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Abstract

Multilingual speech recognition has drawn significant at-

tention as an effective way to compensate data scarcity for low-

resource languages. End-to-end (e2e) modelling is preferred

over conventional hybrid systems, mainly because of no lexi-

con requirement. However, hybrid DNN-HMMs still outper-

form e2e models in limited data scenarios. Furthermore, the

problem of manual lexicon creation has been alleviated by pub-

licly available trained models of grapheme-to-phoneme (G2P)

and text to IPA transliteration for a lot of languages. In this pa-

per, a novel approach of hybrid DNN-HMM acoustic models

fusion is proposed in a multilingual setup for the low-resource

languages. Posterior distributions from different monolingual

acoustic models, against a target language speech signal, are

fused together. A separate regression neural network is trained

for each source-target language pair to transform posteriors

from source acoustic model to the target language. These net-

works require very limited data as compared to the ASR train-

ing. Posterior fusion yields a relative gain of 14.65% and 6.5%

when compared with multilingual and monolingual baselines

respectively. Cross-lingual model fusion shows that the compa-

rable results can be achieved without using posteriors from the

language dependent ASR.

Index Terms: automatic speech recognition, low-resource,

model fusion, multilingual, cross-lingual

1. Introduction

With the advancements of the computational resources, many

Deep Neural Networks (DNNs) architectures and networks

have been proposed to make speech recognition more efficient

and accurate. DNN-HMM hybrid systems [1] outperform con-

ventional GMM-HMM systems. For end-to-end (e2e) speech

recognition, sequence-to-sequence models [2], RNN transduc-

ers (RNN-T) [3], transformers [4] and unsupervised learning

[5] are being used. These systems can be further improved

with coupling of various techniques such as multi-task learning

(MTL) [6], mixture of experts (MOE) [7] and learning hidden

unit contributions (LHUC) [8] depending on the task. All these

statistical modelling techniques require a lot of data for reliable

parameters estimation. However, out of nearly 7000 languages

being spoken around the world, just 23 languages are spoken by

more than half of the world’s population [9]. So, sufficient data

resources are available for few languages.

Over the past decade, multilingual automatic speech recog-

nition systems have stolen the limelight being an effective way

to compensate the data scarcity for low-resource languages

[10, 11, 12, 13, 14, 15]. DNN based multilingual acoustic

models (AM) can be used to extract features to train a mono-

lingual model [16, 17, 18] or multilingual models can directly

be adapted to target language [19, 20]. Though e2e multilin-

gual speech recognition systems are preferred over conventional

ASR to avoid lexicon creations, DNN-HMMs still outperform

e2e models in limited data scenarios such as low-resource lan-

guages. Furthermore, the advancement of G2P and text to IPA

transliteration approaches such as Phonetisarus [21], Epitran

[22] and open source LanguageNet G2P models [23] for many

languages have alleviated the problem of manual creation of

lexicons.

Previous work on e2e multilingual speech recognition sys-

tems has shown that a multilingual setup does not guarantee

the reduction in Word Error Rate (WER) for target languages

[5, 24, 25]. Recent efforts to interpret the learning of multilin-

gual speech recognition systems [26, 27] observe that Phoneme

Error Rate (PER) of an overlapped phoneme is not reduced

with the growing number of sharing languages. The number

of shared phonemes is not a reliable metric to measure lan-

guage similarities and each participating language in a multilin-

gual system has a different similarity with the target language.

Even the balanced language data sampling can cause degrada-

tion or improvement due to internal acoustic-phonetic unbal-

ancing [28]. It demands very controlled language mixing for a

target language ASR.

To that end, a novel technique is proposed to fuse outputs

of different monolingual models against the target language

speech. Various previous studies on monolingual speech recog-

nition have fused outputs from different models for acoustic

[29, 30, 31] and language models [32, 33]. However, monolin-

gual models have never been fused in a multilingual setup be-

cause it can not be done straightforwardly due to different pho-

netic decision trees of monolingual models. In this work, a sep-

arate regression neural network (mapping network) is trained

for each <source, target> pair to map posteriors from a source

language AM to the posteriors of the target language AM. The

mapped posteriors are then fused in multilingual and cross-

lingual fashion for phoneme recognition of the target language.

The intuition is that a mapping network is able to learn some

language related relationships between posterior distributions

of source and target acoustic models. The proposed approach is

helpful especially for low-resource languages because;

• the mapping networks can be trained with very limited

amounts of data since a few hours can provide sufficient

examples for phonetic level training.

• controlled fusion of posteriors based on language sim-

ilarity will allow to control contribution of different

source languages.

The mapped posteriors from the monolingual AMs are

fused in a multilingual setup which not only outperforms the

classical multilingual systems, but also the monolingual ASRs.
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Figure 1: Proposed system architecture

2. Acoustic Model Fusion

Hybrid DNN-HMM systems outperform e2e ASRs where the

amount of training data is limited [34]. Though the proposed

fusion technique can be applied to e2e systems, the approach is

described for DNN-HMM based ASRs here as a proof of con-

cept.

In hybrid speech recognition systems, a deep neural net-

work is trained to produce a posterior distribution of tied states

of HMM models. Theoretically, the total number of tied states

for a language with N number of phonemes and S number of

states per HMM model is given by Nn × S, where n is the

context width. However, many polyphonemes never occur in

a language and many are quite similar to the others. The total

number of states is reduced by clustering many polyphonemes

together. Each language yields a different phonetic decision tree

in its monolingual ASR. Thus the number of tied states differs

for each language and the posterior distributions are not directly

comparable across the languages and thus not fusible.

Let MA and MSi
be the monolingual acoustic models of

target and source languages respectively. A regression neural

network NSiA is trained to translate posteriors PSi
of dimen-

sion dSi
from MSi

to the posteriors PSiA of dimension dA
where dA is the dimension of posteriors from MA. An under-

lying assumption is that this mapping network is able to learn

some language-related relationships between posterior distribu-

tions of source and target acoustic models. For example, the

network could learn phonemes of the target language which are

more amenable to cross-lingual transfer than the others. Fur-

thermore, a few hours of speech data can give thousands of

examples that provide sufficient training data for mapping net-

work. The proposed system architecture is shown in Fig. 1.

Let X = {x1, x2, . . . , xT } be a set of observations

of target language, for which posterior distributions (PZ =
{p1, p2, . . . , pT } where Z ∈ (A,SiA)) are attained from all

monolingual acoustic models. A mapping network is trained

using KL divergence loss to map posteriors from source acous-

tic models (PSi ) to the target language posteriors (PSiA). The

loss function for a batch is given as;

LSiA(θ) =

N∑

n=1

p
A
n · (log pAn − log pSiA

n ) (1)

where N is the batch size for training a mapping network NSiA

to map posteriors from ith source language to the target lan-

guage.

Posterior distributions from target AM and mapped distri-

butions from source AMs are fused together for phoneme recog-

nition of a target language. For a given observation at time t, the

Table 1: Details of BABEL data sets used for the experimenta-

tion

Lang
Train Eval

# hours # spks # hours # spks

Tamil (tam) 110.67 372 16.08 61

Telugu (tel) 67.27 243 13.92 60

Cebuano (ceb) 74.26 239 15.51 60

Javanese (jav) 76.39 242 16.25 60

final posterior vector is given as;

p
F
t = wT · pAt +

K∑

i=1

wi · p
SiA
t (2)

where wi are the scalar weights assigned to each posterior vec-

tor such that
∑

wi = 1 and K is the number of source lan-

guages.

In the experimentation, model fusion is done in multilin-

gual and cross-lingual settings. In cross-lingual settings, only

the mapped posteriors from source models are fused (the term

wT · pAt is omitted from Equation 2). The cross-lingual setting

avoids using target AM which is helpful for low-resource lan-

guages. The weights are assigned to the fusing languages on the

basis of similarity of the source and the target language. The

study on cross-lingual acoustic-phonetic similarities using the

same mapping network approach observes that the entropy of

a <source, target> mapping network shows the language sim-

ilarities [28]. The same similarity measure is used along with

mapping network accuracy to assign the weights.

3. Experimental Setup

3.1. Data set

In this work, experiments are done using four low-resource lan-

guages from IARPA BABEL speech corpus [35]. Full Lan-

guage Packs (FLP) of Tamil (tam), Telugu (tel), Cebuano (ceb)

and Javanese (jav) are used for baseline ASR training and eval-

uation. Since the eval data of BABEL is not publicly available,

train and dev sets of BABEL data sets are used as train and

eval sets respectively for the experiments. The details of the

data sets are tabulated in Table 1. These data consist of con-

versational telephone speech and are quite challenging because

of limited bandwidth, conversational styles, channel and back-

ground environment conditions. A limited amount of scripted

read speech is also included in each language pack.

Full amounts are used for the training of baseline monolin-

gual and multilingual speech recognition models. Multilingual

ASR is trained by mixing data from all the languages. How-

ever, for training of the mapping networks, a subset of 30 hours

Table 2: Examples (in millions) for training of mapping net-

works for each target language. Train set: 29 hours; Dev set: 1

hour; Eval set is same as for the ASR

Language Train Dev Eval

Tamil (tam) 3.234 0.358 1.664

Telugu (tel) 3.232 0.356 1.915

Cebuano (ceb) 3.241 0.348 1.943

Javanese (jav) 3.225 0.365 1.854
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Figure 2: Training curve of Nceb−tel mapping network

is chosen from each language pack. Utterances containing only

non-speech or silence are discarded while randomly sampling

the 30 hours. This data is further divided randomly into 29

and 1 hour portions as train and dev sets to train the mapping

networks. Since the mapping networks are trained on phonetic

level, 30 hours provide millions of examples for the sufficient

training of these models. The examples, used for building the

mapping networks, are given in Table 2.

3.2. Baseline ASRs

Baseline monolingual and multilingual acoustic models are hy-

brid DNN-HMM models. 40 Mel-Frequency Cepstral Coeffi-

cients (MFCCs) are extracted for each frame of the speech sig-

nals using a window size of 25ms and a shift of 10ms. These

features are then fed to DNN which is consisted of 12 factorised

TDNN (TDNN-F) layers [36]. Each TDNN-F hidden layer is

of dimension 1024, factorised with a linear ‘bottleneck’ dimen-

sion of 128. The acoustic model is trained using lattice-free

MMI criterion (LF-MMI) [34]. Neural network outputs pos-

teriors of the clustered monophone classes. Clustering in each

monolingual ASR training is different and thus the outputs from

different acoustic models against an identical speech signal are

not directly comparable. The experiments are done using Kaldi

toolkit [37].

3.3. Mapping networks

A regression neural network (mapping network) is trained for

each source-target language pair (Nsrc−tgt). The neural net-

Table 3: Accuracy of the mapping networks considering top n

mapped classes

Target

Lang

Source

Lang

Mapping network accuracy

n=1 n=2 n=5 n=10

tam

tel 42.91 88.16 94.91 97.91

ceb 44.43 84.63 91.82 96.13

jav 41.89 85.82 92.82 96.69

tel

tam 54.44 92.08 96.87 98.58

ceb 35.51 90.26 95.40 97.91

jav 50.54 90.71 95.70 98.10

ceb

tam 45.73 85.50 93.71 97.23

tel 46.17 87.87 93.98 97.51

jav 47.04 88.50 94.67 98.03

jav

tam 47.81 85.63 93.36 96.58

tel 48.29 86.31 93.74 97.03

ceb 48.05 86.28 93.61 96.95

(a) tam to ceb mapping network

(b) tel to ceb mapping network

(c) jav to ceb mapping network

Figure 3: Posteriorgram and entropy plot of Ntam−ceb,

Ntel−ceb and Njav−ceb for a sample ceb target speech utter-

ance. Average entropy over the utterance is plotted in grey

dashed line. Each box represents a frame on horizontal axis

and probability of an output class on vertical axis

work consists of three fully connected hidden layers to map

the posterior distributions from dimensions of MSi
to that of

MA. KL divergence loss is used for the training. As an ac-

curacy measure of the mapping network, the number of cor-

rectly mapped frames is divided by the total number of frames

as given in Equation 3. Correctly mapped frames are defined

as the frames where the index of max(mapped posteriors)
is same as the index of max(targetAM posteriors) which

means that the output of the mapping network is mapped to the

correct clustered phone class of the target AM.

(index(max(pAt )) == index(max(pSiA
t ))) ⇒ CMF + +

(3)

Accuracy =
CMF

T

where index(x) returns the index of class x in the output

vector, CMF is the number of correctly mapped frames and T

is the total number of frames. The training curve with accuracy

measure for one of the mapping networks is shown in Fig 2.

Having millions of examples, training converges in early epochs

for all the networks with accuracy of nearly 50%. However,

analysis reveals that most of the times when mapping network

is not accurate according to the aforementioned criteria, still the

correct target AM class is usually among a few most probable

classes of the mapped distribution. So, the network accuracy is

recalculated considering top n classes of the mapping network

output. The results in Table 3 show that the accuracy for most

of the networks is dramatically increased to nearly 90% from

less than 50% by considering top two most probable classes of

the mapping network output rather than only one.

For weighted fusion of the posteriors from different acous-

tic models, entropy of each <source, target> mapping network

is measured as a similarity measure. Entropy and posterior-

grams from mapping networks are shown for a sample ceb tar-

get file in Fig 3. Each box represents a frame on horizontal

axis and probability of an output class on vertical axis. Out-

put classes on vertical axis are sorted (from top to bottom) for

each frame. Entropies of frames are plotted on right vertical
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Table 4: Entropy of the source-target mapping networks on eval

set

Target

Lang.

Source Lang.

tam tel ceb jav

tam 0 1.292 1.286 1.383

tel 1.109 0 1.161 1.139

ceb 1.214 1.235 0 1.098

jav 1.335 1.460 1.279 0

axis. The figure shows that jav to ceb mapping network has

lower average entropy than mappings from tam and tel AMs.

This is comprehensible due to the fact that ceb and jav are from

same language family and thus jav is closer to ceb than tam and

tel. For model fusion, entropies and accuracy of the mapping

networks are considered while assigning the weights. The en-

tropies for all the trained mapping networks are tabulated in the

Table 4.

4. Results and Discussion

4.1. Baseline ASRs

Monolingual baseline systems (mono) are the language depen-

dent acoustic and pronunciation models which are trained on a

language specific data set. The train sets of all the languages

are then mixed to train the multilingual models (multi). The re-

sults of the baseline systems are given in the Table 5 (in terms

of PER). The results show that the error for all the languages is

slightly increased in the baseline multilingual setup.

4.2. Model fusion

A multilingual acoustic model is imitated by fusing the target

language and mapped source language posteriors. The fusion is

the linear weighted sum of all these posterior distributions. In

Table 5, the results of multilingual and cross-lingual model fu-

sion settings (multi-mf and cross-mf respectively) are compared

with mono and multi baseline ASRs. Multilingual model fusion

yields a maximum gain of 6.5% over monolingual and 14.65%

when compared with multilingual baseline systems.

Results of cross-lingual model fusion shows that without

using the language dependent ASR, a comparable phoneme er-

ror rate for a target language can be achieved. For cross-lingual

fusion, mapped posteriors from all the source language AMs

are fused. However, the computation cost for fusing large num-

ber of languages incites us to minimise the number of fusing

languages. For a given target language, further experiments are

carried out using the mapped posteriors from only one source

language at a time. Table 6 shows that nearly similar results

as cross-mf can be achieved using mapped posteriors form the

closest source language AM only. In the case of Telugu lan-

guage, mapped posteriors from single AM model of Tamil per-

form even better than the cross-lingual model fusion. The first

row for each language is same as cross-mf of Table 5 and fol-

Table 5: Baseline ASR performance in terms of % PER

Lang mono multi multi-mf cross-mf

tam 43.96 43.67 41.96 55.47

tel 43.66 46.36 42.05 52.76

ceb 36.67 41.02 35.54 43.04

jav 41.60 45.54 38.87 47.79

Table 6: Performance of model fusion in cross-lingual setting.

‘Y’ represents the source languages being fused together

Target

Language

Fused languages
% PER

tam tel ceb jav

tam

N Y Y Y 55.47

N Y N N 55.65

N N Y N 57.69

N N N Y 57.33

tel

Y N Y Y 52.76

Y N N N 52.37

N N Y N 55.68

N N N Y 53.58

ceb

Y Y N Y 43.04

Y N N N 45.94

N Y N N 45.28

N N N Y 43.91

jav

Y Y Y N 47.79

Y N N N 48.40

N Y N N 48.90

N N Y N 48.25

lowing rows are the cross-lingual mapped posteriors from only

one of the source language AM. For a target language, the

change in results using different source language AMs can be

seen in relation with mapping networks entropy of Table 4. For

example in the case of Javanese target language, the entropy is

highest for tel-jav mapping network and so the WER is highest

for jav when using mapped posteriors from tel AM and so on.

For the model fusion, the weights are manually assigned to

the posteriors which pose an issue of sub-optimal output. How-

ever, these weights could be learnt with the training of the map-

ping networks. Our next steps will include expanding the work

for e2e ASRs and learning the weights jointly.

5. Conclusion

In this work, a novel monolingual acoustic model fusion tech-

nique is proposed for low resource languages in a multilingual

setup. Posterior distributions from different monolingual acous-

tic models against a target language speech signal are fused

together. A separate regression neural network is trained for

each source-target language pair to map posteriors from source

acoustic model to the target language acoustic model. The map-

ping networks need very limited amount of data for training

as compared to the ASR building. Multilingual model fusion

yields a relative gain of 14.65% and 6.5% when compared with

multilingual and monolingual baselines for the target language.

Cross-lingual model fusion shows that the comparable results

can be achieved without using the target language ASR.
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[17] K. Veselý, M. Karafiát, F. Grézl, M. Janda, and E. Egorova, “The
language-independent bottleneck features,” in IEEE SLT, 2012,
pp. 336–341.

[18] A. Ghoshal, P. Swietojanski, and S. Renals, “Multilingual train-
ing of deep neural networks,” in 2013 IEEE International Con-

ference on Acoustics, Speech and Signal Processing, 2013, pp.
7319–7323.

[19] S. Tong, P. N. Garner, and H. Bourlard, “Cross-lingual adaptation
of a ctc-based multilingual acoustic model,” Speech Communica-

tion, vol. 104, pp. 39–46, 2018.

[20] J.-T. Huang, J. Li, D. Yu, L. Deng, and Y. Gong, “Cross-language
knowledge transfer using multilingual deep neural network with
shared hidden layers,” in 2013 IEEE International Conference on

Acoustics, Speech and Signal Processing, 2013, pp. 7304–7308.

[21] J. R. Novak, N. Minematsu, and K. Hirose, “WFST-based
grapheme-to-phoneme conversion: Open source tools for align-
ment, model-building and decoding,” in Proceedings of the 10th

International Workshop on Finite State Methods and Natural Lan-

guage Processing, 2012, pp. 45–49.

[22] D. R. Mortensen, S. Dalmia, and P. Littell, “Epitran: Precision
G2P for many languages,” in Proceedings of the Eleventh Interna-

tional Conference on Language Resources and Evaluation (LREC

2018), May 2018.

[23] M. Hasegawa-Johnson, L. Rolston, C. Goudeseune, G.-A. Levow,
and K. Kirchhoff, “Grapheme-to-phoneme transduction for cross-
language asr,” in Statistical Language and Speech Processing,
L. Espinosa-Anke, C. Martı́n-Vide, and I. Spasić, Eds. Springer
International Publishing, 2020, pp. 3–19.

[24] V. Pratap, A. Sriram, P. Tomasello, A. Hannun, V. Liptchinsky,
G. Synnaeve, and R. Collobert, “Massively Multilingual ASR: 50
Languages, 1 Model, 1 Billion Parameters,” in Proc. Interspeech

2020, 2020, pp. 4751–4755.

[25] W. Hou, Y. Dong, B. Zhuang, L. Yang, J. Shi, and T. Shinozaki,
“Large-Scale End-to-End Multilingual Speech Recognition and
Language Identification with Multi-Task Learning,” in Proc. In-

terspeech 2020, 2020, pp. 1037–1041.
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