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Abstract 

Nowadays, artificial intelligence (AI), machine learning (ML) and data science are 

leading to a promising transformative paradigm. ML, especially deep learning and 

physics-informed ML, is a valuable toolkit that complements incomplete domain-specific 

knowledge in conventional experimental and computational methods. ML can provide 

flexible techniques to facilitate the conceptual development of new robust predictive models 

for multiphase flows and reactors by finding hidden pattern/information/mechanism in a 

dataset. Due to such emergence, we thereby comprehensively survey, explore, analyze and 

discuss key advancements of recent ML applications to hydrodynamics, heat and mass 

transfer, and reactions in single-phase and multiphase flow systems from different aspects: (1) 

Development of multiphase closure models of drag force, turbulence stresses and heat/mass 

transfer to improve the accuracy and efficiency of typical CFD simulations; (2) Image 

reconstruction, regime identification, key parameter predictions and optimization of 

multiphase flow and transport fields; (3) Reaction kinetics modeling (e.g., predictions of 

reaction networks, kinetic parameters and species production) and reaction conditions 

optimization. These sections also discuss and analyze the key advantages and weakness of 

ML for solving the problems in the domain of multiphase flows and reactors. Finally, we 

summarize the under-solving challenges and opportunities in order to identify future 

directions that would be useful for the research community. Future development and study of 

multiphase flows and reactors are envisaged to be accelerated by ML and data science. 

Keywords: Multiphase flows and reactors; Hydrodynamics; Transport phenomena; Reactions; 

Machine learning; Physics-informed neural networks; Data-driven modeling 
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1. Introduction and fundamentals of machine learning 

In 1959, machine learning (ML) was defined as the study that gives machines the 

capability of learning without being explicitly programmed1. In 1997, Mitchell2 gave a more 

descriptive and specific definition of ML: "ML is a computer program able to learn from 

experience with respect to some tasks and some performance measures, if its performance on 

tasks, as measured by performance, improves with experience." Venkatasubramanian3 

clarified the applications of artificial intelligence (AI) into several different phases: (i) Expert 

systems era (~1983 to ~1995), (ii) Neural networks (NN) era (~1990 to ~2008), (iii) Deep 

learning (DL) and the data science era (~2005 to present). The illustrative relationships 

among AI, ML, and DL are illustrated in Figure 1a. ML can find insights or efficiently 

predict the desired properties of the target by extracting complex and often hidden patterns or 

relationships from the available data. ML might be categorized into the following types 

(Figure 1b): supervised, semi-supervised, and unsupervised learning. Figure 2 illustrates 

several typical ML methods: artificial neural network (ANN), boosted decision tree, support 

vector machine (SVM), and physics-informed neural networks (PINN). The major 

distinctions between these types include the availability of the amount of context and labeling 

information for the target variable for training ML4 and whether the physics or constraints are 

embedded into the ML architecture. Some common types of ML are listed in Table S1. Note 

that the advantages and disadvantages of these ML algorithms in the table are relative, and 

they may have their own specific application scenarios or tasks. In the following sections, we 

will explore and analyze their specific advantages and disadvantages combined with the 

specific application examples. It should also be emphasized that our critical discussions and 
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comments are in the hope that some references may be useful for future work of readers. 

 

Figure 1 (a) The relationships among artificial intelligence (AI), machine learning (ML), and deep 
learning (DL); (b) The possible categorization of ML algorithms. Figure 1b was made according to the 
categorization presented in the reviews of Brunton et al.5 and Beck et al.6 The methods marked in blue are 
applied very often by users. 

In recent years, due to the feasibility and flexibility of tools for ML implementation and 

workflow management, the explosion of new sources of data, and the rapid advancement of 

algorithms and powerful supercomputer resources, ML is experiencing an immensely 

fascinating resurgence in numerous scientific and engineering disciplines, such as chemical 

engineering3,7, chemistry8,9, catalysis science10-12, material science13-14, fluid mechanics5,15,16. 

Accompanied by this rapidly developing trend, recent advances of ML, especially DL, are 

also greatly contributing to a new era. In this new era of AI-enabled paradigm, discovery and 

innovation no longer solely rely on human effort and domain expertise but also significantly 

supplemented by analytics and mining of knowledge hidden in the data, and the visualization 
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of information6,17. 

 

Figure 2 Several typical machine learning methods: Artificial neural network, boosted decision tree, 
support vector machine, and physics-informed neural networks (PINN). The diagram of PINN was adapted 
with permission from ref 18. Copyright 2021 Springer Nature. 

Recently, ML is also largely impacting research of multiphase flow, transport 

phenomena, and chemical reactions, especially in multiphase flows and reactors. As 

illustrated in Figure S1, the increase of the number of publications, containing the keywords 

'machine learning X' (Here, X denotes fluid dynamics, heat transfer and reaction kinetics) 

from the Web of Science since 2016, is apparent and research interests related to these topics 

are expanding rapidly. Multiphase flow and transport phenomena (accompanied by chemical 

reactions) are widely encountered in various process engineering applications, such as the 

reactor (e.g., bubble column, external-loop airlift, fixed bed, fluidized bed, stirred tank, 

trickle bed, etc.), mixer, separator, heat exchanger, boiler, absorber, rotating contactors, and 
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so on. These phenomena are often very turbulent, dynamic, multidimensional, and multiscale 

in nature, and exhibit persistent instabilities in flow variables spanning various 

spatiotemporal scales19. Compared with the single-phase fluid flow, the complex interactions 

between the phases further increase the complexities of multiphase flows and make it 

intractable to understand and model. Better understanding and accurate prediction of 

multiphase characteristics can significantly contribute to reaching rational design, scale-up, 

optimization, and control of multiphase flows and devices. Traditionally, the underlying 

mechanism of these complex multiphase characteristics can be studied and understood by 

experimental and numerical techniques. In particular, computational fluid dynamics (CFD) is 

an effective numerical tool to describe the detailed flow and transport behavior. Historically, 

the data sets from these techniques are utilized to calibrate or develop simplified engineering 

correlations (e.g., Ergun equation and Gunn heat transfer correlations) that are useful for 

engineering design, optimization, and control. Nowadays, multidimensional, instantaneous 

big data sets (i.e., a massive amount of data) are available. However, this brings a great 

difficulty to traditional data management, analytics, and modeling, which is laborious and 

time-consuming. Compared with the conventional data modeling and analytics approaches, 

ML is promising to provide an efficient analysis of data sets, identification of the flow 

patterns hidden in the data, discovery of predictive models and thereby facilitate the 

augmented understanding, design, and control of multiphase processes20. Table S1 

summarizes some common ML algorithms, their corresponding basic functions (e.g., 

Activation functions or kernel functions), and their advantages and limitations. In particular, 

NN is the most popular and wide spread ML method, probably due to its flexibility of 
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architectures that can be re-designed to target complicated problems, and its excellent 

approximation ability to nonlinearities with high accuracy. For example, multiphase flow 

problems commonly have a large parametric space and the conventional methods have the 

difficulties in finding complex and accurate functions to approximate the flow properties. 

However, the structure of NN can be flexibly reorganized to process complicated prediction 

tasks, and it is thereby effective to provide solution to these multiphase flow problems. So far, 

there may be mainly three types of ML-based models. In this part, we only provide brief 

introduction and discussion of these three types of models in order to pave the way for later 

comprehensive discussion and analysis of their applications in Section 2. 

(1) The pure ML-based data-driven model (DDM): It is a surrogate modeling method 

to replace the complete traditional models. Such a method is black-box in nature and able to 

well fit the input-output relationship without introducing any domain knowledge such as the 

prior understanding of physics and chemistry. This type of pure ML-based DDM can be 

applied for diverse multiphase problems such as the development of closure models for flow 

dynamics and transport, reconstruction and identification of flow patterns, quantification of 

uncertainty in physical models, estimation and optimization of key physical or reactive 

process parameters and reactor performance based on the flow, transport and reaction 

conditions and device structures, etc. Commonly, pure ML-based DDM can approximate the 

relationships between feature input and output variables with high accuracy but also probably 

with a risk of overfitting and lack of interpretability. In particular, its performance is 

significantly associated with the sufficiency of datasets. 

(2) The hybrid model: It includes but not limited to: (a) using ML or traditional 
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physical models to optimize the hyperparameters/structures of another ML, (b) using ML to 

optimize the sub-models or constants/coefficients in the traditional physical models, or (c) 

using ML to replace the sub-models or constants/coefficients in the traditional physical 

models. The method (a) could potentially improve the ML performance by overcoming the 

possible limitations or risks (e.g., overfitting) in the pure DDM. The hybrid model is also 

applicable for predicting the input-output relationship problems mentioned in (1) and has a 

potential to achieve better model performance than the pure DDM. In some specific systems, 

it has been designed to compensate for the weakness of both the pure ML model and the 

physical model21. 

(3) The domain knowledge-informed ML model: It is an emerging learning method 

that can integrate the prior physics, mathematical laws, chemical mechanisms or boundary 

conditions as constraints into the architecture of ML algorithms18. The role of such 

constraints is to teach the conventional ML models about the prior knowledge, which can not 

only greatly improve its approximation ability but also boost the interpretability that the pure 

ML (especially NN) does not have. A typical example of such a new deep learning technique 

is the recently popular 'physics-informed neural networks' (PINN), as illustrated in Figure 2. 

PINN in its early phase mainly makes the physical governing equations, e.g., the N-S 

equation, kinetics-ordinary differential equation (kinetics-ODE) and kinetics-partial 

differential equation (kinetics-PDE), "participate" in the training process by adding the 

residual of the physical equation to the loss function of NN. Notably, the pioneering idea of 

using ML to solve ODEs and PDEs was proposed by Lagaris et al.23 Recently, a 

residual-based adaptive refinement strategy to boost the training efficiency was implemented 
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into an open-source library called DeepXDE22. So far, there is an increasing number of 

specifically-designed software libraries for physics-informed ML such as NuralPDE and 

NeuroDiffEq and others18. In this way, the NN optimizes not only the loss function of the 

network itself but also the residual of each iteration of the physical equation, so that the final 

training result meets the underlying law. Moreover, the boundary conditions can also serve as 

constraints to adjust the structural parameters of NN including weights and biases. The major 

advantage of PINN is to endow ML with more interpretability, high robustness, accuracy and 

consistency even for extrapolation scenarios. 

Furthermore, the applications of ML-enabled discoveries may also be categorized as 

physical matter, models and processes (see Figure 3a)24. For example, ML-aided discoveries 

of physical matter can identify molecules, materials, or flow reactors with optimal 

performance. Discoveries of processes encompass the synthetic routes to a specific chemical 

molecule or chemical engineering processes to achieve a desired reaction conversion. 

Discoveries of models can be the regression models from measured or simulated data, 

structure-function relationships, or even conceptual mechanistic models. A typical workflow 

example of ML-enabled model discovery (see Figure 3b) may include: (1) Implementation 

of (high-throughput) experiments/simulations or collection of data from the literature or open 

database; (2) Construction of database; (3) Selection of descriptors; (4) Determination of 

algorithm; (5) Model training and validation, including feature selection and reduction; (6) 

Model testing; (7) Model used for prediction, regression, classification, control, and 

optimization, to name a few7. 
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Figure 3 (a) The applications of ML-enabled discoveries may be categorized as physical matter, models 
and processes; (b) A typical workflow of ML-enabled model discovery. Figure 3a was adapted with 
permission from ref 24. Copyright 2020 John Wiley and Sons. The simulation contour in Figure 3b was 
adapted with permission from ref 25. Copyright 2016 American Chemical Society. The workflow in Figure 
3b was reproduced with permission from ref 7. Copyright 2021 Elsevier. 

Although it is necessary to invest some computational cost in the process of model 

discovery, the ML method can give fast prediction and classification of the properties of the 

crucial target with relatively low computational expense once the model is constructed. 

Usually, three independent datasets, which can be built by randomly splitting the original data 

set, should be prepared for separate training, validation, and testing of ML models. The 

training set is used for learning and fitting the parameters (e.g. weights for NN) in ML. The 

validation set is often employed to tune hyperparameters (e.g. the number of hidden layers 

and hidden neurons for NN architecture), which is to determine the optimal hyperparameters 

that aims to maximize the model performance. Meanwhile, the validation set can also be used 

to check the state and convergence of the ML model during the training process. For instance, 

it can be utilized to monitor whether the model is overfitted and to determine when to stop 

training. The test set is only used to evaluate the generalization performance of the model and 

has never been seen before by the model. To further enhance ML performance, some 

common cross-validation strategies are often adopted for training operations, such as k-folder 
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cross-validation and least-one-out cross-validation. For regression-related problems, some 

basic assessment standards such as the mean squared error (MSE), mean absolute percentage 

error (MAPE), mean relative error (MRE), coefficient of determination (R2) and Pearson 

correlation coefficient can be used to measure the training accuracy. It is desirable that the 

accuracy is achieved uniformly over the entire data set. Figure S2 illustrates three typical 

types of fitting performance in a common regression or classification learning operation: 

Underfitting, Ideal fitting and Overfitting. Table S2 summarizes the commonly utilized 

activation functions, loss functions and optimizers, as well as their advantages and 

weaknesses. Here, "activation" in the NN means that each layer of the network needs a 

transformation when it outputs, and it connects the neighboring two layers (Figure 2). The 

nonlinear connection is more preparable because it can greatly increase the information 

stored in the network and enhance the hierarchical nonlinear mapping learning ability. To 

sum up, the advantages of having an activation include adding the network system with 

nonlinearity, differentiability, simple computation, unsaturation, monotonicity, limited 

outputs and normalization. However, in most cases only some of the above preparable 

properties can be achieved and each activation function has its specific limitations, as 

summarized in Table S2. Moreover, the loss function is used to measure the gap between the 

output and real value, which is an indicator of the optimization direction during the training 

operation. In a training task, many optimizers can be selected (Table S2) and their common 

function is to adjust, calculate and update the hyperparameters affecting model training and 

learning performance, so as to approximate or reach the optimal value for minimization 

(sometimes "maximization") of the loss during training. It should be noted that the 
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advantages and disadvantages for different methods summarized in Table S2 are also 

problem-specific. Generally, their development history follows a basic rule, namely, take the 

essence and discard the dregs. That is, the latest one absorbs the advantages of the old one 

or/and overcomes the disadvantages of the old one. Thus, one should choose the most 

suitable ML algorithm, function or optimizer for a specific scenario or task. 

 

Figure 4 Applications, limitations and opportunities of machine learning for multiphase flows and reactors. 
The descriptions marked in red and blue indicate the main focus of this review. 

In this comprehensive review, we first provide a brief introduction to what ML is and 

why we do need it. The fundamentals of ML are also briefly summarized. We then survey, 

explore, analyze and discuss the current status and challenges of ML advances for multiphase 

flow, transport phenomena and chemical reactions from the following aspects (Figure 4): (1) 

Development of multiphase closure models of drag force, turbulence stresses and heat/mass 

transfer for the averaged CFD simulation and its acceleration; (2) Image reconstruction, 

regime identification, key parameter predictions, and optimization of multiphase flow and 
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transport field parameters; (3) Kinetics modeling (e.g., estimation of kinetic parameters and 

species source terms) and reaction conditions optimization. The specific survey processes and 

review summary are illustrated in Figure S3. Section 2 mainly highlights the benefits and 

challenges of ML promising for addressing longstanding problems in the research domains of 

chemical engineering and multiphase flow. Figure 5 shows the relationships among Sections 

2.1-2.3 and their role in multiphase reactor engineering. The main idea of this review follows 

the subject of mass transfer, momentum transfer, energy transfer and reactions, i.e. "Three 

Transfer Plus Reaction", which lay the foundations of multiphase reactor engineering. In 

particular, the developed ML-based closure models and the complete CFD models in Section 

2.1 can assist to improve the accuracy and efficiency of the estimation and optimization of 

flow, transport and reaction process parameters in Sections 2.2.3, 2.2.4, 2.3.2 and 2.3.3. 

Meanwhile, the obtained physics, measured process data and estimated parameters (e.g., flow, 

transport and kinetics parameters) from Section 2.2.1, 2.2.2 and 2.3.1 can contribute to more 

reliable and accurate closure models and CFD models in Section 2.1. All of these sections 

complement and promote each other, and will be useful for better understanding of 

multiphase flows and rational design, scale-up and optimization of multiphase reactors. 

Finally, Section 3 summarizes the under-addressing problems, highlights the emerging 

applications, and provides promising directions probably useful for the research community. 
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Figure 5 The relationships among Sections 2.1-2.3 and their role in multiphase reactor engineering. The 
descriptions marked in blue indicate the main topics of this review. 

2. Current status and challenges 

2.1 Machine learning for multiphase closure modeling and simulations 

Historically, extensive theoretical, experimental, and computational approaches have 

been proposed to capture the complex multiscale characteristics of multiphase flows and 

transport phenomena. Among these methods, the direct numerical simulation (DNS)26,27 has 

emerged as a powerful tool to resolve the full details of fluid flows without additional 

turbulence closures. Despite the exponential growth of computing power in the last decades, 

DNS of even a lab-scale multiphase flow device still demands extremely huge computational 

resources, which makes it still impractical for engineering design and optimizations of 

large-scale multiphase flow reactors. An alternative numerical method with much reduced 

computational cost is the large-eddy simulations (LES)28, which is filtered from 

Navier-Stokes (N-S) equations to separate the larger scales of motion. The additional term 

due to filtering procedure above needs to be closed and modeled by a sub-grid scale (SGS) 
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turbulence closure model. Another popular numerical alternative for simplified engineering 

approximations is the Reynolds-averaged Navier–Stokes (RANS) method. Similarly, the 

turbulence closure for the Reynolds stresses is required. A major problem is that the closure 

constants involved in the turbulence transport equations are usually determined empirically in 

order to solve these equations. Note that efforts are also made to use more accurate DNS and 

LES data to model these closure constants29. For multiphase flow such as the fluidized 

fluid-particle flow, the interactions between the phases further increase its modeling and 

understanding complexity. To efficiently approximate the characteristics of multiphase flow 

systems, one can perform the averaged methods including the Euler-Euler two-fluid model 

(TFM) based on continuity theory30 and the Euler-Lagrange approach31,32, e.g., CFD-discrete 

element method (CFD-DEM), CFD-discrete particle method (CFD-DPM). Again, these 

averaged multiphase methods should be closed by closures. 

So far, many closure correlations for descriptions of drag, turbulence stresses, heat and 

mass transfer coefficients have been formulated based on experimental data or DNS data. 

However, in many realistic cases, a major difficulty is that it’s still impossible to seamlessly 

integrate such multi-fidelity data into existing multiphase flow models18. In the research field 

of modeling and predicting multiphase flow and transport, the lack of universally reliable 

closure models underscores the demand for a transformative method. Fortunately, with the 

increasing computer resources and the available high-fidelity datasets, data-driven and 

physics-informed ML modeling can complement traditional methods and provide easy-to-use 

techniques to facilitate the development of new robust closure models for multiphase flow 

systems by mining hidden information from a dataset. The ultimate goal is to apply the 
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developed models for the design, scale-up, optimization, and control of multiphase flows and 

reactors. A conceptual workflow for conventional and ML-aided data-driven multiscale 

modeling and simulations is plotted in Figure 6. However, it is not an entire replacement for 

traditional physics-based modeling33. From a chemical engineering perspective, multiphase 

flow and transport phenomena problems in multiscale multiphase flow and reactor systems 

are often clarified into three different scales: microscale, mesoscale and macroscale (Figure 

6), but don’t limit it to just three scales. In multiphase flow and device systems, mesoscale is 

an intermediate scale characterizing the dynamic inhomogeneity (e.g., aggregation of bubbles 

and clustering of particles) and thereby bridging the microscale element (e.g., bubble, particle 

and droplet) and macroscale multiphase devices19,34. It should be noted that the single-phase 

fluid flow lays the foundation of multiphase flows. For example, the mechanistic 

understanding of flow/transport characteristics and physical closure models obtained from 

single-phase flow can be very useful for better understanding and modeling of multiphase 

flows. Therefore, this part will encompass review of closure models for both multiphase and 

single-phase flows. 

Table 1. Recent advances of machine learning applications for developing closure models. 

Topics ML algorithms; 

architecture, activation, 

loss functions, optimizer 

Data sources and 

feature inputs 

Research performance and 

contributions 

Research gaps and future 

remarks 

➢ Drag on each 

particle
35

 

➢ BPNN: 1 hidden layer; 

25 hidden neurons; 

Sigmoid; MSE 

➢ LES-IBM; 21780 

(75:15:15); Re, ϕ, 

xi, yi, zi 

➢ MSE=15% for 68% of particles 

(ANN with neighbourhood 

particle effect) vs. MSE=15% for 

46% of particles (Mean drag). 

➢ Further increase of prediction 

accuracy by adding more data 

points. 

 Drag 

correction
36

 

 ANN: 3 hidden layers; 

128, 64 and 16 nodes 

in each hidden layer; 

ReLU; Zero-one 

 Fine-grid TFM; 𝑢𝑠𝑙𝑖𝑝∗̃ , 𝜙̅ , ∇𝑃𝑔,𝑧̅̅ ̅̅ , 

Δfilter 

 Pearson r=0.99 of ANN vs. 

r=0.87 of the traditional method; 

Dramatic accuracy improvement 

due to introduction of filtered gas 

phase pressure gradient marker 

 Need to identify the 

dependence of filtered drag 

correction on filter size when 

introducing gas phase pressure 

gradient. 

➢ Drag on each ➢ PINN: 5 hidden layers; ➢ LES-IBM; 7260 ➢ Improvement of 7.09% average ➢ Improvement is not 
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particle
37

 128 hidden sizes; 

Linear; 

MRE+Loss_PHY 

(55:45); Re, ϕ, xi, 

yi, zi 

prediction performance (MRE) 

compared with Linear, RF and 

GB regression models. 

remarkable. Effects of 

upstream and downstream 

particles should be considered. 

 Drag 

correction
38

 

 BPNN: 5 hidden layers 

with 240, 120, 60, 30, 

15 hidden units, Adam 

to optimize learning 

rate, ReLU, Huber; 

XGBoost: 30 trees, 15 

max tree depth. 

 Fine-grid TFM; 

~1.525 × 107 

(60:30:10); 𝑢𝑠𝑙𝑖𝑝,𝑦∗̃ , 𝜙̅, ∇𝑃𝑔,𝑦̅̅ ̅̅̅, Δfilter 

 ANN: MAPE=9.85%, r=0.98; 

Xgboost: MAPE=11.33%, 

r=0.97. Remarkable accuracy 

improvement of 3-marker model 

vs. 2-marker model; Successful 

online integration of CFD with 

ML. 

 Limited to the simulation of a 

small domain; Mainly for 

dense fluid-particle flows 

while it needs to considering 

dilute flows. 

➢ Drag 

correction
39

 

➢ ANN: 1 hidden layer; 

15~20 and 5~9 hidden 

nodes 

➢ EMMS; 

~1.310× 107 

(70:15:15); uslip, ϕg, 

dp, ρp, ρg, μg, Dr 

➢ MSE=9.62, 8.66, 0.089%; Direct 

addition of material properties 

and reactor factors in the drag 

correction; Initial effort in 

ML-aided EMMS predictions 

➢ Difficult to quantify the 

improved accuracy because 

it’s dependent on the varied 

properties of gas–solid 

mixtures; Need to perform the 

case with evident variations in 

particle diameters. 

 RANS stress 

source term 

correction 
29

 

 RF: 100 trees, 5 

maximum tree depth 

 DNS, LES; q(x), 

e.g., dP/ds, Red 

 Relatively initial effort in 

quantification of RANS stress 

discrepancies using ML and 

demonstrating its merits. 

 Potential ill-conditioning of 

RANS-based stresses still 

challenge the solution of mean 

flow by improvements of 

Reynolds stresses. 

➢ RANS stress 

coefficient 

correction 
40

 

➢ BPNN: 2 hidden layers 

and 64 neurons in each 

hidden layers; 

Nonlinear 

➢ Limited 

experimental data; 

η1, η2, η3 

➢ R2=0.85~0.90; Optimizing the 

Spalart-Allmaras model 

coefficient to improve RANS 

based stress discrepancy. 

➢ Further improvements by 

using more elaborate 

experimental data. 

 LES stress 

coefficient 

correction
41

 

 DANN: 4 hidden 

layers; Nonlinear 

 DNS; 2×643 

(70:30); 3×D3` 

 R2=0.988~0.995; 

MRE=0.101~0.155. High 

accuracy without any fine-tuning 

by data-driven modelling of SGS 

coefficients; Relatively low cost 

and good generalization ability. 

 Need of more physics-based 

knowledge and constraints to 

integrate into SGS models; 

Further improvements of 

interpretability of DANN 

➢ Reynolds stress 

tensor 

modelling 
42

 

➢ DNN: 8 hidden layers 

with 30 nodes per each 

one, 2.5×10−7 learning 

rate; MLP: 10 hidden 

layers, 10 nodes in 

each one, 2.5×10−6 

learning rate; ReLU 

➢ DNS, LES, RANS; 

S, R 

➢ RMSE=0.14 DNN vs. 

RMSE=0.31 of MLP for duct 

flow. First attempt to embed the 

tensorial invariance features in a 

NN; Evidently improving 

predictions vs. baseline RANS; 

Bayesian optimization of 

hyperparameters. 

➢ Unable to perfectly 

approximate DNS results; 

Need to train and test data 

over a wider range of flow 

cases. 

 Solids stress 

modelling
43

 

 DNN: 5 hidden layers 

with 128, 128, 64, 64, 

32 and 32 hidden units; 

ReLU; Huber+MAPE 

 Fine-grid TFM; 

7.2×106 (80:20); 𝜙̅, 𝒗𝑠∗̅̅ ̅, ∇𝒗𝑠∗̅̅ ̅, Δfilter 

 MAPE=20~25%, r=0.80~0.97 vs. 

traditional correlation 

MAPE=60~95%; Early effort to 

applying ML for mesoscale solids 

 Without considering 

anisotropy of filtered solids 

normal stresses; Need of a 

posteriori analysis. 
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stress development. 

➢ Mass transfer 

coefficient 
44

 

➢ BPNN: 1 hidden layer 

with 14 nodes; SVR: 

Gaussian kernel 

function, 763 support 

vectors, 0.2357 kernel 

scale, 0.0036 bias; 

Linear ε-insensitive 

➢ Experimental data; 

814 (BPNN: 

70:15:15; SVR: 

90:10); UG, σ, do, 

Ad/Ar 

➢ BPNN: MAPE=9.64% and 

R2=0.9819, SVR: MAPE= 7.26% 

and R2=0.9852 for the volumetric 

gas-liquid mass transfer 

coefficient kLa; Good 

generalization performance of 

SVR. 

➢ Relatively limited number of 

experimental data points; a 

wider range of data should be 

introduced; Further 

application of ML for 

optimizing hyperparameters 

instead of empirical tuning. 

 Heat transfer 

coefficient 

correction
45

 

 BPNN: 4 hidden layers 

with 16, 8, 8 and 1 

hidden units in each 

one; Sigmoid; Huber; 

 Filtered TFM data; 

2500 (80:20); 𝜙𝑔̅̅̅̅ , ∆𝑇̃, Δfilter 

 MAPE=11.14%, r=0.98 vs. 

traditional correlation 

MAPE=21.11%, r=0.96; 

Boosting accuracy and discovery 

of new closure marker. 

  Absent validation with 

experiments; The closure 

feature inputs should be 

rendered in a dimensionless 

form. 

Note: The critical comments above may not be adequate and we present the suggestions with the hope that 

readers and newcomers may obtain some possible inspirations or thoughts from this table. 

 

Figure 6 Machine learning-aided multiscale modeling of gas-particle flows. The DNS simulation contour 

of fixed particles is collected from. The DNS simulation contour was adapted with permission from ref 46. 
Copyright 2015 Elsevier. The fine-grid simulation contour was adapted with permission from ref 34. 
Copyright 2021 Elsevier. The coarse simulation contour was adapted with permission from ref 25. 
Copyright 2016 American Chemical Society. The full-system coarse simulation contour was adapted with 
permission from ref 47. Copyright 2021 Elsevier. 

2.1.1 Drag closure modeling 

Interphase drag modeling plays an essential role in the simulation of large-scale 

multiphase reactors and the identification of multiphase flow states48. Recently, increasing 

attention has been paid to the development of drag models based on ML techniques. Table 1 

briefly summarizes recent advances of several typical applications of ML for modeling of 
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drag closures, including the specific ML algorithms (including their structures, activation and 

loss functions), data sources/sizes, feature input variables, prediction performance and 

contributions, possible research gaps and future remarks. The studies on drag closure 

modeling may follow the categorizations below: 

(1) Data-driven drag modeling of flow passing fixed particles. Most of the studies 

have used NN to directly predict the drag force on each particle or to indirectly predict the 

drag force by introducing a drag correction factor. For instance, He and Tafti35 trained a 

backpropagation neural network (BPNN) based data-driven drag model using the data 

produced by the highly-resolved large-eddy simulation (LES) of fixed particle assemblies via 

their in-house code47. This proof-of-concept work revealed that the trained NN can increase 

the prediction precision of the drag force on each particle with the addition of the relative 

neighbor particle positions as NN inputs: MSE=15% for 68% of particles (ANN) vs. 

MSE=15% for 46% of particles (Traditional mean drag). Here, we suggest that further 

increase prediction accuracy by adding more data points is necessary despite their prediction 

improvement is evident. In fact, many studies similar to the data-driven drag closure above 

only consider the fluid bypassing fixed spherical or non-spherical particles50-52 while the 

particle velocity fluctuations are not considered. It is thereby suggested that the reliability of 

the constructed data-driven model using the data source from such a way still needs further 

verification and improvement. 

(2) Data-driven drag modeling of flow passing dynamic particles. Commonly, the 

actual drag experienced by dynamic particles may significantly differ from the drag 

calculated from flow passing static particles. Thus, it is desirable to conduct highly resolved 
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simulations of dynamic fluid-particle flows to generate data used for model training and 

learning. Luo et al.53 constructed the ANN-based drag closure model via the introduction of 

the additional parameters that characterize the particle positions and velocity fluctuations. 

The prediction results by the ANN-based drag models approximated to the direct numerical 

simulations-discrete element method (DNS-DEM) data much better than those by pure 

physics-based models. Note that the particles simulated in the above study belongs to Geldart 

type D with a diameter larger than ~600 μm54. An observable weakness is that the formation 

of complex clustering structures in real small-particle fluidized bed systems (Geldart type A 

and B) and its significant impact on fluid-particle transport and reaction behavior are unable 

to be adequately captured by simulations of large-particle systems (Geldart type D). In fact, 

the particles widely encountered in industrial reactors such as the fluid catalytic cracking 

(FCC) riser and the methanol-to-olefins turbulent fluidized bed reactor belong to Geldart 

types A and B particles. To bridge this gap and accurately understand clustering structures, 

researchers proposed NN-based and convolutional neural networks (CNN)-based data-driven 

models to predict the mesoscale drag correction so that the trained model can be used for 

coarse TFM or coarse CFD-DEM simulations of real gas-solid flows 36,38,55,56. Particularly, 

Zhou and coworkers55 reported that the neighboring flow properties such as the mesoscale 

fluid pressure gradient could be added as feature inputs to markedly improve prediction 

performance. However, the relative importance and relevance between the newly introduced 

variables and the old variables may need to be identified. This is because the filtered drag 

correction is nearly independent of filter size when introducing the closure marker of the gas 

phase pressure gradient in traditional physics-based modeling45. Moreover, whether the 
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trained model can be well extrapolated to different gas-solid flow patterns is also an 

important issue in NN modeling57. Based on BPNN and eXtreme Gradient Boosting 

(XGboost) methods, Zhu et al.38 proposed data-driven mesoscale drag correction models and 

optimized the input markers to boost the prediction accuracy. The study demonstrated that the 

fluid phase pressure gradient can serve as an excellent feature input of the ML for improving 

predictions of the filtered drag correction. The developed data-driven model was then 

integrated with a CFD solver and validated with experiments under different flow patterns. 

However, the data source of this study is generated by simulations of a relatively small 

domain where there are possible numerical artifacts since the clusters or bubbles can grow to 

the domain scale and hence lead to unrealistic settlement velocity. Their later study further 

found that the correction model can still perform well by using the closure maker of the fluid 

phase pressure gradient in the absence of filter size45. Except for the use of simulations to 

generate datasets, theoretical methods such as the energy minimization multiscale (EMMS) 

can also provide data for training. Nikolopoulos et al.39 developed a novel ANN-based 

framework via the data collected from a custom-built FORTRAN algorithm solving the 

original EMMS equations over numerous material properties. The learned ANN-EMMS was 

tested by simulations of a pilot-scale circulating fluidized bed (CFB) carbonator. The 

prediction difference of mean pressure drop predictions between the CFD-ANN-EMMS and 

CFD-EMMS was 11.29% while that of CO2 concentration at the reactor exit was nearly 

ignorable. There is a possible issue about the difficulty to quantify the improved accuracy as 

this is dependent on the varied properties of gas–solid mixtures in the reactor. Therefore, it is 

suggested to further validate the effectiveness of CFD-ANN-EMMS via the cases with 
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evident variations in particle properties. More recently, the EMMS group58 further extended 

to propose a more generalizable ANN-EMMS methodology for simulations of dense 

gas-particle flows over a broad variety of fluidization conditions and material properties. The 

developed model was validated by five fluidized beds and could reasonably predict gas-solid 

fluidization under different flow conditions and material properties. 

In summary, many researchers have attempted to apply ML-based data-driven 

approaches to model and predict the drag force closure. Compared to traditional mean drag 

correlations, the applications of ML approaches for calculations of drag force reveal several 

primary advantages: Once the data-driven drag closure is obtained, it’s efficient to accurately 

calculate the drag force with a lower requirement of computer memory storage. This is 

related to the fact that for example, for a trained NN model only its structure, weights and 

activations are stored. However, a major weakness is that most of the above contributions 

have used NN as a black-box approximator to predict the drag force closure with low 

interpretability. In such a black-box context, the ML model may be difficult to give physically 

consistent or plausible approximations because of its generalization capability associated with 

a lack of domain knowledge as constraints in the structure of ML algorithms. 

(3) Knowledge-informed drag modeling of flow passing stationary particles. To 

solve the major disadvantages above, recent works have tried to enforce the prior domain 

knowledge into the ML architecture and a particularly increasing attention has been paid to 

the PINN proposed by Raissi et al.59. Inspired by such a concept, Muralidhar et al.37 

expanded to propose a PhyNet model which embeds the respective estimations of the 

pressure and velocity fields around a particle as the physical loss functions into the NN 
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architecture for learning the drag force. PhyNet can lead to improvements of a 7.09% MRE 

compared with Linear, Random Forest (RF), and Gradient Boosting Decision Tree (GBDT) 

regression models. However, this improvement seems not very remarkable and the effects of 

upstream and downstream particles are suggested to be considered for possible future 

improvements. Analogous to PINN above, Moore and Balachandar60 improved the 

performance of a pure data-driven nonlinear regression model by using the model form 

provided by their previously-developed point-particle force model61. The proposed 

physics-informed model can retain both the physical and data-driven models’ advantages and 

enable the decreased error of the physical model for all cases. Despite the simplicity and 

efficiency of the nonlinear regression algorithm, it’s hard to deal with the complex 

approximation tasks with high dimensionality and nonlinearity. Besides, one may question 

whether it is sufficient to train an effective data-driven model using a limited dataset 

generated from expensive PR-DNS. That is, whether the trained model is able to learn 

generalizable patterns from a relatively small dataset. Despite the integration of prior 

knowledge into the ML architecture, there may be still a possible risk of either incapability of 

minimizing the overall loss function or overfitting when the number of hyperparameters 

greatly grows. This is because the model complexities significantly increase with the 

increasing amount of hyperparameters and the model will simply adapt to approximate the 

dataset for higher prediction accuracy. More recently, researchers attempted to incorporate 

new features into the architecture of PINN inspired by physical observations in constructing 

the particle-laden flow model. To improve generalizability, Seyed-Ahmadi and Wachs62 

introduced two main features into the architecture of the PINN model, including the 
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superposition of pairwise particle-to-particle interactions and sharing hyperparameters among 

NN blocks that model the effect of neighbors. In Figure 7, instead of simultaneously feeding 

the relative positions of all influential neighbors to a single fully-connected NN block, effects 

of individual neighbors are separated into various NN blocks. The number of free parameters 

can be remarkably decreased and model complexity is controlled without loss of accuracy. 

 
Figure 7 Schematic illustration of a ML model incorporating prior domain knowledge into the 
architectural design of the NN for learning the force and torque in flow passing fixed spherical particles. 
Adapted with permission from ref 62. Copyright 2022 Elsevier. 

(4) ML-based drag modeling of gas-liquid flows. Overall, most of the above 

ML-based data-driven and physics-informed studies have been focused on the improvement 

of modeling gas-solid drag force while researchers have paid much less attention to 

data-driven modeling of gas-liquid drag force that has equivalent importance as the gas-solid 

drag force. On the other hand, scientists have made contributions to applying ML for 

gas-liquid bubbly flows while these significant works are mainly concentrated on quantifying 

uncertainty in coarse-grid multiphase-CFD simulations of such two-phase flows63. Therefore, 

it is suggested to make an attempt to constitute effective gas-liquid drag closures for efficient 

coarse simulations of bubbly devices such as bubble columns. 

Besides, another important aspect is that most of the above contributions have used NN 
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to assist the development of predictive drag models. However, a comprehensive 

cross-comparison investigation of different ML techniques applied for drag model 

development has been rarely reported. Further investigations are suggested to be specially 

devoted to the above consideration. 

2.1.2 Turbulence closure modeling 

Turbulence has been listed as one of the 125 most challenging scientific issues by the 

Science journal64. It has been a long-standing obstacle to precisely represent the turbulence 

characteristics, which is mainly due to the persistent fluctuations and strong chaos of flow 

and transport phenomena spanning over a wide range of active spatiotemporal scales. Despite 

the pioneering theoretical and computational contributions made to successfully 

understanding and modeling flow turbulence, there are still weaknesses to overcome and a 

predictive, robust, and accurate turbulence closure is still an underexplored issue. Recently, 

increasing interest is devoted to applying ML to turbulence closure modeling, especially for 

the single-phase flow65,66. This kind of turbulence closure modeling study may include but 

not limited to the following categories: 

2.1.2.1 Modification of the source terms in RANS models 

This kind of study mainly applied ML to quantify and model the discrepancies in the 

Reynolds stress tensor between the high-fidelity simulation and the RANS simulation. 

Researchers modified or supplemented the original stress source term in the RANS model to 

improve its accuracy, namely, by the inclusion of a correction factor or an additional source 

term in the model29,67. As an early example, Xiao et al.68 employed an iterative ensemble 

Kalman approach to absorb the prior knowledge and observations in a Bayesian framework, 
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which enables significant reduction of the discrepancies and achieves much better 

performance than the existing black-box ML models. Leveraging the data from DNS of 

single-phase turbulent flow, Parish and Duraisamy67 applied Gaussian processes (GP) to infer 

a modification of the production term in the k-w equation in RANS modeling. However, there 

are several possible weaknesses to this kind of study. First, it’s still an open question to infer 

the full Reynolds stress field from the frameworks above. This is mainly because the 

discrepancy space of Reynolds stresses has high dimensionality and nonlinearity while 

Bayesian framework and GP are not effective for such a complex problem. Second, the 

correction model is constructed for a specific RANS model while different RANS models 

lead to different uncertainties. Therefore, the obtained modification model may be only valid 

for a specific RANS model, which will limit its universality. Third, Table 1 shows that most 

of these contributions have directly used the dimensional variables such as velocity field 

distributions to construct ML models, which further limits its generalization performance. We 

suggest that it is essential in further efforts to introduce adequate non-dimensional variables 

(e.g., Reynolds and Froude numbers) to recover characteristic flow properties and thereby 

make the model more generalizable. 

2.1.2.2 Surrogate modeling of the full turbulence stress 

Many researchers applied ML methods for directly mapping the Reynolds stress tensor 

and subgrid-scale stress to flow variables based on the data obtained from highly-resolved 

simulations such as DNS. Early work of Sarghini et al.69 was contributed to training an SGS 

stress model aided by a multilayer feed-forward ANN using the data of LES, which opens the 

possibility to utilize ANN methods to identify turbulent flow dynamics. A recent study by 
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Wang et al.70 used RF and ANN to train the data-driven SGS closure for LES simulations. 

Zhu et al.71 directly reconstructed an ANN-based data-driven model for mapping the filtered 

flow variables to the turbulent eddy viscosity and obtained a complete replacement of the 

original turbulence closure model. Note that all of the above three investigations are in the 

context of black-box ML modeling while no domain knowledge or physical observations was 

utilized to devise the architecture of ML. An important recent progress is to improve the 

black-box induced defect by the approach of physics-informed ML. Ling et al.42 proposed 

invariant deep neural networks (DNN) based architecture to train and model the anisotropic 

Reynolds stress tensor using high-fidelity simulation data and the hyperparameters were 

rigorously optimized by a Bayesian method. To the best of our knowledge, this’s the first 

attempt to embed the tensorial invariance features in a NN. Although the DNN above is 

unable to perfectly approximate DNS results, it can capture some important turbulence 

properties that the traditional model fails to characterize. In addition, there is a need to train 

and test data over a wider range of flow cases. Inspired by the PINN modeling above, 

researchers attempted to identify input features by introducing non-local features72 or a 

systematic physical procedure73 to generate and evaluate the various mean flow features on 

stress tensor predictions. Scientists also proposed to separately model linear and nonlinear 

parts of the Reynolds stress tensor via ML73. A recent investigation of Park and Choi74 was 

performed to train different ANN-based SGS models with different feature inputs using DNS 

data. More recently, the hybrid closure was proposed to model the stress in complex 

multiphase flows. For example, Freund and Ferrante75 utilized the standard Smagorinsky 

SGS in the carrier fluid while used NN to estimate the SGS closure terms at the interface. To 
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sum up, the physics-informed strategies like introducing physical observations or 

understanding into the model architecture can help to reduce input complexity and improve 

accuracy. Here, we provide several challenges of this group of modeling methods. First, one 

of the challenging issues arising in direct surrogate modeling of the full turbulence stress is 

how to select and optimize feature input variables, in particular, based on physical 

mechanisms and laws (e.g., the use of various scalar rates, selection of invariants and 

dimensional analysis methods). However, it’s found that lots of existing studies have 

empirically tuned the hyperparameters. We thereby suggest that a more rigorous 

hyperparameter optimization using the Bayesian framework and Gaussian processes deserves 

more future efforts. Second, reducing the dimension and complexity of the DL model is an 

important direction. Let’s take NN modeling as an example. Modeling the full Reynolds 

stress closure requires complex structures such as deep neural networks which greatly 

increases the number of hyperparameters for a high-dimension flow problem. This will 

significantly introduce the computational burden and reduce the overall computational 

efficiency although such a method does improve the prediction performance of turbulence 

closure. So, the balance between the model accuracy and computational cost should be taken 

into account. 

2.1.2.3 Modeling of turbulence stress model coefficients 

Given that two-equation models for describing turbulence (e.g., k-ε turbulence model) 

are widely used but inadequate for many complex turbulent flows of engineering interest, 

Yarlanki et al.76 attempted to employ an ANN algorithm to estimate and optimize the model 

constants of the k-ε model. Different from the above study, Matai and Durbin77 trained a 
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decision tree algorithm to create zones for establishing a zonal k-ω model with its coefficients 

optimized. Wang and coworkers41,78 leveraged NN and deconvolutional NN to construct the 

model coefficients of the SGS anisotropy stress models. They established the nonlinear 

mapping between the filtered velocity inputs and unfiltered velocity outputs based on a 

six-layer fully connected NN. The constructed model had high accuracy (R2=0.988~0.995; 

MRE=0.101~0.155) without any fine-tuning and could improve the prediction accuracy of 

the SGS stress as compared with traditional methods such as the approximate deconvolution 

approach79. However, there is a need to integrate more physics-based knowledge and 

constraints into DNN in order to improve its interpretability. More recently, Jiang et al.80 

designed an augmented DNN structure that contains two flexible parallel ML-based modules 

for data-driven turbulence modeling with promising universal interpretability. The key idea of 

this work is that (a) a frame- and scale-invariant properties, (b) regularization constraints on 

both trainable parameters and closure coefficients, and (c) fairness constraints were enforced 

in the model training (Figure 8). The proposed framework was able to extract the structural 

bases and closure coefficients from data, both of which are integrated through a 

multiplicative layer to constitute the stress anisotropy tensor applicable for coarse RANS 

simulations. Despite the benefits above, it is essential to further assess the model over other 

untested multiple classes of complex flows. From a purpose of engineering use, it is an 

important aspect to assess the newly improved turbulence model by incorporating it into a 

CFD solver81. Another important lesson is that although physics-informed ML can 

substantially increase the performance of interpretability and extrapolation, special care 

should still be paid to some strategies preventing overfitting such as regularization, dropout 
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and early stopping during training and cross-validation of the learned models since NN 

modeling are easily prone to overfitting associated with its fundamentally interpolative nature. 

Here, it’s also suggested that it is necessary to systematically explore a complete and compact 

set of input features because there is a possible risk of destroying the generalizable ability 

related to incompleteness and redundancy of input features. 

 

Figure 8 A workflow of the ML-augmented methodology for data-driven turbulence modeling with 
universal interpretability. The workflow contains several phases: Phase I: Designing the data-driven 
framework with physics-guided knowledge; Phase II: Training the DNN in a fair and robust way; Phase III: 
Testing the DNN. Adapted with permission from ref 80. Copyright 2020 AIP Publishing. 

So far, most of RANS turbulence closure models used for multiphase flows were 

developed based on single phase flows in the absence of dynamic solid particles, droplets and 

bubbles. Compared with single-phase flow, multiphase flows such as gas-liquid and 

gas-particle flows do have more complex characteristics occurring in multiphase devices. 

Based on the resolved data from DNS of bubbly up-flow in liquid, Tryggvason and 

coworkers82,83 employed NN to develop the relations for the closure terms in TFM 

simulations of the averaged flow. The overall predictions by their resulting closure relations 

agree reasonably well with DNS data which is not part of the training data set. Meanwhile, 

Table 1 shows that fine-grid simulations were also used to generate the data sets for learning 
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multiphase turbulence stresses in gas-liquid flows84 and gas-particle flows85. Particularly, the 

kinetic theory of granular flow (KTGF) is often used to close the solid stress for gas-particle 

flow systems. In the context of a coarse-mesh TFM, the mesoscale solid stress closure needs 

to be considered in addition to the microscale solid stress (i.e., solid stress predicted by 

KTGF in the standard TFM), which is about an order magnitude smaller than the mesoscale 

solid stress86. In this regard, Ouyang et al.85 recently conducted ANN-based data-driven 

mesoscale stress modeling utilizing the data from fine-grid simulations of inhomogeneous 

gas-solid flows. It was found that the integration of different loss functions contributes to the 

improved prediction performance of solids stress as compared with the use of a single loss 

function. A systematic evaluation of closure markers as ML inputs revealed that the 

mesoscale solid stress is principally dependent on the additional anisotropic markers, namely, 

the mesoscale solid velocity and its gradient. Notably, the prediction accuracy of the above 

two studies is dependent on the simulation accuracy itself. Thus, more accurate numerical 

methods like DNS-volume of fraction (DNS-VOF) or DNS-DEM are suggested to be 

performed to generate datasets. 

In addition to the application categories discussed above, recent studies have used sparse 

regression to develop algebraic Reynolds stress closures87,88. The key benefit of a stress 

closure in an algebraic form with Galilean invariance and interpretability is not only its 

equivalent prediction performance to that of NN modeling but its pluggable integration into 

the existing CFD solvers. Such a very potential strategy was extended to train a multiphase 

turbulence closure for fluid-particle flows by leveraging data from highly-resolved 

Eulerian-Lagrangian (E-L) simulations89. The efforts above highlight the possibility to 
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decrease the complexity in integrating the data-driven algebraic closure with the CFD solver 

due to the closure expressed in an algebraic form but still maintaining its predictive accuracy. 

To sum up, this part discusses some key advantages, weaknesses and potential directions 

of data-driven ML modeling and physics-informed ML modeling of flow turbulence. We also 

note that relatively less studies have been focused on ML modeling of cluster-induced 

turbulence in gas-solid flows and bubble-induced turbulence in gas-liquid flows. In fact, 

two-phase flows are very often encountered in chemical engineering devices and the 

two-phase interactions further increase the complexities of flow turbulence as compared with 

single-phase flow turbulence. Thus, it is of fundamental importance for future investigations 

to better understand and predict two-phase flow turbulence behavior assisted by ML. 

2.1.3 Heat and mass transport closure modeling 

Generally, multiphase flows are unstable, nonlinear and nonequilibrium in nature and 

their coupling with heat and mass transfer mechanisms further leads to the increasing 

difficulty in accurate simulations and measurements. Due to such complexities, the prediction 

of multiphase transport phenomena has been heavily relied on semi-empirical models or 

empirical correlations and is still a challenging task. So, a possible question is "Can heat and 

mass transfer phenomena be well understood and predicted by a transformative paradigm 

such as ML? If so, how and why?" We will try to answer these questions by reviewing recent 

advances. The advantage of ML-based techniques for multiphase flow transport is that they 

can introduce the pronounced reduction of the effort to the development of multi-variable 

transport phenomena models and can easily achieve the expansion of the parameter domain. 

Due to these advantages, ML for data-driven and physics-informed heat and mass transport 
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modeling in multifarious scientific and engineering applications is gaining popularity, 

especially in thermal engineering90. Note that our main attention in this section is paid to 

modeling the interphase heat and mass transfer closures which can be used in CFD solvers or 

engineering design. Most of these works have been focused on direct modeling of heat/mass 

transfer coefficients91-94 or modeling the indirect variables that determine the transfer 

coefficient such as thermal conductivity, Nusselt number95, Sherwood number96 and Prandtl 

number97. Bansal et al.98 mined the data from the literature over 22,000 experimental 

conditions and then used ANN and SVM methods to train the data. The trained model was 

used to predict the interphase mass transfer in terms of the fluid phase Sherwood number for 

trickle bed reactors. Fairly good accuracy of estimations for the data sets over a wide range of 

operating conditions was achieved. Zhou et al.99 compared different ML algorithms including 

ANN, Adaptive Boosting (AdaBoost), RF, and XGBoost in order to evaluate their prediction 

performance for flow condensation heat transfer in mini/micro-channels. In particular, the 

relative importance of extensive feature inputs was also explored in detail. The results 

revealed that ANN and XGBoost present the best prediction accuracy for the testing dataset 

with 6.8% and 9.1% MAEs. A key benefit of both studies above is that the authors collected 

extensive datasets across a wide range of flow cases and can prevent overfitting well. 

Meanwhile, this may also introduce the errors related to the use of different experimental 

datasets measured by different researchers. A possible future direction for this issue is 

suggested to introduce a correction into the ML architecture in order to calibrate the trained 

model. Similarly, Kojić and Omorjan44 used BPNN and SVM to estimate mass transport in an 

external-loop airlift reactor. The prediction accuracy is (1) BPNN: MAPE=9.64% and 
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R2=0.9819; (2) SVR: MAPE=7.26% and R2=0.9852 for the volumetric gas-liquid mass 

transfer coefficient kLa. Zhao et al.96 applied a principal component analysis (PCA) approach 

to investigate mass transport of water deoxygenation in a rotor-stator reactor. The established 

PCA regression model could well estimate mass transfer coefficients with deviations within 

15% as compared with experimental values. Kwon et al.100 employed a RF method to model 

the convection heat transfer in a cooling channel present with varied array geometries. The 

data collected from numerical simulations of the channel with variable rib geometries were 

used for training and testing the ML model. It was observed that ML predictions approximate 

closely to the test dataset (R2>0.966). Qian et al.101 proposed a XGBoost-augmented model 

for predictions of the heat transfer coefficient in oscillating heat pipes. They established 580 

sub-CART trees for obtaining superior prediction results even based on small-scale data. 

However, there is a general concern for these four works, that is, only a relatively limited 

number of data points were collected. This may lead to a consequence that once the tested 

conditions are out of the span used for training, the extrapolation results will not be robust 

and reliable. Therefore, a wider range of data covering more flow conditions is suggested to 

be introduced to enhance the model generalization performance and reduce the possibility of 

overfitting. Moreover, one may perform further applications of optimization methods to 

systematically optimize hyperparameters instead of manually tunning. Besides, some 

researchers have also devoted to applying ML to study heat and mass transfer inside porous 

media102-105. However, ML has not yet witnessed extensive adoption to problems of transport 

phenomena accompanied by chemical reactions in multiphase reactors. To tackle this issue, 

Zhu et al.45 implemented ANN-based data-driven modeling of heat transfer and mass transfer 
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accompanied by chemical reactions in gas-particle fluidized bed reactors, with a prediction 

accuracy of MAPE=11.14%, r=0.98 vs. the traditional correlation MAPE=21.11%, r=0.96. 

The key advance of this work is the discovery of a new closure marker (e.g., the mesoscale 

interphase temperature difference) as the additional feature input and thus boosts the model 

performance. Despite the improvement, we suggest that the introduced closure feature input 

should be rendered in a dimensionless form to make it more general. 

According to our survey, including the discussion above, it was found that ML-aided 

predictive modeling of heat transport in thermal energy-related devices and systems has 

become an active research area. On the other hand, heat and mass transport phenomena are 

also widely encountered in chemical engineering devices such as fixed bed reactors, which 

are utilized to produce billions of dollars of chemicals106. Despite this critical importance, 

ML-assisted understanding and modeling of transport phenomena especially accompanied by 

chemical reactions have not been intensively studied for better design, optimization, and 

scale-up of chemical process devices. In the future, it is still a major challenge for scientists 

to discover robust chemical reaction engineering (CRE) models and to identify the hidden 

patterns in the data for chemical reactors106. A possible weakness for most of the researches 

we discussed above is that they are theory-agnostic black-box models while much less recent 

studies have turned to the development of physics-informed ML models such as PINN for 

heat transfer problems107,108. Following the PINN modeling of fluid dynamics, researchers 

typically trained a PINN heat transfer model by incorporating the residual of the heat transfer 

governing equations into the loss function. And the trained PINN should satisfy the heat 

transfer PDE. It is considered that PINN modeling of transport phenomena will be of 
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significance in better generalization performance. 

In addition to the sub-model closures discussed above, some other closure coefficients 

or parameters such as the lift force coefficients109,110, diffusion coefficients111, interfacial 

area112-115, curvature116,117 and droplet/bubble size118,119 should also be informed in advance in 

Eulerian-Eulerian (E-E), E-L or VOF simulations of gas-liquid, gas-solid and gas-liquid-solid 

flows. Despite the importance of the lift coefficient calculation in TFM simulations of 

gas-liquid flows, few reports have used ML to aid in direct data-driven modeling of lift force 

in such flows. Bao et al.120,121 proposed a DL-based data-driven method, i.e., 

feature-similarity measurement122, to indirectly correct the interfacial momentum closures 

(e.g., drag, lift, wall-lubrication, and turbulent-dispersion forces) in coarse-grid CFD 

simulations of gas-liquid flows. The authors applied a three-hidden-layer feedforward ANN 

method to train and learn the differences between the high-fidelity data (i.e., fine-grid 

simulation and experimental data) and low-fidelity data of coarse-grid simulations closed by 

empirical interfacial closures, and then modified such discrepancies to improve coarse 

simulation predictions. Moreover, researchers used ML as a predictive tool to estimate the 

interfacial area and droplet/bubble sizes112,113,118,119 in gas-liquid two-phase flows. 

Tryggvason and coworkers117 developed a viable ML-based method to extract a functional 

relation between the volume fractions and the curvature. The method can return the curvature 

and specific shape in a VOF simulation solver for numerical parameters. Despite the 

advantages in prediction accuracy, the authors also suggested that the convergence under 

mesh refinement cannot be guaranteed without an explicit order. Patel et al.116 further 

promoted to deeply analyzing such a promising ML-based method from several different 
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aspects such as methodology of data generation and model selection using different interface 

shapes when coupled with a multiphase flow solver. Their results confirmed again that 

ML-based data-driven modeling that is feasible for accurate computation of the curvature can 

easily outperform the traditional approaches and even reach the prediction performance of the 

height function approach in some cases tested. 

 

Figure 9 A workflow of data exchange architecture for integration of CFD and machine learning tools. 
Adapted with permission from ref 38. Copyright 2020 John Wiley and Sons. 
 

2.1.4 Machine learning-accelerated CFD simulations 

In the last decades, real-time simulations of multiphase flows with complex multiscale 

nature are feasible only in the case of certain restrictions although the computing power has 

achieved huge advancements. High-fidelity DNS of flows and devices is still computationally 

prohibitive and thereby impractical for most engineering applications. Therefore, attempts 

have always been made to accelerate simulations aiming to solve this long-standing daunting 

problem123,124. To accelerate simulations, one may consider what algorithms can be used and 
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how these algorithms can be performed to speed up simulations with adequate accuracy while 

they do not compromise generalization ability. Fortunately, ML can be applied to accelerate 

real-time simulations and such kind of major efforts may be categorized into the following 

types (except for hardware acceleration): 

(1) Data-driven surrogate modeling of the entire N-S conservation equations using 

pure ML. That is, the full N-S simulations will be replaced with a pure ML model as an 

approximator. One of the typical examples for this group of studies is to use long short term 

memory (LSTM) network to learn and approximate the time series fluid flow structure data125. 

Such a black-box method is more efficient as compared with extremely time-consuming 

step-by-step iterations, whose computational speed and numerical stability are heavily 

constrained by grid resolution and time step in traditional solution approaches of N-S 

equations such as finite difference and finite element methods126. As we have discussed 

previously, a key disadvantage for a pure ML model is its relatively poor extrapolation and 

interpretability since the underlying domain knowledge is absent in such kind of model. 

When using a pure ML method, one has to be very cautious and struggle with the model 

generalization performance in order to make the model still valid out of the dataset span that 

was originally utilized for training. In summary, data-driven surrogate modeling of the entire 

N-S conservation equations using a pure ML can be extremely efficient but its generalization 

ability is still an open question. 

(2) Data-driven and physics-informed closures for coarse simulations. The learned 

closures in Sections 2.1.1-2.1.3 can be then integrated into CFD solvers to close coarse 

simulations such as the RANS single-phase model, TFM or CFD-DEM simulations (One 
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may also call them "averaged models".). Note that in this part the principal effort is to show 

how these closures can be embedded into a numerical solver and how the simulations can be 

accelerated. For example, the proposed data-driven mesoscale drag and solids stress models 

were successfully integrated with the coarse simulation via a data loader (Figure 9)38,85. It 

was found that the computational speed of the coarse-grid CFD-ANN simulation is decreased 

by about 10% as compared with the conventional coarse-grid CFD model38. The reduced 

speed was due to invoking the data loader in each time step. Although the introduction of the 

data loader does not affect computational cost significantly, the development of such a data 

loader introduces additional complexity as the data-driven models are probably developed by 

different ML platforms and have a relative lack of universality. Another typical kind of study 

is to apply the DL method to accelerate DEM simulations through direct calculation of 

particle-particle and particle-boundary collision interactions in a numerical solver. This is 

mainly motivated by the fact that DEM’s applicability is remarkably limited by the great 

computational expense due to the detection and computation of collisions. In particular, Lu et 

al.127 trained and tested a CNN model using the datasets from the DEM simulations of 

granular flow using MFiX solver and the TensorFlow accelerated via a GPU. Notably, they 

proposed a multi-scale loss function to reduce the model fluctuations associated with training 

steps. The reported method can accelerate DEM computation speed by orders of magnitude. 

Altogether, compared with highly resolved simulations, coarse simulations are much faster 

and satisfy a short turnover duration required in engineering decisions128. Despite its benefit 

to remarkably reduce the computational cost, in fact coarse simulations still need huge 

computational resources for large-scale flow devices. For example, in industrial gas-solid 
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FCC riser flow reactors, the mesh resolution requirements are ~10−3 m, which is 

computationally prohibitive for reactor-scale simulations (100~101 m). Furthermore, if one 

uses DEM or coarse DEM to track the dynamics of each particle, it will further greatly 

increase the computation cost since 1012~1014 particles are generally present in such riser 

reactors. This major limit calls for the emergence of a new paradigm in further efforts. 

(3) Knowledge-informed ML solution of conservation equations. In efforts to 

improve the disadvantages in (1) and (2) above, scientists have performed 

knowledge-informed ML to accelerate simulations from different aspects such as acceleration 

of Eulerian fluid simulations or acceleration of Lagrangian particle dynamics simulations. 

Particularly, Ladický et al.129 developed a novel ML-based regression forest method allowing 

for a large time step to estimate the discrete particle movement for smooth particle 

hydrodynamics simulations. More specifically, a feature vector that directly modeled 

individual forces and constraints from N-S conservations was designed to enhance the 

generalization capability of providing reliable predictions of particle positions and velocities. 

The advantage is that the model can quickly approximate the next-frame position and 

velocity of the current particle according to the state input of the neighboring particles. A 

weakness is that this method might not be directly extended to Euler fluid simulations. To 

address this problem, Tompson et al.130 trained a CNN solution of the Poisson equation 

offline, and then used it to replace the preconditioned conjugate gradient solver of pressure 

projection in Euler fluid simulations. Their novel unsupervised strategy could solve a large 

sparse linear system with numerous free parameters in the incompressible Euler equations 

with a standard operator splitting approach. The presented real-time simulations with a good 
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generalization ability outperformed the data-driven approaches recently proposed in the 

literature. Another recently notable acceleration progress is that the Google research team131 

replaced the traditional solver component mostly affected by the resolution loss with its 

learned components (i.e., learned interpolation and learned correction) from high-fidelity 

simulation data, that is, the data-driven discretization solution is used to interpolate the 

differential operator into the coarse grid without sacrificing accuracy or generalization in 

coarse-mesh simulations, as shown in Figure 10. DL-based time-varying predictions 

achieved the same accuracy as baseline DNS while it utilized an order of magnitude coarser 

mesh than that conventionally required in DNS. Note that this method remained stable during 

a long-time evolution process. Here, further considerations regarding this work are provided: 

First, in their final generalization test of 2D simulations, the maximum Re is limited to 4000, 

and there seems almost no visible inertial region, which may motivate readers to consider 

how much small-scale structures can be captured. Future efforts are suggested to test the 

model performance at a much higher Re regarding that it’s only a 2D simulation. Second, 

statistics only give an energy spectrum and vorticity correlation function, and other statistics 

may also be given in order to make it more convincing to readers. Besides, for all of the 

works above, one key challenge is that the coarse-grid simulation using data-driven or 

physics-informed ML closures appear to be more efficient than the current group of methods 

since the trained closures can be more easily integrated into the coarse-grid CFD solver. This 

possible limitation deserves to be further investigated in future knowledge-informed ML 

solution of conservation equations. 

In addition to the ML-aided acceleration methods above, recently scientists have also 
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developed accelerators by optimization of ML architectures and interested readers may be 

referred to the literature review132. 

 

Figure 10 (a) Accuracy vs. computation expense with baseline DNS and DL accelerated solvers. (b) 
Illustration of training and validation results. (c) Structure of the learned CNN model over a time step. The 
figure is obtained from the literature of Kochkov et al.131 

2.2 Machine learning for multiphase flow and transport fields 

Modern non-intrusive experimental detection techniques such as electrical capacitance 

tomography (ECT)133, electromagnetic tomography (EMT)134, electrical resistance 

tomography (ERT)135, computed tomography (CT)136, particle image velocimetry (PIV)137,138, 

particle tracking velocimetry (PTV)139, high-speed camera (HSC)140, laser-induced 

fluorescence (LIF)141 and magnetic resonance imaging (MRI)142, have been widely applied 

for the study of flow and transport phenomena. Some additional references for each technique 
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are provided in Table S3. These advanced measurement techniques are capable of providing 

abundant measured data or images used for understanding the underlying flow and transport 

mechanisms. The collected data or images can be processed by many traditional algorithms. 

For example, selecting key features from each image is an important step in traditional 

methods143. However, with the increase of the number of categories, feature extraction 

becomes more and more troublesome. Determining the features that can best describe the 

corresponding target classification critically depends on the judgment and long-term 

trial-to-error expertise of engineers. In addition, each feature definition also needs to deal 

with a large number of parameters and their fine-tuning is severely dependent on the 

knowledge of engineers. Compared with the traditional techniques, ML especially deep 

learning can process images with higher accuracy and efficiency in the problems of 

classification, object detection, segmentation, and (super-) reconstruction and denoising 

(Figure 11). The commonly-used ML methods include the discriminative model and 

generative model, which were used by some typical fluid flow applications, as shown in 

Figure 11. In this section, we focus on how to use ML including DL to assist identification 

and prediction of single-phase and multiphase flow fields such as the reconstruction of the 

flow fields, recognition of flow patterns/regimes, prediction of key flow field parameters, as 

well as performance optimization of multiphase flows and transport. For most cases in this 

part, the datasets are obtained based on experiments. Table 2 summarizes recent advances of 

the applications above, along with the specific ML algorithms (including their structures, 

activation function, and loss function), data sources/sizes, input variables (if involved), 

prediction performance and contributions, possible research gaps and future remarks. 
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Figure 11 Applications of machine learning or deep learning for multiphase flow data and image 
processing. The origin of flow images on the right side of the figure were described below: (a) Adapted 
with permission from ref 144. Copyright 2019 Elsevier. (b) Adapted with permission from ref 145. 
Copyright 2020 Elsevier. (c) Adapted with permission from ref 146. Copyright 2021 Elsevier. (d) Adapted 
with permission from ref 147. Copyright 2019 John Wiley and Sons. (e) Adapted with permission from ref 
148. Copyright 2021 Cambridge University Press. (f) Adapted with permission from ref 142. Copyright 
2020 Elsevier. 
 

Table 2. Recent advances of ML applications for targeting multiphase flow and transport fields. 
Topics ML algorithms; 

architecture, 

activation, loss 

functions, 

optimizer 

Data sources and 

feature inputs 

Research performance and 

contributions 

Research gaps and future 

remarks 

➢ Bubble 

detection 

and shape 

reconstructi

on
145

 

➢ CNN: Final fully 

connected layers 

with 50 neurons, 

Max pooling 

layer with 2 pool 

size, 0.01 

learning rate; 

MSE, MAE 

➢ Experiment: 

High speed 

camera; One 

image with ~200 

bubbles; Image 

input with a size 

of 64*64*1 pixel 

➢ MRE=0.151; Locating bubbles 

via a faster region-based CNN 

detector; Estimating bubble shape 

parameters by a shape regression 

CNN; 

➢ Not reasonable to assume bubbles 

with ellipsoidal shapes and not 

valid in bubbly flows with high 

Reynolds numbers and Eotvos; 

Probably necessary to operate and 

train ML in an opensource 

platform. 

 Reconstructi

on of flow 

fields
149

 

 PINN: 10 hidden 

layers with 50 in 

each one; Adam 

0.001 learning 

rate; Swish; 

 Experiment, 

DNS; 10000 per 

iteration; C(t, x, 

y) 

 High accuracy: Real 

error=6.59~6.84%; 

Virtualizations of flow fields by 

encoding the N-S equations into 

the NN; Very applicable for the 

 Extend to apply the PINN model 

for non-Newtonian and 

compressible flows, pr other flow 

cases; Try to learn the constitutive 

law from the flow images. 
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Loss_sampling+

Loss_N-S 

flows with complex geometries 

and initial/boundary conditions. 

➢ Recognition 

of 

gas-liquid-so

lid flow 

regimes
150

 

➢ CNN: 5 

convolution and 

maxpooling 

layers; 0.005 

learning rate; 

ReLU 

➢ Experiment; 

2,500 images for 

each condition; 

349 training 

images in each 

model and 1 for 

testing; Binary 

image inputs 

➢ High accuracy: MRE=4.6%; 

Successfully identifying 

transitions of trickle-to-pulse and 

bubble-to-pulse flows; 

➢ Need of extending to flows with 

higher superficial fluid inlet 

velocity; Further consideration of 

speedup procedures for flow 

image sampling. 

 Recognition 

of 

liquid-liquid 

flow 

patterns
151

 

 CNN: 5 

convolution and 

maxpooling 

layers; Adam; 

Softmax; 

Categorical 

crossentropy 

 Experiment: 

high-speed 

camera; 32383 

images (7:2:1); 

3D array with 

150pixels 

× 450pixels × 3 

channels 

 R2=0.986~0.998 vs. traditional 

correlation R2=0.491; Able to 

recognize flow patterns under 

extensive conditions in 

microchannels; High-throughput 

automatic experimentation 

platform via the proposed model. 

 Need to include time-sequence 

factors; High computation and 

memory cost due to a large 

amount of images involved; 

Necessary to include flow physics 

into the network. 

➢ Identificatio

n of 

importance 

of 

gas-particle 

flow field 

parameters
1

52
 

➢ SOM: 100 

neurons (i.e., 10 

neurons by 10 

neuron 2D map) 

➢ Experiment; 

1188 data sets; 

SOM: Cluster 

appearance 

probability, 

duration and 

frequency 

➢ SOM: Easier interpretation of the 

relationships in clustering riser 

flows by reducing the data 

dimensionality; RF: Flexible to 

determine the variable 

importance. 

➢ Need to render input variables in 

a dimensionless form to have 

more theoretical universality and 

less model complexity; SOM: 

Lack of guidance to what 

underlies the two data assemblies 

identified. 

 Identificatio

n of cluster 

characteristi

cs in 

gas-particle 

flows
153

 

 K-means: K=3  Experiment: high 

speed 

camera; >500 

images for each 

condition; Image 

inputs 

 Demonstrating the reliability of 

K-means used for extracting 

clustering features; Revealing a 

novel strategy for studying 

complex clustering phenomena. 

 Need to include the difference of 

the computational time between 

the conventional image 

processing and K-means methods. 

➢ Prediction of 

local mass 

flux in riser 

flows
154

 

➢ RF; BPNN: 1 

hidden layer with 

300 neurons 

➢ Experiment; 

1320 data sets; 

BPNN: dave, ρs, 

r/R, h/H, Us, Gs; 

➢ Good accuracy: BPNN: R2=0.9, 

NRMSE<0.04 for predictions of 

local mass flux; RF: 

Determination of the relative 

importance of variables. 

➢ Need to nondimensionalize the 

input features; Further validation 

of the model is necessary. 

 Prediction of 

minimum 

fluidization 

velocity
155

 

 BPNN: 1 hidden 

layer with 16 

neurons; ReLU 

 Experiment: ∼40 000 papers 

(70:30); dp, ρs, 

ρg, μg, φg, ψp 

 High accuracy: RMSE=9.144%, 

MAE=2.357%, R2=0.918 vs. the 

empirical correlations; Revealing 

the possibility to construct a big 

database using a novel technique 

of text mining, which provides a 

new effective and efficient way 

 Need to quantify potential 

uncertainties in the process of text 

mining; May need to consider the 

system errors due to different 

experimental detection techniques 

applied; May still contain wrong 

information extracted from papers 
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for calculating fundamental 

fluidization parameters. 

due to format issues. 

➢ Optimizatio

n of cyclone 

separator 

performance

156,157 

➢ Hybrid: 

GA-RBFNN: 1 

hidden layer with 

98 neurons; MSE 

➢ Experiment: 98 

samples, 

LES-DPM: 25 

data sets; 

Experiment: Eu, 

ρg, Vin; LES: x1, 

x2, Eu, Stk50 

➢ High accuracy: MSE= 1.31e-4 

~5.84e-4, R2=0.9967~0.9996; An 

effective strategy to establish the 

predictive model of pressure drop 

for optimizing cyclone separator 

performance. 

➢ Possible overfitting for RBFNN 

due to the limited number of data; 

The datasets should cover a wider 

range of operating conditions; 

Further conducting study of 

robust parametric design to probe 

the uncertainty in the optimization 

operation and geometrical factors. 

 Optimizatio

n and 

control of 

reactor 

performance

158
 

 Hybrid: 

GA-BPNN: 3 

hidden layers 

with 15, 41, 20 

neurons; SELU, 

ReLU, ReLU for 

three hidden 

layers; MSE; 

Adam. 

 CFD: 56 data 

sets (8:1:2); Ti, 

Gg, Yi 

 High accuracy: MRE=98.8%, 

R2= 0.9898; Successful 

development of a integrated 

CFD-BPNN-GA for both 

predictions and optimization 

control of reactor performance. 

 Dataset generation efficiency is 

low and may be accelerated by 

ML; Automatic optimization of 

hyperparameters using ML 

instead of manually tunning; 

Possible overfitting due to the 

limited amount of data. 

Note: The critical comments above may not be adequate and we present the suggestions with the hope that 
readers and newcomers could obtain some possible inspirations or thoughts from this table. 

2.2.1 Flow and transport field reconstruction 

The key to image reconstruction is determined by the precision and speed of the image 

reconstruction algorithms159 but it is a complex, nonlinear, ill-conditioned and 

under-determined problem. To date, multifarious traditional algorithms (e.g., 

sensitivity/Jacobian matrix and gradient estimation approaches) for flow image 

reconstruction have been proposed and have made great contributions to measurements of 

practical multiphase flow systems. One limitation for these traditional algorithms is that the 

image processing steps and outline segmentation algorithms are critically dependent on the 

user-defined parameters, requiring to be tuned by trial-and-error for varied operating 

conditions and multiphase device structures146,160. Other possible challenges include the 

hard-to-capture flow physics in a high-frequency range, low sampling frequency, and 

relatively low spatial resolution and accuracy in the reconstructed images. Due to the 
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exceeding desirability to image reconstruction with high speed and precision, researchers 

have applied ML methods for processing fluid or particle flow images from the data 

measured by different experimental measurement methods, as summarized in Table S3. The 

existing reconstruction methods based on ML or DL may be divided into several categories: 

(1) Data-driven reconstruction approach using experimental data. For instance, 

some early contributions133,161 used nonlinear ANN techniques to reconstruct ECT images of 

flow fields. Fan and coworkers133,162,163 systematically studied the ANN-based nonlinear 

techniques for image reconstruction of two-phase and three-phase flows using ECT. They 

combined the multilayer feedforward ANN with the analogue Hopfield network to train a set 

of ECT data based on a regularized back-propagation algorithm. Comparison with the other 

commonly-used iterative techniques, the developed method significantly improved the 

accuracy and consistency, and showed superior stability of reconstructed images. Yadav et 

al.164 applied different ML algorithms including ANN, Support vector regression (SVR), and 

relevance vector regression (RVR) for fast reconstruction of gas-liquid flow images based on 

the data detected by radioactive particle tracking (RPT). It was found that SVR performs best 

in the position reconstruction accuracy for all cases while RVR reconstruction speed 

outperforms SVR considerably due to the sparser nature of RVR. Except for these ML 

methods, researchers applied an encoder-decoder CNN to estimate the next-frame solid 

holdup pattern based on learning the first several frames as an input in a gas-particle fluidized 

bed165. However, a possible challenge for this encoder-decoder DL is that the encoder must 

compress all input information into a fixed-length vector, and then pass it to the decoder. 

Compressing long and detailed input sequences with a fixed-length vector may lead to 
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information loss. This possible limitation is suggested to be mitigated by allowing the 

decoder to access the entire encoded input sequences via further assessments and 

investigations. Moreover, RNN methods166,167 such as LSTM and gated recurrent units (GRU) 

have also been applied for processing sequence-to-sequence flow images due to the 

inconvenience of ANN for this kind of problems. However, the methods like LSTM and 

GRU to process flow images have two evident limitations: First, it assumes that the image 

data used for training LSTM is sequence-related. As a consequence, it is not easy for LSTM 

to use time-series image data that is not completely formed according to step-by-step time 

variations. Second, when the sequence length exceeds a certain limit (e.g., >1000), one will 

suffer from the low training efficiency and the gradient will still disappear. Overall, this kind 

of method directly establishes the mapping relationship between the under-sampled data 

input and the output, and can directly obtain reconstructed images with a quality potentially 

more accurate and efficient than the traditional algorithms. However, they share one universal 

disadvantage of relatively poor interpretability that the pure ML or DL methods have. The 

other possible drawbacks for DL (especially CNN algorithm) processing of complex flow 

images may include: (i) the increase of network layers is generally accompanied by the 

dramatically increasing consumption of computing resources, as well as (ii) the challenging 

problems of overfitting, gradient disappearance or explosion. 

(2) Knowledge-informed reconstruction approach using experimental data. Such 

kind of research efforts mainly attempted to re-design the NN architecture by coupling the 

image processing domain expertise168, the physical meanings associated with reconstruction 

algorithms of multiphase flow images169,170, another type of physics-aware understanding171 
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or even a concept of 'human attention'172. This can contribute to the remarkable improvement 

in the quality of image reconstruction such as reduction of the deformations and 

reconstruction artifacts. Notably, a new deep residual neural networks, i.e., ResNet171 was 

proposed to substantially improve the performance of CNN and is much easier to train very 

deep neural networks without degradation by residual learning. Recently, researchers tried to 

apply this new method for modeling the evolution of dynamical multiphase flow systems173. 

Another typical example174 is to develop CNN-based DL methods for reconstructing flow 

images of ECT measurement data where the inaccurate capacitance property is considered. In 

order to enhance the solution stability and reconstruction quality, the authors used a 

combination estimation approach and an improved stabilizing item, and proposed a new cost 

function to reduce the reconstruction artifacts and deformations. Besides, there are other 

advanced experimental techniques such as MRI, which has not yet gained enough efforts in 

applications of ML or DL to facilitate MRI image reconstruction175,176. 

(3) ML-based super-reconstruction approach using simulation data. Recently, 

another particular interest for fluid flows is to utilize ML, especially DL, to reconstruct the 

high-resolution flow images from low-resolution flow images and this process is called 

super-reconstruction177. Fukami et al.148 proposed a novel data reconstruction approach using 

a supervised DL technique. The authors utilized a CNN-based down-sampled 

skip-connection/multiscale model and the multiscale characteristics of turbulent flows were 

integrated into its network structure. They presented that the CNN-based approach can 

recover the flow fields using a small number of training data for spatiotemporal models. 

However, paired data for training are required for supervised techniques for super-resolution 
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recovery of fluid flows. Different from the above method, Kim et al.178 developed an 

unsupervised ML methodology that employed a cycle-consistent generative adversarial 

network (GAN) capable of being trained by unpaired flow data for super-resolution 

reconstruction, as shown in Figure 12. It was revealed that the unsupervised GAN for 

learning flow data could be feasible for applying to the super-resolution reconstruction over a 

wide range of turbulent flows. Meanwhile, some scientists have employed DL methods to 

reconstruct the temperature fields in both microfluid179 and nanofluid180 heat transfer 

problems. In particular, Kong et al.179 extended the CNN strategy to target the 

super-resolution reconstruction of temperature fields using the data from low-resolution 

coarse temperature fields. The authors proved that the two CNN approaches investigated is 

capable of significantly boosting the reconstruction accuracy while the novel multiple path 

super-resolution CNN gives a superior reconstruction performance as compared with the 

classical CNN. More recently, Mikhaylov et al.181 reconstructed the temporal evolution of 

large-scale flow structures in a stirred tank using the data from DNS. The proper orthogonal 

decomposition (POD) aided reduced-order modeling was applied for extraction of the 

dominant modes and their temporal coefficients. The system identification was used to 

establish an estimator for capturing the relationship between the velocity signal inputs and 

POD coefficient output. It was revealed that the constructed estimator is applicable to 

operating conditions that were not used in the process of its construction. This work 

represents a recent popular trend that uses hybrid DL methods to reduce the network 

architecture complexity and also boost the model universality for a wide range of flow cases. 
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Figure 12 Unsupervised DL for super-resolution reconstruction of several typical flow turbulence images. 
Adapted with permission from ref 178. Copyright 2021 Cambridge University Press. 
 

2.2.2 Flow regime identification and bubble/particle detection 

Detailed knowledge about identification of multiphase flow patterns/regimes and 

particle/bubble detection is of key importance to rational design and control of multiphase 

devices (e.g., fluidized bed reactors, bubble columns and microreactors), and the 

improvement of product quality and process efficiency. Although considerable progress using 

the existing traditional methods has been made in identifying multiphase flow patterns, they 

appear to have inadaptability, and are practically difficult to provide reliable identification in 

the case that multi-variables need to be accounted for. The identification workflow is strongly 

dependent on operating conditions, and few general process procedures have been proposed. 

To solve the problems above, ML is becoming a popular tool in assisting with flow regime 

identification and cluster/bubble/droplet detection. 

(1) Gas-liquid flow regime identification. Pioneering studies135,182-185 mainly applied 

SVM and ANN to recognize the transition region between the gas-liquid two-phase flow 



53 

 

regimes in bubble columns or tubes. Ishii and coworkers182,183 applied supervised 

self-organizing NN methods to categorize gas-liquid flow regimes using the data generated 

by measuring impedance or simulations. Identification results conclusively demonstrated that 

NN can appropriately classify up-flow patterns and the databases from both numerical 

simulations and experiments have reliability. Liu and Bai144 developed a novel methodology 

by integrating the use of a self-organizing NN and an image processing method to identify 

the swirling gas-liquid flow regime. The swirling flow pattern was then mapped and a 

comparison between the swirling and non-swirling regime maps was revealed. Quintino et 

al.186 used RF and ANN models to identify the transition of gas-liquid flow regimes based on 

the database from both experiments and physical models. The trained hybrid model even with 

a relatively small dataset could improve prediction accuracy and the graphical comparison of 

transition boundaries presented a better understanding of the model performance than the 

conventional metrics. However, a possible problem among most of the above studies is that 

the output is usually related to many variables which can be selected as feature inputs but this 

will increase the input space complexity. So, PCA can be used to extract the feature vector 

that still well represents the feature space for identifying various flow regimes187-189. Recently, 

researchers also used RNN approaches such as LSTM to predict the time-series chaotic 

dynamics and forecast two-phase flow regimes190. More recent investigations were extended 

to develop a novel DL method aided by an image segmentation technique for identification of 

thermally gas-liquid two-phase flow regimes including annular/semi-annular, elongated plug, 

slug-plug and bubbly flows191. To sum up, a major drawback is that most researchers have 

trained a pure ML model based on relatively limited experimental datasets, which leads to a 
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risk of overfitting and thus reduces the model generalization capability. On the one hand, it 

could be an effective solution to establish a vast databasing for flow images and some recent 

works have present an excellent example of how to improve this kind of weakness in 

identification of condensing two-phase flow patterns using CNN192. On the other hand, this 

common limitation for pure ML models may be fixed by embedding the prior identification 

knowledge, physics or constraints of flow regime identification into the ML structure, as we 

have emphasized in previous sections. Therefore, more future efforts should be devoted to 

physics-informed or physics-constrained ML identification of multiphase flow regimes. 

(2) Gas-solid and gas-liquid-solid flow regime identification. Compared with lots of 

efforts to ML-aided recognition of gas-liquid flow regimes, few references on ML-assisted 

identification of gas-solid and gas-liquid-solid flow regimes could be of guidance to provide 

available information. The existing studies mainly applied SVM and NN methods to 

recognize the gas-solid flow regimes based on some typical characteristic parameters, e.g., 

the cepstral coefficients193,194, pressure drops195, solid hold-up196, superficial velocities197, and 

recurrence rate198. One problem encountered is that feature selection has not been approached 

and tested in these studies. Commonly, ML's capability of accurate identification of flow 

regimes is closely associated with the feature selection that can leads to reducing the feature 

space dimensionality and improving the prediction accuracy. It is henceforth suggested to 

perform a comprehensive feature selection task for gas-solid flow regime recognition 

problems. For gas-liquid-solid trickle bed and fluidized bed reactors, the initial efforts 

involving ML-based flow regime identification is available199. Recently, Wang et al.147 

proposed a general workflow of the CNN-assisted image analysis approach for recognizing 
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the trickle-to-pulse and bubble-to-pulse flow transitions in a conventional gas-liquid-solid 

trickle bed reactor, including four steps, as illustrated in Figure 13. Their study showed a 4.6% 

MRE between the manually segmented liquid fraction and the identified liquid fraction, 

indicating the high recognition performance of the proposed method. One important point is 

that their method was established based on relatively low superficial fluid inlet velocity, 

which may limit its applicability to a wide range of flow conditions. Besides, it is suggested 

to apply ML procedures to accelerate flow image sampling with much higher processing 

efficiency than the traditional methods. 

In addition, recent studies have paid attention to the other flow patterns such as 

liquid-liquid flows in microreactors. Shen et al.151 built a CNN-assisted platform with the 

expert-level capability of automatic recognition of liquid-liquid flow patterns. Their study 

showed the generalized liquid–liquid flow pattern map in microchannels and the comparison 

of the predicted slug flow patterns between CNN and conventional models, R2=0.986~0.998 

vs. traditional correlation R2=0.491. This work perfectly demonstrates the applicability of ML 

on microreactor technology and is beneficial for circumventing the difficulties in 

labor-intensive investigations of hydrodynamics. However, their platform did not include the 

time-sequence factors, that is, it’s unable to timely handle a developing flow pattern changing 

due to time varying. Thus, future attention may be paid to including flow physics into the 

network or directly using the DL mode with the ability to process sequential data. 
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Figure 13 Machine learning for gas-liquid-solid trickle bed reactors: (a) Flowchart of the processing 
procedure of the deep learning-assisted image analysis method; (b) The architecture of fully convolutional 
networks (FCN). Adapted with permission from ref 147. Copyright 2019 John Wiley and Sons. 

(3) Particle/bubble detection. In the literature, the ML algorithms, especially CNN, 

have also been increasingly applied for detection of characteristics of bubbles, clusters and 

droplets from experimental flow images. The interesting characteristics include their location, 

shape, diameters and velocities200,201. For example, Poletaev et al.200 proposed a 

ready-to-utilize CNN powered software for bubble detection in gas-liquid two-phase flows. 

The performance comparison indicated that the average processing time of experimental 

images using CNN on a single CPU core is about 6 to 8 times faster than the conventional 

correlation algorithm. Notably, the CNN was deployed on a CPU and a GPU while the 

conventional method was executed on a single CPU. Moreover, half the bubbles within the 

whole probable range of bubble sizes were identified by the conventional correlation method, 
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which were much less than the NN. However, both methods predicted a very close mean 

bubble diameter with a ~11% difference. Haas et al.145 developed a region-based BubCNN 

workflow used for faster detection of bubble location and shape from the gas-liquid flow 

images detected by HSC. Note that the BubCNN contained two modules: a rapid 

region-based CNN for recognition of bubbles and a shape regression CNN for reconstruction 

of the bubble shapes through ellipses. However, it may not be valid to assume bubbles with 

ellipsoidal shapes in bubbly flows with high Reynolds numbers and Eotvos, where bubble 

shapes are more complex and irregular. Therefore, it’s suggested that the BubCNN could be 

further extended to more flow conditions to enhance its case-specific applicability. Moreover, 

it’s probably necessary to operate and train BubCNN in an open-source platform in order to 

make it more flexible and easier to be integrated with other platforms or numerical solvers. 

Meanwhile, some researchers not only detect the bubbles but also further developed the 

'mask' extraction tool to reconstruct the bubble pattern140,202. For the disk-type bubbles 

classified with an eccentricity of less than 0.46, it was suggested to segment them along with 

the path parallel to the bubble macro-axes. on contrary, segmenting bubbles along with the 

path perpendicular to their macro-axes was recommended for the ellipsoidal or spherical 

bubbles with an eccentricity of larger than 0.46. To be easier and more flexible for users, 

some tools modules like a fuzzy inference system have been thereby developed for bubble 

mask extraction with a friendly graphic user interface203. In addition to bubble detection 

above, another increasingly popular trend is to detect particle and droplet characteristics by 

ML204,245. Li et al. investigated the non-spherical biomass particles and spherical 

polyethylene particles in a lab-scale fluidized bed using PIV and PTV techniques205. The ML 
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pixel-wise classification methodology was trained and used to acquire particle masks for PIV 

and PTV processing. Recently, using a K-means algorithm with optimal hyperparameters, 

FCC particle clusters were identified from flow field images of the gas-solid CFB riser and 

downer153. The authors successfully revealed the reliability of K-means used for recognition 

of the challenging particle clustering phenomena. However, their model only considered the 

particle cluster characteristics over a fast flow condition while it did not further test the model 

performance for the bubbling and turbulent flow conditions. That is, the cluster identification 

model may not be generalizable out of the span where the model was trained. At least, the 

optimal hyperparameter valid at the fast flows probably need to be optimized again for the 

other conditions that the model has not covered. The consideration above demands further 

efforts to systematically assess the generalization performance of the ML model in the future. 

Before closing our discussion in this part, several suggestions are summarized here for 

future efforts to probably promote the development of flow pattern identification. First, it is 

important to embed the prior knowledge, physics or constraints of flow properties into the 

ML structure, especially for the case with very limited experimental datasets. This will make 

the developed identification model more generalizable and significantly improve the 

recognition and detection reliability. Second, it is suggested to apply ML procedures to 

accelerate on-line flow image sampling and thus to boost flow identification and detection 

efficiency. We also suggest to operate and train the recognition and detection models based 

on open-source ML platforms in order to make these models more flexible and easier to be 

coupled with the other platforms or numerical solvers. In addition, it is considered that the 

ML model should be trained under a wide range of operating conditions as far as possible and 
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highly-resolved simulations could be performed to circumvent the difficulty in the 

labor-intensive and high-cost experiments. 

2.2.3 Flow and transport field parameter prediction 

Persistent lack of physical comprehension continuously stymies preferable prediction 

performance of the key parameters in multiphase flow and reactor systems although scientists 

have made systematic contributions to experimentally-formulated correlations throughout the 

past decades206-208. The correlations of the key parameters in multiphase units are commonly 

expressed by gas/liquid/solid phase properties, operating conditions (e.g., phase concentration, 

velocity, and temperature), devices configurations (e.g., height and diameter), or a 

combination of them in dimensionless forms like Archimedes, Froude, Nusselt, Reynolds, 

Sherwood, and Weber numbers. However, the prediction discrepancies between the existing 

empirical correlations of key parameters such as the particle entrainment and minimum 

fluidization velocity in gas-particle riser flows can reach several orders of magnitude209,210. 

Fortunately, the advanced research and development of flexible ML tools have a potential to 

complement the incomplete knowledge to boost the prediction ability of key multiphase field 

parameters, such as mass flow rate/flux211-214, minimum fluidization velocity155,215, mixing 

rate/index216,217, overall/local hold-up218-224, pressure/pressure drop225-230, velocity119,231-233, 

temperature234-236, and other parameters237-239 in multiphase/particulate flows and reactors. 

Note that interested readers may be referred to a relatively comprehensive list of the existing 

literature summarized in Table S4. 

Joshi and coworkers114,240-242 performed systematic studies of developing SVR-assisted 

correlations to predict the overall/local gas hold-up and effective interfacial area in gas-liquid 
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bubble column reactors. Their investigations showed that it is potential to apply SVR for 

online prediction and monitoring of the local parameters in bubble columns reactors. Shaban 

and Tavoularis211 leveraged multi-layer back-propagation ANN technique to estimate the flow 

rates of liquid and gas phases in two-phase bubbly flows. The authors revealed that a PCA of 

feature components contributes to a reduction of input dimensions. It was also found that the 

prediction performance of their approach outperforms that of the previously reported 

approaches over various flow regimes and conditions investigated in their work. Khare and 

coworkers119,243 employed a Gaussian process-assisted method to build a data-driven 

surrogate model trained by the data from highly-resolved simulations (i.e., DNS-VOF and 

E-L based LES) of liquid jet injection in turbulent gas crossflow. They presented a detailed 

prediction study of flow field parameters including the evaporated liquid vapor fraction, 

temperature, pressure, velocity, and spray penetration and Sauter mean diameters in the liquid 

phase with reasonable accuracy (ranging from 0.05 to 13.5%). Chew and 

coworkers152,154,206,213,244,245 directed efforts towards a deep understanding and an enhanced 

prediction of fast gas-particle riser flow characteristics assisted by several common ML 

methods including ANN, RF, and self-organizing map (SOM). In their essential study on the 

determination of the relative dominance of the riser flow parameters, it was suggested that the 

radial position is of key importance to the local solids flux and elutriation, and the overall 

solids flux has the most dominant effect on the local solids hold-up. It was also revealed that 

the formation of clusters in the monodisperse gas-particle flow system is much more 

pronounced than that of polydisperse ones, indicating that particle polydispersity hinders the 

cluster formation and is thereby beneficial for homogeneous particle distributions. Further 
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possible improvement may need to render the feature input variables in a dimensionless form 

to make their method have more universality and less complexity. Yang and coworkers239,246 

combined an SVM-based data-driven method and DEM modeling to predict key granular 

flow parameters such as the angle of repose and collision energy in a rotating drum. Zhong et 

al.247 proposed an improved strategy beneficial for finding the optimal ANN to significantly 

enhance predictions of the particle phase fraction distributions in gas-particle CFB risers. 

This work provides a possibility to reduce experimental workload (up to 1/3 experimental 

sets) and hence is of practical meaning to experiments, especially for large-scale reactors. 

 

Figure 14 Machine learning for bubbling gas-solid fluidized bed reactors: (a) Flowchart of the ML applied 
for predictions of key hydrodynamic parameters using the ECT measurement data; (b) An example: Steps 
for predicting of the bubble diameter using two ML methods; Feedforward network structure of the 
classification machine (c) and (d) regression machine. Adapted with permission from ref 196. Copyright 
2019 John Wiley and Sons. 

As shown in Figure 14, Guo et al.196 presented a flowchart of the supervised ML and 

applied it for mapping the high-throughput ECT measurement data to key hydrodynamic 



62 

 

parameters in a bubbling gas-particle fluidized bed reactor. The trained model was able to 

directly predict the key parameters from the on-line normalized capacitance measurement. 

More recently, Li et al.248 proposed a new high-precision real-time model for predictions of 

the void fraction in gas-liquid two-phase flow based on ensemble learning. The model 

integrated the XGBoost with an empirical modal decomposition approach and a kernel ridge 

regression. The lasso regression method was used to further assess the prediction 

performance of XGBoost. The integrated model not only had good prediction accuracy, but 

also was able to eliminate abnormal data without losing the feature information of the 

original dataset, superior for online control of gas-liquid flow parameters. Zhou et al.155 

proposed a novel text mining method to construct a database by extraction of experimental 

data of minimum fluidization velocity (Umf) from open reports. In particular, a pipeline of 

natural language processing was applied for identification and extraction of the parameters 

associated with prediction performance of Umf with 83% precision from ~4×104 papers. Their 

promising ML-aided data-driven approach was demonstrated to outperform the existing 

empirical correlations over a wide variety of fluidization systems. It is noteworthy that, first, 

there may be a risk that the extraction decisions made by text mining are not always correct 

and interpretable. Once the text mining algorithm gives unreasonable results, it can be 

difficult to recognize and repair the problem in the later stage. Second, the fluidized bed 

device factors such as the effects of bed size and bed internals are not considered as the 

feature inputs and the feature inputs are not nondimensional. These will probably limit the 

universality of ML-aided estimation of minimum fluidization velocity. Third, there is a 

requirement to quantify the potential uncertainties in the process of text mining. Another 
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possible uncertainty is the system error due to the historically measured data from different 

experimental detection techniques. 

Here, we further provide some summary discussion regarding the studies surveyed in 

this section. (1) From a perspective of data source for all of Sections 2.2.1-2.2.3. It can be 

readily found that most often only very limited experimental data points were used for 

training although some authors have tried to collect data from various open reports. It was 

also suggested that integration of the traditional physical model with ML algorithms into an 

aggregation function model can work by the core of ensemble methods249. This is because 

reasonable predations can be achieved by traditional models even in the case of only a few 

data points available. In fact, it is a concept of physics-informed ML modeling. (2) From a 

perspective of ML algorithms used. The ANN, SVM and tree models are mostly used to 

predict the key flow parameters in these studies (including Table 1), probably due to their 

simplicity and high accuracy in the investigated span, especially compared with other 

complex DL methods. Moreover, Python programming language and Matlab software are 

most often used by researchers and some secondary-development ML tools are based on them. 

(3) From a perspective of feature inputs for all of Sections 2.2.1-2.2.3. One may have a major 

concern that lots of researchers have directly used the common flow variables as feature 

inputs to predict the output, instead of the nondimensionalized form of the input variables. 

The advantage is that it may be very easy to select the most commonly used flow variables or 

geometric factors as the inputs. The main disadvantage is that too many inputs will increase 

the model complexity and thereby slow the learning operation. To reduce input complexity 

such as dimensionality reduction250, one can implement the relative importance analysis using 
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the decision tree model or the PCA method. However, sometimes the search space can be 

very large in order to obtain an optimal input solution. In this situation, one can select 

techniques to overcome this drawback such as greedy search, particle swarm optimization or 

genetic algorithm (GA) to optimize the feature inputs251.  

2.2.4 Flow and transport field parameter optimization 

In the literature, ML has played a vital role in chemical process systems engineering 

(PSE) design, optimization and control, which was well reviewed and extensively studied by 

many researchers252-254. In this section, we will mainly focus on how to apply ML techniques 

to combine with the field data of flow and transport for multiphase device performance 

optimization. This aspect has received relatively little attention, compared with the topic in 

PSE. Commonly, there are two general frameworks for optimizing the physical performance 

of flow devices, namely, single-objective optimization and multi-objective optimization. 

(1) Single-objective optimization. It aims to either maximize or minimize an objective 

function. Early contributions255 were focused on the development of flow models and 

optimization techniques, and then applied the developed model as an efficient and effective 

enabler for elucidating the governing flow phenomena such as turbulence control 

mechanisms. Based on this, high-performance devices could be thereby devised for 

significant drag reduction. Recently, Zhang and Li256 reported an ANN-assisted method for 

control of the local non-fluidic solid phase flow pattern by learning the relationship between 

the inlet flow rate and recirculation zone. The trained ANN was then used to optimize the 

input energy consumption to fit a continuous multiphase flow process over the long term. 

Nikita et al.257 proposed a novel reinforcement learning-based method for optimization of the 
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process flowrate in order to reach the maximum yield for continuous processing of 

biopharmaceuticals. Overall, most of the above studies mainly applied the pure ML models to 

optimize a single parameter of flow and transport processes while most often the 

maximization of multiphase flow and device performance needs to optimize multiple 

parameters simultaneously. 

 

Figure 15 A unified CFD-DNN-GA framework for multi-tubular reactor design and optimization. Adapted 
with permission from ref 158. Copyright 2021 Elsevier. 

(2) Multi-objective optimization. Multi-objective optimization problems are usually 

involved in the design and control of industrial multiphase devices, which aims to 

simultaneously optimize multiple objective functions using multi-disciplinary aspects such as 

the incorporation of CFD model, the coupling of traditional physical models and sometimes 

manufacturing cost constraints. In a multi-objective optimization problem, usually, there are 
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multiple maximization or minimization objective functions at the same time, which are not 

independent of each other. There will be some possible conflicts between them, which make 

them fail to meet all the objective functions simultaneously. One may perform Pareto 

optimality algorithms to solve this kind of problems. Here, the original meaning of Pareto 

optimality refers to an ideal state of resource allocation. In multiphase device optimization, 

we can assume there are three desirable objectives: minimization of pressure drops and 

particle attrition while maximization of separation efficiency. One may not reach all of the 

above three objectives but at least make one objective better while does not make the other 

two objectives worse. For instance, Chen et al.258 performed well-validated CFD simulations 

of the continuous flow and temperature profiles of a microchannel within a microwave 

applicator. They applied a gradient boost regression tree model to study the correlation 

between the parameters. The application of the proposed model for optimization of the 

dimensions and operating conditions showed a trade-off between the outlet temperature and 

energy efficiency (i.e., a Pareto optimal). Hamad et al.259 reported a novel ML-facilitated 

multi-objective optimization approach for polymerase chain reaction flow systems. The data 

from CFD simulations of a prototype three-zone thermal flow was used to train a 

fully-connected NN for later creation of Pareto curves that could show the trade-off between 

the temperature uniformity and pressure/heating costs. The trained model was applicable for 

efficient evaluation of the effect of geometrical configurations and flow conditions on the 

pressure drop, temperature field uniformity, and heating power requirements, useful to 

achieve an optimal thermal flow system. 
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Recently, researchers260 proposed to train an ANN-based predictive controller and then 

integrated it with a fixed-bed catalytic reactor model using the data from CFD simulations., 

which could safely operate the reactor with output tracking. Such a kind of reactor model was 

also used to maximize the operating profit and calculation of the best set-points for 

controlling a continuous stirred tank reactor261. More recently, there is a growing tendency to 

use deep learning methods combined with optimization algorithms for multiphase reactor 

performance optimization. Gbadago et al.158 proposed a novel integrated framework for flow 

and transport modeling, data analysis, and optimization of reactor systems utilizing CFD, 

DNN, and GA (Figure 15). The optimization results outperformed those of other traditional 

methods while the optimization speed was remarkably boosted. Despite its evident potential, 

herein we provide several possible considerations of this work. First, the dataset generation 

efficiency seems very low and only a limited data is available, which is critically dependent 

on the computation speed of the CFD simulation. Therefore, further development of 

acceleration strategy of CFD by ML or hardware is suggested. Second, the proposed 

framework is relatively complex since it consists of four modules including two DNN models, 

which may hinder its flexibility and applicability for users. Besides, automatic optimization 

of hyperparameters using ML (e.g., Bayesian optimization, particle swarm optimization, or 

GA), instead of manually tunning hyperparameters, deserves more attention in future work. 

In the literature, it is an active area where researchers have significantly contributed to 

the combination of CFD and ML for multi-objective optimization of cyclone separator 

performance, as summarized in Table S5. For instance, Elsayed and coworkers156,157,262-264 

performed very systematical studies of applications of advanced CFD methods (e.g., 
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LES-DPM) and ML techniques (e.g., RBFNN, ANN, and GA, etc.) for design and 

optimization of gas-solid cyclone separators. The CFD simulation results were used for the 

construction of the data set. The ML was utilized for training a surrogate model. The 

multi-objective optimization results revealed the optimal geometric factor and operation 

condition to maximize the cyclone separator performance. Ye et al.265 performed VOF-E-E 

simulations of gas-liquid-solid cyclone separators to generate data sets for ultra-fine particles 

classification using SVM and RBFNN. The coupled non-dominated sorting genetic 

algorithm-II (NSGA-II) was applied for the multi-objective optimization to obtain the Pareto 

front. Deng et al.266 extended the above methodology to study gas-liquid cyclone separators. 

Based on the database from E-L simulations of gas-liquid annular flows, they established an 

SVM-based surrogate model, which was then integrated into the NSGA-II. The integrated 

model was used to implement the optimization, and the special characteristics of Pareto 

optimal solutions were probed.  

Here, we provide further discussion and analysis regarding the survey above. First, there 

is a need to conduct the study of robust parametric design to probe the uncertainty in the 

optimization operation and geometrical factors. Second, Table S5 shows that most of the 

studies have been focused on gas-solid flow systems in cyclone separators while the 

solid-liquid or gas-liquid flows have received very limited attention. Regarding their equal 

importance in multiphase process engineering applications, future studies of more flow 

patterns are suggested to be enhanced. Finally, it can be found that there is an increasing trend 

in rendering the input features in a dimensionless form but the input variables have been most 
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often nondimensionalized by the device diameter. The other combined characteristic length 

may be used to replace the device diameter in order to make the model more general. 

2.3 Machine learning for reaction kinetics modeling and optimization 

Reaction kinetics plays a fundamental role in multiphase reactor engineering because the 

obtained mechanistic understanding and kinetic models are of useful guidance for estimating 

and optimizing reaction outcome and reactor performance based on flow, transport and 

reaction conditions, and thereby achieving rational design and scale-up of reaction processes 

and reactors. On the other hand, industrial chemical processes such as FCC, polymerization, 

methane reforming, and coal/biomass pyrolysis/gasification/combustion involve complex 

reaction networks consisting of hundreds of components and numerous reactions. The 

considerations above motivated the authors to present this section for highlighting the 

significance of reaction kinetics modeling and optimization in reactor engineering. It should 

also be noted that prior Section 2.2.4 is focused much more on optimizing flow and transport 

conditions to maximizing device performance while current Section 2.3.3 is focused on not 

only the above conditions but also the reaction-related conditions/properties/factors. Better 

understanding of selecting suitable flow and transport conditions lays the foundation of 

kinetics modeling and optimization of reaction conditions and reactor performance. These 

sections complement and promote each other, and will be of useful guidance for rational 

design of reaction processes and reactors. 

The traditional reaction kinetics modeling considering the transport effect can be 

described by nonlinear PDE with an example as follows: 

𝜕(𝜀𝑓𝜌𝑓𝑌𝑖)𝜕𝑡 + 𝛻 ⋅ (𝜀𝑓𝜌𝑓𝒗𝑓𝑌𝑖) = −𝛻 ⋅ (𝜀𝑓𝑱𝑓,𝑖) + 𝑆𝑖                  (1) 
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where Y, J and S denote species mass fraction, diffusion flux and kinetic reaction source term, 

respectively. If one assumes that chemical reactions evolve with time in a spatially 

homogeneous system, namely, without considering the effect of transport phenomena, then 

reaction kinetics can then be solved by the ODE, for example: 

𝑑(𝜀𝑓𝜌𝑓𝑌𝑖)𝑑𝑡 = 𝑆𝑖                                    (2) 

The forward and reverse rate constants of S can be solved by the Arrhenius equation: 

𝑘𝑟 = 𝑘0,𝑖exp⁡(− 𝐸𝑖𝑅𝑇)                                 (3) 

where kr, k0, E, R and T are the rate constant, pre-exponent factor, activation energy, universal 

constant, and temperature, respectively. 

Commonly, the kinetic reaction source term can be mathematically described at different 

levels: (1) The phenomenological lumped model, which groups the species into lumps and 

aims to contain the primary characteristics of the observed rates without the chemical details 

such as the specific structure-property relationships; (2) The elementary step model involving 

molecules or reaction intermediates with detailed kinetic mechanisms. The lumped reaction 

models can be obtained by experiments while the detailed kinetic mechanisms can be 

obtained by the first-principles theory (e.g., the molecular dynamics (MD) simulations and 

density functional theory (DFT)) or kinetic Monte Carlo (kMC). Note that many of the 

kinetic models have been developed without considering the effect of transport phenomena. 

This problem may be addressed by coupling the obtained description of the reaction source 

term with CFD simulations of reactive flows. The fact is that the computational speed of the 

lumped models coupled with CFD can be relatively fast but this will lead to loss of accuracy. 

Meanwhile, the kinetics with the detailed kinetic model (DKM) in CFD simulations of 
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reactive flows enable high accuracy while computation cost will arise due to the requirement 

of solving hundreds of PDEs of reaction kinetics for each time step in every grid cell in CFD 

simulations. 

 
Figure 16 Applications of pure ML/DL or physics-informed ML/DL for kinetics modeling with and 
without transport effect. 

To this end, there is an increasing tendency to use pure ML/DL or to combine ML/DL 

with the traditional physical models (e.g., CFD, pure kinetics-PDE/ODE, kMC, MD, DFT 

and lumped kinetics models, or other kinds of prior knowledge) for reaction kinetic modeling 

with and without transport effect from different aspects, as seen in Figure 16. For the latter, it 

can be called as physics-informed ML/DL, kinetics-informed ML/DL or 

mechanism-informed ML/DL. Some typical applications include the discovery of reaction 

networks, predictions of reaction source term of each species (e.g., the mass concentrations 

related to yields/selectivity/conversion), determination of reaction kinetics such as reaction 

rate parameters, and optimization of reaction conditions. Table 3 summarizes some typical 

examples of recent advances along with the specific ML algorithms (including their 

structures, activation and loss functions), data sources/sizes, feature input variables, 

prediction performance and contributions, research weaknesses and future directions. 
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Table 3 Recent advances of machine learning applications for the determination of kinetic parameters 
and reaction conditions. 

Topics With 

transpo

rt? 

ML architecture, 

activation, loss 

functions, optimizer 

Data sources and 

feature inputs 

Research performance and 

contributions 

Research gaps and future 

remarks 

➢ Estimation 

of reaction 

rate 

constant
267

 

➢ No ➢ DNN: 3 hidden layers 

of 64, 24, 24 neurons 

per layer; Softsign 

(Hidden layer), Tanh 

(Output layer); MSE; 

Learning rate=5×104. 

➢ Reactant partition 

function; ∼1.5×106 

datasets; m, V1, V2, 

w1, w2, T, d, s 

➢ MRE=1.1%; Difference 

between DNN and TST is 

31%. A large dataset for 

training is necessary. 

➢ Future work may include 

physical knowledge to 

reduce prediction error, e.g. 

the TST rate constant as an 

input. 

 Estimation 

of 

activation 

energy
268

 

 No  Transfer learning; 

PCA; DNN: Hidden 

size=300, depth=3; 

10-fold 

cross-validation; 

Learning 

rate=10-5~10-6. 

 DFT; 5.7×104 

(85:5:10); 

t-Distributed 

stochastic 

neighbour 

embedding 

 RMSE=2.28 kcal mol–1; 

Development of a 

template-free DNN strategy 

for estimation of the 

activation energy. 

 Uncertainty in NN 

predictions of molecular 

properties should be 

quantified. The applicability 

of the developed model can 

be tested by more reaction 

systems. 

➢ Reduction 

of reaction 

networks
26

9
 

➢ No ➢ Gaussian process ➢ DFT; Group 

additivity 

fingerprints 

➢ Reducing reaction networks 

of syngas on the surface of 

Rh(111) catalyst; A 

substantive step for applying 

ML in the field of 

computational catalysis 

➢ Expensive computational 

cost. GP is limited to 

relatively low-dimensional 

problems due to loss of its 

effectiveness in 

high-dimensional feature 

input space. 

 Simultaneo

us 

estimation 

of species 

sources 

term and 

kinetic 

parameters

270
 

 No  PINN: 3 Hidden 

layers with the same 

number of neurons 

(ranging from 5 to 

20). tanh,swish and 

tanh for each hidden 

layer. 

 ODE solver; 

Forward problem: 

Boundary 

conditions (t0, x0), 

p, nmax, tol; Inverse 

problem: (t, 𝑥̃ ), 

nmax, tol. 

 MAE=1.79×10-5~8.93×10-3; 

MSE=4.27×10-10 ~2.49×10-4; 

R2≈1; Robust clarification of 

elementary reaction 

pathways and estimation of 

kinetics parameters. 

Inclusion of physical 

knowledge and boundary 

conditions enables high 

robustness and 

generalization performance. 

 Need to consider transport 

effect in order to used it as a 

more practical tool; May be 

coupled with CFD solver or 

classics reactor model. 

➢ Simultaneo

us 

estimation 

of species 

sources 

term and 

kinetic 

➢ Yes ➢ PINN: 5–7 hidden 

layers, 256 neurons 

per layer; Tanh; 

Loss= 

MSEGovern+MSEBounda

ry 

➢ MATLAB; 

103~104; Forward 

problem: Initial 

conditions, 

Boundary 

conditions; Inverse 

problem: 

➢ Enhanced accuracy: a 0.3% 

error even for a limited 

number of datasets; With 

transport effect considered 

for the catalytic CO2 

methanation. 

➢ The reactor model is limited 

to a 1D plug-flow 

isothermal fixed bed reactor 

model; Future efforts may 

couple the PINN with a 3D 

CFD solver. 
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parameters

271
 

Observation data; 

Boundary 

conditions 

 Estimation 

of species 

sources 

term
272

 

 Yes  RF, DT: 25 trees; 4 

tree depth. 

 ODE solver of 

micro-kinetics; 86 

training and 5×104 

testing sets; T, Pi, θi 

 High accuracy: MRE<1.5%; 

High efficiency: 558 times 

faster than ODE solver; Able 

to recognize the importance 

of variables; Successful 

coupling of RF with CFD. 

 Need to validate with 

experiments; Absence of 

comparison between the 

PRCFD-RF and pure 

PRCFD; Need to quantify 

the increasing 

computational time due to 

integration of RF with CFD. 

➢ Estimation 

of species 

sources 

term
273

 

➢ Yes ➢ DNN: 3 hidden 

layers with respective 

32, 64, 128 neurons; 

ReLU and Sigmoid; 

RMSE 

➢ RANS k-ε model; 

71820 (90:10); k, ε, 

YA, YB 

➢ RMSE=8.50×10−3; High 

accuracy vs. finite-rate 

model; Acceleration of 14 

times vs. the time-consuming 

Lagrangian PDF approach; 

Considering the 

turbulence-chemistry 

interaction effect on reaction 

source. 

➢ The reaction rate model 

should be trained based on 

more high-fidelity DNS or 

LES data; Need of further 

test of its effectiveness in 

multiphase flow 

simulations. 

 Estimation 

of species 

sources 

term
274

 

 Yes  BPNN  CFD; x, y, Tg  Species concentrations: R2 

=0.73~0.91, MSE= 

3.633e-5~3.85e-2; High 

accuracy for biomass fast 

pyrolysis predictions. 

 Need of additional 

performance metrics such as 

MAPE; Future work may 

need to map the relationship 

along with flow time. 

➢ Optimizatio

n of 

reaction 

conditions
2

75
 

➢ No ➢ Hierarchical NN: 

Step 1: Fully 

connected layers 

(ReLU, ReLU, ReLU, 

Softmax); Step 2: 2 

fully connected layers 

(ReLU, Softmax); 

Step 3: 2 fully 

connected layers 

(ReLU, Linear). 

➢ Reaxys; ∼107 

datasets; (1) 

Product and 

reaction 

fingerprints; (2) 

Catalysts, solvents, 

and reagents 

➢ Top-10 predictions: For 

catalyst, solvent and reagent: 

69.6% accuracy, individual 

species: 80–90%; Within 

±20 °C for temperature: 60–

70%. Potential generalizable 

performance; Much faster to 

select suitable reaction 

conditions. 

➢ A possible weakness is that 

the number of estimations 

per each stage is limited to 

top-10 combinations in a 

short time period since the 

predictions are in a 

sequential manner; Potential 

improvement of the 

prediction ability through a 

better curated dataset. 

 Optimizatio

n of 

reaction 

conditions
2

76
 

 No  GP; PCA; Bayesian 

optimisation; GA 

 Literature; A 

library of 459 

solvents; 

Descriptors 

 Cross-validation R2=0.84; 

Inclusion of physical 

knowledge in ML; Enabling 

rational solvent selection and 

temperature optimization for 

catalytic reactions. 

 Future efforts of DoEs may 

be conducted for reduction 

of the number of 

experiments. 

➢ Optimizatio

n of 

reaction 

➢ No ➢ PCA; NN: 7 hidden 

layers; ReLu, Adam; 

Loss=MSE; 5-fold 

➢ 718 data points 

from 46 papers; 4 

compositional 

➢ R2>0.85; Generalizable and 

satisfactory accuracy for 

catalyst screen and 

➢ Need to establish a bigger, 

standard database for 

renewable reaction 
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conditions
2

77
 

cross-validation. features of 

feedstock, 5 

operational 

conditions, 5 

catalyst descriptors 

supercritical water 

gasification condition 

optimization; 

processes by some recent 

advanced techniques such 

as text mining. 

Note: In this section, reaction conditions/factors denote reagents, catalysts, solvents, reactants, products, and operating 

conditions (e.g., flow rate, temperature and pressure), etc. Besides, the critical comments above may not be adequate and we 

present the suggestions with the hope that readers and newcomers could obtain some possible inspirations or thoughts from 

this table. 

2.3.1 Prediction of reaction networks and kinetic parameters 

It is a longstanding bottleneck in discovery and design of novel products due to its 

requirement for enormous efforts and costs in finding a combinatorically large space of 

potential candidates278. Therefore, the capability of predictions of reaction networks without 

performing extensive simulations and experiments is of crucial significance. The study of 

reaction networks may be categorized into three types279: forward open-end study, backward 

open-start study, and start-to-end study. These reaction networks are very complex since the 

network size is usually very large and reacting species can highly interconnect. As a 

consequence, a large number of interconnected ODEs or PDEs should be resolved. In the 

early development stage, this solving process heavily relies on manual operation while 

numerous recent network generators such as ReNGeP PRIM, MECHEM and NetGen have 

been developed to automatically generate and design reaction networks280. Despite its 

automated benefit, these generators still have some challenges such as the reduction of model 

complexity, simultaneous estimation of kinetic parameters, lack of generality and relatively 

difficult-to-use, etc. In recent years, ML is increasingly employed to support the automated 

discovery of reaction networks and determination of kinetic parameters281,282. There are 

several general ways to achieve these purposes and they may be categorized as follows: 

2.3.1.1 Single determination of kinetic parameters 
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The first type is to use pure ML/DL to estimate the rate constants or activation energies 

by fitting the database from experiments, traditional quantitative structure–reactivity 

relationship (QSRR) and computational methods (e.g., MD, DFT and kMC). Recently, there 

is a rapid growth of study using ML/DL to assist calculations of kinetic parameters283. This 

kind of studies may be further categorized as follows: 

(1) The dataset from new experiments or readily available experimental database: 

Among these researches, ANN is one of the most popular methods used for predicting 

activation energies284 and reaction rate constants285-287. Rizkin et al.288 reported a novel 

NN-assisted methodology for exploring polymerization reactions based on an automated 

microreactor in conjunction with in-situ infrared thermography. The developed methodology 

using efficient and high-speed experimentation could map the reaction space of a zirconocene 

polymerization catalyst to kinetic parameters. This work demonstrated that high-fidelity 

datasets on a complex chemical reaction system can be obtained by integrating advanced 

microfluidic techniques with ML algorithms. Unlike the above investigations, Quaglio et 

al.289 proposed an ANN-aided approach for the selection of an appropriate kinetic model 

based on the available experimental evidence. The generality of the model was assessed by 

varying the experimental design and system noise. This method does not need to fit kinetic 

parameters and is suitable for the case involving diverse candidate mechanisms. Moreover, 

many efforts were also spent on combining pure ML (e.g., RF, NN and XGBoost) with 

molecular fingerprints to estimate the reaction rate constant of the radical-induced oxidation 

reactions of aqueous organic pollutants286. 

Note that most of the reaction systems above are assumed to be homogeneous without 
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considering the effect of transport. A clear bottleneck is that the black-box ML/DL such as 

NN requires large datasets to train the algorithms. As a consequence, obtaining the large 

datasets from traditional experiments can be very challenging due to the material usage cost 

for traditional reactors with large volumes, especially for expensive materials. One solution is 

to perform high-throughput flow chemistry experiments in microreactors. Researchers have 

developed a fast, automated ML-aided platform to determine reaction models and kinetic 

parameters284. This kind of method can remarkably improve current industrial determination 

techniques and significantly reduce computation time, overall cost and labor. However, the 

developed platform may be only appropriate for some specific flow rection systems lacking 

universality. Another alternative is to collect data from some existing databases but the data 

distribution may be very uneven and the reaction rate constants are often not given. We 

would suggest these databases should be gradually improved and become more and more 

feasible for all users in the future. At the moment, one may improve the training performance 

by choosing a suitable data sampling/handling strategy specified to their data 

characteristics/qualities/distributions, such as random sampling, greedy sampling on (both) 

inputs/output, and variational sampling290. The last option is that the theory-based methods 

can provide large datasets for training ML, which has become an effective methodology for 

calculations of rate parameters of kinetic models. However, there still exist problems for 

these approaches, for example, the ab initio computation of exact rate parameters will result 

in a huge computational burden, which hinders fast quantitative predictions of the coupled 

reaction kinetics involving large datasets. In order to overcome this hurdle, combinations of 

ML/DL with computational methods can be performed. 
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Figure 17 Flowchart of deep learning quantum reaction rate constants. 1) Data generation. 2) DNN model 
inputs, outputs and structures. 3) DNN to estimate rate constants. Adapted with permission from ref 267. 
Copyright 2020 American Chemical Society. 

(2) The dataset from the traditional transition state theory (TST) or first-principles 

theory. These methods can be trained to estimate activation energies268 and reaction rate 

constants267,283,291. The common steps for this group of studies include (i) data generation 

from computational methods, (ii) selection of suitable ML/DL methods, (iii) design of 

ML/DL structures, (iv) training the model and optimization of these structures, and (v) 

application of the trained model, as shown in Figure 17. Grambow et al.268 constructed a 

template-free directed-message-passing NN model (i.e., a type of graph CNN) to estimate the 

activation energy for a given reaction. The model was trained based on a DFT dataset 

spanning a diverse set of reactions, achieving correct predictions and good agreement with an 

intuitive comprehension of chemical reactivity. Komp and Valleau267 trained a DNN model to 

estimate the quantum reaction rate constant-related terms based on the datasets obtained from 

in-house calculations. In particular, ~1.5×106 rate constants are contained for various types of 

1-D potentials, which covered a wide variety of reactant masses and temperatures. The 

trained DL model can estimate the logarithmic rate product with a 1.1% relative error and the 

difference between the TST and DFT can be up to 31%. This difference suggests that future 
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efforts may include the rate constants computed from traditional TST as input features. 

Instead of directly training the DL model based on the datasets from TST or DFT, there are 

also studies291 directly training the Gaussian process model to regress and assess the 

difference between different computational methods such as TST and DFT. One possible 

limitation for this kind of investigations is that only a relatively small range of temperatures 

is commonly used for most of the studies. This will limit the applicability of the trained 

model although the authors have claimed that their models have good generalization 

performance. This issue may be fixed by combining more computational methods and 

experimental data to sufficiently take advantage of their strengths and conduct further 

cross-validation tests. 

2.3.1.2 Simultaneous determination of pathways and kinetic parameters 

The second type is to directly apply physics-informed ML/DL to train the data from 

experiments, kinetics-ODE solvers or quantum computation to discover unknown pathways 

and simultaneously estimate kinetic parameters. The kinetics-ODE, the other types of 

governing equations and boundary conditions can be added as the constraints to make the 

obtained model follow the physical fundamentals and have much more interpretability and 

robustness. A typical PINN example is to design and train a reaction neural network using the 

basic physical laws (e.g., the mass action law and Arrhenius law) as constraints. Ji et al.292 

revealed that such a physically interpretable model can find the unknown reaction pathways 

and estimate the rate constants at the same time according to the weights of NN. To obtain the 

solution of kinetics-ODEs, one can apply the feed-forward NN as basis functions and the 

microkinetic differential algebraic equations as constraints, which enables simultaneous 
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determination of reaction pathways and kinetic parameters (Figure 18a)270. 

 

Figure 18 (a) PINN without transport effect, able to solve both inverse and forward kinetic problems 
(Gusmão et al.270); (b) PINN with transport effect in a fixed bed reactor for catalytic CO2 methanation, 
able to solve inverse kinetic problems (Ngo and Lim271). Figure 18a was adapted with permission from ref 
270. Copyright 2022 Elsevier. Figure 18b was adapted with permission from ref 271. Copyright 2021 
MDPI. 

One primary advantage of the above studies is that the reaction NN can give robust 

clarification of elementary reaction pathways of the investigated reaction systems with high 

dimensionality when suggesting the candidate network. However, in the former study, it may 

be difficult for their model to deal with the reaction systems where a large variety of 

timescales and concentration levels are involved. Another possible problem of this kind of 
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study is that different authors usually enforce different constraints into the NN structure while 

the un-encoded candidate constraints are not demonstrated further. It is true that enforcing all 

constraints into the NN structure will make the model very complex, but there may exist an 

optimal solution of which constraints should be embedded into the NN architecture. This may 

be of interest for future work. Another kind of representative study is to encode 

kinetics-ODEs into the loss functions of NN for reactions293,294. It should be of practical use 

to integrate this physics-inform kinetics-ODE framework into a CFD solver or a reactor 

model to give forward predictions of species source terms. 

2.3.1.3 Reduction of reaction networks 

The third type is to perform ML/DL such as PCA, tree models and CNN for complexity 

reduction of reaction networks from different aspects. The motivation of network reduction is 

that rapid and accurate predictions of reaction compositions are greatly beneficial to reaction 

processes design, optimization, and control295. However, the establishment of a 

comprehensive kinetic scheme is computationally prohibitive due to the highly complex 

chemical space. Most of the studies tried to simplify the reaction mechanisms from the 

known comprehensive reaction mechanisms. In fact, the key idea of these studies has some 

similarities, such as learning local representations from complex reaction networks, the 

discovery of the key components and interactions, the identification of the suitable coarse 

quantities of the reaction network, and the sparse identification of the most influential 

reactions using component concentrations and the reaction rates. Several representative 

application examples are discussed and analyzed below. Hough et al.296 applied ANN and 

decision trees for reduction of the computation cost by four orders of magnitude as compared 
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with the DKM of biomass pyrolysis. The trained ANN was generalizable to give predictions 

of the DKM with an accuracy of over 99.9% on the unseen test dataset. The outlined ML 

method did not depend on the underlying kinetic correlation between inputs and outputs, 

which is applicable to any varied kinetic relationships, no matter whether the reaction relation 

is known. Ulissi et al.269 reported a novel Gaussian process-based surrogate methodology for 

optimizing and reducing heterogeneous catalysis reaction networks of syngas on the surface 

of Rh(111) catalyst. The surrogate method was trained by adsorption energies on the basis of 

group additivity fingerprints in conjunction with transition-state scaling relationships and a 

simple classifier for the determination of the rate-limiting step. The presented model was 

iteratively applicable for predictions of the key reaction step to specific products via the 

explicit DFT calculations. This work is a substantive step for applying ML in the field of 

computational catalysis. However, the computational cost of DFT is relatively expensive and 

more importantly the GP is usually limited to relatively low-dimensional problems due to the 

loss of its effectiveness in a high-dimensional feature input space. Given the relatively poor 

generalization of ANN because of complete ignorance of the reaction network topology, Qiu 

and coworkers297 reported a high efficiency CNN-aided framework able to learn local 

representations from complex reaction networks. Methods for characterizing large-scale 

networks were adopted for extraction of features of naphtha pyrolysis reactions. Using the 

selected features as inputs in CNN architectures, the optimized CNN models enabled a 300 

times acceleration of the computation speed as compared with the traditional kinetic model 

and the prediction accuracy of yields of major products reached 97%. Their later work298 

developed a unique multiple sub-network reconstruction characterization module used for 
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effective discovery of the key components and interactions in the co-cracking process and for 

elucidation of the evolution mechanisms in the co-cracking reaction network. Van Geem and 

coworkers295 proposed four DNN-based frameworks for the steam cracking production 

process. Based on a limited amount of practical naphtha indices and fast accessibility of 

process characteristics, their novel methodology enabled the determination of a detailed 

composition of the steam cracker effluent, showing a high accuracy of predictions of the 

networks and an ignorable computational burden. Thus, their method was very applicable for 

continuously monitoring/controlling hard-to-access process parameters and for providing a 

real-time optimization strategy. Unlike these contributions, Katsoulakis and Vilanova299 

proposed a new scalable methodology by combining an information theory tool with a 

variational approach for efficiently reduced modeling of high-dimensional reaction networks. 

The reported ML method allowed for identification of the suitable coarse quantities of the 

reaction network by sensitivity analysis, and for the development of a best-fit reduced model 

with the control of the information loss. The effectiveness of the data-driven reduced model 

was well demonstrated for several high-dimensional biochemical reaction networks. Harirchi 

et al.300 proposed a novel data-driven sparse-learning method for identifying the key reactions 

in complex combustion reaction networks. The presented optimization method was applied 

for sparse identification of the most influential reactions using component concentrations and 

reaction rates. The required computational resource was minimal and no additional data or 

simulations were required. 

It can be concluded that the results by ML accord well with the existing understanding 

of chemical kinetics and the developed model is able to reduce the complexity of kinetic 
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modeling, thereby accelerating the discovery of reaction kinetics. However, most of these 

established models appear to be only valid for a specific reaction system since the datasets 

used for training are usually limited to a specific composition space. Another notable 

similarity is that whether using the GPU to speed up the reaction network modeling has not 

been indicated for most of the above papers. To this issue, some researchers have recently 

turned their attention to this important aspect301 and increasing efforts need to be devoted to 

boosting the discovery efficiency of reaction networks. 

2.3.1.4 With transport effect 

The fourth type is to perform pure ML/DL or physics-informed ML/DL of reaction 

kinetics with transport effect. Note that the discussion of the first three types mostly ignored 

the effect of transport phenomena on reaction kinetics modeling. To account for the transport 

effect in kinetics modeling, one can collect plant data from large-scale reactors302 but the 

economic cost is usually very high. Alternatively, one can also combine ML/DL with the 

CFD or the classic simplified reactor model. The first typical example is to use the pure 

data-driven ML to map the relationship between the rate constants and the temperatures. 

Spencer et al.303 first performed transient coarse-grid CFD simulations to generalize a series 

of 'snapshots' at an assigned time interval Δt = 0.1 s when the temperature ranged from 473 K 

to 633 K for a CVD process. The recorded vector data of flow variable distributions were 

then reduced to a low-dimensional description by a POD method. After that, ANN was used 

to train and map the reduced data. The mapped relationship was subsequently regarded as the 

initial condition of the coupled steady-state fine-grid simulations with the detailed kinetic 

models and this could accelerate the convergence. However, in the fine-grid simulations the 



84 

 

kinetic rate constants should be adjusted so that the predicted deposition rate can approximate 

to the experimental data within a reasonable tolerance. The benefit of this work is that the 

reduced order model based on coarse CFD predictions can serve as a preconditioner for the 

fine-grid CFD which accelerates its convergence. The possible disadvantage is that there are 

several different processes involved, and this could increase the implementation complexity 

and uncertainty in different processing steps. Another typical example is illustrated in Figure 

18b, where the classic reactor model is used to consider the transport effect in an isothermal 

fixed bed reactor for catalytic CO2 methanation. Ngo and Lim271 trained an effective 

physics-informed feed-forward ANN. In particular, a classic plug-flow fixed bed reactor 

model was introduced to consider the effect of transport phenomena and the unknown 

effectiveness factor existing in reaction kinetics can be estimated with a 0.3% error even for a 

limited number of datasets. In their model, the forward problem aimed to optimize the 

weights and biases and then predicted the unknown effectiveness factor; meanwhile, the 

inverse problem estimated the effectiveness factor by directly optimizing the loss function 

where the effectiveness factor was involved. We note that very limited studies have reported 

PINN-based inverse modeling of reaction kinetics parameters with transport effect. It should 

also be noted that this work is limited to a 1D isothermal plug-flow reactor model. We 

thereby suggest that future efforts can be extended to investigations on more complex 3D 

reactor geometries and considerations of thermal effects. 
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Figure 19 A workflow for assessing the performance of different machine learning methods to estimate H2 
production through supercritical water gasification of biomass. Adapted with permission from ref 308. 
Copyright 2021 Elsevier. 

2.3.2 Prediction of species production 

Similar to inverse problems of estimating kinetic parameters above, study of the forward 

prediction of species source terms can also be categorized into different classes: 

pure/physics-informed ML/DL with or without transport effects. 

2.3.2.1 Without transport effects 

This class of investigations can be further divided into two types: (i) Pure ML/DL 

without transport effects; (ii) Physics-informed ML/DL without transport effects. Most of the 

previous researchers have used pure ML/DL for data-driven predictions of the species 

production using the datasets generated from the coupled CFD solvers with the detailed 

kinetic models or the experiments. The pure ANN, SVM, RF, decision trees and gradient 

boosting (GBoost) are the most popular algorithms for the regression purpose above. Chen et 
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al.304 reported ANN and SVM models for estimation of the product profiles and biomass 

pyrolysis bio-oil heating value. It was indicated that both models are able to well predict the 

yield of pyrolytic product and the bio-oil heating value while SVM manifests a better 

estimation performance for biomass pyrolysis. Mutlu and Yucel305 proposed RF-based and 

least-squares SVM-based data-driven models applicable for estimation of syngas composition 

for downdraft biomass gasification based on the downdraft gasification data from an 

experimental fixed bed system. In addition to using the experimental data as the data source, 

recent studies have also used molecular-level kinetic models to generate data for training ML 

approximators to completely represent the time-consuming molecular-level kinetic models 

for predicting the product yields. Agarwal and Klein306 developed several data-driven 

regression models based on the decision tree, GBoost, and ANN to predict component yields. 

Zhu et al.307 applied RF model for predicting the yield and carbon contents of biochar using 

the data of lignocellulosic biomass pyrolysis. The model could give accurate predictions of 

the biochar yield and C-char based on characteristics and conditions of biomass pyrolysis. 

Besides, the model identified that temperature was the key factor affecting both carbon 

contents and yield in pyrolysis processes. Zhao et al.308 developed a novel methodology to 

evaluate the performance of different ML methods, including RF, GP, ANN and SVM, and to 

estimate H2 production through the supercritical water gasification of biomass (SCWG), as 

displayed in Figure 19. For the investigated SCWG, the RF model outperformed the 

prediction ability of the remaining models. The optimal RF was then utilized to assist the 

relative importance and partial dependence analysis of biomass properties and process 

parameters for maximizing the efficiency of H2 reaction and exergy consumption. To sum up, 
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the studies above may be improved from the following optimization perspectives. First, we 

suggest again that the data size required to train a high-accuracy and generalizable ML model 

deserves more future efforts. In particular, Agarwal and Klein306 showed at least 103 data sets 

are required in an ANN modeling to reach sufficient accuracy while this requirement can be 

up to over 104 datasets for decision tree models in the systems they studied. In fact, it is hard 

to achieve such a high requirement for the data from experiments, which suggests that there 

may be a risk of overfitting to train a pure ML using very limited datasets. It should be noted 

that the specific amount of data required could only be of guidance for the corresponding 

type of specific systems. Second, most of the studies above have not presented a relatively 

systematic optimization of hyperparameters and it is unknown how much uncertainties are 

involved in their models and thus in their predictions. In efforts to improve this weakness, 

some optimization-based ML algorithms are suggested to be performed in the future. Third, 

input feature reduction using some common ML methods can be conducted to deal with the 

complex systems with hundreds of compositions309 since the combinations of input 

parameters can be up to 213 for estimations of on the yield of biochar. This highlights the need 

to identify the key input features using high-performance ML algorithms. In particular, Ullah 

et al.310 developed a novel GA-assisted method for feature selection and evaluated several 

different ML-based data-driven regression models based on the selected features. It was 

found that data-driven models could offer reliable predictions of bio-oil yield, and 

particularly the RF-based data-driven model outperformed the remaining models in the case 

that the complex relationship between the inputs and output target was considered. In the 

future, this kind of work may be further trained and tested over more systems to probably 
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'formulate' a universal feature reduction rule. Finally, we want to emphasize that in recent 

years the physics-informed ML/DL methods have been rapidly applied to improve the major 

weakness of pure ML/DL, and an increasing number of new ML/DL structures has been 

designed and reported. However, applications of ML have not been widely absorbed in 

physics-informed ML/DL modeling of reaction kinetics. In fact, forward physics-informed 

ML/DL can be applied for the prediction of the composition source terms once the inverse 

physics-informed ML/DL model is well constructed (Figure 18a) or the kinetic parameters 

have been known. Therefore, more efforts are suggested to investigate forward 

physics-informed applications in reaction kinetics, especially the comparison between 

different orders of reaction kinetics models from a perspective of algorithm optimization. 

 

Figure 20 Flowchart for data analytic- and machine learning-aided chemical reaction engineering model 
development for fixed bed reactors. Adapted with permission from ref 106. Copyright 2019 American 
Chemical Society. 

2.3.2.2 With transport effects 

There are basically several ways to consider transport effects in predictions of reaction 

source terms including mapping the relationship between the reaction rate and the input 

variables (e.g., operating conditions) or direct mapping the relationship between the mass 
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fraction of components and the coordinates of each numerical cell. Bracconi and Maestri311 

designed a novel procedure using Random Forest and Extremely Randomized Trees to 

approximate computationally-intensive first-principles kinetic models (e.g., the mean-field 

microkinetic models) in catalytic reactions. The results using the trained ML model 

excellently agreed with those by the full first-principles models within an error of 0.2%. The 

tree model was then coupled with reactor models to predict the reaction rate used as the 

reaction source term of CFD simulations. Moreover, there are also ML studies directly 

training and learning the data from the coupled CFD and kinetic models. Zhong et al.274 also 

conducted back-propagation ANN to improve predictions of the species distributions in a 

gas-solid biomass fast pyrolysis reactor. They explored the effect of the sampling approach 

and number of outputs, and optimized the hyperparameters (e.g., the number of neurons in 

the architecture of ANN). The species mass fraction data of TFM simulations were 

successfully mapped to the coordinates of each numerical node and temperature of pyrolysis 

in the reactor. Partopour et al.272 proposed a novel RF method for ensemble learning the 

pre-computed microkinetics data and then integrated the learned mapping predictor with the 

CFD in order to estimate the reaction rate needed in particle-resolved CFD simulations of 

fixed bed reactors. In particular, their trained reduced kinetics model showed high accuracy 

with MRE<1.5% and high efficiency (558 times faster than ODE solver). It is necessary to 

implement further validation with experimental data of their trained model and comparison 

between the PRCFD-RF and pure PRCFD. Besides, quantification of the increase of 

computational time due to the integration of RF with PRCFD may also be needed. Partopour 

and Dixon106 further proposed a workflow for data analytic- and ML-aided reaction 
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engineering model development for fixed bed reactors (Figure 20). In this workflow, the 

high-precision CFD tool coupled with the detailed microkinetic models was utilized to 

generate multiscale data sets of flow, transport, and reactions useful for later development of 

reliable data analytic- and ML-aided reaction engineering models. Using the high-quality 

large dataset from an industrial-scale FCC device, Yang et al.312 proposed a novel data-driven 

hybrid model which successfully embeds the mechanistic lumped kinetic model into an ANN 

framework. More specifically, the authors considered the predictions given by the 

mechanistic model as an auxiliary input and concatenated this input layer with the second 

hidden layer. The hybrid model enabled better representation of the petrol yield data than 

those estimated by a pure mechanistic model and a pure data-driven ANN model. Recently, 

we performed data-driven modeling of the filtered subgrid reaction rate source term to correct 

the reaction rate observed in a coarse-mesh TFM simulation based on the data from fine-grid 

simulations45. Due to a relatively simple relationship between the filtered reaction rate output 

and two feature inputs (filter size and solid hold-up), conventional fitting and data-driven 

methods showed comparable prediction performance of a solid-catalyzed first-order reaction. 

More recently, Ouyang et al.273 proposed an ANN-based data-driven methodology to 

approximate the reaction rate in order to speed up the time-consuming simulation of turbulent 

reactive flows. Their constructed model is able to compute the reaction rate with a 

satisfactory accuracy (RMSE=8.50×10−3) and a boosted efficiency (an order of magnitude 

speedup while keeping accuracy) over "unseen" testing operating conditions and new 

geometry cases. Notably, the proposed model considers the effect of turbulence-chemistry 

interaction on reaction source terms and is 14 times faster than the time-consuming 
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Lagrangian PDF approach. 

To sum up, most of the studies have directly used the trained pure ML/DL as a 

black-box approximator but do not endow the prior knowledge into the approximator to keep 

its robustness and to enhance extrapolation ability. As a consequence, these black-box 

approximators are probably only applicable for simulations with reaction mechanisms 

accounting for the identical set of components as the one utilized in the training span. One 

solution to address the possible overfitting could be increasing the dataset size (if the 

database is obtained from simulation snapshots) or applying 2%~3% of uncorrelated random 

noise to perturb the training data313. The solutions above may not completely eliminate the 

overfitting for pure ML-base data-driven modeling, but lower the degree of the overfitting. In 

addition to applications of pure DL above, there are relatively few efforts focusing on 

applications of physics-informed DL in the modeling of the mean reaction rate. In particular, 

in a DNN learning of combustion reaction processes based on DNS data, some researchers 

have attempted to revise physics-informed loss functions by introducing the mass 

conservation laws of the mixture and elemental species in a specific formulation which can 

produce extensive conditions as constraints314. Besides governing equations, boundary 

conditions and reaction kinetics can also be used as physics-informed constraints273. When 

using the kinetics-ODEs as constraints, some mathematical laws may also be considered for 

the case where the matrix is close to singular value and this consideration can be considered 

in some specific cases. 

2.3.3 Optimization of reaction conditions 
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Chemical reactions typically have numerous controllable reaction conditions/factors. 

Accurate suggestions of such conditions/factors play an essential role in yielding the 

desirable products. In this section, reaction conditions/factors denote reagents, catalysts, 

solvents, reactants, products, and operating conditions (e.g., flow rate, temperature and 

pressure), etc. Traditionally, experimental approaches can probe suitable combinations of 

these factors. However, conventional recommendation of suitable conditions depends heavily 

on researchers’ knowledge and experience. Moreover, the experimental determination process 

is usually time-consuming, and leveraging big data further brings a great challenge. ML is 

flexible and efficient to recommend the most suitable solution based on reaction data315-317. 

So far, there may have been three general types of applications of ML for optimization of 

reaction conditions to maximize the reaction yield/selectivity/conversion: (i) Coupling 

ML/DL with physical models; (ii) Coupling ML/DL with experiments; (iii) Coupling ML/DL 

with robotic platforms as an optimizer. In particular, multi-objective optimization is most 

often applied for the identification of the trade-offs between the criteria of conflicting 

performance. In order to solve reaction optimization problems, nowadays it has to leverage 

multidisciplinary knowledge including chemical engineering, chemistry, mathematics, 

physics and especially computer science. We will discuss the recent progress from 

perspective of reaction condition optimization while perspective of chemistry such as 

optimization of chemical synthesis318 is paid to relatively less attention. 

2.3.3.1 Coupling ML/DL with physical models. 

(1) The first kind of applications is to perform ML/DL to train the data from the physical 

models such as CFD model and classic reactor model. After the model is well trained, it can 



93 

 

be used as an approximator to perform a rapid sensitivity analysis of reaction conditions and 

find the optimal conditions to maximize the yield of the main products and minimize the 

conversion of other side products. Moreover, the trained ML model can also be used as an 

objective function in an optimization function, such as GA to optimize reaction conditions158. 

(2) The second kind of application is to use ML/DL to optimize the parameters involved 

in the physical models and then to use the constructed model to optimize reaction conditions. 

Chaffart and Ricardez-Sandoval319 conducted the continuum models and stochastic PDE to 

simulate the multiscale deposition behavior and ANN was adopted to estimate the model 

parameters in the stochastic PDE, which was verified by kMC. The established hybrid model 

was then applied to optimize and control the growth of thin film under various scenarios. An 

important consideration is that there exists parametric uncertainty because the surface 

roughness of thin film deposition is probably out of range of the targeted values. Besides, it is 

still time-consuming to use a stochastic PDE to capture the microscopic film growth 

deposition. To address this issue, the later work320 directly used ANN as a surrogate model to 

capture the microscopic deposition dynamics while a linear parameter varying model was 

used to simulate the macroscopic deposition behavior. This multiscale data-driven model can 

significantly accelerate the computational process up to O(104) as compared with the pure 

CFD simulation. 

(3) The third kind of application is to employ ML/DL or physical models to optimize the 

hyperparameters involved in the ML/DL and then to use the optimized model to optimize 

reaction conditions. For instance, researchers first combined Monte-Carlo sampling with 

CFD simulations of combustion to generate the database used for later training of 
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super-learner ML-GA. In particular, the hyperparameters in the ML base learner were 

optimized by a Bayesian method. Once the ML was well established, the ML-GA can be used 

for the optimization of combustion processes. This general framework can be integrated into 

the CFD solver to optimize other reaction systems. 

2.3.3.2 Coupling ML/DL with experiments 

Here, the optimization process does not involve other physical models and the datasets 

are collected from experiments. So far, ML/DL has been applied as an optimizer for different 

reaction systems and notably growing attention has been paid to flow chemistry systems321-323, 

renewable energy systems such as hydrothermal carbonization324 and hydrothermal 

liquefaction of algae325,326, etc. These studies may be further divided into two categories: with 

and without physical knowledge. Physical knowledge includes material properties (e.g., 

solvent, molecular and catalyst properties, namely, the so-called descriptors) or other kinds of 

knowledge (e.g., DFT). The ML methods with and without descriptors are discussed below: 

(1) Without descriptors: Zare and coworkers applied a RNN for optimization of 

chemical reactions by iteratively recording the results of a chemical reaction and then 

selecting varied reaction conditions to enhance the reaction result327. The proposed DL model 

outperformed the current optimization method and required 71% fewer steps on both 

simulations and real reactions. One notable issue is that this refinement learning using LSTM 

may suffer from the relatively low training efficiency in training and operation. The sequence 

length cannot exceed a certain limit in order to avoid the gradient disappearance. Jensen and 

coworkers proposed a novel hierarchical NN-based method enabling predictions of the 

reaction components (e.g., reagents, catalysts, reactants, products, and solvents) and the 
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temperature optimal for a specific chemical reaction275. Using ∼10 million examples from 

Reaxys, they trained a model able to recommend conditions, and the test results reached a 

close match to the recorded data very fast (<100 ms for one reaction). An important weakness 

is that the number of estimations per stage is limited to top-10 combinations in a short time 

period since the predictions are in a sequential manner. In particular, Lapkin and coworkers 

have conducted very systematically essential studies towards AI- and ML-guided automated 

design and optimization of reaction processes. Schweidtmann et al.328 conducted a 

multi-objective Bayesian method to approximate a Pareto front for self-optimization of 

reaction conditions, including simultaneous optimization of productivity and environmental 

impact or impurity. Note that the physical knowledge has not been directly considered in the 

learning operation. The same self-optimization platform was further extended to optimize the 

complex pharmaceutical reaction processes involving liquid-liquid separation329. More 

recently, Liang et al.321 presented a typical example of how to apply the Bayesian method to 

optimize reaction conditions for complex continuous gas-liquid-solid flow systems. 

Comparison with the conventional approach revealed that their developed optimization 

method can significantly boost both yields and prediction efficiency. In addition to the 

reaction systems above, recently researchers have also shown interests in other kinds of 

reaction systems. Kim et al.330 reported a novel decision tree-based method to predict the 

most suitable non-oxidative reaction outcomes of methane to C2 compounds by optimization 

of the reaction parameters with metaheuristics. Their developed model could simultaneously 

boost the C2 yield and suppress the formation of coke through an improvement of the 

multi-objective optimization. An evident issue for this work is that there is a need to integrate 
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the catalyst descriptors in the training operations for a catalytic reaction process. We will 

further discuss such an urgency in the following discussion. 

(2) With descriptors: Recently, there has been a rapidly increasing tendency combining 

ML/DL with molecular descriptors for optimization of reaction conditions based on 

closed-loop experimental platforms331 with the inclusion of physical knowledge. Amar et 

al.276 integrated the physical knowledge including the traditional molecular descriptors, 

reaction-specific descriptors and screening charge density-based descriptors into Gaussian 

process surrogate modeling (with a cross-validation R2=0.84), aiming at rational solvent 

selection for simultaneously maximizing the conversion and diastereomeric excess for 

asymmetric catalytic reactions. After identification of potential solvents, a black-box 

Bayesian optimization method was performed to determine the solvent mixture composition 

and optimize reaction temperature. This work was further improved in terms of the following 

aspects: An Autoencoder was utilized to the dimensionality of descriptors; The trained NN 

for the design of experiments (DoEs) was conducted in an active learning mode for reduction 

of the number of experiments due to the reaction optimization requirement332. In summary, 

ML/DL as the core of process development workflow provides a promising solution to design 

experiments and optimize reaction conditions, which can be transplanted to future robotic 

platforms. However, a further identification of which ML/DL strategy is applicable to a 

specific experimental system still requires further efforts. Such an existing issue has driven an 

initial effort to compare several typical strategies such as GRYFFIN, SOBO and TSEMO on 

virtual benchmarks for reaction optimization333. Overall, Bayesian optimization methods 

showed excellent performance across the different types of reaction optimization problems. 
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As we have stated previously, a much more systematic identification is still needed to make 

the optimization schemes more compatible with different reaction systems in the future. 

Moreover, it can also be readily found that the amount of database involved in the past 

studies ranges from hundreds to tens of millions and the authors usually claim that their 

machine learning models have excellent, satisfactory or good generalization ability. However, 

there is at least one point clearly indicating that the ML model generalization performance is 

still a challenging problem since different numbers of the fold for cross-validation in different 

papers have been adopted to tune the hyperparameters involved in the ML architecture. We 

find that some efforts have attempted to train a generalizable NN model by using the datasets 

from different hydrothermal liquefaction systems involving the alkali-catalyst dataset, 

transition-metal-catalyst dataset and non-catalyst dataset, which may help overcome the 

potential overfitting and enhance the model extrapolation capability277. Particularly, the 

authors first performed feature extraction of inputs by a PCA method and established a 

comprehensive dataset covering different systems, which were then used for training an 

improved NN with the inclusion of catalyst descriptors (R2>0.85). Such a workflow for 

feature engineering is illustrated in Figure 21a. The trained NN was finally used for catalyst 

screening and reaction conditions optimization (i.e., maximizing the production of H2 and 

minimizing the yield of CO2), as shown in Figure 21b. Although the authors have tried to 

collect as many data points as possible from publications, in fact a total of 718 data points 

were applied in their study. This highlights the great need to establish a big, standard database 

for renewable energy reaction processes by some recent advanced techniques such as text 

mining. Alternatively, a combination of automated high-throughput experimentation with AI 
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for many reaction problems such as flow reactors, organic synthesis and drug formulation 

will be an important future direction for targeting these specific reaction systems. 

 

Figure 21 (a) A workflow of feature engineering assisted ML; (b) Schematic diagram of ML-aided 
optimization of operating conditions and catalyst screening for H2-rich syngas production from 
supercritical water gasification. Adapted with permission from ref 277. Copyright 2021 Elsevier. 
 

2.3.3.3 Coupling ML/DL with robotic platforms 

With the latest development of robotic automation and computer-aided synthesis 

planning, coupling computer AI with robotic platforms has led to exciting results in synthesis 

route design and reaction condition optimization. Jensen and coworkers reported a robotic 
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continuous flow chemistry platform combining an AI-informed synthesis-planning module 

for the design of synthesis routes and robotic execution of high-throughput experiments334. 

The feedforward NN algorithm was trained to learn millions of reactions based on the 

existing database, which can propose the synthesis route for a given molecule, including 

optimal reaction conditions, and evaluate the best path according to the number of steps and 

predicted yield. Meanwhiles, there still exist several challenges in such a platform including 

the need for reduction of reaction time, reduction of solids formation to avoid clogging, 

difficult prediction of suitable purification methods especially for non-column 

chromatography, and the growing complexity in optimization of multi-step reaction due to the 

propagation of parameters. Moreover, scientists have also successfully achieved the 

combination of the robotic platform with Bayesian reaction optimization algorithms for 

applying to typical batch chemistry systems335,336. Doyle group developed a state-of-the-art 

easy-to-use parallelizable Bayesian-based software platform allowable for daily laboratory 

optimization of diverse types of reactions in typical batch processes336. In particular, 

researchers conducted a systematic comparison between the human decision-making and 

Bayesian method in reaction optimization based on a big benchmark dataset for palladium 

catalyzed direct arylation, as well as applications of Bayesian optimization to other reactions. 

Benchmarking is done through an online game that links the decisions made by professional 

chemists and engineers to daily laboratory experiments. It was found that Bayesian 

optimization is superior to human decision-making in average optimization efficiency 

(number of experiments) and consistency (variance between the results and initial available 

data). This study showed that using Bayesian optimization in daily laboratory practice can 
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promote more efficient reaction synthesis by making more informed, data-driven decisions 

about running experiments. Notably, there is an important limitation for such kind of study. 

Because it is assumed that all component variables have identical initial importance, and 

Bayesian optimization has certain blindness. Another important weakness is that the robotic 

search cannot capture the existing chemical knowledge, nor can include theoretical or 

physical models. From this perspective, future efforts should embed more prior knowledge 

(such as computed structures and properties) into the platform to make the current platform 

can behave more like a robotic chemist with a computational brain able to generate and test 

scientific hypotheses. In addition to organic reactions, recently there have been studies 

coupling the ML-assisted closed-loop optimization workflow of formulations with robotic 

experiments for automated DoEs337 and an elaborate description of this robotic AI-informed 

formulation platform was well reviewed338. 

3. Summary 

3.1 Conclusions 

It has been a long-standing problem to find a proper methodology for targeting complex 

multiscale flow and reactor systems339. Nowadays, we are excited to witness a promising 

transformative paradigm induced by AI, especially ML, in data extraction, data analytics, 

data-driven modeling, and data management, which is useful for the discovery of unknown 

information/knowledge and innovation in different kinds of applications. Meanwhile, we 

realize that ML is not likely the solution to every problem in multiphase fields and it is not a 

complete replacement of the traditional methods. We emphasize again that ML is a valuable 

toolkit that complements incomplete domain-specific knowledge in conventional 
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experimental and traditional models. ML can also provide easy-to-use techniques to facilitate 

the conceptual development of new robust predictive data-driven, physics-informed, and 

hybrid models for multiphase processes by finding hidden information in a dataset. Besides, 

ML can assist to develop emerging analytical theories and mechanism-based causal 

explanations3,340, a research area needed to be strengthened. Due to such emergence, we 

hence provide a comprehensive review, discussion and analysis of recent key advancements 

of ML applications to hydrodynamics, transport phenomena, and chemical reactions in 

single-phase/multiphase flows and reactors from different perspectives: (1) Development of 

closure models of drag force, turbulence stresses and heat/mass transfer for the averaged CFD 

simulations, and its acceleration; (2) Image reconstruction, regime identification, key 

parameter predictions and optimization of multiphase flow and transport fields; (3) Kinetics 

modeling (e.g., discovery of reaction networks, estimation of kinetic parameters and species 

source terms) and reaction conditions optimization. These parts primarily discuss, identify 

and analyze the advantages and weakness of ML for solving the challenging issues for 

multiphase flow and reactor systems. 

3.2 Summary of challenges and opportunities 

Here, we further summarize the under-addressing challenges and opportunities in order 

to provide future directions probably useful for our research community's study. Some 

important aspects are illustrated in Figure 22. In fact, some perspectives have been identified 

and discussed in the previous parts and here we mainly aim to provide an overview and 

analysis of challenges and opportunities of applications of ML in multiphase devices and 

systems. We summarize these separated aspects together in order to illustrate a better skeleton 



102 

 

for readers. We also hope this part might be viewed as a potential starting and guiding point 

for interested readers. 

 

Figure 22 Some important aspects of challenges and future directions in applications of ML for chemical 
engineering and multiphase flows. 

3.2.1 Data perspective. 

(1) Data availability. the performance of pure ML-based data-driven models is severely 

dependent on the availability of homogeneously-distributed large datasets. The reaction 

database such as Reaxys and Scifinder and rapidly developed automated high-throughput 

flow-chemistry experimentation platforms have been available to provide large datasets. 

However, there has been no public, large database available for multiphase flows and 

transport. Future long-term efforts should be devoted to establishing large databases which 

store robust, reliable and homogeneous datasets with detailed descriptions accessible to the 

users. In the short term, an alternative strategy is that, if there is only a small data set 

available, it is also feasible to embed the prior knowledge into the ML structure to enhance its 

generalization performance and to avoid overfitting. Besides, to overcome the disadvantages 
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due to data insufficiency in some cases, researchers can utilize some advanced DL techniques 

such as transfer learning, in which, taking DNN as an example, one can pretrain a model 

served as starting network using the relevant large data set from a general database. 

Subsequently, the weights of the last few layers are trained and optimized again using the 

small dataset available in hand while the remaining network is kept frozen. Although such a 

transfer learning process is very clear, it is still challenging to determine which layers are 

retrained while the remaining is kept frozen. The study in this direction deserves more and 

more efforts in the future. 

(2) Data inconsistency. For instance, although the gas-solid heat transfer rate in terms 

of Nusselt number can be well predicted by the data sets of Reynolds number, solid volume 

fraction and Prandtl number, these data sets may be collected from different sources of open 

reports based on different device configurations (e.g., horizontal or vertical; with or without 

internals), radius and height, and even based on different experimental techniques or different 

numerical simulations. In this situation, when attempting to train a model using the 

simulation data from the existing databases, one has to keep in mind whether the data were 

generated under the same or at least highly comparable operating conditions and device 

configurations341. 

(3) Data accuracy. Multiphase flow and transport experiments can be performed to 

generate data sets used for training and testing. However, due to the data from different 

experiments probably with different degrees of accuracy associated with the complexity of 

multiphase processes, the uncertainty in the experimental technique itself needs to be 

identified before the safe use of the measured data. If possible, a cross-study comparison of 
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different experimental methods should be conducted. Compared with data generated through 

experiments, the multiphase simulation is an efficient numerical tool with relatively low cost 

to produce the data for training and testing ML. However, the reliability and accuracy of a 

trained ML model employing data from simulations principally depends on the simulation 

itself's capability of approximating real experiments. That is, the use of simulation data leads 

to the difficulty for ML to go beyond the simulation accuracy. Thus, it is still an 

underexplored problem about the way to include the uncertainty of simulation data in the 

trained ML model. 

In addition to data perspective above, it is also important that data sets should cover a 

broad range of the parameter space of the target problem in order to efficiently leveraging ML 

with confidence. In this case, a vital transformative paradigm for enlarging the amount of the 

data friendly to users is to standardize, normalize, or nondimensionalize the data format. This 

could contribute to the elimination of the errors caused by different dimensions, self-variation 

or large difference in values. 

3.2.2 Model perspective 

(1) Model determination. How to choose the best ML model for a given task of flow, 

transport and reaction problems? One noticeable evaluation metric is that the ML should be 

easily used, and require relatively less computational cost than the other candidate 

approaches while still maintaining its forecast reliability and accuracy. To some extent, the 

appropriateness for a given issue of interest does not solely depend on the sophistication of 

ML models and the increased complexity is not always better8. Another important aspect is 

that one has to be aware of the applicable characteristics of each ML technique corresponding 
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to a given problem. In addition, Selvaratnam and Koodali342 suggested that automated ML 

tools (e.g., NN intelligence: https://github.com/microsoft/nni) could be applied for finding the 

best ML pipeline including the choice of model, approaches for data selection and 

transformation, and selection of hyperparameters. This strategy can be extended to 

multiphase flow and transport problems in the future work. In the case that only a small 

dataset is available, the choice of the unsupervised ML method, the supervised 

knowledge-informed ML, or other types of ML models could be effective to improve the 

prediction performance. One of typical examples in the context of unsupervised ML is to 

boost ML prediction capability through unsupervised contrastive pretraining that leverages 

small datasets of reactions343. It should also be noted that integrating ML with first principles 

models344 will play an increasingly important role in diverse multiphase research areas. 

(2) Feature selection. In a feature-target prediction problem, the selection of suitable 

feature inputs directly affects whether the ML model could be successfully trained. Despite 

the success of ML’s applications, one remaining infancy is that training and development of a 

model are most often empirically driven. That is, the choice of feature quantities as ML 

inputs is mainly dependent on the user's domain expertise while more theoretical methods for 

feature selection still deserve further special attention. It is important to add the prior domain 

information and constraints as the feature inputs. This will not only ensure that the trained 

ML model obeys some physical or chemical knowledge but also contributes to a more 

generalizable and easier-to-train model. Another important consideration is that feature 

extraction of inputs by ML tools such as PCA can be performed to reduce the training 

complexity when handling high-dimensionality problems. 
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(3) Hyperparameter optimization. What depth or complexity of DL models? Or how 

to assign the suitable hyperparameters (e.g., the number of layers and number of nodes of 

each layer for NN; the number of trees and depth for RF) optimal for a specific data set? A 

critical point is that the higher complexity due to an increase of hyperparameters probably 

leads to the reduction of transparency and interpretability8. Noticeably, a higher number of 

hyperparameters also causes much longer training time. This issue is particularly true for the 

traditional NN algorithms. An important future research area is to develop general, automated 

tools to not only optimize the hyperparameters but also balance the depth/complexity and 

accuracy with tolerance. 

(4) Model generalizability. How to ensure the generalizability of the trained ML model 

once the prediction is out of the scope of the data for training? Or how to train a model with 

extrapolative capability? One might keep in mind whether the solution to a given domain 

issue is still within the applicability range of the trained ML. For instance, if one constructs a 

predictive ML model, it should have the extrapolative ability to be generalizable to estimate 

spaces it has not "seen" during its prior training process. Only in the case that a trained model 

could at least partially generalize to what practitioners have not known, ML can then guide its 

applications in exploring unknown spaces in multiphase flow systems. To date, this is still a 

challenging problem, highlighting the necessity to give the priority of extrapolation as a 

measure of the trained model performance. 

(5) Model interpretability. Up to now, many ML techniques have been applied for 

predicting key parameters or modeling closures for multiphase flow and transport systems, 

which have been demonstrated to outperform the traditional empirical correlations. However, 
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most ML models relatively lack physical interpretability because of their high dimensionality 

and nonlinearity although they are predictive and the feature inputs of ML can be physically 

motivated10. The recently proposed knowledge-informed ML further motivates the users to 

embed the additional physical or reactive knowledge into the ML architecture according to 

specific multiphase application scenarios, which will make the ML more robust, interpretable 

and generalizable. When re-designing the ML structure, one also has to balance the model 

complexity and interpretability. This is because the increases of interpretability will be 

accompanied by the increase in the structural complexity of ML. One potential direction is to 

develop optimization algorithms that can optimize the multiphase model performance (e.g., 

robustness, interpretability and generalization and computation cost) to achieve the "Pareto 

optimality". Finally, to achieve the goal of applying ML in decision making, the multiphase 

flow developers should try to make the prediction results more explainable and help users 

understand the fundamentals behind the decision. 

(6) Model uncertainty. The origin of model uncertainty may include but not limited to 

model form, model parameter, model input, numerical approximation, and ML itself. How to 

establish a systematic method for quantification of the uncertainty induced by ML itself and 

multiphase data itself? Furthermore, how to determine the relative errors of ML models? It 

again comes back to the first question: which ML technique is the best for a given problem? 

It is advisable to explore ML’s best range of applicability through more elaborate and 

rigorous comparisons of representative ML approaches as well as well-established traditional 

methods (e.g., computationally-demanding but high-precision numerical methods as baseline) 

so that disadvantages and advantages (e.g., in cost and accuracy) are clear. Some recent 
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studies345-348 have increasingly promoted the development of relevant research areas and 

more efforts are suggested to contribute to better understanding and quantifying model 

uncertainty. 

3.3 Future directions 

After summarizing the shared challenges or the specific challenges in the domains of 

multiphase flows and reactors, several focused points for promising future directions are 

further presented below: 

Future direction 1. Future efforts should establish a large-scale, high-quality database 

from highly-resolved simulations or high-resolution measurements, which can be used for 

developing more robust and generalizable closures for coarse simulations. In particular, the 

uncertainty in data should also be provided. Furthermore, a large multiphase flow and 

transport (image) base should also be established for regime identification and key parameter 

predictions. These large, homogeneous datasets covering a wide range of flow and transport 

conditions can be beneficial to better understanding of multiphase characteristics and rational 

design of multiphase devices. 

Future direction 2. Physics-informed ML/DL, especially PINN, is a very promising, 

important future research field. Integrating the physical, chemical and mathematical 

knowledge into the ML structure can make the trained ML more explainable and 

generalizable with confidence for various multiphase flow and reactor systems even spanning 

a wide range of the flow, transport and reaction conditions. 

Future direction 3. Development of open-source, reproducible, and automated 

toolkit, e.g., Augmented Reality (AR) and Mixed Reality (MR) based technologies, for 
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targeting multiphase flow and transport problems is required for realizing the practical value 

of ML in chemical engineering and multiphase flows. We note that there have been many 

automated robotic optimization platforms in the context of chemical reaction space. However, 

such a promising robotic platform for multiphase flow design of high-throughput experiments 

has received much less attention. This research direction is to develop automated 

optimization tools able to simultaneously optimize the hyperparameters of ML, model 

parameters of traditional physical models and the key flow and transport parameters. 

Future direction 4. ML-based acceleration of computation is of critical importance 

for the practical use of numerical simulations for engineering design of multiphase devices. 

In particular, the CFD simulation of large-scale multiphase flow devices is very 

time-consuming and has been a long-standing, bottle-neck problem in chemical engineering 

and multiphase flows. A potential research direction is to correct or partially replace the 

traditional solver component mostly influencing the resolution loss in high-fidelity 

simulations, so that the learned interpolation and correction can be used in coarse simulations 

without sacrificing accuracy or generalization. 

Future direction 5. Digital twin refers to the establishment of a dynamic virtual model 

of the physical entity through digital means, and the realization of simulation and mapping of 

real, multi-dimensional, multi-scale, multi-physical quantity attributes and behavior 

information of the physical entity in virtual space349. In recent years, with the rapid 

development of digital-based AI, engineering simulations, data fusion and analytics, and 

other emerging technologies (e.g., VR: Virtual reality; AR: Augmented reality), digital twin 

as a digital transformation technology has attracted more and more attentions350,351. In 
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particular, digital twin has achieved practical industrial application in aerospace352, and 

process engineering industry represented by petrochemical industry353. From the perspective 

of multiphase flow and reactor engineering, the digital twin platform that is a combination of 

the digital processes and physical processes, involving modeling toolkit and experimental 

toolkit, is rarely reported in the literature. Such a mechanistic-AI augmented digital-twin 

platform for multiphase system engineering is illustrated in Figure 23. Notably, internet of 

things and metaverse can realize interconnection and creation that maps and interacts with the 

real world and a digital operating space with multiphase flow systems, and enables all 

ordinary objects in digital process and physical process to perform independent functions. 

 

Figure 23 A mechanistic-AI augmented digital-twin platform for multiphase system engineering. The 
lab-scale simulation contour in the upper left was adapted with permission from ref 25. Copyright 2016 
American Chemical Society. The industrial-scale simulation contour in the lower left was adapted with 
permission from ref 47. Copyright 2021 Elsevier. The pilot-scale reactor figure in the lower middle was 
adapted with permission from ref 354. Copyright 2015 Elsevier. The rightmost industrial-scale plant figure 
was adapted from ref 355. Copyright 2021 Elsevier. An open access article distributed under the terms of 
the Creative Commons CC BY license. 

Finally, we would like to emphasize again that future development and research of 

multiphase flow reactors are envisaged to be accelerated by AI, especially ML. Overall, the 
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ultimate goal of ML applications is for more efficient and effective design, scale-up, 

optimization, and control of multiphase devices and systems. It is optimistic that ML will 

play a much larger impactful role in the fields of multiphase flow, transport and reaction 

processes in the coming years. 
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GA: Genetic algorithm 

GAN: Generative adversarial network 

GBDT: Gradient boosting decision tree 

GBoost: Gradient boosting 

GPR: Gaussian process regression 

GRU: Gated recurrent units 

KNN: K-nearest neighbors 

LNN: Linear nearest neighbor 

LSTM: Long short-term memory network 

NSGA-II: Non-dominated sorting genetic algorithm-II 

RVR: relevance vector regression 

PCA: principal component analysis 

PINN: Physics-informed neural networks 

POD: Proper orthogonal decomposition 

RBFNN: Radial basis function neural network 

RF: Random Forest 

RNN: Recurrent neural networks 

SOM: self-organizing map 

SVM: Support vector machine 

SVR: Support vector regression 

XGBoost: eXtreme gradient boosting 
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