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a b s t r a c t 

How does brain activity in distributed semantic brain networks evolve over time, and how do these regions in- 
teract to retrieve the meaning of words? We compared spatiotemporal brain dynamics between visual lexical 
and semantic decision tasks (LD and SD), analysing whole-cortex evoked responses and spectral functional con- 
nectivity (coherence) in source-estimated electroencephalography and magnetoencephalography (EEG and MEG) 
recordings. Our evoked analysis revealed generally larger activation for SD compared to LD, starting in primary 
visual area (PVA) and angular gyrus (AG), followed by left posterior temporal cortex (PTC) and left anterior 
temporal lobe (ATL). The earliest activation effects in ATL were significantly left-lateralised. Our functional con- 
nectivity results showed significant connectivity between left and right ATL, PTC and right ATL in an early time 
window, as well as between left ATL and IFG in a later time window. The connectivity of AG was comparatively 
sparse. We quantified the limited spatial resolution of our source estimates via a leakage index for careful in- 
terpretation of our results. Our findings suggest that the different demands on semantic information retrieval in 
lexical and semantic decision tasks first modulate visual and attentional processes, then multimodal semantic 
information retrieval in the ATLs and finally control regions (PTC and IFG) in order to extract task-relevant se- 
mantic features for response selection. Whilst our evoked analysis suggests a dominance of left ATL for semantic 
processing, our functional connectivity analysis also revealed significant involvement of right ATL in the more 
demanding semantic task. Our findings demonstrate the complementarity of evoked and functional connectivity 
analysis, as well as the importance of dynamic information for both types of analyses. 

1. Introduction 

Semantics, or the representation and mental manipulation of our 
knowledge about objects, facts and people, is a crucial component 
of human cognition, underpinning all meaningful interactions with 
our environment and communication with others ( Jefferies, 2013 ; 
Patterson et al., 2007 ). Our semantic system enables us to store, em- 
ploy, manipulate, and generalise conceptual knowledge ( Lambon Ralph 
et al., 2016 ). Learning and storing multimodal semantic representations 
are essential for successful semantic cognition, but they are not suffi- 
cient. The relevant information to deploy in any particular moment is 
context-sensitive and task-dependant, thus, we require semantic con- 
trol to manipulate and shape the activation in the representation system 

( Jackson, 2021 ; Jefferies, 2013 ). However, task effects on brain dynam- 
ics during semantic processing are still largely unexplored. 

The Controlled Semantic Cognition (CSC) framework proposes an 
interaction between control and representation regions in the brain, 
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with semantic representation underpinned by a central semantic hub 
located in the anterior temporal lobes (ATL) ( Lambon Ralph et al., 
2016 ). Ample evidence for this proposal has been provided by stud- 
ies on semantic dementia patients, who show specific semantic deficits 
following impairment of the anterior temporal lobes ( Mion et al., 2010 ; 
Nestor et al., 2006 ), and fMRI and PET studies demonstrating ATL sen- 
sitivity to semantic stimulus and task manipulations ( Crinion et al., 
2003 ; Embleton et al., 2006 ; Mummery et al., 2000 ; Rogers et al., 2006 ; 
Tranel et al., 2005 ; Visser et al., 2012 , 2010 ). Several studies have 
demonstrated similar effects in brain activity estimated from EEG or 
MEG data ( Cope et al., 2020 ; Dhond et al., 2007 ; Farahibozorg et al., 
2019 ; Marinkovic et al., 2014 , 2003 ; Mollo et al., 2017 ), but the precise 
time course of semantic processing, as reflected in the brain activation or 
connectivity measures, has not been established yet. As a result, crucial 
evidence for the dynamic functional organisation of the semantic brain 
network is still missing, since temporal information is essential to disen- 
tangle effects that may occur at different stages of semantic processing, 
e.g., early semantic information retrieval, control processes in decision 
making, and later imagery or episodic memory processes ( Hauk, 2016 ). 
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Temporal information is also particularly important for the reliable 
estimation of brain connectivity, since brain areas may play different 
roles at different stages of processing, and therefore dynamically change 
their connectivity. Furthermore, there is evidence that activity in dif- 
ferent brain networks, arguably corresponding to different brain func- 
tions, are reflected in different frequency bands of electrical brain sig- 
nals ( Fries, 2015 ; Palva and Palva, 2012 ; Siegel et al., 2012 ). A number 
of studies have investigated the roles of different frequency bands in se- 
mantic processing ( Bastiaansen et al., 2008 ; Mollo et al., 2017 ; Strauß
et al., 2014 ; Teige et al., 2019 ; van Ackeren et al., 2014 ; van Ackeren 
and Rueschemeyer, 2014 ). In ATL, for example, increased theta power 
and decreased alpha and beta power have been associated with multi- 
modal integration of lexical-semantic information in word ( van Ackeren 
and Rueschemeyer, 2014 ) and object ( Urooj et al., 2014 ) recognition, 
respectively. However, other studies (e.g. Mollo et al., 2017 ) have re- 
ported power reduction (semantic task vs baseline) in the gamma band 
at earlier time points, and across frequency bands at later time points. 
Thus, there is still no consensus on the specific roles of different fre- 
quency bands for semantics. As a result, we investigated functional con- 
nectivity in four different frequency bands (theta, alpha, beta, gamma) 
in our study. 

Whilst ATL has consistently been linked to semantic representa- 
tion ( Acosta-Cabronero et al., 2011 ; Binder et al., 2016 ; Martin, 2016 ; 
Pobric et al., 2007 ; Rogers et al., 2004 ), IFG and pMTG are specifi- 
cally implicated in semantic control ( Badre et al., 2005 ; Jackson, 2021 ; 
Jefferies, 2013 ; Jefferies and Lambon Ralph, 2006 ; Lambon Ralph et al., 
2016 ; Noonan et al., 2013 ). The role of AG is less clear and has been sug- 
gested to involve semantic representation ( Binder et al., 2009 ), control 
( Noonan et al., 2013 ) or episodic memory processes ( Humphreys et al., 
2015 ). Thus, semantic cognition is dependant on semantic representa- 
tion in the ATL and sensory-specific regions, and control in IFG and 
pMTG, with a possible role for the AG. Few studies have investigated 
the interaction between semantic control and representation regions, 
and the connectivity and temporal dynamics of the corresponding brain 
regions are still not well understood ( Jefferies, 2013 ; Lambon Ralph 
et al., 2016 ). Most previous studies of the semantic network and its con- 
nectivity have employed fMRI ( Alam et al., 2021 ; Chiou et al., 2018 ; 
Chiou and Lambon Ralph, 2019 ; Humphreys et al., 2015 ; Jackson et al., 
2016 ; Kuhnke et al., 2020 ) which despite its excellent spatial resolution, 
is limited in tracking any neural response faster than one second. 

In the present study, we provide novel evidence for task effects 
on the spatiotemporal dynamics in the semantic network and, in par- 
ticular, functional connectivity amongst these regions. EEG and MEG 
are sensitive to semantic stimulus manipulations in different time win- 
dows, such as the N400 latency range (typically between 250 and 
500 ms) ( Kutas and Federmeier, 2011 ; Lau et al., 2008 ) and earlier 
( Amsel et al., 2013 ; Hauk et al., 2012 ; Pulvermüller et al., 2009 ). 
Importantly, source estimation with MEG has revealed lexicoseman- 
tic effects in the anterior and middle temporal lobes ( Dhond et al., 
2007 ; Farahibozorg et al., 2019 ; Flick et al., 2018 ; Hauk et al., 2012 ; 
Lau et al., 2013 ; Mollo et al., 2017 ), inferior parietal cortex ( Bemis and 
Pylkkänen, 2013 ; Farahibozorg et al., 2019 ; Lewis et al., 2015 ; 
Williams et al., 2017 ), and inferior frontal cortex ( Schoffelen et al., 
2017 ; Woodhead et al., 2014 ). Furthermore, semantic task manipula- 
tions have been reported to modulate EEG/MEG signals in early and late 
time windows ( Chen et al., 2015 ; Chen et al., 2013 ) and in the frequency 
domain ( Clarke et al., 2011 ; Lewis and Bastiaansen, 2015 ; Mollo et al., 
2017 ). 

Here, we investigated the effects of different semantic task demands 
on dynamic brain activity and spectral functional connectivity in the 
semantic brain networks. We used a whole-cortex approach initially, 
but also focused on prominent regions-of-interest (ROIs) that have pre- 
viously been implicated in semantic representation and control, as de- 
scribed above: ATL, IFG, pMTG, and AG. Most previous studies have 
found the semantic brain network to be left-lateralised ( Binder et al., 
2009 ). Yet, a notable exception is the ATL, for which a graded later- 

alisation has been reported depending on stimulus and task features 
( Lambon Ralph et al., 2010 ; Marinkovic et al., 2003 ; Olson et al., 2007 ; 
Patterson et al., 2007 ; Pobric et al., 2007 ; Rice et al., 2015b , 2015a ; 
Visser et al., 2010 ). Thus, our ROIs will include both left and right ATL 
to study the laterality of task effects in this region. 

We contrasted brain dynamics between two visual word recognition 
tasks, namely lexical and semantic decisions on the identical word stim- 
uli. In the lexical decision (LD) task, participants had to distinguish be- 
tween words and pseudowords. This task only explicitly requires the 
classification of letter strings as existing words or not, and therefore does 
not explicitly demand the retrieval of specific semantic features. How- 
ever, the harder the distinction between the words and pseudowords, 
the more these decisions are affected by semantic variables, and lex- 
ical decision is compromised with impaired semantic representations 
( Evans et al., 2012 ; Patterson et al., 2006 ). This task is therefore suit- 
able to evoke activity in the semantic network. We compared this task 
with a semantic decision (SD) task which explicitly required participants 
to retrieve specific semantic information about the words (such as “Is it 
something edible with a distinctive odour? ”). This ‘task differences’ ap- 
proach ( Chen et al., 2015 ; Chen et al., 2013 ; Kuhnke et al., 2021 , 2020 ) 
employs a high-level baseline, providing a powerful way to identify spe- 
cific changes with greater semantic processing, such as the particular 
timing of differences. By presenting the same stimuli in two different 
tasks we can assess the effect of demanding semantic processing over 
and above the effect of presenting meaningful stimuli. 

We used spectral coherence as a functional connectivity metric, as 
it is sensitive to covariations of both phase and amplitude across trials 
between signals from two regions ( Bastos and Schoffelen, 2016 ). We 
investigated the potential effect of source leakage in an explicit reso- 
lution analysis of our measurement configuration ( Hauk et al., 2019 ). 
Specifically, we asked 1) how task modulation of semantic brain activity 
evolves across time, 2) how connectivity of putative semantic represen- 
tation and control regions is affected by task demands over time, and 3) 
how task demands modulate the laterality and connectivity of left and 
right ATLs. 1 

2. Materials and methods 

2.1. EEG/MEG experiment data acquisition 

2.1.1. Participants 
26 healthy native adult English speakers (age 18–40) participated, 2 

of whom were excluded due to problems with structural MRI scans. 3 
were excluded due to inadequate behavioural response accuracies (less 
than 75% response accuracy) and 3 were excluded because of exces- 
sive movement artefacts. The excessive movement artefacts were deter- 
mined based on: visual inspection by two authors, number of bad chan- 
nels and number of bad epochs. Therefore, 18 participants (mean age 
27.00 ± 5.13, 12 female) entered the final analysis. A reduced version 
of the Oldfield handedness inventory (Oldfield 1971) was used, based 
on which a mean handedness laterality quotient of 89.84 ± 0.2 was ob- 
tained. All participants had normal or corrected-to normal vision and re- 
ported no history of neurological disorders or dyslexia. The experiment 
was approved by the Cambridge Psychology Research Ethics Committee 
and volunteers were paid for their time and effort. (This experiment and 
its full details are described in Farahibozorg, 2018 ) 

2.1.2. Stimuli 
The stimulus set included in our MEG analysis consisted of 250 unin- 

flected words, including three categories of concrete words with strong 
visual, auditory and hand-action attributes (50 words per category), 
as well as two categories of emotional and neutral abstract words (50 

1 A previous version of our manuscript has been published as a pre-print: 
[https://biorxiv.org/cgi/content/short/2021.06.28.450126v1] 
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Table 1 
Psycholinguistic properties of stimuli included in EEG/MEG data 
analysis. The same words were used in the LD and SD tasks. 

average ± standard deviation 
Words Pseudowords 

Number of Letters 5.68 ± 1.56 5.0 ± 1.0 
CELEX Frequency 16.13 ± 22.14 N/A 
Orth Neighbourhood 3.78 ± 4.81 4.70 ± 4.50 
Bigram Frequency 19,008.54 ± 9584.31 19,465.83 ± 10,435.78 
Trigram Frequency 1866.29 ± 2278.84 1670.66 ± 2029.80 
Concreteness Rating 4.44 ± 1.72 N/A 

words per category). For the purpose of this study, all the 250 words 
were pooled and a summary of their psycholinguistic variables as well 
as those of pseudowords are presented in Table 1 . Concreteness rat- 
ings were obtained based on a word rating study ( Farahibozorg, 2018 ) 
and CELEX Frequency, Orthographic Neighbourhood, Bigram and Tri- 
gram Frequencies were taken from the MCWord Database ( Medler and 
Binder, 2005 ). Additional filler pseudowords were also included in the 
experiment, which are not assessed in this study. 

2.1.3. Procedure 
The EEG/MEG experiment comprised four blocks presented in ran- 

dom order, and lasted approximately 90 min. We included 10-minute 
breaks between the blocks and short breaks every three minutes within 
each block. Each stimulus was presented for 150 ms, with an average 
SOA of 2400 ms (uniformly jittered between 2150 and 2650 ms). Stim- 
uli appeared as 30-point Arial font in black on a grey screen within a 
visual angle of 4° in a slightly dimmed and acoustically shielded MEG 
chamber. One of the four blocks consisted of a lexical decision task and 
the remaining three blocks consisted of semantic target detection tasks. 
Half of the participants were randomly assigned to perform the lexical 
decision first and the other half performed semantic target detection 
blocks first. Details of these blocks were as follows: 

1) Semantic target detection blocks: In each block, participants were 
presented with 250 words, as well as the filler items (overall 300 
stimuli), in addition to 30 targets. They were asked to quietly read 
the strings of letters as they appeared on the screen and make but- 
ton press responses with their left-hand middle finger only when 
they saw a target (30 words per each SD block) on the screen. Each 
block had different targets which were selected from three groups of 
“non-citrus fruits ”, “something edible with a distinctive odour ” and 
“food that contains milk, flour or egg ”. Participants were required to 
choose their responses with respect to the same question for every 
trial within a block. Block orders were randomised across partici- 
pants, and data acquired from the three blocks were pooled in the 
later EEG/MEG analyses to avoid possible question-specific effects. 

2) Lexical decision task: Participants also performed a lexical decision 
task with the same 250 words, and 250 filler pseudowords to acquire 
response balance across stimuli (overall 500 stimuli). Participants 
were asked if “the following string of letters refers to a meaning- 
ful word ” and they were asked to make button press responses with 
the index and ring fingers of their left hand for words and pseu- 
dowords, respectively. Only word stimuli were included in the sub- 
sequent EEG/MEG analyses. 

The SD task was chosen to strongly engage participants in deep se- 
mantic processing through the need to access specific semantic features 
to select an appropriate response, in contrast to the LD task which does 
not explicitly require the retrieval of semantic information for response 
selection but has been shown to engage semantic processing to some 
degree ( Evans et al., 2012 ). Fig. 1 shows the format of the task and its 
timings. All participants could do both tasks with high accuracy in the 
pilot and the main study (SD block accuracy: 0.90 ± 0.11%, LD block 
accuracy: 95.09 ± 3.96%). The choice of tasks led to differences in re- 
sponse type to words, i.e. no responses to words in SD (except in catch 

trials) and responses to all words (and pseudowords) in LD. This choice 
was mainly based on pragmatic considerations, since a two-alternative 
forced choice design is standard for LD and provides behavioural data 
for words, while in our SD task it would have been near-impossible to 
design a stimulus set with equal numbers of yes/no responses (compa- 
rable to LD) and requiring 90% of No responses in addition to the 10% 

catch trials would have been unconventional and possibly confusing for 
our participants. We do not consider the details of response execution 
at the end of each trial as a serious confound for our EEG/MEG results 
in earlier latency ranges. Average response time to words in the LD task 
was 660 ms. Even allowing for some variability across trials, our re- 
sults are unlikely to have been affected by response selection (see also 
Hauk et al., 2012 ). For example, we would not be able to explain differ- 
ential involvement of ATL and AG in semantic networks depending on 
response type (rather than semantic task demands). If this was the case, 
it would throw serious doubt on the ecological validity of results from 

any study using laboratory tasks such as LD and SD, which with respect 
to response type are arguably more different from natural reading than 
from each other. This should be further investigated in future studies 
( Hauk and Weiss, 2020 ). 

2.2. Data acquisition and pre-processing 

MEG and EEG data were acquired simultaneously using a Neuro- 
mag Vectorview system (Elekta AB, Stockholm, Sweden) and MEG- 
compatible EEG cap (EasyCap GmbH, Herrsching, Germany) at the 
MRC Cognition and Brain Sciences Unit, University of Cambridge, UK 
( Farahibozorg, 2018 ). MEG was recorded using a 306-channel system 

that comprised 204 planar gradiometers and 102 magnetometers. EEG 
was acquired using a 70-electrode system with an extended 10–10% 

electrode layout. EEG reference and ground electrodes were attached to 
the left side of the nose and the left cheek, respectively. ElectroOculo- 
Gram (EOG) was recorded by placing electrodes below and above the 
left eye (vertical EOG) and at the outer canthi (horizontal EOG). Electro- 
cardiogram (ECG) was recorded by placing one electrode on the lower 
left rib and another electrode on the right wrist. Data were acquired 
with a sampling rate of 1000 Hz and an online band-pass filter of 0.03 
to 330 Hz. During pre-acquisition preparations, positions of 5 Head Po- 
sition Indicator (HPI) coils attached to the EEG cap, 3 anatomical land- 
mark points (two ears and the nose) as well as approximately 50–100 
additional points that covered most of the scalp were digitised using 
a 3Space Isotrak II System (Polhemus, Colchester, Vermont, USA) and 
later used for co-registration of EEG/MEG recordings with MRI data. 

We applied signal space separation with its spatiotemporal extension 
implemented in the Neuromag Maxwell-Filter software to the raw MEG 
data to remove noise generated from sources distant to the sensor ar- 
ray ( Taulu and Kajola, 2005 ). All remaining analyses were performed 
in the MNE-Python software package ( Gramfort et al., 2014 ; A. 2013 ). 
Raw data were visually inspected for each participant, and bad EEG 
channels were marked and linearly interpolated. Data were then band- 
pass filtered using a finite-impulse-response (FIR) filter between 0.1 and 
45 Hz. FastICA algorithm ( Hyvarinen, 1999 ; Hyvärinen and Oja, 2000 ) 
was applied to the filtered data to remove eye movement and heart- 
beat artefacts. After ICA, data were divided into epochs from 300 ms 
pre-stimulus to 600 ms post-stimulus. 

2.3. Source estimation 

We used L2-Minimum Norm Estimation (MNE) ( Hämäläinen and 
Ilmoniemi, 1994 ; Hauk, 2004 ) for source reconstruction. Inverse op- 
erators were assembled based on a 3-layer Boundary Element Model 
(BEM) of the head geometry derived from structural MRI images, as- 
suming sources perpendicular to the cortical surface ( “fixed ” orienta- 
tion constraint). The MEG sensor configurations and MRI images were 
co-registered by matching the scalp digitisation points from the MEG 
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Fig. 1. Illustration of trials and timings of semantic 
decision and lexical decision tasks. Each word is pre- 
sented for 150 ms, followed by a 2250 ± 250 ms gap. 
The SD task consisted of three separate blocks with 
three different questions while the LD task consisted 
of one block. 

Fig. 2. a) Regions of interest (ROIs) based on the semantic literature, b) Time-Frequency Representation (TFR) across all ROIs, tasks, and participants. 

preparation to the scalp surface reconstructed from individual MRI im- 
ages. The noise covariance matrices for each individual and run were 
calculated for baseline intervals of 300 ms. To do so, we used a list of 
methods from MNE python, ’shrunk’, ’diagonal_fixed’, ’empirical’, ’fac- 
tor_analysis’, and the best estimator (’shrunk’ in most cases) was se- 
lected using log-likelihood and cross-validation ( Engemann and Gram- 
fort, 2015 ). MNE-Python’s default SNR = 3.0 was used for evoked re- 
sponses to regularise the inverse operator. The individuals’ results were 
then morphed to the standard average brain (fsaverage), yielding the 
time courses of activity for 20.484 vertices for each subject and con- 
dition. It is noteworthy that the non-uniqueness of the EEG/MEG in- 
verse problem leads to restricted spatial resolution, which may result 
in systematic mislocalisation of the genuine sources ( Fuchs et al., 1999 ; 
Hauk et al., 2011 ; Molins et al., 2008 ), or more generally signal leakage 
between regions ( Colclough et al., 2015 ; Palva et al., 2018 ; Wens et al., 
2015 ; Williams et al., 2019 ). 

2.4. Regions of interest 

Six regions of interest were defined using the anatomical masks 
provided from the Human Connectome Project (HCP) parcellation 
( Glasser et al., 2016 ), to represent the core semantic network as de- 
scribed in the introduction. As Fig. 2 a shows, this includes left and right 
ATL (as defined in HCP: TGd, TGv, TE1a, anterior portions of TE2a and 
TE1m cut to terminate at the posterior extent of TE1a), left IFG (44, 45, 
47l, p47r), left posterior temporal cortex (PTC, including posterior mid- 
dle and inferior temporal gyri) (TE1p and posterior portions of STSvp, 
anterior inferior part of pH, and posterior portion of TE2p, all cut to 
terminate at the anterior limit of TE1p), left AG (PGi, PGp, PGs) and left 
primary visual area (PVA) (V1, V2, V3, V4). 

2.5. Leakage 

Source leakage is inherent in EEG/MEG source estimation due to 
the non-uniqueness of the inverse problem. Here, we provide a quan- 
titative description of the source leakage amongst our ROIs. To have a 

better insight into the pattern of potential leakage, we computed the 
point spread and cross-talk functions (PSFs and CTFs; Hauk et al., 2011 ; 
Liu et al., 2002 ) of all the ROIs, to test how activity from one ROI leaks 
or spreads out to other regions or the other way around. The general 
idea is to estimate the leakage from each ROI into all ROIs, relative to 
each ROI’s leakage into itself, to generate an ROI-to-ROI leakage matrix. 

Thus, we defined the leakage index (LI) as follows: 

𝐿𝐼 𝑖𝑗 = 
𝐿 𝑖𝑗 

𝐿 𝑗𝑗 

Where 𝐿 𝑖𝑗 is leakage from 𝑅𝑂 𝐼 𝑖 into 𝑅𝑂 𝐼 𝑗 and 𝐿 𝑗𝑗 is leakage from 𝑅𝑂 𝐼 𝑗 
into itself. Leakage can be described by PSFs, i.e., how each ROI leaks 
into the other ROIs, and CTFs, i.e., how all ROIs leak into one particular 
ROI. For the unweighted L2 minimum norm estimate, PSFs and CTFs 
are the same (its resolution matrix is symmetric, Hauk et al., 2019 ), and 
the leakage matrix, therefore, represents both types of leakage (similar 
to Farahibozorg et al., 2018 ). 

Fig. 3 presents PSFs and CTFs for our ROIs, as well as their 
associated leakage matrix. This shows that leakage varies across 
pairs of ROIs. To describe this variability, we will consider leak- 
age indices between 0-0.2/0.2–0.4/0.4–0.6/0.6–0.8/0.8–1 as low/low- 
medium/medium/medium-high/high, which is reflected in the shading 
of the matrix cells. Leakage was medium and lower across all pairs of 
ROIs, and all leakage indices were below 0.5. Medium and high amounts 
of leakage can indicate that connectivity obtained from a pair of ROIs 
will be more affected by the limitations of the spatial resolution of the 
EEG/MEG source localisation and, thus, should be interpreted with more 
caution. Fig. 3 a confirmed that our ROIs produced most leakage in their 
vicinity. We will take individual leakage indices into account in our 
interpretation and discussion where appropriate. The PSFs/CTFs sug- 
gest that some ROIs have a wider distribution than others (e.g., PTC 
vs. ATL). This could be related to different factors, including the ge- 
ometry of the ROIs, size of the ROIs, distance from the sensors, source 
depth, and source orientation, etc. ( Hauk et al., 2019 ), which should 
be explored further in future studies. Please note that it is currently un- 
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Fig. 3. Leakage patterns. a) Grand average of PSFs/CTFs for each ROI, indicating how a real point source would leak to other regions (PSFs)/how all regions would 
leak to a particular ROI (CTFs). ROI borders are specified by solid blue lines. b) the leakage matrix; every column, corresponding to a single ROI, shows how much 
other regions leak into that ROI relative to what it leaks into itself. 

common for non-methodological EEG/MEG studies to report this kind 
of information. 

2.6. Evoked responses 

The relevant trials for word stimuli were averaged in sen- 
sor space to obtain an evoked response per participant and task. 
Evoked responses were projected onto source space using L2-MNE 
(see above) and compared between the lexical and semantic deci- 
sion tasks. For statistical analysis of the whole-cortex evoked re- 
sponses, we used spatiotemporal cluster-based permutation tests, 
mne.stats.spatio_temporal_cluster_1samp_test function implemented in 
MNE python, ( Maris and Oostenveld, 2007 ), accounting for multiple 
observations across vertices and time points. For this purpose, t-values 
were computed and thresholded with a t-value equivalent to p-value < 

0.05 for a given number of observations, and randomisation was repli- 
cated 5000 times to obtain the largest random clusters. The critical 
alpha-level for both vertex-wise and cluster-wise t-tests was 0.05. We 
applied two-sided t-tests and the upper (SD > LD) and lower (LD > SD) 
0.025 in the resulting permutation distribution were considered to be 
significant. In addition to the whole cortex analyses, activation time- 
courses were extracted from each ROI (using MNE Python’s “mean flip ”
option to account for varying source orientations within an ROI) and 
compared using cluster-based permutation tests per ROI. 

As argued in (Sassenhagen and Draschkow, 2019), cluster-based per- 
mutation tests do not allow inferences about the spatial or temporal 
extent of clusters. However, testing for multiple latency ranges or sam- 
ples poses a multiple comparisons problem. Here, we applied cluster- 
based permutation tests across vertices and samples in several latency 
windows for which lexico-semantic effects for stimulus and task fea- 
tures have been reported previously, namely two early windows around 
100 ms ( Chen et al., 2015 ; Hauk et al., 2006; Strijkers et al., 2015 ) and 
200 ms ( Amsel et al., 2013 ; Hauk et al., 2012 ; Pylkkänen, 2020), as well 
as the post-250-ms N400 period broken down into three time windows 
(Grainger and Holcomb, 2009; Kutas and Federmeier, 2011 ; Lau et al., 
2008 )). For the functional connectivity analysis we reduced this to two 
latency windows in order to increase frequency resolution. We tested 
independent hypotheses in each time window, and therefore did not 
correct for multiple comparisons across latency ranges. For the same 
reasons we did not apply correction for multiple comparisons across fre- 

quency bands in our functional connectivity analysis. Importantly, our 
conclusions are not based on the presence or absence of isolated effects, 
but on the pattern or results across several different analyses, such as 
which brain areas appear in most of our significant results. 

2.7. Connectivity analyses 

Functional connectivity was estimated based on spectral coherence 
because it is sensitive to covariations of both phase and amplitude be- 
tween two signals ( Bastos and Schoffelen, 2016 ). We were also inter- 
ested in potential zero-lag connectivity (e.g., between left and right 
ATLs), and therefore did not use the imaginary part of coherency or 
signal orthogonalisation ( Colclough et al., 2015 ; Nolte et al., 2004 ). Co- 
herence measures the stability of the polar vectors (representing phase 
and amplitude at a specific frequency in a specific latency window in 
one trial) across trials ( Bastos and Schoffelen, 2016 ). We will discuss 
any issues related to spatial resolution and leakage on the basis of our 
leakage analysis described above. 

Whole-cortex seed-based connectivity was computed from each ROI. 
For this purpose, the ROI time-courses were extracted from each of the 
three blocks in the SD task, and from the LD task block. Magnitude- 
squared coherence was computed between each ROI time course and 
every vertex in the brain, for four different frequency bands and two 
time windows. The connectivity results were averaged across the three 
SD blocks for comparison with LD. This helped ensure that our coher- 
ence estimation is not biased due to different numbers of trials between 
the SD and LD task ( Bastos and Schoffelen, 2016 ). This is equivalent 
to comparing each SD block with LD separately, and then averaging 
the three comparisons to reduce bias and variability across blocks. To 
choose frequency bands and time intervals of interest in an unbiased 
manner, we present the time-frequency representation of our dataset 
across all conditions, participants, and ROIs in Fig. 2 b. Based on promi- 
nent features of this time-frequency representation, i.e., peaks, increases 
and decreases of activity, we selected an early (50–250 ms) and late 
(250–500 ms) time window and computed coherence in four frequency 
ranges, namely theta (4–8 Hz), alpha (8–16 Hz), beta (16–26 Hz), and 
gamma (26–36 Hz). Statistical comparisons for seed-based analyses (SD 
vs LD) were performed using cluster-based permutations, as described 
above. For between-ROIs analyses, we compared coherence values with 
paired two-sided t-tests. 
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Fig. 4. Spatiotemporal cluster-based permutation test contrasting the evoked responses of Semantic Decision (SD) and Lexical Decision (LD) in five time windows. 
The first three time windows showed significantly greater activation for SD than LD (hot colours), across the semantic network, with early effects in occipital and 
temporal cortex and later differences in frontal cortex. These changes are initially bilateral and later left-lateralised. The last time window demonstrates significant 
activation for LD (blue colours). The critical alpha-level used to threshold both vertex-wise and cluster-wise t-tests is 0.05. All coloured areas in the first two and the 
last time windows have p-values < 0.001 and all significant results in the third time window have p-values < 0.01. 

3. Results 

3.1. EEG/MEG behavioural results 

For the lexical decision task, the average and standard devia- 
tion reaction times were 660 ± 69 ms and response accuracies were 
95.09 ± 3.96%. For the semantic target detection blocks, the target de- 
tection accuracy and reaction times were 0.90 ± 0.11 and 990 ± 220 ms, 
respectively. 

3.2. Whole-cortex evoked analysis 

Most previous investigations into the neuronal basis of semantics us- 
ing EEG/MEG and source estimation based their main conclusions on 
ROI-based analysis approaches. While this increases statistical sensitiv- 
ity, it raises questions with respect to the spatial specificity of the re- 
ported effects, especially since the limited spatial resolution and possi- 
ble mislocalisation of EEG/MEG source estimation are well-documented 
( Hauk et al., 2019 ; Molins et al., 2008 ). However, whole-cortex analy- 
ses in different latency and frequency ranges can be hard to present and 
interpret. In the following, we will present a hybrid approach that starts 
with whole-cortex results followed by ROI-based results. Our main con- 
clusions will be based on the commonalities of the two analyses, and we 
will discuss any discrepancies where appropriate. 

To track task modulation of brain activation over time, we first com- 
pared evoked brain activity between our two tasks using whole-cortex 
cluster-based permutation tests in five non-overlapping time windows 
of 100 ms duration starting at 50 ms after stimulus onset. These brain 
dynamics were then analysed in more detail using an ROI analysis. 
The results of the whole-cortex evoked analysis are displayed in Fig. 4 . 
The colour-coding indicates the duration of significant activation within 
each time window. Importantly, task differences were already apparent 
in the first time window (50–150 ms) and remained significant through- 
out the first three windows until 350 ms. 

The semantic decision task produced higher levels of activation com- 
pared to the lexical decision task up to 350 ms. The earliest task differ- 
ences were predominantly in bilateral posterior brain areas, but differ- 
ences were already present in inferior parietal and anterior temporal 
brain regions. Between 150–250 ms, task modulations spread further 

into anterior temporal and parietal regions in both hemispheres. After 
250 ms, activation was strongly left-lateralised and included left inferior 
frontal regions. There were no significant task differences between 350 
and 450 ms. The lexical decision task produced larger activation than 
the semantic decision task between 450 and 550 ms. At this late latency, 
this could be due to late semantic processing partly overlapping with re- 
sponse planning and execution in the N400 time window, suppression 
of activation due to the absence of button presses to words in the SD 
task, and possible leakage from peak activation due to button presses in 
the right hemisphere. 

As explained in 2.6, we did not consider it necessary to correct 
for multiple comparisons across latency windows, as our main conclu- 
sions are based on the pattern of results across several analyses. How- 
ever, the significant effects of our whole-cortex evoked responses in 
Fig. 4 would survive Bonferroni correction across five time windows (un- 
corrected: p-values < [0.001, 0.001, 0.01, 0.8, 0.001]), FDR 2 corrected 
p-values < [0.0016, 0.0016, 0.0125, 0.8, 0.0016], and Bonferroni 3 cor- 
rected p-values < [0.005, 0.005, 0.05, 1, 0.005]). 

3.3. ROI activation time-courses 

Fig. 5 presents the millisecond-by-millisecond time courses of evoked 
brain activity for our selection of ROIs. Averaged time courses across 
participants are shown for each individual task and their subtraction, 
alongside the t-values of their statistical comparison. Shaded areas high- 
light the latency ranges with significant task differences using cluster- 
based permutation tests. The earliest task differences occurred in PVA 
(p-value < 0.05) and AG (p-value < 0.01) from 60 to 65 ms. Note that the 
leakage indices for these two regions ( Fig. 3 b) were about 0.2, and their 
time courses are similar ( Fig. 5 e and f). Therefore, we cannot rule out the 
possibility that these results reflect leakage effects, i.e., are due to the 
same neuronal sources in posterior brain areas. These early effects were 
followed by differences in PTC (p-value < 0.05) and lATL (p-value < 0.01) 
at 186 and 189 ms. We also found marginally significant task differ- 
ences at later latencies in PVA (p-value < 0.075) at 300 ms, and IFG (p- 

2 https://mne.tools/stable/generated/mne.stats.fdr_correction.html 
3 https://mne.tools/stable/generated/mne.stats.bonferroni_correction.html 
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Fig. 5. Activation time-course of ROIs for SD (blue lines), LD (green lines), SD-LD (purple lines), and t-values (dotted-grey lines). The left-hand side axis represents 
source amplitudes, the right-hand side axis shows t-values for the comparison of SD and LD, and the horizontal axis represents time in milliseconds. t-values 
corresponding to p-value < 0.05 have been highlighted in red, and those with p-value < 0.075 in yellow. 

value < 0.075), and PTC (p-value < 0.075) at 309 ms. We observed no sta- 
tistically significant task difference in rATL at any latency. 

3.4. ATL laterality 

We explicitly tested the laterality of ATL involvement. Fig. 6 a 
shows the main effects of task, laterality, and their interaction using 
a two-way repeated-measures ANOVA. To understand this interaction, 
six planned comparisons were run. Fig. 6 b shows separate activation 
time courses for left and right ATL for lexical and semantic decision 
tasks, respectively. Fig. 6 c displays the contrasts that yielded significant 
results. Fig. 6 d presents a summary statistical analysis of activation 
averaged in the time window 150–400 ms. This analysis demonstrated 
that the task effects in the ATLs were driven by larger activation in the 
left, but not right, ATL for the semantic decision task than the lexical 
decision task ([SD[ l ATL]-SD[ r ATL]: ( t = 4.13, p < 0.001)], [SD[ l ATL]- 
LD[ l ATL]: ( t = 3.00, p < 0.01)], [SD[ l ATL]-LD[ r ATL]: ( t = 4.76, p < 0.001)], 
[SD[ r ATL]-LD[ l ATL]: ( t = − 0.66, p > 0.50)], [SD[ r ATL]-LD[ r ATL]: 
( t = 1.24, p > 0.20)], [LD[ l ATL]- LD[ r ATL]: ( t = 1.82, p > 0.08)]). Thus, the 
left and right ATL responded similarly to the less demanding lexical 
decision task, yet the increased requirements of the semantic decision 
task were met by a greater response from the left ATL in particular. 

3.5. Connectivity analysis: whole-cortex seed-based connectivity 

We studied task modulation of functional connectivity in the seman- 
tic network with a whole-cortex seed-based analysis, followed by ROI 
analyses. The seed-based analysis determined the coherence between 
our ROIs and all other vertices in the brain in two time windows (early 
50–250 ms and late 250–450 ms) and four frequency bands (theta, al- 
pha, beta, gamma). The whole-cortex seed-based connectivity results 
are presented in Fig. 7 . Statistical significance was assessed based on 
whole-cortex cluster-based permutation tests. We found no significant 
effects in the theta band, which may be too slow to reflect the short-lived 
processes involved in semantic single-word processing. 

The ROI labels in the left column indicate the seed region. Note that 
each seed region strongly “leaks ” into itself ( Fig. 3 b), and therefore we 
can expect high coherence values within each seed region for the indi- 
vidual tasks. However, if these values are similar for lexical and seman- 
tic decisions, they will not produce significant effects in the subtraction 
(or statistical comparison). Significant effects in seed regions may still 
occur due to other factors (e.g., noise levels), but we will not interpret 
them in terms of functional connectivity. We will take possible leakage 
into account in the interpretation of functional connectivity (see Fig. 3 ). 

Interestingly, our functional connectivity analyses generally re- 
vealed larger coherence values for lexical compared to semantic deci- 
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Fig. 6. Laterality of task modulation in ATLs. a) the effect of Task (SD vs. LD), Laterality (left vs. right), and their interaction using a two-way repeated-measures 
ANOVA. b) activations of the left and right ATLs in SD and LD. c) all comparisons between the left and right ATL activation in each task that reach significance using 
cluster-based permutation test (three out of six). t-values corresponding to p-values < 0.05 have been highlighted in red, and those with p-values < 0.075 in yellow. 
d) average activation of the left and right ATLs in SD and LD tasks in the time range of 150 to 400 ms (shaded grey area in panel b), chosen based on the interaction 
results. 

sions, which may appear counterintuitive or in contrast to our evoked 
analyses showing larger activation for semantic decisions. However, this 
could be explained by larger trial-by-trial variability and higher desyn- 
chronisation leading to lower coherence in the more demanding task. 
We will come back to this issue in the discussion. 

In the early time window, we observed significant task differences in 
functional connectivity between the left and right ATL in alpha and beta 
bands, as well as from AG along the Sylvian fissure, including anterior 
superior temporal lobe. The gamma band demonstrated significant mod- 
ulation of connectivity between the IFG seed and left ATL, and between 
PTC and an approximately homologous area in the right hemisphere. 

In the late time window, we found significant task modulation of 
connectivity between lATL and left IFG, as well as rATL and right IFG, 
but not between lATL and rATL as found in the early time window. AG 
did not demonstrate any connectivity differences in this time window, 
while PTC showed differential connectivity with an area of right mid- 

dle temporal lobe in the beta and gamma bands. In the gamma band, 
there was task modulation of the connectivity between the lATL and 
IFG.Thus, most differences in the connectivity of the lexical and seman- 
tic decision tasks involved the ATLs, with task modulation principally 
affecting the connectivity between left and right ATL at early stages, and 
later, between IFG and ATL. 

3.6. Connectivity analysis: between-ROIs connectivity 

As with the evoked analysis, we sought to corroborate our whole- 
cortex seed-based analysis using an ROI approach. The paired t -test 
results displayed in Fig. 8 confirm significant task-dependant connec- 
tivity between lATL and rATL for alpha (p-value < 0.01) and beta (p- 
value < 0.01) bands in the early latency window, as well as between 
lATL and IFG for alpha (p-value < 0.05) and beta (p-value < 0.05) bands 
in the late window. The gamma band also showed task modulation of 
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Fig. 7. Whole-cortex seed-based connectivity differences between the semantic and lexical decision tasks for different ROIs, frequency and latency ranges. All 
coloured areas have p-values < 0.05. Blue colours show greater coherence for LD. 

Fig. 8. Significant differences in connectivity in the 
semantic and lexical decision tasks between the se- 
mantic ROIs. In the early time window, connectivity 
between left and right ATL was modulated, and in the 
later time window the connectivity between lATL and 
IFG was modulated. Blue and red lines show greater 
coherence for LD and SD, respectively. 

connectivity between lATL and rATL (p-value < 0.05) and between rATL 
and PTC (p-value < 0.05) in the early window, and between lATL and 
IFG (p-value < 0.05) in the late window. Furthermore, the gamma band 
produced significant connectivity differences between AG and IFG (p- 
value < 0.05), which is the only case where coherence values are larger 
in the semantic compared to the lexical decision task. In the late win- 
dow, the gamma band also showed a connection between AG and PTC 
(p-value < 0.05). 

This analysis confirmed the early task differences in the connectiv- 
ity between left and right ATL and the later differences in their connec- 
tivity with IFG, found in the whole-cortex seed-based analysis. Push- 
ing the semantic system modulates the connectivity between core re- 
gions of the semantic network, especially for the left and right ATL and 
the IFG. 

4. Discussion 

Semantic cognition critically depends on interactions across a dis- 
tributed network, yet few studies have elucidated the connectivity of 
this semantic network using high temporal resolution techniques. Here, 
we investigated the effects of increasing semantic task demands on spa- 
tiotemporal brain activity and functional connectivity in the semantic 
network estimated from combined EEG/MEG data. We asked how the 
need for greater semantic cognition modulates responses in the seman- 
tic brain network over time, how it affects connectivity amongst puta- 
tive semantic representation and control regions, and specifically how 

it modulates the laterality and connectivity of left and right ATL. In our 
whole-cortex evoked analysis, we observed task differences in bilateral 
posterior brain regions already present within the 50–150 ms time win- 
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dow, with greater semantic demand resulting in larger activation across 
much of the semantic network until 350 ms. Early task differences in- 
volved inferior parietal and temporal brain regions, which spread fur- 
ther into anterior temporal and parietal regions in both hemispheres 
between 150 and 250 ms. After 250 ms, the task-modulated evoked ac- 
tivation became left-lateralised and also spread to left inferior frontal 
regions. Laterality effects in ATL were driven by larger activation in left 
ATL in the more semantically demanding task. Regardless of the precise 
assessment method used (whole-cortex seed-based or ROI-based func- 
tional connectivity analyses), functional connectivity was modulated by 
task in multiple frequency bands and time windows, especially between 
left and right ATL at early latencies in the alpha and beta bands, and 
between left and right ATL and IFG in later time windows in the alpha 
and gamma bands. These effects reflected larger desynchronisation in 
SD compared to LD. Our results indicate that semantic representation 
and control processes dynamically interact within the first few hundred 
milliseconds of written word processing, and confirm that the ATL has 
a central role in the semantic brain network. 

Spatiotemporal evidence for the interplay of representation and con- 
trol processes in dynamic semantic brain networks is still scarce. Here, 
we contrasted a more semantically demanding (semantic decision) task 
with a less semantically demanding (lexical decision) task on the same 
set of well-matched word stimuli. This task contrast does not allow us 
to unambiguously disentangle representation and control processes, but 
provides critical information as to the dynamics of the semantic network 
overall, including the interaction between putative semantic represen- 
tation and control regions. In addition, the temporal and spectral infor- 
mation presented provides novel insights that will be the basis for future 
studies on this issue. Importantly, our study included some methodolog- 
ical advancements with respect to the majority of previous EEG/MEG 
studies on semantic word processing. First, we used combined EEG and 
MEG recordings to optimise spatial resolution for source estimation us- 
ing individual realistic head modelling ( Hauk et al., 2019 ; Molins et al., 
2008 ). Second, we present both conventional evoked responses, as well 
as functional connectivity results in source space in the same study. 
Third, we provide both whole-cortex and ROI-based results to strike a 
trade-off between sensitivity and spatial specificity. Fourth, we explic- 
itly evaluated the spatial resolution ( “leakage ”) of our ROIs as a basis 
for a critical interpretation of our source estimation results ( Hauk et al., 
2019 ). We hope that it will become standard in the EEG/MEG liter- 
ature to report the relevant leakage indices (or similarly informative 
measures) in the future. 

The role of activity in different frequency bands and possibly 
“oscillations ” in semantic word processing is still unclear, although 
spectral synchrony (and in particular coherence) has been suggested 
to be a fundamental physiological mechanism supporting cognition 
( Farahibozorg et al., 2019 ; Fries, 2015 ; Siegel et al., 2012 ). Thus, in 
our study we looked at several separate frequency bands to study func- 
tional connectivity between pairs of ROIs using coherence. Whilst our 
evoked analysis showed the expected pattern of more activation for the 
more semantically demanding task, the opposite seemed to be the case 
in our functional connectivity analyses, where LD showed larger co- 
herence values compared to SD task in alpha, beta, and gamma bands, 
from 8 to 36 Hz, but not in the theta band (4–8 Hz). However, coher- 
ence values reflect the variability of amplitude and phase across trials 
( Bastos and Schoffelen, 2016 ; Lachaux et al., 1999 ). The LD task is less 
demanding, resulting in lower reaction times and standard deviations, 
and presumably lower variability across trials, therefore possibly result- 
ing in larger coherence values. This is consistent with previous findings 
of desynchronisation across this frequency range ( Barca et al., 2011 ; 
Cornelissen et al., 2009 ; Ihara et al., 2003 ; Klein et al., 2015 ; Mollo et al., 
2017 ; Wheat et al., 2010 ). Our explanation is related to the ideas of 
Hanslmayr et al. (2012) who linked neural within-region desynchroni- 
sation to information theory, suggesting that more processing demands 
can result in larger desynchronization within neuronal populations. Sim- 
ilarly, we argue here that amplitude and synchronization across ROIs are 

independent, and that larger amplitude but lower coherence in SD both 
reflect the higher complexity of this task. Therefore, we conclude that 
our coherence effects reflect task modulation of functional connectivity 
in the semantic brain network. Our main finding is that ATL emerged as 
the most dominant region across our different analyses, in the sense that 
it consistently showed significant effects in multiple latency (especially 
early) ranges as well as multiple frequency ranges in our functional con- 
nectivity analysis. A more detailed analysis of differences amongst dif- 
ferent frequency ranges is beyond the scope of this paper. The fact that 
we found connectivity modulations in alpha, beta and gamma bands 
may well indicate that they reflect different aspects of more broadband 
activity in a wider network. This should be investigated in future stud- 
ies. 

Large task modulations were found throughout the putative seman- 
tic network, i.e. in bilateral ATLs, IFG, PTC and visual cortices. En- 
gagement of the semantic network is not all or nothing; the informa- 
tion accessed and employed depends upon task demands, even in early 
word processing ( Chen et al., 2015 ; Chen et al., 2013 ; Jackson, 2021 ; 
Jefferies, 2013 ; Strijkers et al., 2015 ). We found early task modulation 
in visual and inferior parietal areas followed by temporal lobe struc- 
tures, in particular left anterior temporal lobe and posterior temporal 
cortex, and then inferior frontal regions. These regions are critical for 
demanding semantic cognition and are recruited flexibly based on task 
demands. In particular, the connectivity between left and right ATL 
and between ATL and IFG supports demanding semantic cognition. This 
is highly compatible with prior functional connectivity assessments of 
the semantic network, including the compensatory effects of connectiv- 
ity between left and right ATLs after transcranial magnetic stimulation 
( Chiou et al., 2018 ; Chiou and Lambon Ralph, 2019 ; Farahibozorg et al., 
2019 ; Jackson et al., 2016 ; Jung and Ralph, 2019 ). The selection of task- 
relevant, and inhibition of task-irrelevant, semantic information is hy- 
pothesised to require the interaction of control regions (which represent 
the task context, including IFG) and representation areas (where task- 
independent semantic representations are stored, hypothesised to rely 
principally on the ATLs, Jackson, 2021 ; Jefferies, 2013 ; Lambon Ralph 
et al., 2016 ). Thus, the differential connectivity between the ATLs and 
the IFG in the semantically demanding task may reflect the additional 
interaction required to access the specific subset of features required to 
answer the difficult semantic decisions. 

Very early changes were identified in visual and parietal regions. As 
described before, the spatial resolution of EEG/MEG does not allow an 
interpretation at the same level of spatial detail as for fMRI, e.g., with 
respect to the exact Brodmann areas. This was confirmed by our leakage 
analysis. However, the high temporal resolution of EEG/MEG allows us 
to conclude that task modulations that occurred in “early visual areas ”
(as they are sometimes called in the fMRI literature without timing ev- 
idence (e.g. Basti et al., 2019 ; Mur et al., 2012 )) indeed reflect early 
brain processing, rather than recurrent activation flow (e.g. Lamme and 
Roelfsema, 2000 ). 

Early task modulation effects were also identified in the AG, a re- 
gion with a debated role in semantic cognition ( Binder et al., 2009 ; 
Humphreys et al., 2015 ; Noonan et al., 2013 ). Whilst our leakage anal- 
ysis suggests that AG effects are unlikely due to leakage from PVA, the 
point-spread and cross-talk functions in Fig. 3 indicate that there could 
be significant leakage from higher level visual areas posterior to AG 
but anterior to PVA. Nevertheless, some previous MEG studies have re- 
ported AG involvement in semantic processes (e.g., Lewis et al., 2015 ; 
Williams et al., 2017 ). However, in our connectivity analysis, AG does 
not show rich connectivity with other semantic areas, especially not in 
the temporal lobes. Additionally, these effects are very early, in parallel 
with visual areas and prior to any other semantic region. Our ROI-based 
connectivity analysis ( Fig. 8 ) revealed connectivity modulation between 
AG and IFG in the early time window, although this was in the oppo- 
site direction to all other connectivity differences. Some previous neu- 
roimaging studies have suggested that AG may serve semantic represen- 
tation ( Binder et al., 2009 ) or control functions ( Noonan et al., 2013 , but 
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see Jackson 2021 ), although these assessments are plagued by questions 
of how to interpret differences in the context of difficulty-dependant de- 
activation in this region ( Humphreys et al., 2015 ; Humphreys and Lam- 
bon Ralph, 2014 ). Indeed, the AG is consistently found as part of the 
default mode network ( Buckner and DiNicola, 2019 ) and may play a 
role in attentional processes. For instance, our early task effects in AG 
could reflect a change from readiness during rest to the engagement 
of task networks by this area, resulting in an early increase or “boost ”
of attentional resources towards the visual word form or the semantic 
network. Alternatively, a similar function could be achieved by task- 
positive inferior parietal regions ( Duncan, 2010 ) and the current effects 
misattributed to the AG region. This hypothesis can be tested in future 
studies using more fine-grained experimental paradigms. 

Our evoked analysis revealed task modulation in ATL starting prior 
to 200 ms. Previous EEG, MEG and behavioural studies have sug- 
gested that semantic information becomes available in visual word pro- 
cessing around this latency ( Amsel et al., 2013 ; Hauk et al., 2012 ; 
Pulvermüller et al., 2009 ), and some EEG/MEG studies have reported 
activity in ATL regions ( Bemis and Pylkkänen, 2013 ; Dhond et al., 2007 ; 
Farahibozorg et al., 2019 ; Marinkovic et al., 2014 ; Mollo et al., 2017 ; 
Westerlund and Pylkkänen, 2014 ). This task effect was clearly left- 
lateralised in our evoked data, which is consistent with findings from 

neuropsychological and neuroimaging literature that left ATL shows a 
preference for linguistic stimuli and tasks ( Rice et al., 2015a , 2015b ). 
However, connectivity between the ATLs was significant in this early 
time window, highlighting the possibility of a critical role for the right 
ATL. Our results also indicate that areas that do not show a significant 
activity effect can still be part of a distributed network. Indeed, the lat- 
erality of the evoked responses changed over time suggesting an inter- 
pretation of the necessity of a single ATL may be an oversimplification 
of a dynamic, recurrent system. This significant functional connectivity 
in three frequency bands (alpha, beta and gamma) demonstrated that 
evoked and spectral responses carry independent information. 

The connectivity between ATLs and the IFG also varied across time, 
with significant effects in the later time window. The PTC, another pu- 
tative semantic control region, was engaged both at a similar time to 
the IFG (around 300 ms) and at an earlier time point (around 200 ms, 
with the ATL response). The relative timings of the putative semantic 
control and representation regions are informative as to their possible 
interactions. To date, it has been hard to separate the role of IFG and PTC 
( Jackson, 2021 ; Jefferies, 2013 ; Lambon Ralph et al., 2016 ) and their 
differential timings could be informative; e.g. could PTC be involved 
earlier? However, we cannot rule out the possibility that we cannot dis- 
tinguish the control-related PTC changes from nearby regions engaged 
in semantic representation, due to the nature of the task manipulation. 
Perhaps the responses at the two different time points reflect these dif- 
ferent elements of semantic cognition, with an early sweep through 
PTC before the semantic control regions are active. Indeed, although 
PTC demonstrated task modulated evoked responses, no clear changes 
in connectivity were identified. This could be a result of the particular 
connectivity measure chosen, or due to high levels of connectivity with 
other semantic regions across both tasks. 

In conclusion, our results suggest that semantic task demands mod- 
ulate visual word processing before 100 ms in posterior visual (and 
perhaps attentional) areas, followed by modulation of multimodal se- 
mantic regions; first ATLs and PTC, and then IFG, allowing the context- 
appropriate extraction of task-relevant semantic features critical for re- 
sponse selection. Our conclusions required the high temporal and rea- 
sonable spatial resolution of combined EEG and MEG measurements, as 
well as the combination of evoked and functional connectivity analy- 
ses. Our results raised several questions about the precise mechanisms 
of the interaction of semantic control and representation, and provide 
a valuable base to address them in future EEG/MEG studies. In partic- 
ular, the spatiotemporal resolution of combined EEG/MEG recordings 
together with sophisticated multivariate and multi-dimensional connec- 
tivity methods will be required to characterise dynamic semantic brain 

networks in more detail ( Anzellotti and Coutanche, 2018 ; Basti et al., 
2020 , 2019 ; Kietzmann et al., 2019 ). 
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