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Abstract

Many applications of speech technology require more and

more audio data. Automatic assessment of the quality of the

collected recordings is important to ensure they meet the re-

quirements of the related applications. However, effective and

high performing assessment remains a challenging task without

a clean reference. In this paper, a novel model for audio qual-

ity assessment is proposed by jointly using bidirectional long

short-term memory and an attention mechanism. The former is

to mimic a human auditory perception ability to learn informa-

tion from a recording, and the latter is to further discriminate

interferences from desired signals by highlighting target related

features. To evaluate our proposed approach, the TIMIT dataset

is used and augmented by mixing with various natural sounds.

In our experiments, two tasks are explored. The first task is to

predict an utterance quality score, and the second is to identify

where an anomalous distortion takes place in a recording. The

obtained results show that the use of our proposed approach out-

performs a strong baseline method and gains about 5% improve-

ments after being measured by three metrics, Linear Correlation

Coefficient and Spearman’s Rank Correlation Coefficient, and

F1.

Index Terms: quality assessment, attention model, anomaly lo-

calisation

1. Introduction

Speech quality assessment aims to find and quantize the differ-

ences between original speech signals and the ones with vari-

ations. There are two ways to assess speech quality: subjec-

tive and objective evaluation. The subjective evaluation is made

by a listener’s opinion in terms of some pre-defined criterion,

e.g., the mean opinion score (MOS). The MOS is generally con-

ducted by computing the arithmetic mean of all individual val-

ues on a predefined scale that a subject assigns to one’s opinion

of the performance of a system quality [1]. As subjective evalu-

ation may be time-consuming and expensive due to the need of

human assessors, objective quality evaluation has been widely

used to predict the rating scores. For objective evaluation, per-

ceptual evaluation of speech quality (PESQ) [2] can analyze an

audio recording sample-by-sample after a temporal alignment

of corresponding excerpts of reference and test signal. This

means objective evaluation still requires a “golden” reference

for each utterance to be evaluated, which considerably restricts

the applicability of such assessment tools in real-world scenar-

ios [3]. Accordingly, it is highly desirable to develop a reliable

assessment model.

In recent years, due to the rapid development of deep neu-

ral networks, some related technologies have been used for

speech/voice quality assessment. Spille et al., [4] used a deep

neural network to predict speech intelligibility. Soni et al. [5]

applied a sub-band autoencoder to first learn features to be used

by the following neural-network-based prediction model. Fu

et al. [3] developed a non-intrusive speech quality evaluation

model to predict PESQ scores using a BLSTM model on au-

dio recordings. Avila et al., [6] investigated the applicability of

three neural network-based approaches for non-intrusive audio

quality assessment based on mean opinion score(MOS) estima-

tion.

In this paper, our task focuses on two aspects. The first

is to assess the quality of audio recordings at utterance level,

and the second is to locate when an anomalous distortion takes

place in the recording. For this purpose, a frame-level based

quality assessment architecture using BLSTM [7] is employed.

The structure is designed to compute the frame-level score, and

then infer an utterance-level score. Moreover, by calculating

frame-level scores and detecting possible anomalous variations,

anomaly regions can be thus located in a recording. To further

increase the ability of quality assessment against interferences,

an attention mechanism is employed. The use of attention aims

to allow focuses to certain frames which are related to the tar-

get set by users. This means the target related information will

probably be given a large weight, while a small weight will

probably be allocated to irrelevant features. This is useful to

discriminate interferences from desired signals, and thus help

to assess the quality of a recording and anomaly localisation.

The use of attention mechanisms has led to some state-of-the-art

performances in different research fields, e.g., natural language

processing [8, 9, 10], speech recognition [11, 12, 13], speaker

recognition [14, 15, 16, 17], speech enhancement [18, 19].

However, to our know knowledge, more research in the use

of attention on speech quality assessment is needed. The re-

lated details of the proposed architecture and how the attention

mechanism is used in our work will be presented in following

sections.

The rest of paper is organised as follows: Section 2 depicts

the details of our proposed approach. In Section 3, the data

used for model training and evaluation and experiment setup

are introduced. The related experimental results and analysis

are given in Section 4, and finally the conclusion is drawn in

Section 5.

2. Proposed Architecture

Figure 1 shows the proposed architecture using deep neural net-

works and an attention model. Given the input spectrogram

S ∈ ℜF×T of an utterance U , the proposed model aims to

compute the quality Qft
∈ ℜ1×T of each frame ft ∈ ℜF×1 of

utterance U , and then infer an utterance-level score QU ∈ ℜ1.

As shown in Figure 1, the proposed structure consists of three

parts. In the first part, a one-dimensional CNN (1DCNN) layer



Figure 1: Architecture of speech quality assessment and

anomaly localisation using BLSTM, 1DCNN and attention

model.

[20] is cascaded with a BLSTM layer to learns features using

the contextual information in the time and frequency domains.

An attention layer is used in the second part. The third part

computes the frame-level value Qft
using a fully connected

layer and finally infers the utterance-level score QU by aver-

aging over all frames of utterance U .

2.1. Information Acquisition

The spectrogram S = (f1 · · ·fT ) of an input utterance U

is processed by a BLTM layer and then by a one-dimensional

CNN (1DCNN) layer.

h
blstm = BLSTM (f1..T ) (1)

h
1dcnn = 1DCNN (hblstm) (2)

The BLSTM is an improvement over LSTM in that it captures

both the previous timesteps (past features) and the future time

steps (future features) via forward and backward states, respec-

tively. It can be implemented by:

−→
h t = LSTM(ft,

−→
h t−1)

←−
h t = LSTM(ft,

←−
h t+1)

hblstm
t =

−→
h t +

←−
h t

(3)

where the output of BLSTM layer hblstm ∈ ℜL×T is formed

by concatenating the forward hidden state vector
−→

h and the

backward hidden state vector
←−

h , and L is the vector dimension.

The 1DCNN as described in [21] makes use of:

h
cnn
n = Kn ⊙ h

blstm
(4)

where ⊙ denotes the convolution between the nth kernel Kn ∈
ℜF×3 (n ∈ [1..N ]) and the output of BLSTM hblstm. hcnn ∈
ℜN×T represents the output of 1DCNN layer. The use of

1DCNN in this proposed architecture instead of 2DCNN is

mainly because the 1DCNN has two advantages relating to fea-

ture extraction and computation efficiency [22]. These advan-

tages make it relatively easy to train and offer the small com-

putational complexity while achieving state-of-the-art perfor-

mance levels [23].

The use of the BLSTM is to mimic the human auditory per-

ception system, as a decision made by a human generally needs

to consider the possible effects caused by contextual informa-

tion, especially our final aim is to compute an utterance-level

score. Although the use of context information might be helpful

to the quality estimation of the current frame, it may bring some

negative impacts caused by the future or past frames if they are

are corrupted by noise. To more accurately predict frame qual-

ity and locate an anomaly, the use of an attention model might

be an effective way.

2.2. Attention Model

The hidden state hblstm of the BLSTM, computed by equation

3, is used as the input of an attention layer. An attention matrix

A is formed by computing the similarity between the hidden

state ht and ht′ corresponding to frame ft and ft′ at timesteps

t and t′, respectively. The attention mechanism is implemented

as follows:

ht,t′ = tanh(hT
t Wt + hT

t′Wt′ + bt)

et,t′ = σ(Waht,t′ + ba)

at = softmax(et)

lt =
∑

t′

at,t′ · ht′

(5)

where σ is the element-wise sigmoid function, Wt and Wt′ are

the weight matrices corresponding to the hidden states ht and

ht′ ; Wa is the weight matrix corresponding to their non-linear

combination; bt and ba are the bias vectors. The attention-

focused hidden state representation lt of a frame at timestep

t is given by the summation of the product of ht′ of all other

frames at timesteps t′ and their similarity at,t′ to the hidden

state representation ht of the current frame.

2.3. Loss function

The score loss L is defined by the summation of an utterance-

level loss (Lu) and the loss (Lf) averaged over all frames [3]:

L = Lu + Lf

Lu = MSE(Qu, Q
′

u)

Lf =
1

T

∑

t

(Qu −Q′

ft
)2

(6)

where Qu is the target score of utterance U and Q′

u is its pre-

dicted value. Q′

ft
represents the predicted quality score of the

tth frame.

3. Experiment Setup

3.1. Data

In our experiments, the TIMIT dataset [24] was used as a com-

parison with the methods developed in [3]. About 700 utter-

ances in its training set were used to train the proposed model,

and 143 utterances randomly selected from its test set were used

for evaluation.

Noise corrupted recordings are generated by mixing the

clean recordings with various natural sounds at five signal-noise

ratio (SNR) levels (-10dB, -5dB, 5dB, 10dB, 20dB). The noise



signals used were from the the general noise portion of the MU-

SAN dataset [25], which contains six hours of various natural

sounds, ranging from fax machine, car idling, thunder, wind,

footsteps, paper rustling, rain, and birdsong, etc.

In all experiments, spectrograms are used as input features.

All of the audio streams are segmented using a 32-ms sliding

window with a 16-ms shift. A 512-point FFT was then used to

convert each segment into a 257-dimension vector.

3.2. Pseudo score

SNR (dB) Pseudo Score

-10 1

-5 2

5 4

10 5

20 7

original clean 8

Table 1: Pseudo scores defined in terms of SNR.

In Table 1, a set of scores are defined by linking to SNR

values. This is to mimic the definition of scores used for MOS,

but does not require human assessors’ to mark each recording as

the SNR value of a recording can be set when precisely mixing

the original recording with noise signals. In addition, using a

set of scores as assessment target might be able to mitigate the

impact caused by the use of noise corrupted target values e.g.,

using the estimated PESQ values as targets in [3].

The pseudo scores ({1, 2, 4, 5, 7}) are allocated to the

noise-corrupted utterances, whose SNR range from -10dB to

20dB with a 5dB shift. In this experiment, the score of original

clean speech is set to “8”.

3.3. Structure Configuration

Table 2 shows the configuration of the proposed approach, con-

sisting of seven layers. In the first three layers, the dimension

of input frame vector is 257, the output size of BLSTM is 200,

and 250 kernels (size=3) used in 1DCNN. The Frame score

layer computes the frame-based prediction scores using a time-

distributed Dense layer, and the Utterance score layer outputs

the utterance-level prediction using a GlobalAverage layer [20].

3.4. Implementation

Relying on the designed structure, experiments were conducted

using two proposed approaches and one baselines. The first

proposed approach LC ATT uses the structure as presented in

table 2, and in the second proposed approach, L ATT, the same

structure as LC ATT is employed without the 1DCNN layer.

The method developed in [3] is used as a baseline, which did

not use 1DCNN and the attention mechanism in comparison

with our proposed approaches. In experiments, RMSprop [26]

was used as an optimiser and the initial learning rate was set to

0.001 with 0.95 decay every epoch.

As both utterance-level and frame-level qualities are esti-

mated from different layers, as shown in Figure 1, regression

instead of classification was used in our implementations. This

is also to compare with the baseline method (Baseline1) [3],

which used the same way to compute the utterance-level score.

In addition, the use of regression also enables the proposed

model to evaluate a recording, whose SNR is not listed in ta-

ble 1, such as 15dB. To compute F1, a threshold is set (thresh-

old=7.1) in terms of the results obtained on the training data.

Layer name Output shape #Param.

InputLayer (None, None, 257) 0

BLSTM (None, None, 200) 286,400

1DCNN (None, None, 250) 150,250

ATT (None, None, 250) 16,065

Dense (None, None, 50) 12,550

Frame score (None, None, 1) 51

Utterance score (None,1) 0

Table 2: Configuration of the proposed network structure.

3.5. Evaluation Metrics

The three metrics used to assess performance are Linear Cor-

relation Coefficient (LCC) [27], Spearman’s Rank Correlation

Coefficient (SRCC) [28], and F1 [29]. The first two metrics are

used to measure the strength of the linear relationship between

two variables. The use of F1 is to measure the accuracy of dis-

tinguishing the clean utterances from noise-corrupted ones.

4. Results

Figure 2 shows the predicted utterance-level quality scores ob-

tained using the baseline method (figure 2(a)) and our two ap-

proaches (figure 2(b) and 2(c)) in the condition of different

distortions. The x-axis in each figure denotes the test utter-

ance index and y-axis represents the predicted utterance-level

scores. The three figures (figure 2(a)-2(c)) show that the pre-

dicted scores obtained using the proposed approaches is closer

to the target scores than Baseline1. Moreover, the correspond-

ing statistics are also displayed in 3(a)-3(c). The error bars

shown in the three figures represent the mean values and the

range of variance obtained using the proposed approaches and

the baseline method in different conditions. It can be found that

the more signals are corrupted by noise, the higher variances

are generated. This means it is hard to identify the quality of

the audio signals in poor conditions. In comparison with the

baseline method, the use of our approach can clearly reduce the

predicted score variance and the deviation between the target

scores and the predicted scores.

Table 3 lists LCC, SRCC, and F1 values obtained on the test

data using the baseline method and our proposed approaches.

The results show that the use of our approaches can yield better

performance than the baseline method.

Method LCC SRCC Precision Recall F1

Baseline1 [3] 0.876 0.876 0.728 0.777 0.752

L 1DCNN 0.858 0.863 0.926 0.691 0.792

L Att 0.892 0.894 0.957 0.709 0.815

LC Att 0.919 0.914 0.927 0.781 0.848

Table 3: Metric values of LCC, SRCC, and F1 (larger is better)

obtained on the test data corrupted by noise using the baseline

method and two proposed approaches.

Since various natural sounds from MUSAN [25] were used

as noise to mix with clean signals, these noise signals might take

place at different time and have various effects in frequency do-

main. To mitigate possible bias on LCC, SRCC, and F1 values,

the experiments were repeated for eight times and the average

values are used as the final results. To further compare the struc-

ture using an attention model and not using, the third approach

L 1DCNN was also conducted. It has the same structure as

L ATT, but without the attention layer. The LCC and SRCC



(a) Baselin1 (b) L ATT (c) LC ATT

Figure 2: Predicted scores obtained on the test data using Baseline 1, L ATT and LC ATT in noise conditions.

(a) Baseline1 (b) L ATT (c) LC ATT

Figure 3: Mean and variance of predicted scores obtained on the test data using Baseline1, L ATT and LC ATT in noise conditions.

values listed in Table 3 show that LC ATT can yield consistent

advantages over the baseline method, L 1DCNN, and L ATT.

Figure 4: Clean spectrograms (a), partially noise-corrupted

spectrum(b), and the predicted frame-level scores obtained us-

ing LC ATT (c), L ATT (d), and Baseline1 (e).

In addition to predicting scores at utterance level, identi-

fying when an anomaly occurs in an audio recording is also

explored. We demonstrate how an anomalous distortion can be

located. In Figure 4(a)-(e), the spectrogram of a recording and

its frame-level prediction scores are shown. From top to bot-

tom, Figure 4(a) is the spectrogram of a clean utterance. The

noise-corrupted spectrogram is shown in Figure 4(b), where an

anomalous distortion (SNR=15dB) takes place from the 37th

frame to the 87th frame, within the range of two solid red lines.

The next three figures, Figure 4(c)-(e), indicate the frame-level

prediction sores obtained using LC ATT, L ATT, and Base-

line1, respectively.

It is clear that all of the three methods can find where the

distortion is. However, the use of Baseline1 generates a high

score variation within the range where the signal frames are

corrupted by noise and outside. Compared to Baseline1, the

use of LC ATT keeps a relative smooth over all audio frames,

by which the distortion range is able to precisely located. This

case is probably related to the use of 1DCNN and the attention

mechanism. The use of 1DCNN might mitigate the possible

sudden variations by taking into account the context informa-

tion. The use of attention mechanism might be able to enlarge

the difference between clean signals and anomaly signals by

highlighting the target related frame features.

5. Conclusion and future work

A novel structure for audio quality assessment was designed by

using the BLSTM, one-dimensional convolutional neural net-

works and an attention mechanism. It can assess the quality of

audio recordings at utterance level and identify the location of

a distortion by computing frame-level scores. The obtained re-

sults, measured using three metrics, LCC, SRCC, and F1, have

shown that the use of attention model can yield better perfor-

mances than a strong baseline method whether for utterance-

level score prediction or for anomaly distortion localisation.

In future, work in three aspects will be taken into account.

Firstly, some advanced neural network technologies, such as

multi-head attention model, will be used to assess audio qual-

ity. Secondly, the assessment technologies will be evaluated on

large-sized speech datasets and in various acoustic conditions.

Thirdly, the efficiency of assessment technologies will be also

evaluated to make it work in some practical applications.
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