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A B S T R A C T   

Machine learning clustering methods offer the potential for recognition and separation of facies based on core or 
well-log data. This is a particular problem for carbonate rocks because diagenesis produces a wide range of rock 
microstructures and transport properties. In this work we use a large database of high quality poroperm, elec
trical, mercury injection capillary pressure and nuclear magnetic resonance spectroscopy measurements (307 
core samples), representing 5 stratigraphically defined facies, as well as well log data to examine facies- 
recognition abilities using 8 different machine learning clustering approaches and a redundancy of 10 to 
ensure statistically valid results, resulting in a total of over 990 clustering runs. For a 3 cluster problem, we find 
that the Expectation Maximisation (92.57% success) and two types of Kmeans approaches (89.60% and 91.09%) 
provide the best methods. Further testing using the best of these shows that the quality of the input parameter 
(attribute) matters more than the number of attributes used, with the power of attributes in decreasing order 
being porosity, cementation exponent, permeability, pore throat diameter and free fluid index, implying that 
some attributes can degrade clustering performance. Further tests show that there should be at least as many 
attributes as clusters, in which case the machine learning can be left to choose the final number of clusters, 
providing the best performance in this work (69.35% success for a five cluster problem), otherwise it is best to 
constrain the cluster number by supervision. Application of the results from the previous testing to a mixed 
carbonate tight carbonate well from the Butmah formation shows satisfactory determination of 4 petrofacies by 
clustering (up to 91.65%) when compared to petrofacies determined manually. However, the greater challenge 
of clustering 9 reservoir quality classes defined using a ternary petrofacies approach did not provide a successful 
result (<38% success rate).   

1. Introduction 

In general rocks exhibit a wide range of structures and properties 
even within formations that seem well-defined stratigraphically (Al 
Zainaldin et al., 2017). This is especially the case for carbonate rocks 
because they have almost always been subjected to post-depositional 
reworking by a range of diagenetic processes (Mohammed Sajed and 
Glover, 2020; Mohammed Sajed et al., 2021) which can lead to het
erogeneity and anisotropy that is not necessarily bed-bound (Sinan 
et al., 2020). The recognition of groups of core samples or well-logging 
intervals that share a generic microstructure and transport properties is 
usually carried out by defining units based on either core scale sedi
mentological and geological evidence (Jiang et al., 2021), microfacies 
based on optical or scanning electron micrographic evidence (Liu and 
Song, 2020; Yarmohammadi et al., 2020) or petrofacies, which are 

allocated on the basis of petrophysical properties (Kopaska-Merkel et al., 
1989; Cao et al., 2020; Silva et al., 2020). Some have used a smaller set 
of properties which are directly related to reservoir quality to make the 
classification (Mohammed-Sajed and Glover, 2022). While all of these 
methods use both qualitative observations and quantitative measure
ments, they are all classification schemes that do not inform physical 
processes. Nevertheless, facies allocation is a first and significant step in 
the analysis of a carbonate rock. 

Conventionally, facies definition and distribution is very time- 
consuming and expensive since it involves the in-depth analysis of 
well cores, well logs, downhole measurements, analogue studies and is 
holistic in nature (Bestagini et al., 2017). Such manual analysis of large 
datasets by a reservoir geologist or petrophysicist must be subjective to 
some extent, leading to increased uncertainties and the introduction of 
artefacts (Ren et al., 2019). 
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By contrast, machine learning processes provide the opportunity to 
make the process of facies recognition more automatic and objective 
(Witten et al., 2011). The accuracy of the result depends on the rele
vance and complexity of the method, and critically on the relevance and 
quality of the attributes that represent the input physical properties 
(Larose, 2006; Witten et al., 2011). 

In machine learning, facies recognition may be approached by using 
either clustering or classification (Witten et al., 2011). Table 1 shows the 
differences between these two approaches. Clustering is simpler, does 
not require foreknowledge of the number or properties of the facies, and 
does not need training. However, it can only separate facies on the basis 
of the natural similarity or difference in the properties (which are called 
attributes in machine learning parlance) and hence it provides more 
general solutions (Larose, 2006). These aspects of clustering give it ad
vantages in facies recognition where only an attribute dataset exists. 
However, if facies in one well have already been defined and it is 
necessary to find to which of these facies a sample or samples in another 
well belong, classification must be used. 

In recent years, initially multivariate statistical methods (Fang and 
Feng, 2021; Al-Qassab et al., 2000), and more recently machine learning 
methods have been increasingly used (Al Anazi and Gates, 2010; Alex
sandro et al., 2017; Imamverdiyev and Sukhostat, 2019). Approaches 
looking at microfacies and petrofacies include many of those already 
cited (Jiang et al., 2021; Liu and Song, 2020; Yarmohammadi et al., 
2020; Kopaska-Merkel and Friedman, 1989; Cao et al., 2020; Silva et al., 
2020). These approaches are almost always classification schemes 
which only take account of isolated data for a given core or depth, with 
no account taken of how the facies will also partially be correlated with 
depth. Consequently, some of the more recent implementations have 
attempted to incorporate the constraint imposed by partial depth cor
relation (e.g., Santos et al., 2022) or seek to improve accuracy by adding 
methodological complexity (Nanjo and Tanaka, 2020; Tewari and 
Dwivedi, 2020). While extremely effective, these models are very 
complex, the Santos model, for example, requiring the implementation 
of Bidirectional Long-Short-Term Memory Deep Recurrent Neural 
Networks. 

Clustering (Cai et al., 2022) is a much simpler approach that has the 
potential to provide ‘sufficiently good’ separation of samples into clus
ters that represent samples with similar properties with no fore
knowledge of the characteristics of each of the clusters, and often does 
not require knowing the number of clusters (Kanungo et al., 2002; Wu 
et al., 2008). Clustering can be used as a first step to obtain the number 
and properties of facies before submitting data to a classification scheme 
which trains the data to the facies derived from clustering and ultimately 
then uses the trained process to classify further data (Ren et al., 2022). 

The question is what is ‘sufficiently good’. At the moment there is 
little information available on whether clustering can be used on pet
rophysical data from geologically diverse diagenetically-altered car
bonates, which methods perform best, and to understand how to fine- 

tune the use of such models especially with regard to the number and 
types of attributes and whether to specify the number of clusters to be 
produced or to leave that decision to the method. 

This paper has several goals. The first is to examine and test the 
accuracy of some of the machine learning clustering methods available, 
the second is to ascertain which are the most effective for use with 
petrophysical data. The quality of the results obtained from machine 
learning methods depends critically on the quality and relevance of its 
input data. Consequently, it is also the goal of this paper to find which 
petrophysical input parameters (attributes) make good discriminators 
for facies separation, and whether it is better to have foreknowledge of 
the number of groups of data in a given dataset so that the facies defi
nition process can be constrained. Most of the tests have been carried out 
on a large database of 307 samples containing 5 stratigraphically 
defined facies, and for which an extensive set of high quality petro
physical measurements are available, including poroperm, electrical, 
mercury injection capillary pressure (MICP) and nuclear magnetic 
resonance (NMR) spectroscopy. 

1.1. Data sets 

In this section, we examine the three main datasets used in this 
modelling. Table 2 summarises the sample numbers together with which 
measured and calculated parameters appear in each dataset. All meth
odologies used to obtain the measured parameters are given in Al 
Khalifah et al. (2020). 

The first dataset contains data from 202 sample from three beds of 
the Portland limestone, which crops out in quarries on the Isle of Port
land (Dorset, UK). All samples were obtained from the Fancy Beach or 
Jordans quarries (50◦33′10′′N 02◦26′25′′W) and are from beds within 
the Upper Jurassic Portland Freestone, a well-cemented oolitic lime
stone (Barton et al., 2011) which has traditionally been used in 
construction. 

The Isle of Portland primarily consists of marine strata from the 
Upper Jurassic overlain by a thin layer of basal Cretaceous Purbeck 
Formation, which lies on top of the Portland Freestone and which marks 
the bottom of the Cretaceous. The true Portland Stone, a well-cemented 
oolitic limestone, lies immediately below the Cretaceous Purbeck For
mation. Certain beds of the Portland Freestone have been used both 
throughout history and currently as high quality architectural building 
stone. It composes many of the civic and religious buildings in the UK, 
such as The Cenotaph (1920), St. Paul’s Cathedral (1677), The British 
Museum (1753) and the Parkinson Building (University of Leeds, 
1938–1951), but is also used globally, as in the United Nations Building 
in New York (1952), and Auckland War Memorial Museum, New Zea
land (1929). The stone has been designated by the International Union 
of Geological Sciences as a Global Heritage Stone Resource. Portland 
Cherty Series lies immediately below the Portland Freestone and above 
The Portland Sand, which consists predominantly of marls with inter
bedded sandy layers. Upper Jurassic Kimmeridge Clay lies below the 
Portland sand and is the lowest formation exposed in the area, occurring 
beneath Castletown and Portland Harbour. It is exposed at the foot of the 
high northern cliffs or the Isle of Portland when not covered by talus. 

This paper uses data from three beds; the Base Bed (72 samples), 
Whit Bed (58), and Hard Blue (72). All of these formations are domi
nated by sparite-cemented oolites (Barton et al., 2011). The data from 
the first two of these were used previously in initial machine learning 
permeability prediction studies using genetic algorithms by Al Khalifah 
et al. (2020), whose results we later compare the results from this work. 
Al Khalifah et al. (2020) note that the Whitbed contains common shells, 
usually distributed evenly, but sometimes concentrated in zones. These 
shells are commonly cemented. The Base bed is less shelly and 
commonly contains completely cemented shell moulds. The cemented 
nature of this rock makes it ideal building stone as well as a good, 
well-studied tight carbonate reservoir analogue. The Hard Blue bed is 
highly cemented and presents a much lower porosity and permeability 

Table 1 
Differences and similarities between Clustering and Classification.  

Clustering Classification 

Less complex More complex 
Unsupervised Supervised or unsupervised 
Facies clustered into groups according to 

similarities in their natural properties 
(attributes) 

Facies classified into known and 
predetermined classes on the basis of 
their natural properties (attributes) 

Does not need facies (classes) to be 
already defined. 

Needs facies (classes) to be already 
defined. 

Method needs to be tuned for optimum 
efficacy 

Method needs to be tuned for optimum 
efficacy 

No training needed Method needs to be trained on known 
facies of the same type. 

Validation testing is required. Validation testing is required. 
Can only be used to recognise general 

groupings such as facies. 
Can be used to classify data by finer 
distinctions in their attributes.  
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than the other two beds. 
Each bed has its own characteristic range of porosities and perme

abilities, which overlap each other, with the Whit Bed having the highest 
porosity and permeability and the Hard Blue having the least porosity 
and permeability when taken as a group. The petrophysical character
istics of the beds will be described in detail later in the paper. 

The second dataset contains 61 samples of Purbeck limestone from 
the Swanage Quarry (now California Quarry) at (50◦35′49′′N 
01◦58′30′′W). This Upper Jurassic to Lower Cretaceous limestone occurs 
stratigraphically just above the Portland Freestone. In this work all 
samples were taken from the Button Bed of the Purbeck limestone with 
an age of about 155 Ma, which has a lower porosity, permeability and 
pore throat size than other Purbeck limestone horizons (Baud et al., 
2021; Brantut et al., 2018). 

The third dataset contains 44 samples of Solnhofen limestone from 
the Solnhofen Stone Group Quarry near Solnhofen in Germany at 
(48◦53′02′′N 10◦58′44′′W). Solnhofen stone is a Late Jurassic limestone 
from the Jura mountains which has long been famed for its building and 
sculpting qualities as well as its exceptional preservation of a range of 
palaeobiota. Its small porosity, permeability and pore throat diameter 
distribution result from an homogeneous microstructure which arises 
from the sedimentation of micritic particles into an extremely calm 
environment (Koch, 2007; Baud et al., 2000). 

1.2. Experimental methods 

The measurements comprising the datasets arise from five different 
independent measurement methods. These are (i) pycnometry, (ii) 
permeametry, (iii) electrical measurements, (iv) mercury injection 
capillary pressure measurements (MICP), and (v) NMR spectroscopy. 
Consequently, any of the basic parameters shown in Table 1 from any of 
these independent approaches can be compared with each other ac
cording to the codes given in the bottom line of the table. 

Pycnometry was carried out to obtain porosity on 1.5” diameter 
cores with an apparatus designed and built in-house with an accuracy of 
±0.001 (i.e., 0.1% porosity). Porosity was also obtained by fluid satu
ration/Archimedes bulk volume and by MICP, but these data are not 
used as it was found that the difficulty in fully saturating these tight 
limestones with water or mercury led to systematic underestimations of 
porosity. 

Permeametry was carried out using two methods depending on the 
permeability of the samples. A Klinkenberg-corrected steady-state heli
um flow approach was used for the higher permeability samples. The 
permeability of lower permeability samples was measured using helium 
pulse-decay permeametry (Jones, 1997). No systematic difference be
tween the approaches was noted. 

Electrical measurements of resistivity were made on fully saturated 
samples of the fluid saturating the rock using a Quadtech LCR meter at a 
frequency where the quadrature component was smallest (near 1 kHz). 
Formation factor F, connectedness G, connectivity χ, and cementation 
exponent m were all calculated from the electrical measurements and 
porosity according to the methodologies set out in Glover (2015). 

Mercury injection capillary pressure (MICP) measurements were 
carried out with a Micromeritics Autopore V up to a maximum applied 
pressure of 60,000 psi. The measured capillary pressure/incremental 
mercury intrusion data were inverted to provide the pore throat diam
eter distribution of each sample. This data was used to calculate a pore 
diameter distribution using the method of (Glover and Déry, 2010), and 
the grain size distribution was subsequently calculated by combining the 
pore size distribution, porosity and electrical measurements according 
to the method of Glover and Walker (2009). 

Nuclear Magnetic Spectroscopy was carried out using a 2 MHz 
MARAN Ultra spectrometer from Oxford Instruments, inverting the T2 
spectra to obtain Free Fluid Index (FFI) and Bulk Volume Irreducible 
(BVI) using a variable cut-off informed by the capillary pressure curve. 

More details of experimental measurements are given in Al Khalifah Ta
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et al. (2020). 

2. Data summary 

Figure 1 shows the distributions of porosity and permeability for 
each of the datasets. For the Portland limestone, the three component 
beds can be distinguished reasonably clearly on the basis of porosity, 
with the Hard Blue bed occupying low values with no overlap with the 
values of the other two beds. The Base Bed and Whit Bed exhibit higher 
porosities, with the Whit Bed having the higher porosities, but with a 
significant overlap. Table 3 shows the descriptive statistics for each bed 
and each dataset. However, when the permeability is considered, there 
is a significant overlap of all three beds even though the order of the 
modal values for the data from each bed is the same as that for porosity. 
There are even several Whit Bed samples with permeabilities lower than 
most of the Hard Blue samples. The porosities exhibited by the Purbeck 
limestone are roughly coincident with those of the Portland Hard Blue, 
while the Solnhofen limestone has porosities covering the same range, 
but extending higher, to about 14%. The permeabilities exhibited by 
both the Purbeck and Solnhofen limestones are distributed over the 
whole range that was occupied by all three Portland limestone beds. 

Clearly, there are other parameters than porosity controlling 
permeability. These are partially known, and discussed in the next sec
tion. They include characteristic grain size and cementation exponent 
(Rashid et al., 2015a; 2015b; Glover et al., 2006). Fig. 2 shows 
cross-plots between porosity and formation factor, cementation 

exponent, characteristic pore throat and pore diameters and character
istic grain size as well as between characteristic pore throat size and free 
fluid index (FFI) from nuclear magnetic resonance (NMR) spectroscopy 
measurements and with characteristic grain size, all for all datasets. 
They show that the Hard Blue bed ought to be easy to separate from the 
other two Portland limestone beds, but would probably be difficult to 
separate from a mixture of data from all the datasets. 

Part (a) of Fig. 3 shows a Poroperm diagram of all of the datasets. 
This figure summarises the relationship of hydraulic flow with the pa
rameters controlling it (porosity, characteristic grain size, η, and 
cementation exponent). 

We have imposed dashed theoretical curves from the RGPZ- 
carbonate model (Rashid et al., 2015b) with constant m = 2.1 (being 
the arithmetic mean of the combined Portland dataset), constant η =
1.73 (from Rashid et al., 2015b) and using four characteristic grain sizes, 
which vary from 3 × 10− 8 m to 3 × 10− 5 m. We have also added a 
further set of RGPZ-carbonate model curves holding characteristic grain 
size constant at dgrain = 1.58 × 10− 6 m, which is the geometric mean of 
the characteristic grain size for the combined Portland dataset, with a 
constant η = 1.73 (from Rashid et al., 2015b) and using four values of 
cementation exponent varying from 2.0 to 3.5 on increments of 0.5. 

It is clear that each control on permeability has a significant role to 
play. Permeability generally increases with increasing porosity and 
grain size but decreases with increasing cementation exponent or η. The 
clouds of data points can be associated with a particular range of each of 
the parameters. However, the spread of the data with respect to different 
RGPZ-carbonate curves for different characteristic grain size, η and 
cementation exponent illustrates the difficulty in predicting perme
ability or cementation exponent from such overlapping data, where 
permeability is controlled by multiple parameters. 

Part (b) of Fig. 3 shows a Poroconn diagram of all of the datasets. By 
contrast with the Poroperm plot, this plot summarises the relationship of 
electrical flow with the parameters controlling it (only porosity and 
cementation exponent). As before, we have imposed theoretical lines on 
the plot in accordance with the equation G = φm (Glover, 2015) for 
values of cementation exponent from 1.5 to 3.0 in increments of 0.5. 

Once again this figure intimates that the Base Bed and Whit Bed 
samples might be separated from each other and from the rest of the 
datasets on the basis of these data, but that the Hard Blue, Purbeck 
Button Bed and Solnhofen limestone data is likely to be inseparable. 

The next two sections consider the machine learning methods that 
may be used to cluster a mixed dataset and to implement the methods 
using the combined Portland limestone dataset. Subsequently, all of the 
datasets will be used to test the limitations on the efficacy of prediction 
of permeability using 12 machine learning datasets, 7 conventional 
approaches and using Genetic Algorithms. 

2.1. Clustering methods 

We have used input data that are based on stratigraphically-defined 
beds. It would be easier to define the test machine learning clustering in 
terms of petrofacies-defined classes than stratigraphically-defined clas
ses. This is because the process of defining petrofacies-based classes 
automatically ‘cleans-up’ the natural variability of a given strati
graphically delineated bed by not including samples which do not fit the 
strict criteria upon which the petrofacies are defined. This would be the 
case even if the natural variability led to samples of a given type having 
petrophysical characteristics falling outside the petrofacies definition. 
Such a process would be an artificial intervention and partially invali
date any attempt to cluster by using machine learning. In addition, if 
machine learning techniques are to be useful in the real world, they must 
be able to handle data as it comes to us, and that means data that is not 
previously classified. 

A total of 8 data clustering methods have been implemented using 
the artificial intelligence platform Weka® (ver. 3.8.5) (Frank et al., 
2016). All of the methods used in this paper are shown in Table 4, noting 

Fig. 1. Distributions of (a) porosity and (b) the logarithm of permeability to 
base 10 for the three types of Portland limestone, Purbeck limestone, and 
Solnhofen limestone. 
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that the KMeans and Hierarchical clustering algorithms were imple
mented using both the Euclidean and Manhattan distance functions. We 
have tuned each method to optimise its efficiency. 

Some methods allow for optional approaches which we have 
implemented whenever it was pragmatic to do so. For example, the 
KMeans and Hierarchical clustering algorithms allow a number of dis
tance functions to be explored. We have used the Euclidean, Minkowski 
or Manhattan distance functions in this work. All distance-based 
methods used in this work include a normalisation of the input values 
to ensure that the results can be compared. Initial testing has imple
mented eight methods on the Portland dataset with the number of 
clusters set to 3 a priori if allowed by the algorithm (all cases except the 
Cobweb method) in order to examine the efficacy of each method. 

It is not known in advance which attributes are powerful in aiding 
clustering, which are helpful in distinguishing between two particular 
clusters, or even which attributes are so insensitive to cluster member
ship that they degrade the efficacy of clustering if included in the at
tributes for a given test. Consequently, we have used a 3-cluster 
implementation of the EM method to examine the results from all 31 
combinations of the five independent parameters in this work. These 
tests include using all attributes, using all combinations of 4, 3 and 2 
attributes as well as each attribute alone. 

Most methods allow the number of clusters to be set in advance, but 
this is not always required. In the case of the Portland limestone, there 
are three clusters, each associated with a bed within the formation. We 
have implemented clustering with unconstrained number of clusters, 
where possible, as well as for 2, 3, 4 and 5 defined clusters using the 
combined Portland-Purbeck-Solnhofen dataset. We note that it is 
extremely challenging to separate 5 clusters with overlapping properties 
using 5 attributes. 

Finally, all implementations described above have been run ten times 
with different stochastic seeds such that all results represent statistically 
valid implementations, and allow a measure of spread to be given in all 
of our results plots. 

In summary, there were a total of 5 facies in 3 databases that were 
clustered with 8 clustering approaches using all combinations of 5 at
tributes, 11 pre-defined cluster targets and one instance of an undefined 
cluster target number, resulting in a total of 990 machine learning 
implementations. 

The accuracy of clustering has been judged on the basis that the al
gorithms provide not only the correct number of clusters, but that the 
number of samples falling into each cluster are in accord with the real 
partitioning of the Base Bed, Whit Bed and Hard Blue formations, and 
most critically, that each sample is correctly clustered. These are 
judgements of success based on the known number of original classes 
and the known stratigraphical classification of each sample. 

2.1.1. Clustering results 
Machine learning clustering algorithms have been applied initially to 

the Portland dataset and later to the combined Portland-Purbeck- 
Solnhofen dataset. Machine learning processes generally perform bet
ter when used with normally-distributed attributes (Witten et al., 2011). 
In all cases we use the untransformed values of porosity, cementation 
exponent and FFI because they are distributed quasi-normally. The pore 
throat size and permeability are distributed approximately 
log-normally. Hence we use the logarithm to the base 10 of these pa
rameters to obtain a quasi-normal distribution for them as well. 

Hereafter, we use the term ‘clustering success’ rather than ‘clustering 
accuracy’. The word ‘accuracy’ would be a good one to use for the 
machine learning process of classification because this process places 
samples in any one of a number of pre-defined classes for which a degree 
of ‘accuracy’ can be calculated. However, the process of clustering does 
not have predefined clusters for which such an accuracy could be 
calculated. Instead we consider the success with which samples of the 
same type are gathered together in a cluster. The difference may appear 
trivial, but arises from fundamental differences between the processes of Ta
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Fig. 2. Cross-plots between porosity and (a) formation factor, (b) cementation exponent, (c) characteristic pore throat diameter, (d) characteristic pore diameter, (e) 
characteristic grain diameter, and (f) free fluid index (FFI) size for all datasets, together with cross-plots between characteristic pore diameter and (g) FFI, and (h) 
characteristic grain diameter. 
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machine learning clustering and machine learning classification (Witten 
et al., 2011). 

3. Efficacy of different clustering methods 

As we have already seen, the Portland dataset contains data from 202 
samples from three beds representing three facies with different but 
overlapping properties. We examine how effective each of the clustering 
algorithms are in recognising data from the three beds. 

Figure 4 shows a comparison of 8 machine learning clustering 
methods, constraining the cluster number to 3 in all cases except for the 
Cobweb method where such a constraint is not available. In this figure 
the clustering has been carried out with the maximum available inde
pendent data. Accordingly, five input attributes are used, i.e., porosity, 
cementation exponent, the logarithm to the base 10 of the characteristic 
pore throat size, the logarithm to the base 10 of the permeability, FFI. 
Other parameters are derived from one or from a number of the other 
parameters. Clustering success rate is calculated as the percentage of 
samples clustered successfully. 

It is clear that some methods are much better than others. The EM 
and two Kmeans methods (Euclidean and Manhattan distance models) 

perform best, with clustering success rates of over 90% (92.58%, 
89.60% and 91.09%, respectively). The five other methods performed 
significantly worse. The hierarchical models were the worst of all 
(36.14% and 36.63% success rates for the Euclidean and Manhattan 
distance models, respectively), which is only slightly higher than the 
success rate expected from a random choice of one of the 3 facies (i.e., 
33.33̇%). 

Table 5 shows the confusion matrices for the 8 clustering methods 
examined in this paper. In each case the horizontal columns reference 
the actual labels for the Base Bed (BB), Whit bed (WB) and Hard Blue 
(HB), while the vertical labels represent the clustering results. Success is 
measured by the closeness of the prime diagonal values to those of the 
‘Control’ which represents 100% success. Off-diagonal values show er
rors where data from a certain formation has been included in another 
cluster. The values shown are the rounded means of the event numbers 
from 10 implementations of clustering (as in Fig. 4). 

The clear distinction between the Hard Blue formation and the other 
two would lead to the expectation that the off-diagonal components 
related to the Hard Blue formation would be at or close to zero. This is 
indeed the case for the EM, Farthest First and both Kmeans methods. The 
remaining methods were not capable of distinguishing between the HB 

Fig. 3. (a) Poroperm diagram for all data, with RGPZ-carbonate models (Rashid et al., 2015b) for varying characteristic grain size (with m = 2.1, η = 1.73) shown as 
dashed lines, and with RGPZ-carbonate models varying cementation exponent (with dg = dgrain = 3 × 10− 7 m, η = 1.73). (b) Poroconn diagram (Electrical 
connectedness vs. Porosity) for all data, with theoretical lines for connectedness (Glover, 2015) for varying cementation exponent. 

Table 4 
Machine learning permeability prediction methods used in this work.  

Method Parameters & Notes 

1. Canopy Clustering data using the canopy clustering algorithm (McCallum et al., 2000) with the ability to define the number of searched clusters. 
2. Cobweb Clustering based in the Cobweb and ClassIt algorithms (Fisher, 1987). 
3. EM (Expectation 

Maximisation) 
EM assigns a probability distribution to each instance which indicates the probability of it belonging to each of the clusters, deciding how many 
clusters to create by cross validation, or specified in advance. 

4. Farthest First Defines a first cluster centre randomly and subsequent centres as farthest progressively from chosen centres followed by a nearest first population of 
the clusters (Kumar, 2013; Hochbaum and Shmoys, 1985). 

5. KMeans Clusters data using the k means algorithm (Arthur and Vassilvitskii, 2007), using various distance functions, including Euclidean, Minkowski or 
Manhattan distance functions. 

6. Hierarchical Clusterer Clustering based on hierarchical decomposition of the dataset, using various distance functions, including Euclidean, Minkowski or Manhattan 
distance functions.  
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and the other formations. By contrast, it would be expected that the Base 
Bed and Whit Bed data would be more difficult to distinguish, and this is 
shown to be the case, with the Canopy, Cobweb, Farthest First and both 
Hierarchical methods effectively recognising the majority of BB and WB 
data to be of the same cluster. The likelihood is that this confusion is 
driven by overlap in more than one of the main petrophysical 
characteristics. 

Figure 5 shows the results for the best performance (EM model) on a 
sample-by-sample basis for two attribute spaces, where correctly clus
tered points are shown as solid points and incorrectly clustered points 
are shown as open points with a line colour representing the cluster they 
should have been associated with. The perfect clustering of the Hard 
Blue facies is mainly due to the complete separation of this facies in 
terms of porosity as shown clearly in Fig. 5a. However, the 5-fold 
attribute dimension is important to be able to attain the high quality 
clustering between facies with overlapping properties, as between the 
Base Bed and Whit Bed in both parts of Fig. 5. It is instructive that the 
mis-clustered samples are not always in the zone of overlap between any 
two attributes. 

4. Effect of different attributes 

The importance of each attribute in the clustering process depends 
on the extent to which each attribute shows an ability to separate 
samples into their correct groups. Clearly, this will vary to some extent 
from dataset to dataset, but will also be related to what each individual 
attribute physically represents. Consequently, we have chosen to work 

Table 5 
Confusion matrices for the rounded mean of 10 clustering tests for each clus
tering method.  

Control Actual ↓ BB WB HB ← Clustered as  
BB 72 0 0   
WB 0 58 0   
HB 0 0 72        

Canopy Actual ↓ BB WB HB ← Clustered as  
BB 62 10 0   
WB 4 54 0   
HB 65 0 7        

Cobweb Actual ↓ BB WB HB ← Clustered as  
BB 1 38 33   
WB 0 56 2   
HB 0 5 67        

EM Actual ↓ BB WB HB ← Clustered as  
BB 65 7 0   
WB 8 50 0   
HB 0 0 72        

Farthest First Actual ↓ BB WB HB ← Clustered as  
BB 69 0 3   
WB 57 1 0   
HB 2 2 68        

Kmeans/Euclidean Actual ↓ BB WB HB ← Clustered as  
BB 58 1 13   
WB 0 52 6   
HB 0 1 71        

Kmeans/Manhattan Actual ↓ BB WB HB ← Clustered as  
BB 61 1 10   
WB 0 52 6   
HB 0 1 71        

Hierarchical/Euclidean Actual ↓ BB WB HB ←Clustered as  
BB 72 0 0   
WB 58 0 0   
HB 70 1 1        

Hierarchical/Manhattan Actual ↓ BB WB HB ←Clustered as  
BB 72 0 0   
WB 58 1 0   
HB 68 2 1   

Fig. 5. An example of two attribute cross-plots coloured for each of the three 
facies with solid symbols showing successfully clustered samples and open 
samples for incorrectly clustered samples (line coloured for correct cluster) for 
the EM approach with the same 5 attributes as in Fig. 4 and for (a) the porosity- 
cementation cross-plot space, and (b) for the pore throat diameter-permeability 
space. (Result of part of a single test.) Total samples N = 202. 

Fig. 4. Clustering results for the three facies of the Portland limestone using 8 
machine learning clustering methods, constrained to 3 clusters. Five input at
tributes are used (porosity, cementation exponent, the logarithm to the base 10 
of the characteristic pore throat size, the logarithm to the base 10 of the 
permeability, FFI). Arithmetic mean of misclassified events as blue bars (left- 
hand y-axis) and Arithmetic mean of percentage success as red symbols (right- 
hand y-axis). Error bars represent the minimum and maximum of 10 tests; Total 
samples N = 202; Tests = 80. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the Web version of this article.) 
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with the best method we found in the previous section, the EM method, 
and have run it for all combinations of the 5 possible attributes, logging 
how each combination performs on the tight carbonate data represented 
by the Portland limestone group. In this process, we have started with 
the results of the 5-attribute, 3-cluster result already reported, then 
examined the clustering efficacy using the 5 combinations of 4 attri
butes, the 10 combinations of 3 attributes, then 10 combinations of 2 
attributes and finally the 5 combinations of 1 attribute. The summary of 
all of this data is shown in Fig. 6. The data shown in this figure have been 
arranged by rank on the basis of success from the best on the left-hand of 
the figure to the worst on the right-hand side. 

It is clear that the adage that more data is always better does not 
work. The implementations using all five attributes is ranked 9th in 
clustering quality. This implies that inclusion of some of the attributes 
actively degrades the clustering ability. Indeed, the top 5 attribute 
combinations are of only 2 or 3 attributes. 

Porosity occurs as an attribute in all of the top 13 combinations and 
in 16 of the top 18 combinations. Indeed use of porosity as a single 
attribute provides the 10th best performance (91.58%). This is an in
dicator that porosity is the most powerful attribute for clustering in this 
dataset. However, it will not necessarily be the case in all petrophysical 
datasets. 

Eight of the 9 worst performers contain FFI in the attribute set, 
indicating that this attribute does not contribute to improvement in 
clustering, and probably degrades clustering. The addition of FFI to any 
combination of other attributes degrades performance by as much as 13 
rank places, except, oddly when it is added to the single attribute 
porosity. Indeed, there is a small group of highly performing combina
tions which contain both porosity and FFI. There is something about this 
combination that seems to work well together for this carbonate dataset. 

Analysis of the strength of attributes on the basis of Fig. 6 results in 
the order first porosity, followed by cementation exponent and the 
logarithm to the base 10 of permeability, then the logarithm to the base 
10 of pore throat size, and finally FFI. 

The spread in values (calculated as the range of data over 10 itera
tions) are not symmetrical and grow as the clustering worsens. This is to 

be expected because for those tests with good success rates there are 
fewer possible combinations of samples in each cluster, while poorly 
performing implementations struggle to allocate samples to a cluster, 
mis-clustering many samples which vary greatly between implementa
tions with different seeds. 

5. Effect of different cluster numbers 

The results described in this section use the combined Portland- 
Purbeck-Solnhofen dataset. Figures 1 and 2 show that there is signifi
cant overlap in the attributes of the Base Bed and Whit Bed in the 
Portland samples as well as between the Portland Hard Blue samples and 
samples of the Purbeck and Solnhofen limestones. 

In this section we carry out a number of clustering tests using (i) all 5 
attributes, (ii) the 4 attributes [porosity, m, log10k, log10dpt, FFI], (iii) the 
triad [porosity, m, log10k], (v) the dyad [porosity, m], and (v) porosity 
alone. Each set of attributes has been tested for 11 different specified 
numbers of clusters as well as the case where the method is uncon
strained by a number of clusters. Each combination has been imple
mented 10 times, as throughout this paper, with the plotted results being 
the arithmetic mean of the 10 trials with error bars representing the full 
spread of results (i.e., minimum to maximum). This results in 600 trials 
of the EM method in this sub-section. 

Overall, all the results are worse than for the Portland dataset, with 
the best clustering success rate at only 69.38% (using all five attributes 
and leaving the number of clusters unconstrained). This arises because 
the clustering problem we have provided in the combined dataset is 
more difficult than the Portland dataset, with all clusters significantly 
overlapping with either one or two other clusters. 

For the case where the number of clusters is undefined, the use of all 
attributes lead to a correct outcome of five clusters and a reasonable 
success rate (69.38%), which was the best of all of the tests. In other 
words, the method recognises that there are five clusters in the data even 
though their properties overlap significantly. 

Repeating the unconstrained tests of the EM method for the 4 attri
butes excluding FFI results in a significantly worse performance 
(58.96%) and larger spread of results as shown by the larger error bars. 
Both are due separate trials of the method recognising different numbers 
of clusters, in one case choosing 10 clusters. 

The triad [porosity, m, log10k] performed best when applied to the 
Portland dataset as described in the previous subsection and shown in 
Fig. 6. It was not as successful with the more complex combined dataset. 
When asked to recognise clusters, the EM method recognised only 3 for 
all 10 implementations, failing to recognise both the Purbeck Button Bed 
and Solnhofen limestone as clusters in their own right. However, it 
recognised the other facies well, with a success rate of 63.52%. 

The dyad porosity and cementation exponent was the best of the 2- 
attribute combinations when applied to the Portland dataset. Here in 
the more complex combined dataset, it performs fairly creditably with a 
success rate of 65.8% compared to most other combinations, but 
completely fails to recognise the Solnhofen limestone as a cluster in its 
own right, returning only 4 clusters. 

As discussed in the previous subsection, porosity was the most 
powerful attribute in separating clusters for the Portland dataset. In the 
more complex combined dataset, it fails with a success rate of 46.90% 
because only 2 clusters were recognised in all 10 trials. In all cases the 
Base Bed was combined with the Whit Bed for one cluster, while the 
remaining 3 facies were combined into the second cluster. Difference in 
the detailed results between trials was restricted only to small variations 
on this theme. 

Consequently, trusting the clustering method to recognise the right 
number of clusters is difficult, but can produce the best results if there 
are enough attributes to separate the clusters reasonably. 

For the results where the number of clusters was defined by the 
operator, some clear trends are apparent from Fig. 7. First, the number 
of mis-clustered samples increases with decreasing percentage 

Fig. 6. Arithmetic mean of mis-clustered events (left-hand y-axis) and arith
metic mean of percentage clustering success rate (right-hand y-axis) for all 
combinations of 5 attributes using the EM method with 3 clusters set in 
advance, ranked in decreasing efficacy left to right. Error bars represent the 
total spread (minimum to maximum of the 10 tests per data point). Total 
samples N = 202. Total tests = 310). 
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clustering success as the number of clusters is progressively less than the 
real number of clusters. This is primarily because the clustering method 
is forced to place samples into too few categories, partitioning clusters 
between other clusters. Second, the number of mis-clustered samples 
also increases, again with decreasing percentage clustering success as 
the number of clusters is progressively more than the real number of 
clusters. In this case, the decrease in clustering efficiency is due to there 
being more categories than necessary, which leads to samples being 
placed in a cluster that is not required. 

Examination of Fig. 7 also shows generic differences between the 
number of attributes and the efficacy of classification which occur 
irrespective of the pre-defined number of clusters. The tests with 3 or 
more attributes all share one behaviour that leads to higher clustering 
success and lower mis-clustered samples compared with the tests with 
one or two attributes. These 3+ attributes show peak clustering success 
for 5 clusters as ought to be the case, whereas the 1- and 2-attribute 
trends peak at 4 clusters with the Solnhofen limestone samples gener
ally being distributed between the Portland Hard Blue and Purbeck 

Button Bed clusters. Here is another example of needing to have enough 
attributes to provide efficient clustering. 

Taking all of the results in this subsection into account, we propose a 
rule-of-thumb that the number of independent attributes should be at 
least the same as the number of expected clusters, and preferably more. 

6. Wireline log data 

A set of data was used from well Bm-15 of the Butmah field, which is 
a tight carbonate field in the north-western Iraq (Mohammed Sajed and 
Glover, 2020; Mohammed Sajed et al., 2021). This data includes 11 
possible attributes shown in Table 6 over a depth range from 394.8 m 
continuous depth interval, representing 1317 depths. 

Petrofacies are classes of rock based upon petrophysical character
istics. There are 4 of these in the dataset used in this work as defined by 
and fully described in Mohammed Sajed et al. (2021). They have been 
given the labels A, B, C and D. Petrofacies A represents the best reservoir 
quality rock, followed by the others in alphabetic order. It is important 

Fig. 7. Arithmetic mean of mis-clustered events (bars, left-hand y-axis) and arithmetic mean percentage clustering success rate (symbols/lines, right-hand y-axis) for 
12 different pre-defined or undefined cluster numbers using the EM method using (i) all 5 attributes, (ii) the 4 attributes [porosity, m, log10k, log10dpt, FFI], (iii) the 
triad [porosity, m, log10k], (iv) the dyad [porosity, m], and (v) porosity alone. Error bars represent max-min extent of 10 tests (Samples N = 307, total tests = 600). 

Table 6 
The wireline log attributes used in this work.  

Attributes Source Petrofacies Tests Reservoir Class Tests 

(i) (ii) (iii) (iv) (v) (i) (ii) (iii) 

Depth Wireline log measurements ✓     ✓   
Caliper Log [CAL] ✓     ✓ ✓  
Gamma Ray Log [GR] ✓     ✓ ✓  
Density Log [RHOB] ✓     ✓ ✓  
Neutron Log [NPHI] ✓ ✓    ✓ ✓  
Sonic Log [DT] ✓   ✓  ✓ ✓  
Shale volume [VSH] Derived from wireline log measurements by analysis ✓     ✓   
Corrected Neutron Porosity [CNPHI]   ✓      
Bulk porosity [PHIB] ✓     ✓   
Effective porosity [PHIE] ✓     ✓   
log10(Permeability) [log10k] ✓ ✓ ✓ ✓ ✓ ✓  ✓ 

The data have already been analysed to define 4 petrofacies, 9 reservoir classes and 19 more restrictive reservoir zones (Mohammed Sajed et al., 2021). Fig. 8 shows the 
analysed well together with the interpreted lithologies, permeabilities, petrofacies and reservoir classes from Mohammed Sajed et al. (2021). 
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that the clustering can distinguish between the best rock (Petrofacies A 
and B) from the lower quality rock, represented by Petrofacies C and 
especially Petrofacies D. Track 6 shows the petrofacies as defined by 
detailed petrophysical analysis, while Track 7 shows the results of 
clustering. 

Track 4 of Fig. 8 also contains a more detailed classification of 
reservoir rocks called Reservoir Classes. There are 9 reservoir classes, 
labelled numerically from 1 to 9, which are also described fully in 
Mohammed Sajed et al. (2021). These classes may be viewed as a more 
subtle classification of the rocks within the test well, and hence likely to 
pose a greater challenge to the clustering algorithm. 

Figure 9 shows cross-plots of five of the attributes, coloured for the 
recognised petrofacies. It is immediately clear that there is considerable 
overlap between the petrofacies in all of the attributes except perme
ability. Consequently, we hypothesise that permeability will be the most 
powerful attribute in clustering, and that the other attributes may 

contribute little to the overall clustering success or even actively 
degrade it. We have not shown a diagram coloured for the 9 reservoir 
classes as these are even more interlinked. Consequently, the challenge 
to separate the nine reservoir classes is a very difficult one. 

We have applied the Expectation Maximisation clustering method to 
ascertain if it can reasonably recognise the petrofacies and the reservoir 
classes by comparing the results with the manually analysed petrofacies 
and reservoir classes. 

6.1. Petrofacies clustering 

Figure 10 shows the results of 450 implementations of the Expecta
tion Maximisation algorithm for 9 scenarios, including letting the 
method chose the number of clusters and for a predefined number of 
clusters from 1 to 8. Each of these has been carried out for 5 combina
tions of attributes, which have been chosen strategically (i.e., the use of 

Fig. 8. The Bm-15 well analysed for lithology, matrix, porosity, shale volume, and permeability, together with the interpreted petrofacies (Col 6) and reservoir 
quality classes (Col 4) and the machine learning predicted petrofacies (Col 7) (based on Fig. 9 from Mohammed Sajed et al. (2021)). 
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all attributes) or based on efficacy (i.e., which is best). The combinations 
are: (i) all 11 attributes except CNPHI, (ii) the log10k and NPHI attri
butes, (iii) the log10k and CNPHI attributes, (iv) the log10k and DT at
tributes, and (v) log10k alone. As throughout this work, all 
implementations have been carried out 10 times with different seeds and 
the results shown are the arithmetic mean values with the error bars 
representing the total range of responses. 

Leaving the number of target clusters undefined led to a large range 
of results. Using 10 attributes gave the worst response with an average of 
990.3 depths being mis-clustered into 20 clusters instead of the 4 that 
were actually present, giving a success rate of only 24.8%. By contrast 
the use of log10k and the dyad of log10k with the corrected neutron 
porosity were best (249 and 373 depths mis-clustered, 81.09% and 
79.27% success rates, both respectively, and both predicting the correct 
number of clusters. These results indicate strongly that the inclusion of 
attributes which do not effectively separate data actively degrades the 
performance of the clustering process. 

The trivial case where only 1 cluster is forced for this method 
counter-intuitively produce values less than 100% for all attribute 
combinations because the method recognises the density of data points 
as a cluster, automatically excluding outliers. This is the best that using 
10 attributes can do, with all greater predefined cluster numbers giving 
lower efficacy, and only a 35.53% success rate for the imposition of the 
actual number of clusters present. For all other predefined cases the 
success rate increases to a peak near the actual number of clusters (3 or 
4), sometimes significantly, for other attribute combinations, followed 
by a decrease as the predefined number of clusters increases further. 

Considering only those results for the correct number of clusters, the 
combination of log10k and NPHI performs only moderately (458 depths 
mis-clustered and 66.56% success rate), but the performance increases 
substantially when the value of NPHI is corrected to take account that 
this log is only accurate for limestone and needs to be corrected for use 
in anhydrite, dolomite and shales. Once correction has been carried out, 
the combination of log10k and CNPHI performs best overall (110 depths 
mis-clustered and 91.65% success rate). Other reasonable performances 
include using log10k alone and the combination of log10k and the sonic 
log, giving (249 and 302 depths mis-clustered, 81.09% and 77.07% 
success rates, both respectively). The results of the case for using log10 k 
alone are also shown in Column 7 of Fig. 8, showing how close the 
prediction is to the petrofacies defined from analysis of the petrophysical 
properties and logs from the well (Column 6). 

Consequently, we infer that the clustering process using the Expec
tation Maximisation method can work very well even if the number of 
attributes is less than the number of clusters, but only if the attributes 
separate the data well. This is a general feature of even the best machine 
learning codes, if the input data is garbage, the output will also be 
garbage (GIGO). 

6.1.1. Reservoir class clustering 
The best performance for predicting the 4 petrofacies was 91.65%. 

The question now arises how effectively the 9 reservoir classes may be 
clustered. Fig. 11 shows the results of 390 implementations of the 
Expectation Maximisation algorithm for 13 scenarios, including letting 
the method chose the number of clusters and for a predefined number of 

Fig. 9. Cross-plots between five of the main attributes in the Butmah Bm-15 dataset. In each case the x-axis represents the neutron porosity corrected for lithology (N 
= 1317). 
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clusters from 1 to 12. Each of these has been carried out for the 3 
combinations of attributes: (i) all 11 attributes except CNPHI, (ii) a 
restricted range of attributes defined in Table 5, and (iii) log10 k only. As 
throughout this work, all implementations have been carried out 10 
times with different seeds and the results shown are the arithmetic mean 
values with the error bars representing the total range of responses. 

As we have already noted, separating 9 clusters from a set of attri
butes which overlap so much is extremely challenging. The results 
shown in Fig. 11 are typical for most combinations of attributes. Leaving 
the number of clusters undefined resulted in 12, 14 and 4 predicted 
clusters for the three sets of attributes, respectively, with low success 
rates (33.82%, 33.74%, 36.90%, respectively). All of these can be 
considered to be failures as they provide clearly wrong sets of clusters, 
but success rates are still higher than a random allocation of depths to 
clusters, which would have a success rate of 11.11%. 

For the predefined cluster tests, there was a peak for all sets of at
tributes caused by groups of clusters being well-recognised, but a low 
success rate for most pre-defined cluster results from 4 to 12 clusters, 
including the 9-cluster result which represents reality. For the 9-cluster 
solutions, the worst result was for the use of log10k alone (938.9 mis- 
clustered events, 28.71% success rate), which is the opposite than we 
found for the prediction of the 4 petrofacies earlier. The results from the 
full 10 attributes and the restricted attribute dataset were similar (848.4 
and 863.1 mis-clustered depths and 35.58% and 34.46% success rates, 
respectively) with the full dataset providing marginally the better re
sults. Once again, all of these results, while better than random alloca
tion, are insufficiently good to be used in practice. Consequently, we 
conclude that the complexity of the wireline dataset used is too great a 
challenge for the attributes that were available to us. 

6.2. Advantages and limitations of clustering 

Clustering has a number of clear advantages over classification 
schemes. The prime advantage is that it requires no training and does 
not depend on a previously created classification scheme. This makes 
clustering an inherently more general and robust method for grouping 
data. The lack of any assumptions and training to those assumptions, 
implies that the clustering scheme has, in principle, a less constrained 
ability to form clusters. 

Nevertheless, it is certainly the case that clustering has not been 
nearly as popular as classification schemes. This is almost certainly due 
to the nervousness of researchers to let the clustering algorithms loose 
without supervision. Those requiring facies to be separated into like 
clusters would rather it be done into classes they define for whatever 
anthropic predisposition. 

So, fundamentally, clustering does not provide recognition of any 
particular set of facies but a recognition of similarity, to which a human 
may later assign a facies label. By contrast, classification starts with the 
definition of particular facies, to which a machine learning algorithm 
might assign data, having been trained to do so. The clustering algo
rithm is to the classification algorithm as an artist is to an accountant. 
The later might be more reliable, but is less likely to provide as much 
insight. 

Clustering does have a number of clear disadvantages. The first is 
that this work makes it clear that clustering works better if there is prior 
knowledge of the number of clusters that would best describe the 
dataset. If this is unknown, some algorithms exist which can optimise for 
the number of clusters, and this work has shown them to work well. 
Alternatively, the search for the best number of clusters could be done by 
batch application with a human choice of best cluster number. This has 
also been done in this work, and found to work well, but is onerous if not 
automated. 

The second important disadvantage is that the clustering algorithm 
can become overwhelmed if there are a large number of clusters. In this 
work, clustering performed well when the data formed 4 clusters (4 
petrofacies), but badly when the data formed 9 clusters (reservoir 

Fig. 10. Arithmetic mean of mis-clustered events (bars, left-hand y-axis) and 
arithmetic mean percentage clustering success rate (symbols/lines, right-hand 
y-axis) for 9 different pre-defined or undefined cluster numbers using the EM 
method using (i) all 11 attributes except CNPHI, (ii) the log10k and NPHI at
tributes, (iii) the log10k and CNPHI attributes, (iv) the log10k and DT attributes, 
and (v) log10k alone. Error bars represent max-min extent of 10 tests (Samples 
N = 1317, total tests = 450). The green box represents the actual number of 
clusters. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.) 

Fig. 11. Arithmetic mean of mis-clustered depths (bars, left-hand y-axis) and 
arithmetic mean percentage clustering success rate (symbols/lines, right-hand 
y-axis) for 13 different pre-defined or undefined cluster numbers using the 
EM method using (i) all 10 attributes except CNPHI, (ii) a restricted attribute set 
of 5 attributes [caliper, gamma ray, density, neutron and sonic logs], and (iii) 
log10k alone. Error bars represent max-min extent of 10 tests (total tests = 390). 
The green box represents the actual number of clusters. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 
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classes). In general there needs to be an increased number of data if more 
clusters are expected, and we define a rule of thumb whereby there 
should be at least as many independent characteristics being rested than 
expected clusters. 

7. Conclusions 

This paper presents a study on the clustering efficiency of 8 machine 
learning clustering methods with a large database (N = 307) of five 
carbonate facies. The facies were the Base Bed, Whit Bed and Hard Blue 
bed of the Portland limestone, the Purbeck Button Bed and the Sol
nhofen limestone. A wide range of petrophysical tests were carried out 
and have been analysed in detail prior to machine learning testing. 

Up to five independent attributes were selected for clustering tests. A 
total of 990 tests were carried out to examine (i) the efficacy of 8 clus
tering methods, (ii) the effect of using each of the 31 different combi
nations of attribute available, and (iii) the effect of leaving the target 
number of clusters undefined or each of 11 defined cluster numbers. 

We find that the Expectation Maximisation (EM) performs best on 
our petrophysical data, with the Kmeans approach with both Euclidean 
and Manhattan distance models coming a creditable second and third. 
The other methods tested in this work did not provide results of suffi
cient quality to allow us to recommend them for use with petrophysical 
data. 

Good clustering requires the attribute set to be chosen carefully, with 
pre-implementation tuning to ensure good performance. It is clear that 
the adage that more data is always better does not work. We found that 
often the use of a limited number of good attributes was better than 
using a larger set of attributes. We associate this observation with the 
idea that some attributes (porosity in this work) are more powerful than 
others in separating data into clusters, while other attributes (FFI in this 
work) can degrade clustering efficiency if included in the attribute set. 
However, the efficacy of any given attribute will probably vary from 
dataset to dataset. 

Clustering performance of a set of attributes in one dataset will be 
different than that in another. Here we see that clustering performance is 
different in the larger combined dataset than the Portland dataset. 

It can be effective to let the clustering method automatically recog
nise the number of clusters required for the data. Indeed it provided the 
best clustering in this study. However, it is only effective when the 
number of independent attributes is equal to or greater than the number 
of clusters existing in the dataset. It is probably better to pre-define the 
number of target clusters if it is possible to do so. 

Finally, we propose a rule-of-thumb that the number of independent 
attributes should be at least the same as the number of expected clusters, 
and preferably more. 

The conclusions drawn from earlier in the work have been applied to 
the problem of facies recognition by clustering using a set of wireline 
logs. We find that clustering is capable of recognising major facies 
boundaries providing the number of independent wireline logs used as 
attributes exceeds the number of facies in the well. 
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