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Perturbation of soil microbial communities by rising temperatures could have important 32 

consequences for biodiversity and future climate, particularly in tropical forests where high 33 

biological diversity coincides with a vast store of soil carbon. We carried out a two-year in situ 34 

soil warming experiment in a tropical forest in Panama and found large changes in the soil 35 

microbial community and its growth sensitivity, which did not fully explain observed large 36 

increases in CO2 emission. Microbial diversity, especially of bacteria, declined markedly with 3 37 

to 8ºC warming, demonstrating a breakdown in the positive temperature-diversity relationship 38 

previously observed in temperate-zones. The microbial community composition shifted with 39 

warming, with many taxa no longer detected and others enriched, including thermophilic taxa. 40 

This community shift resulted in community-adaptation of bacterial growth to warmer 41 

temperatures, which we used to predict changes in soil CO2 emissions. However, the in situ CO2 42 

emissions exceeded our model predictions three-fold, likely driven by abiotic acceleration of 43 

enzymatic activity. Our results suggest that warming of tropical forests will have rapid, 44 

detrimental consequences both for soil microbial biodiversity and future climate. 45 
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MAIN 57 

 58 

Microbial communities sustain the biosphere by cycling carbon (C) and nutrients between the Earth 59 

and the atmosphere. As a result, their response to warming provides a fundamental feedback on the 60 

terrestrial C cycle and climate, and will have direct consequences for the function and maintenance of 61 

terrestrial biota1. The nature of this feedback is especially critical for tropical forests, because they 62 

exchange more carbon dioxide (CO2) with the atmosphere than any other ecosystem, contain over a 63 

third of global soil C2, two-thirds of terrestrial plant biomass3, and represent the apex of global 64 

terrestrial biodiversity4. Under current emission scenarios, temperatures in the tropics are predicted to 65 

warm by 2-5ºC by 21005 and to exceed historical precedent more quickly than anywhere else on Earth6. 66 

Despite this, we have almost no information on the magnitude and direction of soil microbial feedbacks 67 

under warming for the huge C stores and biodiversity found in tropical forests7. 68 

 69 

Climate warming is predicted to increase the mineralization of soil organic matter and, consequently, 70 

the emission of CO2 from soil to the atmosphere8. Numerous experiments performed outside the 71 

tropics have shown that warming increases CO2 emission from soil9, and that changes in the activity 72 

and community composition of soil microbes influence the associated soil C loss10,11.  In tropical 73 

forests where soils contribute a major portion of these ecosystems’ globally significant total C 74 

exchange with the atmosphere12, small fractional increases in CO2 emission from soils will have a 75 

large impact on the atmosphere and climate. Warming experiments in tropical forests have only 76 

recently been initiated and first results point towards a large response. Two years of in situ full-profile 77 

soil warming by an average 4ºC increased the soil CO2 efflux by 55% for a tropical forest in Panama13. 78 

This result provokes key fundamental questions: what are the drivers of the large CO2 emissions from 79 

warmed tropical forest soils – and are they related to abiotic or biotic processes, including changes in 80 
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the composition of the microbial community, its diversity and/or its activity, as found in other 81 

ecosystems10,11,14. 82 

 83 

The response of soil C to warming is underpinned by changes in soil microbial activity, via the 84 

instantaneous sensitivity of microbial growth and respiration, which can be modified over time by 85 

adaptive change in the microbial community composition10,15. These microbial responses have been 86 

represented in models of soil C temperature sensitivity by the efficiency of growth and respiration16, 87 

while the thermal response of growth and respiration has been described by the square root model15,17. 88 

In the square root model, the moderating effect of temperature adaptation is described by a change in 89 

the theoretical value of Tmin (the minimum temperature for growth), corroborated by observations that 90 

Tmin is strongly correlated to mean annual temperature differences across climatic gradients globally18-91 

20. For example, Tmin for bacterial growth ranges from approximately -15ºC in arctic ecosystems to 92 

approximately 0ºC for tropical ecosystems, with similar patterns observed for Topt
15,19 and for 93 

respiration20. Across temperate temperature ranges, Tmin has been observed to increase under 94 

experimental warming21,22 alongside community compositional shifts14,23,24, thus indicating that the 95 

observed thermal adaptation occurred via microbial community composition change. Despite the 96 

proven importance of this relationship in determining the temperature response of activity and its 97 

thermal adaptation15,17, we have no information on whether it holds under warming in the lowland 98 

tropics, where the mean annual temperature is already close to the predicted optima for metabolic 99 

activity15
. 100 

 101 

The effect of warming on tropical forest soil C will depend not only on the response of the soil 102 

microbial community activity7, but also its community composition and diversity, which may have 103 

consequences for other biota25. In a temperate forest, two decades of experimental warming increased 104 

bacterial diversity,14 specifically for lignin-degrading microbes26; this positive temperature-diversity 105 
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relationship is consistent with observations across natural temperature gradients where soil pH and 106 

moisture are held constant23,27,28. It is unknown whether soil microbial diversity will similarly increase 107 

under the novel high-temperature regimes predicted for the tropics6 and will depend on the thermal 108 

tolerance of the microbial taxa present24,29. Nor is it understood how diversity change would affect soil 109 

process rates, although the effect might be considerable given phylogenetic evidence for high niche 110 

specialization among tropical forest microbial taxa30. The historically-novel high temperature regimes 111 

predicted for the tropics this century6 (e.g. 2-5ºC atmospheric warming5 added to 1-3ºC warming 112 

through land-use change and reduced transpiration31) could result in temperature maxima that exceed 113 

a metabolic threshold for portions of the tropical forest soil microbial community, with potentially 114 

large implications for ecosystem functioning and the climate. 115 

 116 

Here we used an in situ warming experiment to test the response of the soil microbial community, and 117 

its growth and respiration to warming over a range of 3 to 8ºC above ambient – thereby providing a 118 

test of how tropical forest soil communities and function respond across these levels of warming in a 119 

field experiment. The experiment, SWELTR (Soil Warming Experiment in Lowland TRopical forest) 120 

consists of five pairs of circular control and warmed plots (whole-profile warming, using buried 121 

resistance cables) distributed evenly within approximately 1 ha of semi-deciduous moist lowland 122 

tropical forest on Barro Colorado Island, Panama13. Each warmed plot has a ground surface area of 123 

~20 m2 and is heated across the full soil profile, resulting in a total of 120 m3 of warmed soil for the 124 

experiment (Extended Data Fig. 1). For this study we established two subplots per treatment plot that 125 

differed with distance to the heating source, thus providing two treatments of, on average, 3ºC and 8ºC 126 

warming of surface soils (0–20 cm depth). Two years after the warming treatment was initiated, we 127 

conducted field campaigns during the wet season (when moisture was non-limiting) to measure soil 128 

CO2 efflux, to characterise the temperature sensitivity of instantaneous microbial growth, respiration 129 

and enzyme activities, and to determine the microbial community composition. We tested the 130 
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hypotheses that: (1) warming will change the α-diversity and community composition of soil bacteria 131 

and fungi; (2) the temperature sensitivity of microbial communities (with respect to growth, Tmin, and 132 

enzymatic activity) will become ‘adapted’ to the new temperature regime (whether adaptation is via 133 

genetic change within species, phenotypic plasticity or community-composition change, sensu 134 

Pietikäinen et al.; Bradford 32,33); and (3) soil CO2 emission will increase under 3 to 8ºC warming and 135 

follow the increase predicted by the temperature sensitivity of microbial growth and respiration. 136 

 137 

RESULTS 138 

Microbial diversity 139 

Two years of soil warming reduced the diversity of both bacteria and fungi and caused large shifts in 140 

the microbial community composition (Fig. 1). The diversity decline was largest for bacteria, occurring 141 

via the loss of proportionally-abundant taxa (Shannon and Inverse-Simpson indices declined; Fig. 1, 142 

Extended Data Fig. 2). For fungi, our results suggest a diversity decline due to loss of rare taxa (species 143 

richness declined but not Shannon and Inverse-Simpson indices), although this result is less definitive 144 

than for bacteria, given methodological issues influencing the detection of rare taxa (see 145 

Supplementary Methods) and our identification of different fungal taxa in warmed soils (see below). 146 

Warmed soils also hosted microbial species (defined by Amplicon Sequence Variants, ASVs) that 147 

were undetected in soils at ambient temperature, especially among fungi, although the number of 148 

newly detected species was too few to offset the number of species no longer detected (Fig. 1). This 149 

decline in diversity, especially for the bacteria, may have implications for soil functioning, given the 150 

prevailing paradigm of a positive relationship between biological diversity and ecosystem 151 

functioning34, also supported for soils35,36. Such a decline in soil microbial diversity under warming is 152 

also contrary to positive relationships between temperature and diversity observed in a temperate 153 

warming experiment14 and across natural environmental gradients27,28,37. This positive relationship is 154 

consistent with metabolic theory of ecology (i.e. positive correlation between energy input, 155 
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evolutionary rates and diversity)38 and is considered to be one of several positive feedbacks on tropical 156 

plant diversity39-41. Our results point towards a breakdown in this energy-diversity relationship for 157 

tropical soil bacterial communities after a two-year period where temperatures ranged from 29–34ºC. 158 

These temperatures may represent a thermal maximum for the persistence of many species, implying 159 

that our findings can also provide insight over timescales longer than the duration of our warming 160 

treatment. 161 

 162 

Microbial community composition 163 

Warming also caused large shifts in community composition (Figs. 1–2, Extended Data Figs. 2–5), 164 

with many taxa significantly increasing or decreasing in relative abundance with warming by 3ºC, and 165 

further with warming by 8ºC (Fig. 1; Extended Data Figs. 3–4). In warmed soils there was a decrease 166 

in the relative abundance of Bacteroidetes, a common non-spore-forming bacterial group which 167 

comprise taxa that are primary degraders of polysaccharides42. For fungi, there was decrease in the 168 

relative abundance of members of the Basidiomycota including the Agaricales, a broad order of 169 

saprophytic and ectomycorrhizal fungi, and the ecologically diverse yeast order, Sporidiobolales. In 170 

contrast, warming increased the relative abundance of Firmicutes, a diverse and stress-tolerant 171 

bacterial phylum, able to form endospores resistant to desiccation and high temperatures43. Indeed, 172 

taxa within the Firmicutes have been identified as warm-responsive in laboratory studies24,29 and in 173 

field soil warming experiments outside the tropics14,44. Warming also increased the abundance of the 174 

class Thermoleophilia within the Actinobacteria, known to include aerobic thermophiles45. For fungi, 175 

warming increased the relative abundance of Glomerales—arbuscular mycorrhizae—as also seen in 176 

warming experiments outside the tropics46. In addition, warming increased the relative abundance of 177 

several orders in the phylum Ascomycota, including the Eurotiales, Hypocreales and Pezizales, which 178 

include thermotolerant saprophytic and pathogenic species, as well as saprophytic and pathogenic 179 
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yeast in the Saccharomycetales. Thus, broadly, changes in diversity under warming occurred alongside 180 

shifts in communities towards thermotolerant microorganisms. 181 

 182 

Growth adaptation to temperature 183 

Adaptation of the microbial community to warming potentially can have a large influence on long-184 

term change in soil C emissions10,16. To assess this, we used laboratory incubations to determine the 185 

instantaneous temperature sensitivity of bacterial growth (Tmin) following the square root model15,17, 186 

whereby changes in Tmin reflect a community-adaptation to temperature, a response empirically related 187 

to shifts in the community composition24. In the square root model, the effect of temperature on activity 188 

is described by a quadratic increase up to an optimal temperature (Topt,) and then a sharp decline15,17, 189 

where the quadratic phase of the increase is constrained by the minimum temperature for activity (Tmin, 190 

the y-intercept of the square root of activity plotted against temperature), which is higher for microbial 191 

communities adapted to warmer temperatures15. Following two years of experimental warming at our 192 

tropical forest site, we found Tmin to increase under 3ºC warming and to increase further under 8ºC 193 

warming (Fig. 2); where the observed magnitude of increase in Tmin, of 0.3ºC per 1ºC warming, is 194 

consistent with observations made elsewhere15. Furthermore, among all the parameters associated with 195 

temperature adaptation in the field experiment, Tmin was the most significant correlate of the change 196 

in bacterial and fungal diversity and community composition (Fig. 2e, Extended Data Tables 1–2). 197 

Thus, while acknowledging that we cannot exclude an influence of genetic change within species on 198 

this temperature adaptation, our results strongly suggest that adaptation occurred through community 199 

compositional change, as found elsewhere24, and the development of a microbial community 200 

functionally adapted to the warmer conditions. 201 

 202 

Soil process rates 203 
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The changes in diversity and community composition occurred alongside altered soil process rates in 204 

the field experiment: increased bacterial growth rates, enzyme activity per unit microbial biomass for 205 

7 hydrolytic and oxidative enzymes involved in C, N and P cycling (although microbial biomass 206 

remained stable) and, measured in situ, increased soil CO2 emission (Figs. 2–3, Extended Data Figs. 207 

6–7). Soil CO2 emission in the field experiment increased markedly at warmer temperatures: 78% 208 

higher than controls under 3ºC warming and 337% higher under 8ºC warming of surface soils (Fig. 3; 209 

Extended Data Table 3). The soil CO2 efflux response for the wet season was consistent with the 210 

previously-reported 55% increase over 2-years of 3ºC surface soil warming at this experiment 211 

(including dry and wet seasons), which was shown to have arisen predominantly from increased 212 

heterotrophic microbial activity13. Our observation of increased soil metabolic activity, indicated by 213 

increased bacterial growth and enzyme activity with in situ soil warming, describes a further 214 

acceleration of heterotrophic activity with warming. Enzymatic activity per unit of microbial biomass 215 

increased for 7 out of 10 studied enzymes and markedly at +8ºC in situ warming for enzymes that 216 

degrade organic phosphorus, nitrogen, and carbon in phenolic and hemicellulose compounds (Fig. 2, 217 

Extended Data Fig. 6–7). Collectively, the observed changes in process rates—of increased respiration, 218 

growth and enzymatic activity per unit microbial biomass—corroborate our parallel findings that the 219 

microbial community shifted towards favouring thermotolerant taxa that readily persist and even 220 

increase in productivity under warmer conditions. 221 

 222 

Predicted and observed soil CO2 emission under warming 223 

We used the instantaneous temperature sensitivity of bacterial growth (Tmin) to model the CO2 224 

efflux response to warming, both with (Tmin determined for soil from warmed treatments) and without 225 

(Tmin determined for soil from controls) microbial community temperature adaptation. Here we used 226 

Tmin for bacteria growth only, because there was no significant difference in the Tmin for bacterial 227 

growth (-1.4 ± 0.8) and respiration (0.3 ± 0.4) in control soils (P = 0.1). The Tmin values for bacterial 228 
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growth in control soils were also similar to those determined independently for two lowland tropical 229 

forests in Peru with similar mean annual temperature (-1.66 ± 0.7, -1.77 ± 1.0; MAT = 26.4ºC)19. To 230 

model the CO2 efflux response to warming following temperature-adaptation of microbial 231 

communities, we refitted the Ratkowsky model (see methods) using the Tmin determined for bacterial 232 

growth in experimentally warmed soils for two years by 3ºC and 8ºC (‘adapted’ communities). 233 

The predicted increase in soil CO2 efflux based on the measured temperature sensitivity of 234 

microbial respiration and growth in control soils (24–68% increase under 3–8ºC warming; Fig. 3), was 235 

substantially exceeded by the observed in situ increase in soil CO2 efflux (78–337% under 3–8ºC 236 

warming; Fig. 3). Furthermore, the predicted CO2 emission was only marginally higher when 237 

accounting for adaptation of the microbial community to warmer conditions (measured Tmin increase; 238 

Fig. 2), resulting in a 25–77% increase under 3–8ºC warming (Fig. 3). Importantly, we found no 239 

evidence to suggest that the observed in situ increase in soil CO2 emission occurred due to decreased 240 

microbial metabolic efficiency, a common finding in short-term soil warming experiments where high 241 

waste respiration exceeds growth47. Reduced metabolic efficiency is inconsistent with our previously 242 

reported observation of no decrease in the size of the microbial biomass or in microbial carbon use 243 

efficiency48 (measured using a stoichiometric method, see Methods for discussion of this method and 244 

its assumptions; Extended Data Fig. 6); a result in line with the independent observation of increased 245 

microbial biomass under soil warming in tropical forest in Puerto Rico49. Similarly, we cannot explain 246 

the augmented soil CO2 emission by reference to accelerated substrate depletion or substrate depletion 247 

alongside priming effects where microbes acquire additional N or P from organic sources50, which 248 

would also be expected to cause an eventual decline in microbial biomass48,51. On the contrary, we 249 

found no change in microbial biomass despite evidence for substrate depletion (decreased DOC and 250 

available P at 8ºC warming; Extended Data Fig. 6).  251 

Soil warming can also induce soil drying, potentially influencing CO2 emission and other 252 

community and process rate changes8. However, our study here was focused on the tropical rainy 253 



 11 

season and despite lower moisture content in our +8ºC treatment (Extended Data Fig. 6), we expect 254 

this had negligible influence on our results because moisture remained non-limiting to microbial 255 

activity. Finally, the augmented in situ soil CO2 emission cannot be explained by increased root 256 

respiration or substrate supply from root exudates, because by using root-partitioning cores we found 257 

that warming had no effect on the root-derived soil CO2 efflux13. Thus, we show that the temperature 258 

response of microbial community metabolism to warming—considered in models to be fundamental 259 

in explaining the long-term, and relatively large, response of soil C to climate warming16,48—only 260 

accounted for 23–32% of the observed in situ soil CO2 emission. 261 

 262 

Abiotic processes may increase CO2 emissions 263 

In addition to biotic processes, our data point towards a further influence of abiotic processes in 264 

accelerating CO2 emission at warmer temperatures. By using ex situ soil incubations across 2–40ºC, 265 

we found that microbial growth declined at temperatures exceeding 34ºC (Fig. 2); but enzyme activities 266 

measured under both ex situ and in situ warming increased—as did in situ soil CO2 emissions (Figs. 267 

2–3; Extended Data Figs. 6-7). These results can be explained by the effect of warming on the soil 268 

physico-chemical environment, including chemical oxidation/hydrolysis and desorption of mineral-269 

stabilised organic matter and extracellular enzymes52. Clay-rich soils, such as those found at our 270 

tropical forest site, contain a large pool of stabilised C and inactive extracellular enzymes adsorbed to 271 

clay minerals.53 At high temperatures desorption reaction rates can overtake adsorption reaction 272 

rates54, thereby increasing the pools of active enzymes and labile C, and consequent CO2 emissions. 273 

Independent observations support this mechanism of an abiotic contribution to enzyme activity under 274 

warming: of high respiration and enzymatic activity in sterilised soils55,56, and of stable enzyme 275 

functioning at high temperatures57. Consistent with a rapid increase in the pool of active enzymes 276 

driven by desorption, under warming we observed increased Q10 of Vmax for four enzymes including 277 

phosphomonoesterase, β-xylanase and β-glucosidase (Fig. 2, Extended Data Fig. 6). This is counter to 278 
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the prediction of reduced Q10 for ‘warm-adapted’ iso-enzymes thought to result from increased folding 279 

and decreased flexibility54,58 but it is consistent with a rapid increase in the pool of active enzymes 280 

under warming, driven by desorption reactions59.  281 

Enhanced soil CO2 emissions driven by accelerated enzyme activities under warming could 282 

also occur through chemical oxidation. Under aerobic conditions, oxides of Fe and Mg minerals—283 

abundant in many tropical soils including at our study site—provide electron acceptors that catalyse 284 

the degradation of phenol compounds and the formation of reactive organic compounds56,60. Because 285 

we focused on responses during the wet season when moisture was non-limiting, soil drying at higher 286 

levels of warming may have increased O2 supply, increasing the activity of oxidative enzymes and 287 

organic matter oxidation56,60,61. Consistent with this mechanism, soil moisture declined at 8ºC 288 

(although not to the extent to cause moisture limitation; Extended Data Figure 6) alongside a marked 289 

increase in the activity of phenol oxidase (Extended Data Table 3). It is therefore likely that a 290 

combination of these processes resulted in increased enzyme activity that was uncoupled from growth 291 

(Fig. 2), contributing substantially to the observed CO2 emissions that exceeded the predicted increase 292 

based on standard expectations from the observed temperature sensitivity and warm-adaptation 293 

response of the microbial community15 (i.e. it was exceeded by 3.1–4.4 fold; Fig. 3). 294 

 295 

DISCUSSION 296 

In summary, our results show a progressive decline in tropical forest soil microbial diversity, especially 297 

for bacteria, and clear microbial community compositional shifts with warming (Fig. 1), occurring 298 

alongside community growth-adaptation to temperature (Fig. 2) and resulting in further increased CO2 299 

emission (Fig. 3). This response of diversity declines under warming is contrary to observations from 300 

temperate forest warming studies14,26. Our data thus provide empirical support for the hypothesis that 301 

tropical soil communities are highly sensitive to warming and are consistent with independent 302 

evidence for deep evolutionary niche specialization in tropical soil microbes30. Further, we note that 303 
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in view of the widespread evidence for intensive feedbacks among tropical soil microbial communities, 304 

plant diversity, and soil processes25,41,62, declines in diversity may have substantial implications for the 305 

resilience of tropical forest functioning, composition, and diversity in a warmer world. Alongside the 306 

decline in diversity observed in this experiment, the concurrent increased abundance of thermotolerant 307 

species resulted in a stable microbial biomass, accelerated enzymatic activity, and increased soil CO2 308 

emissions. This finding partially supports prior model-based projections showing increased C loss 309 

under climate warming this century due to adaptation of microbial growth16. However, our results go 310 

further by demonstrating that microbial models alone do not accurately predict the change in soil C 311 

emissions under warming in tropical ecosystems, especially at high temperatures where abiotic 312 

processes may accelerate C loss. Further study is urgently required to understand these combined biotic 313 

and abiotic controls on soil C in different tropical soils and land-use contexts, the timescales of their 314 

effects, and the wider consequences of declines in soil microbial diversity for the functioning and 315 

composition of tropical forests in a warmer world. 316 

 317 

METHODS 318 

 319 

Site and experiment. The experiment is situated in seasonally moist lowland tropical forest on Barro 320 

Colorado Island, Panama. Within the experiment area (1 ha) the dominant tree species include 321 

Anarcardium excelsum and Poulsenia armata; a full census of tree and understory species composition 322 

in this forest is available for a nearby 50 ha forest plot in forest with similar soils, tree species and 323 

demographic composition63. The soils are Inceptisols (Fine, isohyperthermic, Dystric Eutrudepts) that 324 

are rich in clay (~54% profile-weighted clay concentration) and secondary metal oxides. The soils 325 

developed on the volcanic facies of the Bohio Formation, a basaltic conglomerate of Oligocene age64. 326 

Inceptisols account for 14% of total land area in the tropics (Ultisols and Oxisols account for 20% and 327 

23%, respectively)65. 328 



 14 

 329 

The SWELTR experiment consists of 10 circular plots (five paired plots ‘warm’ and ‘control’). Each 330 

plot measures 5 m diameter, with approximately 10 m between each plot-pair and a minimum of 20 m 331 

between different plot-pairs. The experiment heats approximately 120 m3 soil in total (5 plots x 5 m 332 

diameter by 1.2 m depth). Temperature in the internal plot area (~3 m diameter) of each warmed plot 333 

was maintained at 4ºC above the temperature in each corresponding paired control plot, based on the 334 

average temperature from 0–120 cm depth at the mid-radius points in each plot. For this study we 335 

established subplots representing a high-temperature treatment, situated in a buffer-zone close to the 336 

heating cable. We therefore had two subplots per plot, situated at approximately 10 cm and 1 m 337 

distance from the one of the main heating rods, representing two different levels of warming. The 338 

average warming for the low-warming subplot was 2.8ºC and for the high-warming subplot was 7.9ºC 339 

(determined at 0–10 cm soil depth), based on the difference in temperature between control plots. 340 

Thus, our study consisted of three treatments, soil at 26 ± 1ºC (‘Control’), 29 ± 2ºC (‘+3ºC’) and 34 ± 341 

7ºC (‘+8ºC’), providing a test of moderate (atmospheric warming with moderate fossil fuel emission 342 

reduction) to extreme (atmospheric warming plus deforestation) predictions of warming for tropical 343 

soils this century5,31. Further information on the plot design, thermostat control and power 344 

specifications can be found in Nottingham et al. 202013. 345 

 346 

Soil gas-exchange and partitioning. Soil CO2 efflux was measured every week at four systematically 347 

distributed locations within each plot from June 2018 to September 2018 (representing the 3ºC surface 348 

soil-warming treatment); and was measured twice-weekly at two systematically distributed locations 349 

within the high-warming subplot from August to September 2018 (representing the 8ºC surface soil-350 

warming treatment). Soil CO2 efflux measurements were made using an infra-red gas analyser (IRGA 351 

Li-8100; LI-COR Biosciences, Nebraska, USA) and at the same time we measured soil temperature 352 

(using a HI98509 thermometer probe; Hanna Instruments, USA) and soil moisture (using a 353 
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Thetaprobe; Delta-T, Cambridge, UK) at 0–20 cm soil depth for a random location immediately 354 

adjacent to each soil collar. 355 

 356 

Soil sampling. Soil for this study was sampled during the wet season (June–Sept) in 2018. We sampled 357 

during the wet season to ensure that there was no moisture limitation to soil microbial activity and soil 358 

processes, and no difference in moisture limitation among treatments. Soil was sampled from 0–10 cm 359 

depth from the mineral horizon for each subplot and analysed for properties: total elements, available 360 

nutrients, exchangeable cations, microbial C, N and P and enzyme activities using standard procedures 361 

(see below). We calculated microbial carbon-use-efficiency (CUE) using microbial C, N and P and 362 

enzyme activity data using a stoichiometric method (see below).  All analyses were determined on 363 

fresh soils within 24 hours of sampling, except for K2SO4 extracts on fresh soils within 6 h; growth 364 

assays on fresh soils within ~14 days; total elements (C, N, P), cations, and pH on air-dried soil 365 

samples; and samples for microbial community analyses stored at −60ºC until DNA extraction. All 366 

analyses were performed on replicate soil samples (n = 5). 367 

 368 

DNA extraction, sequencing, and processing. DNA was extracted using the DNeasy Powersoil kit 369 

(Qiagen) and communities (bacterial and fungal) were amplified using a two-stage PCR protocol. For 370 

bacteria, we amplified the V4 hypervariable region of the 16S rRNA and for fungi we amplified the 371 

first internal transcribed spacer (ITS1) region of the rRNA operon (see SI methods for complete 372 

details). Libraries were sequenced on an Illumina MiSeq with 250bp paired end reads. Reads in the 373 

16S rRNA and ITS data sets were first trimmed of forward and reverse primers. Based on visual 374 

inspection of read quality profiles, we removed the reverse reads from the 16S rRNA analysis due to 375 

poor quality. We then used DADA266 within the R environment (R Core Team, 2019) (v4.1.0) to filter 376 

and trim both datasets (based on quality profiles), error correct, dereplicate, and infer amplicon 377 

sequence variants (ASVs). We then merged pair-end reads (ITS only) and constructed sequence tables 378 
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for both datasets. In the final step, we removed chimeras and assigned taxonomy. For a detailed 379 

description of filtering of sequencing data and workflow, including all references, see Supplementary 380 

Methods. 381 

 382 

Soil properties. Soil microbial biomass C and N were measured by fumigation-extraction67,68 and 383 

extractable C and N were determined by fresh soil extraction in 0.5 M K2SO4. Extracts were analyzed 384 

for extractable organic C and N using a TOC-VCHN analyzer (Shimadzu, Columbia, MD). Microbial 385 

C and N were calculated as the difference between fumigated and unfumigated extracts and corrected 386 

for unrecovered biomass using a k factor of 0.4569. Microbial biomass P was determined by hexanol 387 

fumigation and extraction with anion-exchange membranes70. Extractable P was determined using 388 

unfumigated samples and microbial P was calculated as the difference between the fumigated and 389 

unfumigated samples, with correction for unrecovered biomass using a kp factor of 0.470. Exchangeable 390 

cations were determined by extraction in 0.1 M BaCl2 and detection by inductively coupled plasma-391 

optical emission spectrometry (Optima 7300 DV; Perkin‐Elmer Ltd, Shelton, CT, USA). Effective 392 

cation exchange capacity (ECEC) was calculated as the sum of the charge equivalents of Al, Ca, Fe, 393 

K, Mg, Mn and Na. Soil pH was determined in deionized water in a 1:2 soil to solution ratio. All soil 394 

chemical properties are expressed on the basis of oven-dry equivalent soil (determined by drying at 395 

105ºC for 24 hours). 396 

 397 

Soil enzymes. We determined maximum potential enzyme activity (Vmax) and the temperature 398 

sensitivity of enzyme activity (Q10 of Vmax) for ten enzymes involved in C, N, P and S cycling. We 399 

determined Vmax and Q10 of Vmax for all treatments for in situ warmed soils (control, +3ºC, +8ºC). For 400 

the determination of Q10 of Vmax we determined Vmax for a range of temperatures using laboratory 401 

assays. 402 
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Enzymes involved in C cycling under study were: α-glucosidase and β-glucosidase (act on α- 403 

and β- bonds in glucose, respectively), cellobiohydrolase (acts on cellulose), β-xylanase (acts on 404 

hemicellulose) and phenol oxidase (acts on phenolic compounds). Enzymes involved in P-cycling: 405 

phosphomonoesterase and phospho-diesterase (acts on monoester- and diester- linked simple organic 406 

phosphates, respectively). Enzymes involved in N-cycling: N-acetyl β-glucosaminidase (acts on N-407 

glycosidic bonds) and leucine aminopeptidase (acts on amino acid leucine from proteins). Enzyme 408 

involved in S-cycling: sulfatase (acts on sulfated glucosamines). For subsequent discussion, enzymes 409 

are abbreviated to: α-glucosidase (AGase), β-glucosidase (BGase), phosphodiesterase (BPase), 410 

cellolbiohydrolase (CEase), leucine aminopeptidase (LPase), phosphomonoesterase (Pase), N-acetyl β-411 

glucosaminidase (Nase), phenol oxidase (PXase), sulfatase (Sase) and β-xylanase (XYase).   412 

Hydrolytic enzymes (AGase, BGase, BPase, CEase, Pase, Nase, Sase, XYase), were measured using 413 

microplate fluorometric assays with methylumbelliferone (MU)-linked substrates, except for LPase, 414 

which was measured using L-leucine-AMC substrate (Sigma Aldrich, St. Louis, USA). PXase was 415 

measured using L-dihydroxyphenyalanine (L-DOPA) as substrate (Sigma Aldrich, St. Louis, USA). 416 

Fluorimetric substrates were dissolved in 0.4% methylcellosolve (2-methoxyethanol; 0.1% final 417 

concentration in the assay). The hydrolytic fluorometric and LPase methods are based on the protocols 418 

described in Tabatabai 71 and Marx, et al. 72; while the PXase method is described in Sanchez-Julia and 419 

Turner 56.   420 

For each soil sample, five replicate micro-plates were prepared and incubated at 2, 10, 22, 30 421 

and 40ºC. For the fluorometric assays, 2 g fresh soil (field moist weight basis) was added to 200 ml of 422 

1mM sodium azide (NaN3) solution and dispersed by stirring vigorously on a magnetic stir plate. After 423 

5 min, and while stirring, 50 µl aliquots of soil suspension were removed using an 8-channel pipette 424 

and dispensed into a 96-well microplate containing 50 µl modified universal buffer solution adjusted 425 

to soil pH. Each microplate included assay wells (soil solution, buffer and 100 µl of 200 µM MU 426 

substrate; 100 µM MU substrate in final solution), blank wells (soil solution, buffer and 100 µl of 427 
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1mM NaN3) and quench wells (soil solution, buffer and 100 µl MU standard). For LPase, we used 1mM 428 

L-leucine-AMC substrate. There were eight analytical replicate wells for each assay, and control plates 429 

for each set of assays with the standards and no soil solution (to determine fluorescence from substrates 430 

and quenching by soil solution in assay plates). Microplates were incubated at each specified 431 

temperature for 1 to 4 h, with incubation times based on preliminary assays for each specific substrate 432 

to assess the linearity of the reaction over time. Following incubation, 50 µl of 0.5 M NaOH was added 433 

to each well for MU substrates (but not for AMC substrates) and plates were immediately analyzed on 434 

a Fluostar Optima spectrofluorometer (BMG Labtech, Offenburg, Germany) with excitation at 360 nm 435 

and emission at 450 nm. For PXase assays, 1g soil (oven-dry basis) was added to 100 ml of 5 mM 436 

bicarbonate buffer and stirred vigorously; 100 µl of 5 mM L-DOPA solution and 100 µl of soil solution 437 

were dispensed into a 96-well microplate. Control plates were made using 100 µl of 5mM bicarbonate 438 

buffer and 100 µl aliquots of soil solution. There were 16 analytical replicates and controls per soil 439 

sample. Plates were analyzed on a spectrofluorometer, with PXase activity calculated as the increase in 440 

absorbance at 450 nm over 1 h.  Enzyme activities were expressed on the basis of soil organic C. 441 

Hydrolytic enzyme activities, determined using MU substrates, were expressed in nmol substrate (MU 442 

or AMC) min-1 g C-1. PXase, determined using L-DOPA as a substrate, was expressed in mg diqc h-1 g 443 

C-1 (where diqc is the L-DOPA product 3-dihydroindole-5,6-quinone-2-carboxylate).   444 

We determined the temperature sensitivity of maximum potential enzyme activity (Vmax) by 445 

calculating Q10 values as follows: 446 

ܳଵ = ,ሻ݇ ݔ ሺ10ݔ݁ ݇ ܍ܚ܍ܐܟ  = ݈݊ ܸ௫ݐ  ሺ݁3 ݊݅ݐܽݑݍሻ 447 

Where k is the exponential rate at which Vmax increases with temperature (t)54. To calculate k (and thus 448 

Q10) we used linear regression and included enzyme data determined between 2ºC and 40ºC. We only 449 

determined Q10 values of enzyme activity during the exponential increase in activity with temperature 450 

according to Arrhenius kinetics, prior to reaching any thermal optima of activity at which dynamics 451 
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depart from Arrhenius kinetics. The thermal optima of enzymes are widely associated with enzyme 452 

denaturation that begins to occur at temperatures above 40ºC 73. 453 

 454 

Determination of carbon use efficiency.   455 

Changes in microbial community function, including growth and CUE, has been shown by models to 456 

have an extremely large influence on the soil-atmospheric C exchange and soil C storage under 457 

climatic change16,48. However, empirical evidence on the long-term response of microbial community 458 

physiology and its influence on soil C storage is lacking, both in part due to a lack of long-term 459 

experimentation and in part due to methodological difficulties in quantifying the relevant microbial 460 

community response. Microbial CUE, for example, is an emergent property representing the ratio of 461 

C lost in respiration against C accumulated during growth74 and can be quantified in numerous ways, 462 

including using substrate-induced respiration (13C substrates)75; 18O labeling in water76; mass-balance 463 

and the stoichiometry of enzyme activity and biomass77. Because it is an emergent property and 464 

therefore challenging to quantify, CUE estimates can vary among methods and thus require 465 

interpretation with consideration of method used for its quantification.  466 

We estimated CUE based on the stoichiometry of enzyme activity and elemental ratios in the 467 

microbial biomass77. The stoichiometric method has been found to be robust and correlated to 468 

substrate-non-specific 18O labeling methods78 and is useful because it is based on direct measurements 469 

of soil properties and can be more easily compared among studies74. We estimated CUE from 470 

ecological stoichiometry whereby CUE is a function of the difference between its elemental 471 

requirements for growth (C, N or P in biomass and enzymatic investment for acquisition) and the 472 

abundance of environmental substrate (C, N or P in soil organic matter). This approach assumes that 473 

enzyme activities scale with microbial production and organic matter concentration, and that microbial 474 

communities exhibit optimum resource allocation with respect to enzyme expression and 475 

environmental resources; these assumptions are empirically supported by Michaelis-Menten kinetics 476 
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and metabolic control analysis77. Based on this underlying assumption, CUE is therefore calculated as 477 

follows77: 478 

:ܧܷܥ 479  = ெܧܷܥ  ܵ:ሺܵ: + ሻ൨ܭ , :ܵ ܍ܚ܍ܐܟ  = ൬ :൰ܣܧܧ1 ൬ܤ:ܮ:൰  ሺ݁4 ݊݅ݐܽݑݍሻ 480 

 481 

 where SC:X is a scalar that represents the extent to which the allocation of enzyme activities offsets the 482 

disparity between the elemental composition of available resources and the composition of microbial 483 

biomass; Kx and CUEMAX are constants: half-saturation constant (Kx) = 0.5; and the upper limit for 484 

microbial growth efficiency based on thermodynamic constraints, CUEMAX = 0.6. EEA is extracellular 485 

enzyme activity (nmol g-1 h-1); EEAC:N was calculated as BG/NAG, where BG = β-glucosidase and 486 

NAG = N-acetyl β-glucosaminidase; and EEAC:P was calculated as BG/P, where BG = β-glucosidase 487 

and P = phosphomonoesterase. Molar ratios of soil organic C : total N : total P were used as estimates 488 

of LC:N or LC:P. Microbial biomass (BC:X) C:N and C:P were also calculated as molar ratios.  489 

Using the stoichiometric method, we found no change in CUE in this study (on 3ºC and 8ºC 490 

warming effects during the wet season; Extended Data Figure 6), or over 2-years following 3ºC 491 

warming in surface soils13. However, given the apparent acceleration of enzyme activity via abiotic 492 

mechanisms (see discussion), we suggest that this renders low confidence in the stoichiometric method 493 

in this instance, given its assumption that enzymatic activity is correlated with biological synthesis77. 494 

 495 

Instantaneous temperature response of microbial growth and respiration. We used the instantaneous 496 

temperature response of microbial growth and respiration to: i) predict the effect of warming on in situ 497 

soil CO2 emissions and ii) to determine the temperature adaptation of the bacterial community 498 

following two years of in situ warming. For the former, we measured the instantaneous temperature 499 

response of respiration and bacterial growth for control soils only. For the latter, we measured the 500 

instantaneous temperature response of bacterial community growth for all warming treatments and 501 
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controls; assuming the temperature adaptation of respiration responded similarly as for bacterial 502 

growth, as found in tropical soils elsewhere20. To determine the temperature response of bacteria 503 

growth, we used the leucine incorporation method19; for the temperature response of instantaneous 504 

respiration, we used incubation assays with measurement of headspace CO2. Full details on these 505 

respective methods are described below. 506 

The temperature response of bacterial community growth was determined by measuring 507 

instantaneous growth across a range of temperatures (4 to 40ºC) using the leucine (Leu) incorporation 508 

method79. Soil (1 g dry weight) was mixed with 20 ml 17ºC distilled water, vortexed for 3 min and 509 

centrifuged at 15ºC for 10 min. The supernatant, with an extracted bacterial suspension, was transferred 510 

(1.5 ml) into microcentrifugation vials, which were pre-incubated in water baths for 0.5 to 1h before 511 

2µl 3H-leucine (1-[4,5-3H] leucine, 37 MBq ml-1 and 5.74 TBq mmol-1, Perkin-Elmer, USA) together 512 

with unlabelled Leu was added (resulting in 275 nM in the bacterial suspension). Trichloroacetic acid 513 

was added to terminate growth after 1 to 6.5h, depending on incubation temperature. Measurement of 514 

radioactivity was conducted following Bååth, et al. 79. 515 

The instantaneous temperature response of respiration was determined by incubating 2 g fresh 516 

soil in 20 ml vials for 140 hours (at 10ºC) or for 24 hours (at 28ºC). At the end of each incubation, we 517 

sampled the vial headspace and determined the CO2 concentration (using a GC equipped with a 518 

methanizer and a flame ionization detector) to calculate the respiration rate per g soil.   519 

To estimate the degree of microbial community adaptation to temperature we used two 520 

complementary indices, the theoretical minimum temperature for growth (Tmin)15 and the log ratio of 521 

activity at 40ºC /4ºC (temperature Sensitivity Index, SI)80. The Tmin index provides insight on 522 

temperature adaptation across a broader temperature range and is calculated by the rate of increase in 523 

activity across temperatures from 4–28ºC. The SI index provides alternative information on the 524 
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temperature adaptation of the bacterial community including also high temperatures. Because Tmin and 525 

SI are closely related19,81 we report both values but focus our analyses on the response of Tmin. 526 

 527 

Determination of Tmin for respiration and growth and the predicted response of CO2 efflux to in situ 528 

warming. The Tmin of microbial activity was calculated using empirically defined microbial activity 529 

across the temperature range 4–28ºC (where the increase in the SQRT of activity is linear), according 530 

to the Ratkowsky (square root) equation15,17: 531 ඥݕݐ݅ݒ݅ݐܿܣ = ܽ ∗  (ܶ −  ܶ) 532 

where T is the measurement temperature, Tmin is the minimum temperature for activity (temperature 533 

where activity = 0) and a is empirically defined by the slope parameter from the square root of activity 534 

plotted against temperature; and where activity is either bacterial or fungal growth rates, or respiration. 535 

We determined Tmin for each field replicate (n = 5 plots). 536 

We then used the instantaneous temperature sensitivity of bacterial activity (Tmin) to model the 537 

CO2 efflux response to warming, both with and without microbial community adaptation. To model 538 

the CO2 efflux response to warming we used the following equation: 539 

Predicted ܱܥଶ  = ሾܽ ∗ (ܶ −  ܶ)ሿଶ 540 

where Tmin is for control soils. To model the CO2 efflux response to warming following temperature-541 

adaptation of microbial communities, we refitted the model using the Tmin determined for bacterial 542 

growth in experimentally warmed soils for two years by 3ºC and 8ºC (‘adapted’ communities). 543 

 544 

Treatment effects on soil properties. To determine treatment effects on soil CO2 emissions, soil 545 

moisture and temperature we used repeated measures ANOVA fitted by maximum likelihood 546 

(repeated measures model with time as random factor). To determine treatment effects (levels: control, 547 

+3ºC and +8ºC) on soil properties we used one-way ANOVA with post-hoc Tukey HSD tests. We used 548 

this approach for all soil properties, including enzyme Vmax and the Q10 of Vmax for each enzyme 549 
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determined at soil temperature. Prior to analyses all data were tested for normality using a Shapiro-550 

Wilk test and log-transformed where non-normally distributed. 551 

 552 

Microbial community analysis. To determine temperature treatment effects on alpha diversity of soil 553 

bacterial and fungal communities, we first applied general prevalence filtering using the R package 554 

PERFect (PERmutation Filtering test for microbiome data)82 (v0.2.4). Here we used the function 555 

PERFect_sim with the alpha parameter set to 0.05 for the 16S rRNA data and 0.1 for the ITS data. We 556 

also applied two complementary methods of prevalence filtering to determine how filtering influenced 557 

alpha diversity estimates (see Supplementary Methods for complete details). We then calculated Hill 558 

numbers using the R package hilldiv83 (v1.5.1), specifically Observed richness (q-value = 0), Shannon 559 

exponential (q-value = 1), and Simpson multiplicative inverse (q-value = 2). We used Shapiro-Wilk 560 

Normality test and Bartlett’s test of Homogeneity of Variances to determine whether Hill numbers 561 

were normally distributed. In cases where both p-values were greater than 0.05 (parametric data), we 562 

used ANOVA followed by Tukey post-hoc analysis to test for significance. For non-parametric data 563 

(cases where one or both p-values were less than 0.05), we instead used Kruskal-Wallis followed by 564 

Dunn test with Benjamini-Hochberg correction.  565 

 566 

For soil bacterial and fungal beta diversity, we calculated distance matrices for the filtered data sets 567 

using unweighted and weighted UniFrac84 for the 16S rRNA data and Jensen-Shannon Divergence 568 

and Bray-Curtis for the ITS data. To test for temperature treatment effects on beta diversity, we used 569 

the vegan package85 (v2.5-7) to first calculate beta dispersion for the distance matrices (betadisper 570 

function), then perform a Permutation Test for Homogeneity of multivariate dispersions (permutest 571 

function), and finally run PERMANOVA (adonis function; assuming equal dispersion) or Analysis of 572 

Similarity (ANOSIM; where beta dispersion was significant). 573 

 574 
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To identify ASVs from the bacterial and fungal communities that were differentially abundant across 575 

temperature treatments, we used Indicator Species Analysis (ISA)86 and linear discriminant analysis 576 

(LDA) effect size (LEfSe)87. Prior to differential abundance analysis, we applied PIME (Prevalence 577 

Interval for Microbiome Evaluation)88 (v0.1.0) filtering to both complete datasets. PIME is a slightly 578 

more aggressive filtering tool specifically designed to work with data sets containing high variation 579 

among samples88 — a pattern observed in the +8ºC warming samples from the 16S rRNA data and all 580 

treatments from the ITS data (Extended Data Figs. 2c and 2f). PIME applies prevalence filtering on a 581 

per treatment basis and removes a substantial amount of within-group variation by eliminating low 582 

abundance ASVs in each treatment and retaining only those ASVs shared at the selected level of 583 

prevalence, within a given treatment88
. Per the developer’s recommendation, we first rarefied all 584 

samples to even depths (per sample: 16S rRNA = 25,088 reads, ITS = 9172 reads) and then split the 585 

data sets by predictor variable (temperature treatment) using the pime.split.by.variable function in R. 586 

Next, we calculated all prevalence intervals from 5% to 95% (increments of 5%) with the function 587 

pime.prevalence and then used the function pime.best.prevalence to choose the best prevalence. The 588 

best prevalence interval was selected when the out-of-bag (OOB) error rate first reached zero or close 589 

to zero. The most prevalent ASVs (at the best prevalence interval) were retained from each split. Splits 590 

were then merged to obtain the final, PIME filtered data set. ISA was computed with the R package 591 

labdsv89 (v2.0-1)—ASVs were considered an indicator of a treatment if they had a p-value less than 592 

or equal to 0.05. LEfSe analysis was performed within the R package microbiomeMarker90 (v0.0.1) 593 

using the following parameters: pre-sample normalization of the sum of values set to 1e+06, lda_cutoff 594 

= 2, kw_cutoff = 0.5,  and wilcoxon_cutoff = 0.5. We used anvi’o91 (v7-dev) to visualize the 595 

distribution of PIME-filtered 16S rRNA ASVs represented by more than 100 total reads and PIME-596 

filtered ITS ASVs represented by more than 50 reads. We then overlaid the results of the ISA and 597 

LEfSe analyses. Hierarchical clustering of ASVs was performed using Euclidean distance and Ward 598 
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linkage against the ASV/sample abundance matrix while hierarchical clustering of samples was 599 

performed using Bray-Curtis distance and complete linkage.  600 

 601 

To assess potential drivers of change in microbial community composition, we used three subsets of 602 

metadata to test correlations with community change; 1) environmental properties, 2) soil functional 603 

responses, and 3) temperature adaptive responses. For each of the three metadata subsets, we 604 

performed the following steps: i) use Shapiro-Wilk Normality Test to determine which metadata 605 

parameters are normally distributed; ii) use the R package bestNormalize92 to find and execute the best 606 

normalization transformation for non-normally distributed parameters; iii) perform autocorrelation 607 

tests for all pair-wise comparisons; iv) remove autocorrelated parameters; v) run Mantel Tests to 608 

determine if any of the metadata subsets are significantly correlated with microbial community data; 609 

and vi) use the bioenv function (vegan package) to identify metadata parameters that are most strongly 610 

correlated with the community data. In last step, vii) we performed distance-based redundancy analysis 611 

(dbRDA) using capscale from the vegan package. First, we ran rankindex (vegan) to select the best 612 

community dissimilarity index. Then, we ran capscale for distance-based redundancy analysis. Next, 613 

we used envfit (vegan) to fit environmental parameters onto ordinations. And finally, we selected all 614 

metadata parameters that were significant for bioenv (see above) and/or envfit analyses for plotting 615 

the ordinations and vector overlays. For a detailed description of community analyses, including all 616 

references, see Supplementary Methods. 617 

 618 

Data availability 619 

Trimmed (primers removed) sequence data generated in this study are deposited in the European 620 

Nucleotide Archive (ENA) under Project Accession number PRJEB45074 (ERP129199), sample 621 

accession numbers ERS6485270–ERS6485284 (16S rRNA) and sample accession numbers 622 

ERS6485285– ERS6485299 (ITS). Raw fastq files can be accessed through the Smithsonian figshare, 623 
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at https://doi.org/10.25573/data.14686665 (16S rRNA) and https://doi.org/10.25573/data.14686755 624 

(ITS). Related data and data products for individual analysis workflows are available through the 625 

Smithsonian figshare under the collection: https://doi.org/10.25573/data.c.5667571 626 

 627 

Code availability 628 

All code, reproducible workflows, and further information on data availability can be found on the 629 

project website at https://sweltr.github.io/high-temp/. The code embedded in the website is available 630 

on GitHub [https://github.com/sweltr/high-temp/] in R Markdown format. The version of code used in 631 

this study is archived under SWELTR Workflows v1.0 [https://github.com/sweltr/high-temp], DOI 632 

identifier, https://zenodo.org/badge/latestdoi/368915237 633 
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Figure Captions 657 

 658 
Figure 1│ Microbial diversity decline and community change under 3ºC and 8ºC in situ soil warming in 659 
lowland tropical forest. Two years of soil warming caused significant decreases in (a) bacterial and (b) fungal 660 
diversity, determined by 16S rRNA and ITS sequencing, respectively. Data from the PIME filtered data sets for 661 
controls (blue), 3ºC warming (green) and 8ºC warming (red). Hierarchical clustering of ASVs (top dendrograms) 662 
based on Euclidean distance and Ward linkage. Hierarchical clustering of samples (right dendrograms) based 663 
on Bray-Curtis distance and complete linkage. Each vertical line in the main plot represents a unique ASV, 664 
where colour intensity indicates the log-normalized abundance, and no colour indicates an ASV that was either 665 
not detected or removed during prevalence filtering. The coloured bars below indicate ASVs that were enriched 666 
in different temperature treatments as determined by either Indicator Species Analysis (IndVal) or Linear 667 
discriminant analysis Effect Size (LEfSe). Additional data for each sample are presented in the plots on the 668 
right. Diversity estimates charts show the total number of reads, observed richness, Shannon exponential index, 669 
and Inverse Simpson index. Taxonomic profiles show the proportion of major classes (16S rRNA data) or orders 670 
(ITS data). All analyses are for soil samples collected from n = 5 independent experimental plots, for each 671 
treatment level. 672 
 673 
Figure 2│ The response of microbial growth and enzyme activity to 3ºC and 8ºC soil warming, and the 674 
relationship between the temperature response of growth and activity with microbial community 675 
changes. (a–b) Microbial growth was determined for bacteria for each treatment using Leu-incorporation 676 
incubation assays across a temperature range of 4–40oC. The minimum temperature for growth (Tmin) 677 
increased with warming (see b, where P = 0.006 for +8ºC treatment), but growth declined at high temperatures 678 
(>30–34ºC; see lighter shaded points in (a); these data were not used for the linear model to determine Tmin). 679 
(c) Activities were determined for 10 enzymes (ß-xylanase shown here, six others responded similarly; see SI) 680 
across an incubation temperature range of 4–40ºC. The maximum potential activity—at soil temperature per 681 
unit microbial C—increased with warming for 7 out of 10 enzymes (see d) and increased across high 682 
temperature ranges (to 40ºC) illustrating a decoupling of growth and activity above 30ºC.  (e) The microbial 683 
community composition change was related to the temperature response of growth (Tmin) and of enzyme 684 
activities (Q10 of Vmax) for i) bacteria and ii) fungi. Bacterial growth and enzyme activity are plotted using a 685 
linear transformation (square root). Microbial community composition change estimated using Distance-based 686 
Redundancy Analysis (db-RDA) based on Bray-Curtis dissimilarity; see Extended Data (Table 2, Fig. 5) for 687 
relationships between community composition change and other soil properties. For scatter plots (a, c) the 688 
error bars represent mean ± one standard error, for n = 5 plots. Fitted lines depict linear functions with 95% 689 
confidence intervals shown. For box plots (b, d), the centre line of each box plot represents the median, the 690 
lower and upper hinges represent the first and third quartiles and whiskers represent + 1.5 the interquartile 691 
range. Statistical differences are shown where ** P < 0.05, ** P < 0.01 (by ANOVA); where shown in b, P 692 
= 0.006; in d, P = 0.016. All analyses are for soil samples collected from n = 5 independent experimental 693 
plots, for each treatment level. 694 
 695 
Figure 3│ The response of soil CO2 efflux to in situ warming by 3ºC to 8ºC is greater than the increase 696 
predicted by the temperature response of microbial respiration and growth. (a). Data points are 697 
measurements of soil CO2 efflux from control (blue), 3ºC warming (green) and 8ºC warming (red). The response 698 
of CO2 emission to temperature was described by a square root function (‘Observed’ line; CO2 = 1.9 x T2 – 45; 699 
R2 = 0.68, P < 0.001, F = 556). The modelled CO2 efflux responses (‘Predicted’ lines) are based on measured 700 
Tmin at ambient temperature (blue dash line = no adaptation; CO2 = 1.21 x T2  – 0.17; R2 = 0.87, P < 0.001, F = 701 
124) and Tmin change after two years of warming indicating community adaptation (green dash line = 3ºC 702 
adaptation, CO2 = 1.24 x T2 – 0.18; R2 = 0.87, P < 0.001, F = 118; and red dash line = 8ºC adaptation, CO2 = 703 
1.25 x T2 – 0.20; R2 = 0.86, P < 0.001, F = 111). Lines depict square root functions with 95% confidence 704 
intervals shown. The box plots show the treatment effects on (b) soil CO2 efflux and (c) soil temperature 705 
(repeated measures ANOVA; ** P < 0.01; *** P < 0.001; where treatment effects on soil CO2 efflux were P = 706 
0.00392 and P < 0.001 for 3ºC and 8ºC warming, respectively). The soil temperature and soil CO2 efflux by 707 
treatment was, for controls: 26 ± 1 ºC and 4.74 ± 0.25 µmol CO2 m

-2 s-1, 3ºC warming: 29 ± 2ºC and 8.42 ± 0.44 708 
µmol CO2 m

-2 s-1, 8ºC warming: 34 ± 7ºC and 15.98 ± 1.68 µmol CO2 m
-2 s-1 (mean ± one standard error, n = 5 709 
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plots). The centre line of each box plot represents the median, the lower and upper hinges represent the first and 710 
third quartiles and whiskers represent + 1.5 the interquartile range; the dashed lines represent means. All 711 
analyses are for soil samples collected from n = 5 independent experimental plots, for each treatment level. 712 
   713 
 714 
 715 
 716 
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