the l = 1.05 and 1.15 cases, contrary to

the “equatorially" dominant flow we found for the same frequencies

18 Note that the eigenvalues are known to drift from the uniformly rotating

case (e.g. Barik et al. 2018) depending on the strength of the shear and also

with the Ekman number (e.g. Bekki et al. 2022).

in Fig. 6 for E = 10−5. This is presumably explained by the develop-

ment of a corotation resonance close to the pole, since the amplitude

of the zonal flow is anti-correlated with the viscosity. For thel = 1.1

case, since the zonal flow is already strong near the pole, the presence

of the corotation resonance may have amplified it, which is what we

suspect for E = 5 · 10−6.

It is difficult to determine theoretically a universal scaling law,

given the strongly frequency-dependent predictions from linear the-

ory. However Tilgner (2007) argued for an upper threshold �dr <

E−2ℓ−2, which predicts �dr ∝ E−2 as we have observed if ℓ = $ (1),
but is steeper than E−2 if we naively use ℓ ∝ E1/3 here (or in-

deed any positive power of E). Following similar lines to Tilgner’s

analysis, who distinguished a momentum equation for the < = 2

tidal inertial waves u1 (his Eq. 3) and one for the axisymmetric

flow ū2 generated by their nonlinear self-interaction (Eq. 5), we

can derive E>̂ · ∇2ū2 ∼ >̂ · (u1 · ∇)u1, with >̂ the unit vector

in the azimuthal direction. If we assume the tidal waves to have a

typical (transverse) lengthscale ℓ and the zonal flow to have a ra-

dial scale !, this would suggest the zonal flow magnitude to scale

as D̄2 ∼ D2
1
!2/(Eℓ), in terms of the typical velocity magnitude of

the waves. Hence �dr ∼ 〈D̄2
2
〉 ∼ 〈D4

1
!4/(E2ℓ2)〉, which predicts

�dr ∝ E−2 if D1, !, ℓ, and the volume filling fraction (VFF) of the

waves combine to produce an $ (1) number in the above scaling. On

the other hand, if we assume D1 ∼ E−1/6, ! ∼ ℓ ∼ E1/3 and VFF also

scales as E1/3, we find the less steep scaling �dr ∝ E−5/3 (reducing

to �dr ∝ E−2 under the same assumptions if VFF is $ (1)). If we

instead focus on flows generated near the critical latitude, and con-

sider D1 ∼ E−1/5, ! ∼ ℓ ∼ E2/5 and VFF scaling like E2/5 we would

obtain �dr ∝ E−8/5. Different assumptions would lead to alternative

scalings, but these are hard to justify a priori.

The Ekman number scalings we have observed are very different

from the zonal flows generated by tidal forcing in a full sphere in the

experiments (with a deformable no-slip boundary) of, for example,

Morize et al. (2010), where the zonal velocity scales as n2E−3/10,

or for those produced by libration-driven inertial waves, as studied

in Cébron et al. (2021) and Lin & Noir (2021), where it instead

scales as n2E0 or n2E−1/10, respectively (though these also result

from self-interaction, so the zonal velocity also scales as n2). We

underline that the best fitting laws here seem quite different from the

ones emerging in Paper I in E−3/2 and E−1/2, presumably because of
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Figure 21. Time series of the poloidal velocity potential log(, ) (base e) for different modes (note that the same (;, <) component can relate to different

frequencies as in Fig. 20). The dashed green line illustrates the exponential growth of the modes of components (;, <) = (1, 1) and (;, <) = (3, 3) . This

indicates that the primary tidal wave is unstable to a slowly growing parametric instability.
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Figure 22. Energy inside the differential rotation �dr as a function of the

Ekman number E for various nonlinear simulations with three tidal forcing

frequencies l (with�t ≈ 9 ·10−3). Simulations are run until an overall steady

state is reached and the values taken are the mean in the last 3000 rotation

times (and errorbars correspond to minimum and maximum values in that

range, being non-negligible only for one point). Some scaling laws have been

added as dashed lines for comparison.

the non-wavelike nonlinearities involved in their work. It is difficult

to predict whether the scaling laws we have observed would still

hold for solar-like and Jupiter-like values of the Ekman number,

particularly because the corotation resonance at XΩB = l/2 near the

rotation axis starts to trigger instabilities for E = 10−6 for the three

frequencies studied in this section. These instabilities appear to flatten

the dependence, and could even cause �dr to become independent of

E below a critical value. Further work is required to understand these

results theoretically and to explore a wider range of parameters.

4 IMPORTANCE OF NONLINEAR EFFECTS FOR

EXOPLANETARY SYSTEMS

In parallel with this theoretical modelling, it is important to consider

which astrophysical systems are likely to be affected by these non-

linear effects. Using the time and length scales defined in Sect. 2.2,
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Figure 23. Stellar and planetary tidal amplitudes n in terms of the orbital

period % of the planet in days, and the mean density d̄ = "1/(4/3c'3) of

the star or planet in colour. Only compact systems satisfying % < 10 d, and

"p/"★ > 10−4 (bodies with d > 100 g/cm3 have also been removed) have

been selected (a significant fraction of these are Hot Jupiter systems), and

radii, masses, periods and semi-major axes have been taken from the online

database http://exoplanet.eu/.

the importance of wavelike nonlinearities can be quantified by:

(uw · ∇)uw

mCuw
∼ Dw

lℓ
∼ �t�

−U−V , (40)

where −U − V = −1/2 or −5/12 for shear layers, and −U − V = −3/5
for the critical latitudes. Note that as hypothesised in Paper I, wave

breaking is expected when the RHS is $ (1), which is more likely

to happen at the critical latitudes for small E, perhaps preventing the

propagation of shear layers from these locations (see also Goodman

& Lackner 2009). We confirm that nonlinear effects are important

for both shear layers and critical latitudes according to Eq. (40) in

most of our simulations (i.e. for E . 10−5 and �t & 10−2), in that

the RHS is & $ (1).
An estimation of Eq. (40) in compact exoplanetary systems can be

made using typical values for the stellar or planetary tidal amplitude

n (depending on whether the primary body in which tidal flows are

investigated is the star or the planet), which we display in Fig. 23.

We recall that �t and n differ only by :2, which is around 1/2 for

giant gaseous planets, like Jupiter and Saturn, and also possibly for
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Hot Jupiters (e.g. Guillot et al. 2022). For a = = 1 non-rotating

polytrope, a similar value is found, but can vary with rotation to

between 0.3 and 1.2 (Dewberry & Lai 2022). The planetary tidal

amplitude parameter varies in Fig. 23 between 10−6 and 10−1, with

maximum values reached for the Hot Jupiters WASP-12 b and WASP-

19 b at n ≈ 5 · 10−2. Using a typical value for the kinematic Ekman

number of about E = 10−18, and �t ≈ 3n/2, nonlinear effects for

wavelike tidal flows are predicted to matter for every gaseous planet

according to Eq. (40) for any of our choices of exponent −U − V.

The stellar tidal amplitude parameter varies between 10−8 and

10−4, with a maximum value for the host star WASP-19, in which

n ≈ 2 · 10−4. Assuming a Sun-like kinematic Ekman number of

about E = 10−12 (probably even lower at the base of the convective

envelope), nonlinear effects are significant for only a fraction of low-

mass stars (preferentially those with n & 10−5), depending on the

value of −U − V. We point out that the results in our paper may

be more relevant to fast rotating bodies like Hot Jupiters, which

possibly exhibit cylindrical-like differential rotation in their upper

atmospheres (e.g. Gastine et al. 2013), than to host stars for which

we generally expect a more conical-like differential rotation in the

convective envelope (e.g. Benomar et al. 2018), like in the Sun.

Although extrapolating �dr for much lower Ekman numbers in Fig.

22 suggests strong shears and thus a much higher impact on the tidal

dissipation (than observed e.g. in Fig. 11), these statements must

be tempered by the unknown action of turbulent convective motions

on tidal inertial waves, which potentially drive even stronger zonal

flows, and the presence of magnetism and fluid instabilities that could

mitigate them.

If we assume that the action of convection on tidal flows can be

modelled by an eddy viscosity that behaves just like a microscopic

viscosity, as done for instance to study Rossby and inertial waves in

the Sun in Gizon et al. (2020) and Fournier et al. (2022), and which is

on the order of 10−4 − 10−5 from mixing length theory, major differ-

ences in outcome are to be expected for the scaling law Eq. (40), and

tidal dissipation estimates from our simulations may be more directly

applicable. With a turbulent eddy viscosity on the order of 10−5, like

in most of our simulations, our numerical results first suggest that for

all low-mass host stars and Hot Jupiters with n . 10−2, (see Figs 4,

10 and 11 for�t = 10−2), nonlinear effects have a limited effect on the

tidal dissipation, modifying the frequency-dependent (and presum-

ably frequency-averaged) tidal dissipation rates by a factor of unity

only. However, for Hot Jupiters having n & 10−2 (depending on their

Love number), and especially for ultra Hot Jupiters like WASP-12

b, WASP-19 b, WASP-121 b, or HIP 65A b having �t & 5 · 10−2,

nonlinearities could have a much greater impact on tidal dissipation

rates and the generation of zonal flows, depending on the forcing

frequencies in these systems, the exact value of the Ekman number

inside the convective envelope, and also the aspect ratio of the shell.

Further exploration, and scanning of the frequency range allowed for

inertial waves, could allow us to determine if the frequency-averaged

nonlinear dissipation is modified in comparison to its linear analogue

(Ogilvie 2013).

5 CONCLUSIONS AND DISCUSSION

In this paper, we have investigated the impact of nonlinearities on

tidal flows in an incompressible and adiabatic spherical shell, which

models the convective envelope of a low-mass star or a giant gaseous

planet in a compact system. In our study, we have performed a suite of

3D hydrodynamical direct numerical simulations in spherical shell

geometry for a range of tidal frequencies and amplitudes, and fluid

viscosities (Ekman numbers), building upon the prior study of (Favier

et al. 2014, Paper I). We show in particular that nonlinear tidal effects

are likely to be important in the convective envelopes of planets and

stars in Hot Jupiter systems.

Unlike in the nonlinear simulations of Paper I where the flow was

forced from the outer surface through an imposed radial velocity, here

we use a tidal body forcing to excite inertial waves, resulting from the

residual action of the Coriolis acceleration on the equilibrium (non-

wavelike) tide. We consider this to be a more realistic way to tidally

excite inertial waves, and it has the advantage that it allows us to

clearly identify and assess the contribution of wavelike (uw · ∇uw),

mixed (uw · ∇unw + unw · ∇uw), and non-wavelike (unw · ∇unw)

nonlinear terms in the energy and momentum balances. We demon-

strate that the mixed nonlinearities generate a nonphysical radial flux

through the boundaries due to our spherical (and not tidally ellipti-

cally deformed) boundaries, which is responsible for the unrealistic

angular momentum evolution leading to the de-synchronisation of

the body observed for some frequencies in Paper I. By removing

these nonlinear terms, which is justified by physical scaling argu-

ments for astrophysical parameter regimes, the angular momentum

is instead conserved in this model. Our model thus probes the instan-

taneous energy transfers between tidal inertial waves and zonal flows

on times much shorter than long tidal evolutionary timescales.

Like in Paper I and Tilgner (2007), we report the development of

strong axisymmetric zonal flows describing cylindrical differential

rotation in the shell. These flows are generated by the nonlinear self-

interaction of tidal inertial waves in various locations in the shell:

inside shear layers, and developing around critical latitudes, at the

points of reflection between the wave beams and the boundaries or

the rotation axis, and finally near a corotation resonance. We observe

the formation of corotation resonances (also called critical layers) in

our simulations, namely critical cylinders where the angular velocity

matches the angular pattern speed of a wave (as in the 2D linear

calculations of Baruteau & Rieutord 2013), that form preferentially

close to the rotation axis if the tidal forcing is strong or the viscosity is

small. This is explained by the fact that the zonal flows in these cases

are stronger, since the energy inside the differential rotation varies

as �dr ∝ n4E−W , where n is the tidal amplitude and W is a positive

number (typically W ∈ [1, 2], though we find indications that W → 0

as E → 0) depending on the tidal frequency. When present, these

corotation resonances strongly modify the zonal flow profile and the

tidal angular momentum exchanges in the system.

We also find that the nonlinear tidal dissipation rates depart from

linear predictions, with a large discrepancy when the tidal frequency

is close to a resonant peak of enhanced dissipation according to linear

theory. These cases are also correlated with stronger energy inside

the differential rotation. However, unlike Paper I, the discrepancy be-

tween linear and nonlinear tidal dissipation rates is in general some-

what less important in our simulations (we typically find less than one

order of magnitude differences between the two). We demonstrate,

by injecting the zonal flows resulting from nonlinear simulations into

new tidally forced linear simulations as a “background flow", that the

development of cylindrical differential rotation is responsible for this

discrepancy between nonlinear and linear dissipation rates in many

of our simulations. This is especially the case for moderate values of

the tidal forcing �t = 10−2 and Ekman number E = 10−5.

For higher values of the tidal forcing amplitude, or lower values of

the Ekman number, we observe the emergence of complex wave/wave

and wave/zonal flow interactions that we try to characterise. In partic-

ular, we identify parametric instabilities involving triadic resonances

between inertial waves, which are reminiscent of the elliptical insta-

bility (e.g. Kerswell 2002; Barker 2016; Le Reun et al. 2017, albeit
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for a primary tidal wave with a more complicated flow than one

with simple elliptical streamlines). We also identify the appearance

of corotation resonances, which may trigger (secondary) shear insta-

bilities in some cases, and which lead to strong absorption of waves

in other cases. These interactions contribute significantly to change

tidal dissipation rates, either by absorbing or amplifying waves at

corotation resonances (see also Astoul et al. 2021), or through gen-

erating daughter waves which dissipate on smaller lengthscales (e.g.

Jouve & Ogilvie 2014), and thus redistribute energy inside the shell.

Analytical investigation of nonlinear three-wave interactions in Ker-

swell (1999) and Barik et al. (2018) notably emphasise three different

outcomes of nonlinear self-interaction of inertial waves that have all

been observed in our model: a geostrophic < = 0 mode, which is a

quasi-axisymmetric zonal flow, superharmonics, as we observe for

low frequencies compared to 2Ω, and triadic resonances between two

daughter waves and a primary tidal wave.

We have demonstrated that nonlinear effects are likely to play an

important role on tidal flows, and in modifying tidal dissipation rates,

particularly when considering realistic values of atomic viscosities.

If turbulent convective motions can be modelled as an effective vis-

cosity on tidal inertial waves, and are thus the dominant contribution

for the viscous dissipation term, the latter statement may only be true

for the envelopes of ultra short-period Hot Jupiters. However, these

statements have to be qualified since various different key processes

have not been investigated in this study, including the influence of

magnetism and proper turbulent convective motions, that could shape

different amplitudes and profiles of the differentially-rotating back-

ground flow, the effect of compressibility, and also the size of the

convective shell. The latter is likely to be important because the linear

tidal dissipation prediction with uniform rotation depends strongly

on this parameter, with a frequency-averaged dissipation depending

on U5/(1 − U5). Although this implies tidal dissipation is higher for

a thin convective shell, Baruteau & Rieutord (2013) have shown that

even for a tiny core, differential rotation is able to retain shear layers,

which potentially make a huge difference in tidal dissipation rates.

There remains much to be explored in this problem.
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APPENDIX A: INERTIAL WAVES NEAR COROTATION

We recall that the linear momentum Equation (30) for inertial waves

with a background zonal flow is analogous to Equation (2.1) in

Baruteau & Rieutord (2013) with cylindrical differential rotation.

The differences are that they omit tidal forcing and work in an

inertial frame. By assuming a plane wave in the vertical and az-

imuthal directions, we can derive a similar second-order ordinary

differential equation (ODE) for the free (unforced) pressure pertur-

bation ?w in the inviscid limit (as in their Appendix A). Under the

short-wavelength approximation, and in the vicinity of the corotation

resonance at the critical cylinder Bc, this ODE reads19

m2?w

mB2
+ U2

2 (1 + Roc)
Ro2

c (B − Bc)2
?w = 0, (A1)

with Roc =
BcmBΩB (Bc)

2ΩB (Bc)
, which is a kind of Rossby number, and the

ratio of the vertical to azimuthal wavenumbers U2 = Bc:I/<. We

should point out that in our simulations the singularity at the critical

cylinder in Eq. (A1) is regularised by viscosity, which is not taken

into account here. Eq. (A1) is analogous to the second-order equation

derived in Astoul et al. (2021, Eq. (68)) for free inertial waves near a

corotation resonance with cylindrical differential rotation in a local

model (the different sign in the numerator results from the opposite

19 Eq. (A1) can also be derived from Baruteau & Rieutord (2013, Eq. (3.5))

by taking the leading order term in B − Bc at the corotation resonance at the

critical cylinder Bc.
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local orientation of the box). Two regimes emerge depending on the

value of

R =
U2

c (1 + Roc)
Ro2

c

, (A2)

in Eq. (A1), which plays an equivalent role to the Richardson number

for internal gravity waves. Similarly to the Miles-Howard theorem, if

R > 1/4, solutions of Eq. (A1) take the form of wavelike solutions,

which are preferentially strongly damped when reaching the critical

cylinder Bc, while if R < 1/4, Eq. (A1) admits hyperbolic solutions,

meaning that waves can be amplified. The inequality R < 1/4 is also

a necessary but not sufficient condition to trigger shear instabilities,

that may depend on the shear flow profile, the boundary conditions,

and the properties of the incident waves.

The main difficulty to evaluate R in our simulations is to estimate

the vertical wavenumber :I , which should be taken close enough to

Bc but in a region where Eq. (A1) admits wavelike solutions (i.e. when

R > 1/4). The wavenumber transverse to a shear layer scales as E−1/3

(e.g. Rieutord & Valdettaro 2018), thus the vertical wavenumber

:I close to the inner critical latitude \ scales as E−1/3 sin \. Of

course, this is only valid close to the inner critical latitude and does

not account for the bending of the shear layer as it approaches the

corotation resonance, where a WKBJ analysis (like in Baruteau &

Rieutord 2013; Guenel et al. 2016a; Astoul et al. 2021) predicts the

vertical wavenumber to go to zero, or the transverse wavenumber :B
to go to infinity (in which case the phase and the group velocities go

to zero). This estimate is based on the shear layer scaling and may

no longer apply close to Bc, since the wave beam is enlarged there,

as seen in Fig. 16. We have, however, evaluated R given by Eq. (A2)

for all of the “background" zonal flows in our linear simulations. In

all cases, we find R > 1/4, leading us to two opposite conclusions:

− either our zonal flows are stable under the R-criterion, and the

instabilities we have observed for l = 0.8 and 0.9 have nothing to

do with local shear instabilities, and are possibly more similar to the

‘Papaloizou-Pringle instability”.

− the criterion on R discussed here is no longer valid with viscous

dissipation and tidal forcing, and must be modified.

Regarding our second hypothesis, the presence of tidal forcing pre-

sumably modifies Eq. (A1) close to Bc, based on the Appendix of

Astoul et al. (2021, Eq. (A.9) is the equivalent ODE for forced iner-

tial waves). This term could thus modify the expression for R in Eq.

(A2), and hence also change the stability criterion.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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