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a b s t r a c t

Resting-state networks (RSNs; groups of regions consistently co-activated without an

explicit task) are hugely influential in modern brain research. Despite this popularity, the

link between specific RSNs and their functions remains elusive, limiting the impact on

cognitive neuroscience (where the goal is to link cognition to neural systems). Here we

present a series of logical steps to formally test the relationship between a coherent RSN

with a cognitive domain. This approach is applied to a challenging and significant test-

case; extracting a recently-proposed semantic RSN, determining its relation with a well-

known RSN, the default mode network (DMN), and assessing their roles in semantic

cognition. Results showed the DMN and semantic network are two distinct coherent RSNs.

Assessing the cognitive signature of these spatiotemporally coherent networks directly

(and therefore accounting for overlapping networks) showed involvement of the proposed

semantic network, but not the DMN, in task-based semantic cognition. Following the steps

presented here, researchers could formally test specific hypotheses regarding the function

of RSNs, including other possible functions of the DMN.

© 2019 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

It is increasingly recognised that higher cognitive functions

are not localised to a single cortical region but rather reflect

coordinated interactions across a distributed brain network.

As such, assessments of functional connectivity (FC) are in-

tegral to understanding how regions work together to support

complex cognition. Significant interest surrounds resting-

state networks (RSNs); groups of regions shown to co-

activate without performance of an explicit task, thought to

reflect the intrinsic connectivity associated with different

Abbreviations: DMN, default mode network; FC, functional connectivity; ICA, independent component analysis; IFG, inferior frontal

gyrus; IPL, inferior parietal lobe; mPFC, medial prefrontal cortex; pMTG, posterior middle temporal gyrus; RS, resting-state; RSN, resting-

state network; vATL, ventral anterior temporal lobe.
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cognitive domains (Frackowiak & Markram, 2015; Van Essen

et al., 2013). To use RSNs to increase understanding of a

cognitive domain, researchers must identify the coherent

network involved in a specific function of interest. However,

often the methods used are inadequate to achieve this aim,

failing to ensure that the sets of identified regions constitute

coherent networks and providing no formal demonstration of

the link between a RSN and its associated cognitive function.

One commonmethod to identify a RSN that may relate to a

domain of interest is seed-based FC analysis which identifies

all regions that have a time-series correlated with that of a

seed region-of-interest (Biswal, Yetkin, Haughton, & Hyde,

1995). By using a seed region with a known function, re-

searchers seek to identify a network associated with that

function (Fig. 1A&B). However, there are at least three alter-

nate situations whereby regions identified as connected to the

seed may not form a coherent network either over time or

space (see Fig. 1D). Firstly, the result will not be temporally

coherent if the same area is engaged in multiple networks at

different times, reflecting distinct cognitive processes

(Geranmayeh et al., 2012; Geranmayeh, Wise, Mehta, & Leech,

2014; Leech, Kamourieh, Beckmann, & Sharp, 2011). Secondly,

discrete networks may involve different parts of the chosen

seed region. The third possibility is that networks may be

entirely spatially separable and functionally distinct but

exhibit RS correlation because much of their time-course is

similar. Positive and negative relationships between distinct

RSNs are well documented (Fox et al., 2005; Humphreys,

Hoffman, Visser, Binney, & Lambon Ralph, 2015). The latter

two possibilities would cause a failure to identify a spatially

coherent network, whereas the first represents an inability to

define a temporally coherent network. An additional issue

with seed-based FC analyses is that the artificial inflation of

relationships between nearby regions, caused by pervasive

effects of motion, results in a loss of spatial specificity (Power

et al., 2014; Power, Schlaggar, & Petersen, 2015; Van Dijk,

Sabuncu, & Buckner, 2012).

Unlike seed-based FC analyses, model-free approaches can

delineate distinct, coherent RSNs. Independent component

analysis (ICA) is a data-driven multivariate technique

whereby variance in the BOLD signal over space and time is

separated into independent ‘components’, each consisting of

a spatial map and time-course of activity (Calhoun, Adali,

Pearlson, & Pekar, 2001; Geranmayeh et al., 2014; McKeown

& Sejnowski, 1998). Any ICA utilising a relatively large num-

ber of components may be referred to as a ‘high-dimensional

ICA’. High-dimensional ICA has been successful in separating

spatially overlapping networks within task and RS data,

resulting in spatially and temporally coherent networks (see

Fig. 1D; Beckmann, DeLuca, Devlin, & Smith, 2005; Calhoun,

Kiehl, & Pearlson, 2008; Geranmayeh et al., 2012;

Geranmayeh et al., 2014; Smith et al., 2009). Additionally, the

identification of artefact-related components, allows the ef-

fect ofmotion to be reduced in ICA compared to seed-based FC

analyses (Griffanti et al., 2014; Thomas, Harshman, & Menon,

2002).

Despite the advantages of ICA over seed-based analyses it

remains underemployed, particularly when investigators

wish to identify FC related to a specific domain of interest.

This is because ICAs identify many components (typically

20e100 components) making interpretation complex (de la

Iglesia-Vaya, Molina-Mateo, Escarti-Fabra, Kanaan, & Marti-

Bonmati, 2013). By definition, all RS analyses suffer from an

inherent detachment from cognition and thus RS connectivity

alone provides no information on network function. Despite

this lack of functional information, however, researchers are

often willing to interpret a single seed-based result as related

to their domain of interest, yet unable to provide in-

terpretations of multiple networks from ICA. Thus, whilst ICA

allows coherent RSNs to be identified, it may exacerbate the

problem of functional interpretation through an over-

whelming number of results.

RS ICA does not provide any formal link to the function of a

network. However, a great deal of research using diverse

methodologies has demonstrated the similarity between

networks present in resting and task states (e.g., Bertolero,

Yeo, & D'Esposito, 2015; Bzdok et al., 2016; Cole, Bassett,

Power, Braver, & Petersen, 2014; Crossley et al., 2013;

Krienen, Yeo, & Buckner, 2014; Laird et al., 2011; Smith et al.,

2009; Yeo et al., 2015), albeit in the context of secondary

state-dependent connectivity changes (Ganger et al., 2015;

Krienen et al., 2014). This research suggests that RSNs

perform similar functions in rest and task states. Therefore,

identification of a RSN in task data would allow investigation

of its functional characteristics. This is rarely done in order to

determine the function of a specific RSN, although some

recent novel methodologies have adopted this approach (e.g.,

Lorenz et al., 2018). In standard RS ICA investigations, com-

ponents are often labelled by eye based on functional inter-

pretation of the constituent regions (Beckmann et al., 2005;

Jafri, Pearlson, Stevens, & Calhoun, 2008). Attempts to deter-

mine the function of a specific RSN have usually focussed on

visual comparison between the RSN and the areas identified in

univariate analyses or meta-analyses of task data (Binder,

Desai, Graves, & Conant, 2009; Buckner, Andrews-Hanna, &

Schacter, 2008; Mars et al., 2012; Murphy et al., 2018).

Comparing the network extent to results of large meta-

analyses, including online meta-analytic techniques such as

the BrainMapdatabase (Laird et al., 2011;Margulies et al., 2016;

Smith et al., 2009) has benefits in terms of power and speci-

ficity in contrast to a single study. However, task results are

baseline dependent and difficulty differences are known to

consistently identify the same areas as known RSNs (Gilbert,

Bird, Frith, & Burgess, 2012; Vincent, Kahn, Snyder, Raichle,

& Buckner, 2008). Therefore, univariate analyses including

meta-analyses could reflect RSNs without those networks

being responsible for the task. Additionally, these analyses

identify areas and not coherent networks. This means it is not

clear how to interpret differences in extent or missing areas

between the RSN and task results, particularly as many areas

are involved in multiple networks. Meta-analytic approaches

do not solve the inherent problem that the total difference in

activation between two conditions is inadequate to demon-

strate the functional involvement of a specific network.

Therefore, comparison to task activation may be best seen as

generating hypotheses as to the function of a RSNwhich could

be tested by undertaking formal analyses of the role of the

coherent network in task data.

One simple way to formally test the function of a RSN

would be to take its spatial extent as a volume-of-interest and
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assess its activity in different task conditions. This approach

is very precise about the areas involved and can use the

spatially coherent networks identified in the RS ICA, however,

the temporal information is lost. Thus, if an area is involved in

multiple networks, under this temporally-insensitive VOI

approach, they will not be correctly separated. In order to

determine the function of the network more accurately, it is

necessary to assess the cognitive signature of the spatially and

temporally coherent network itself and notmerely the activity

of the constituent regions. Thus, we demonstrate a series of

logical steps designed to avoid these issues. Coherent RSNs of

interest may be identified using an ICA and template match-

ing. Independent task data may be used to identify the same

coherent networks using a separate ICA and quantification of

the overlap between these networks. The proposed function

of this network of interest can then be formally assessed

within the task data. Unlike the standard logic of a task ICA,

the aim here is to identify the coherent RSN of interest to

determine its function, not merely to identify all networks

associated with a task.

As a pertinent test-case to demonstrate this widely appli-

cable process, we investigated the ability to extract a recently

proposed semantic RSN and assess its relation with the

default mode network (DMN). As reviewed briefly below, this

is a suitably demanding test-case for the following reasons: (i)

semantic processing is supported by a distributed network; (ii)

these regions have been shown to be functionally connected

in RS data with seed-based FC analyses (Jackson et al., 2016;

Pascual et al., 2015) yet this network has not been formally

linked to semantics; (iii) there is a high level of overlap be-

tween this proposed RSN and the DMN (Buckner et al., 2008;

Greicius, Krasnow, Reiss, & Menon, 2003); (iv) multiple the-

ories of DMN function have been posited including an

inherent relationship with semantic cognition (e.g., Binder

et al., 1999; Binder et al., 2009), yet these theories remain to

be formally tested.

Representation of multimodal conceptual knowledge, re-

lies upon amultimodal hubwithin the anterior temporal lobe

(ATL), interacting with modality-specific regions (Lambon

Ralph, 2014; Lambon Ralph, Jefferies, Patterson, & Rogers,

2017; Patterson, Nestor, & Rogers, 2007). Inferior frontal

gyrus (IFG), medial prefrontal cortex (mPFC), posterior mid-

dle temporal gyrus (pMTG) and inferior parietal lobe (IPL) are

critical for the controlled retrieval and manipulation of se-

mantic knowledge, or “semantic control” for short (Jefferies,

2013; Lambon Ralph, 2014; Noonan, Jefferies, Visser, &

Lambon Ralph, 2013; Patterson et al., 2007). Signal loss and

distortion within vital inferior temporal and frontal regions

has impaired our ability to assess semantic-related FC during

tasks and RS data (Embleton, Haroon, Morris, Lambon Ralph,

& Parker, 2010; Visser, Embleton, Jefferies, Parker, & Lambon

Ralph, 2010; Wig, Laumann, & Petersen, 2014; Zuo et al.,

2012). Newly-developed techniques (distortion-corrected

spin echo and dual echo fMRI) have reduced these artefacts

and improved extraction of ATL signal (Embleton et al., 2010;

Halai, Welbourne, Embleton, & Parkes, 2014; Jackson,

Hoffman, Pobric, & Lambon Ralph, 2015; Visser, Embleton,

et al., 2010), and have recently been used to collect RS data

(Jackson et al., 2016). From these active and RS fMRI data,

connectivity has been demonstrated between the ATL and

other regions responsible for multimodal semantic process-

ing, including the IFG, mPFC, pMTG and IPL (Jackson et al.,

2016). Many of these regions are also identified in the DMN

which includes mPFC, posterior cingulate cortex and pre-

cuneus (Buckner et al., 2008; Greicius et al., 2003). Additional

involvement of medial temporal lobe, angular gyrus and

lateral ATL is sometimes identified (Andrews-Hanna, Reidler,

Sepulcre, Poulin,& Buckner, 2010; Buckner et al., 2008). These

regions have been shown to deactivate during some but,

importantly, not all tasks (Buckner et al., 2008; Fox et al.,

2005; Spreng, 2012). To formally demonstrate the overlap

with the semantic network, a seed-based DMNwas identified

within the same data using a standard mPFC seed (displayed

in Fig. 1C.; Fernandez-Espejo et al., 2010; Fox et al., 2005;

Mennes et al., 2010; Takeuchi et al., 2013; Viviani et al.,

2011; Whitfield-Gabrieli et al., 2009; for details see

Methods). The overlap between the two seed-based networks

is displayed in Fig. 1C.

Although thousands of papers discuss semantics or the

DMN, very few address the potential relationship between

these networks (for reviews see Binder & Desai, 2011;

Buckner et al., 2008; Lambon Ralph, 2014; Lambon Ralph

et al., 2017). There may be two coherent and distinct net-

works that are either (i) spatially overlapping yet discrimi-

nable over time or (ii) spatially distinct but inadequately

separated by the seed-based FC analysis. Alternatively, there

may only be one coherent RSN. The function of the networks

must also be considered and the proposed relation of the

‘semantic network’ to semantic cognition must be verified.

The DMN has also been argued to relate to semantics as

sufficiently difficult tasks involving semantic memory may

not show the expected deactivation in DMN regions (Binder

et al., 1999; Binder et al., 2009; Shapira-Lichter, Oren, Jacob,

Gruberger, &Hendler, 2013; Wirth et al., 2011). This has led to

the suggestion that a process occurs frequently during ‘rest’

which relies, at least in part, upon semantic processing

(Binder et al., 2009; Humphreys et al., 2015). However, this

result has not been widely observed andmight instead relate

to differences in task/item difficulty (Binder et al., 1999;

Shapira-Lichter et al., 2013; Wirth et al., 2011). Visual com-

parison of the DMN to the results of meta-analyses have been

argued to show that it is responsible for semantics (Binder

et al., 2009), episodic memory (Buckner et al., 2008) and so-

cial cognition (Mars et al., 2012). However, these hypotheses

require formal testing at the level of the coherent DMN. In

order to interpret the existing results on the semantic

network and the DMN, therefore, we identified the relevant

coherent networks and then assessed their cognitive signa-

ture, in particular their relation to semantic cognition. We

assess this relation using a standard verbal semantic judge-

ment task. Although it may be hypothesised that the DMN

performs a specific form of semantics (e.g., ‘complex’ or

‘social’ semantics), we limit our assessment and interpreta-

tion to general semantics for the present test case as this has

previously been hypothesised to be the function of both the

proposed semantic network and the DMN.
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Fig. 1 e Identifying domain-related RS connectivity with seed-based FC analyses. A. One process used to identify

connectivity associated with a domain of interest; a key area responsible for that process is used as a seed and all voxels

that have a time series correlated with it are identified. This set of regions is assumed to form a network responsible for the

domain of interest. B. An example of this logic applied to the semantic domain. The ventral anterior temporal lobe (vATL)

plays a key role in semantic cognition. The areas connected to the vATL (shown in yellow) during rest were identified using

a seed-based FC analysis in Jackson, et al. (Jackson, Hoffman, Pobric, & Lambon Ralph, 2016). These are shown in green and

have a voxel-level significance threshold of .001 and an FWE-corrected critical cluster level of .05. These regions were

proposed to form a network for semantic cognition. C. Overlap between the proposed semantic network and the DMN. The

DMN (shown in blue) was determined as the functional connectivity of a mPFC seed (shown in violet; MNI coordinates: ¡1

47 -4; Fernandez-Espejo et al., 2010; Fox et al., 2005; Mennes et al., 2010; Takeuchi et al., 2013; Viviani, Messina, &Walter,

2011; Whitfield-Gabrieli et al., 2009) and is overlaid on the proposed semantic network (green). The vATL seed used to

identify the semantic network is shown in yellow. The peak areas are provided in Table 1. Overlap (cyan) may be seen in

lateral and ventral ATL, ventral and dorsal mPFC, angular gyrus and a small region of the precuneus. Both networks have a

voxel-level significance threshold of .001 and an FWE-corrected critical cluster level of .05. The high level of overlap between

c o r t e x 1 1 3 ( 2 0 1 9 ) 2 7 9e2 9 7282



2. Materials & methods

2.1. Participants

Resting-state scans were collected for 78 participants (57 fe-

male, age range 18e42, average age 24.71 years, standard de-

viation 5.49 years; analyses using this dataset were previously

reported in Jackson, Bajada, Rice, Cloutman, & Lambon Ralph,

2018; Jackson et al., 2016; Jung, Cloutman, Binney, & Lambon

Ralph, 2016), 24 of whom also completed the semantic

judgement task reported previously (Jackson et al., 2015; 15

female, age range 20e42, average age 25.48 years, standard

deviation 6.49 years). All had normal or corrected-to-normal

vision and were strongly right handed [laterality quotient on

the Edinburgh Handedness Inventory (Oldfield, 1971); mini-

mum 50, average 85.85, standard deviation 14.91]. All partici-

pants gave written informed consent and the study was

approved by the local ethics board.

2.2. Imaging protocol

The imaging parameters used to acquire the RS and task data

were identical. Scanning was conducted using a Phillips

Achieve 3.0T systemwith a 32 channel SENSE coil with a sense

factor of 2.5. A structural reference was obtained with an in-

plane resolution of .938 and slice thickness of 1.173. Whole

brain coverage was obtained with a field of view of

240 � 240 mm, which was tilted up to 45� off the AC-PC line to

reduce the effect of ghosting on the temporal pole. The reso-

lution matrix was 80 � 80 with a reconstructed voxel size of

3mm and slice thickness of 4mm. The flip angle was 85�. This

resulted in a TR of 2.8. Noise cancelling Mk II þ headphones

were worn inside the scanner (MR Confon, Magdeburg,

Germany).

In order to reduce signal dropout in inferior temporal and

frontal cortex, including ATL regions critical for semantic

cognition, a dual gradient echo EPI technique was employed.

Data were acquired in parallel for a short (12 ms) and a long

(35 ms) echo time and summed linearly in order to preserve

signal in problematic regions whilst maintaining contrast

sensitivity throughout the brain (Halai et al., 2014; Poser &

Norris, 2007, 2009; Poser, Versluis, Hoogduin, & Norris, 2006).

For further details and TSNR maps see Jackson et al. (2016).

2.3. Overlap measure

The proposed semantic network identified based on seed-

based resting-state analyses in Jackson et al. (2016) was used

as a template to identify a coherent semantic network in the

ICA results. Although this should not be seen as a ‘gold stan-

dard’ of the network due to the problems inherent in seed-

based network analyses, it is the current best estimate of the

proposed network's spatial configuration. This is considered

sufficient as a means to identify the network, yet does not

presuppose that no differences will be identified. In order to

demonstrate the overlap between the identified semantic

network and the DMN and to have a comparable result to use

as a DMN template, the DMN was identified using a seed-

based analysis in the same resting-state data. The method-

ology was identical to Jackson et al. (2016) except a seed region

within the mPFC (MNI coordinates: �1 47 -4) was used, as in a

number of prior studies attempting to identify a DMN

(Fernandez-Espejo et al., 2010; Fox et al., 2005; Mennes et al.,

2010; Takeuchi et al., 2013; Viviani et al., 2011; Whitfield-

Gabrieli et al., 2009). A spherical 10 mm ROI was constructed

around this location. The ROI location and the results of this

analysis are shown in Fig. 1C and Table 1.

The RS ICA group-level components were compared to the

ATL-seeded semantic network and the mPFC-seeded DMN

network as well as a publically available DMN template

(Shirer, Ryali, Rykhlevskaia, Menon, & Greicius, 2012) to

ensure that the DMN identified reflected the consensus in the

literature. The task components of interest were identified

using the RS components of interest as templates. Seed-based

networks and group-level ICA components were thresholded

at a voxel-level significance of .001 and an FWE-corrected

critical cluster level of .05 and then binarised. As the spatial

map for each ICA component is constructed by assessing

whether each voxel is significantly active in the individual

participant's component results, it is a standard statistical

map and can therefore be subjected to thresholding and

binarisation. The degree of overlap of each component was

then quantified using the Jaccard similarity coefficient be-

tween the two images (Jaccard, 1912). Thus, the number of

voxels active in both the template and component imageswas

divided by the total number of voxels active in either the

template or the component image or both. The code used to

obtain the Jaccard similarity coefficients per component is

provided in the Supplementary Materials.

The Jaccard similarity coefficient (J) is a measure of overlap

ranging from 0 (no overlap of active voxels) to 1 (full overlap of

both active and inactive voxels). This means the components

are assessed in terms of howwell theymatch the extent of the

template and have a lower overlap score if they miss areas in

the template or if they have areas not included in the tem-

plate. Thus, the Jaccard coefficient provides a single measure

of the fit between the component and the template. The Jac-

card similarity coefficient has been used previously to assess

similarity across brain activation maps (James, Hazaroglu, &

Bush, 2016; Karahano�glu & Van De Ville, 2015; Maitra, 2010;

Ryypp€o, Glerean, Brattico, Saram€aki, & Korhonen, 2018). The

overlap assessment was a two-step procedure. In the first step

all components that reached a threshold of J ¼ .15 were

identified. This is a relatively low threshold in order to allow

the two networks suggests that their relationship should be assessed and the proposed semantic network may not be one

coherent network. D. Cartoons of possible scenarios in which a seed-based FC result may not reflect one coherent network

yet a high-dimensional ICA result would. In all cases the underlying truth is displayed on the left followed by the seed-

based FC result and the ICA on the right. The scenarios include spatially incoherent results, either due to a seed region

including multiple functional subregions or due to the region being correlated with a distinct network, and temporally

incoherent results due to the seed region being involved in multiple networks over time.
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for the identification of all relevant components in situations

where the overlap with each may be low, for instance, if the

network has split in tomultiple components or if the template

is not very accurate. This may be the case in the current sit-

uation as the seed-based templatesmay be inaccurate and the

task context may cause the networks to split in to multiple

components. If multiple components are identified in this first

step, a second step was performed where the combination of

these components are assessed. In this case the first compo-

nent (the best fit) can be combined with the next best fit and

the overlap between this combined image and the template

calculated. If this gives a numerical improvement, both the

components can be considered to relate to the template

network. This process can be repeated for any number of

components that each reached the similarity threshold. If

adding these components together leads to a numerical

improvement, then all are identified as part of the network.

This two-step process identifies all components that may

be relevant and then assesses whether it is best to think of

multiple components as related to the template network or

not. If, for instance, a network has split in two and both parts

are somewhat related to the template then both should be

identified in the first stage and the combination of the two

components should be evenmore related to the template than

either individually. In this case both components would be

considered to relate to the template network. This should not,

however, be the case if the first component is a good fit for the

network and the second merely reflects a distinct network

that shows some partial overlap with the template. In this

situation the Jaccard similarity coefficient would be reduced

by combining the two components due to the inclusion of

extra regions not present in the template.

2.4. A systematic approach to identifying coherent RSNs

and testing their function

A systematic approach was employed to separate coherent

RSNs and identify those of interest (in this case the proposed

semantic network and the DMN) and then to determine their

function, shown in Fig. 2. Function was determined by iden-

tifying the same networks in independent task data in a

separate ICA by assessing the overlap between the task

components and the RSNs of interest. The advantage of

identifying the network in the task data is the ability to

determine the function of the spatially and temporally

coherent network and not merely the constituent regions.

This means that spatial overlap between networks does not

affect the results unlike simple volume-of-interest analyses.

2.4.1. Resting-state data

The RS scan consisted of 130 volumes collected over 6.25 min.

During this time the participants were asked to lie still and

fixate on a cross (Van Dijk et al., 2012). Preprocessing of the RS

data was performed using statistical parametric mapping

(SPM 8) software (Wellcome Trust Center for Neuroimaging)

and the Data Processing Assistant for Resting State fMRI

(DPARSF Advanced Edition, V2.3) toolbox (Chao-Gan & Yu-

Feng, 2010). In addition, high motion time-points were iden-

tified using the ARtifact detection Tools software package

(ART; www.nitrc.org/projects/artifact_detect). Preprocessing

was performed as in Jackson et al. (2016) including slice time

correction, realignment, coregistration, removal of motion

and tissue-based regressors, normalisation using DARTEL,

linear detrending and filtering. The high motion time points

identified with ART were removed (‘scrubbing’) as well as

removal of the 24 motion parameters [as described by Friston,

Williams, Howard, Frackowiak, and Turner (1996)] and the

mean activation in the CSF and white matter. These pre-

processing steps greatly reduce the effect of motion and are

consistent with prior research (Anderson et al., 2011; Calhoun

et al., 2001; Geranmayeh et al., 2014; Power et al., 2014, 2015;

Van Dijk et al., 2012). Six participants were excluded due to

high levels of motion as in the prior study (see Jackson et al.,

2016). No other participants were excluded from the resting-

state data. Unlike Jackson et al. (2016) removal of the global

signal was not performed. Although it is still important to

Table 1 e Significant clusters of the default mode network during the resting-state, determined by functional connectivity to
an a priori medial prefrontal cortex seed.

Cluster Region Cluster extent (voxels) Max z value P value (FWE corrected) Peak MNI
Coordinate

X Y Z

mPFC, precuneus, MCC, PCC,

MTL, lateral & ventral ATL

14825 >8 >.001 0 48 �6

6 45 0

�6 �57 21

L AG 646 >8 >.001 �48 �69 36

R AG 453 >8 >.001 51 �63 33

Cerebellum 414 >8 >.001 48 �66 �42

27 �81 �33

21 �90 �39

Cerebellum 311 7.61 >.001 6 �57 �45

�6 �57 �42

Cerebellum 235 6.92 >.001 �30 �81 �36

�45 �75 �42

�18 �90 �39

Clusters significant at .001 after FWE correction. Largest 3 peaks listed per cluster. L ¼ left. R ¼ right. MTL ¼ medial temporal lobe,

PCC ¼ posterior cingulate cortex, MCC ¼ mid cingulate cortex, CG ¼ central gyrus.
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remove as much of the effects of motion as reasonably

possible, small movements may be less of a problem for ICA

than standard functional connectivity analyses as, firstly,

noise components have separate sources and can be identified

as separate components and secondly, the correlation be-

tween two regions is not the primary measure but whether

the variance in activation in different regions may be

explained by a shared source (Calhoun et al., 2001;

Geranmayeh et al., 2014; Griffanti et al., 2014; McKeown &

Sejnowski, 1998). Thus, the removal of the global signal is

less necessary and imposing spurious negative correlations

could affect the results of the ICA (Anderson et al., 2011).

2.4.2. Identifying coherent resting-state networks related to

the proposed semantic network and the DMN

The steps taken to identify the coherent RSNs of interest are

shown in Fig. 2. In order to determine the coherent RSNs

present in the RS data, ICA was performed using the Group

ICA of fMRI Toolbox (GIFT; Calhoun et al., 2001). GIFT removes

the mean at each time point before performing two stages of

data reduction using principal component analysis (PCA;

Calhoun et al., 2001). The group ICA is performed on the

concatenation of each participant's PCA results. ICA assumes

independent sources have been linearly combined to create

the signal and attempts to separate these sources. The

resulting components comprise a spatial map and a time-

course of activation. Each resulting component may relate to

either an artefact or neural processing or both. The resulting

mixing matrix allows reconstruction of the individual partic-

ipant's components. This means statistics can be performed

on the individual participant's data (Calhoun et al., 2001). To

obtain a group-level spatial map for each component, a one

sample t-test was used to identify the voxels that were

significantly active across individuals using the SPM-based

GIFT utility. As this process results in a standard statistical

map for each component, these images may be subjected to

thresholding and binarisation in a typical manner. The results

were thresholded at a voxel-level significance threshold of

.001 and an FWE-corrected critical cluster level of .05. The

number of components within the datawas estimated to be 60

within GIFT using the Minimum Description Length criteria

per participant and computing the mean for the group (Li,

Adah, & Calhoun, 2006). Using this estimate allowed bottom-

up determination of an appropriate number of components

for each dataset. Only this number of components was

assessed, allowing a single results space to be interpreted

allowing simpler interpretation and disallowing the search of

multiple results spaces for desired results.

Artefactual components were then identified and not

included in any further analyses. The criterion for assigning

Fig. 2 e The approach used to determine coherent RSNs of interest and test their hypothesised function. MDL ¼ Minimum

Description Length. This estimation is implemented in the GIFT toolbox. For more details on the approach used, see the

text.
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networks as artefact was based on the spatial maps attained

as a result of the one sample t-tests. The spatial maps were

inspected both at the FWE-corrected critical cluster level of .05

(voxel-level significance of .001, as the results are presented)

in order to better estimate the location of peaks and a low

uncorrected threshold (t ¼ 1.5) in order to see the full pattern

of activity. Maps were visually compared to the SPM grey

matter template. Components where activity was mostly

outside of the greymatter (whether it be within the ventricles,

whitematter or outside the brain) were removed as they likely

relate to motion artefact. Likewise, components focussed on

the brain stem were considered likely to reflect blood flow

changes and were similarly removed. Components that

constituted a ring or crescent around the edge of the brain

were removed as this can be caused by the realignment and

normalisation preprocessing steps. Therefore, components

that were retained had themajority of activity within the grey

matter and were not merely the edge of the brain. At the time

of removing artefactual components, the researcher was blind

to the correspondence of the components with both the

network templates and the task model. These features are

commonly used to determine artefactual ICA components

and are in good alignment with recently published guidelines

(Geranmayeh et al., 2014; Griffanti et al., 2014, 2017).

Components relating to the semantic and default mode

networks were then identified using the Jaccard similarity co-

efficient. All non-noise components were thresholded at a

voxel-level significance of .001 and an FWE-corrected critical

cluster level of .05 and compared to the proposed semantic

network from Jackson et al. (2016) in order to determine

whether there was a similar coherent network. All non-noise

components were compared to the seed-based DMN shown

in Fig. 1C and (independently) to a DMN template freely

available online (http://findlab.stanford.edu/functional_ROIs.

html; Shirer et al., 2012). This meant that the coherent DMN

could be identified in a manner consistent with both the seed-

based analysis (allowing comparison to the semantic network)

and the literature as a whole.

2.5. Investigating the function of the coherent RSNs

using task data

The steps taken to test the hypothesised function of the

coherent RSNs of interest are shown in Fig. 2.

2.5.1. Semantic task data

Task data were used to verify the separation between the

RSNs of interest was meaningful and to relate them to

cognition. Three runs of task data were used, each lasting

10 min and including 211 volumes. Within these runs there

were three conditions; a semantic judgement task, a non-

semantic baseline task and rest. Both tasks involved press-

ing a button to indicate which of two targets was related to a

probe. For the semantic judgement this meant which word

was more related in terms of meaning. For the non-semantic

baseline this meant the set of letters that contained the most

letters in commonwith a probe set. See Jackson et al. (2015) for

further details including the experimental stimuli. The

resting-state data were collected in the same session as task

data for ease of collection. Therefore, the participants

involved in the task fMRI study also underwent resting-state

data collection. However, all analyses were performed on

either the resting-state dataset or the task dataset and the

majority of the resting-state participants had not performed

the task. It is therefore not considered critical that data from

the same participants were used for the two analyses. The

task data underwent the same preprocessing stages as the RS

data in order to reduce the effect of motion and make the

results comparable. This resulted in the exclusion of one

participant. No other participants or data were excluded from

this study.

2.5.2. Identifying the coherent networks in the task data &

determining their function

ICA was performed on the task data, independently to the

resting-state data. GIFT identified 92 dimensions within the

task dataset. The task ICA components were classified as

noise based on the spatial maps in the sameway as the RS ICA

components. The remaining components were binarised at a

voxel-level significance threshold of .001 and an FWE-

corrected critical cluster level of .05 and compared to the

RSNs of interest using the Jaccard similarity coefficient in

order to identify these networks (if apparent) in the task data.

Like the RS analysis, spatially and temporally coherent net-

works could be identified. Unlike the RS ICA components, the

function of the networks of interest could be assessed by

comparing their time-course to the taskmodel using the ‘Stats

on Beta Weights’ function in GIFT. To do so, the group level

component is back-propagated to determine the spatial map

and time-course of the component for each individual

participant (Calhoun et al., 2001). A designmatrix was created

in SPM8 for each participant including the three conditions,

the semantic task, the non-semantic baseline task and rest.

GIFT was used to extract the beta coefficients for each con-

dition per component and perform a one-wayANOVA for each

component, using the onsets for each condition as a factor.

This showedwhether the beta weights significantly depended

on the condition i.e., whether the activity in that component is

significantly related to the task model. For components with a

significant ANOVA result, three planned contrasts were per-

formed. The beta weights were compared using independent

sample t-tests for the semantic task > non-semantic control

task, semantic task > rest and non-semantic task > rest.

Bonferroni correction was applied for the three contrasts

assessed. The critical contrast of interest was the semantic

task > non-semantic task. As rest may include a large amount

of semantic processing, comparison between a semantic task

and rest may fail to find critical regions or networks. However,

a network responsible for semantics should be identifiable

when contrasted with a non-semantic task. The use of a high-

level baseline has been found to be critical in identification of

semantic regions (Visser, Jefferies, & Lambon Ralph, 2010).

Therefore, this contrast alone is used to determine whether a

network is responsible for semantic cognition or not. How-

ever, the contrasts against rest are shown for each network of

interest, to aid interpretation of the components function

using the full pattern of results and to show how comparison

to rest only may have affected the conclusions. All other non-

artefactual task ICA components were assessed for signifi-

cantly greater activity in the semantic task than the control
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condition (the main contrast of interest). Overall, all non-

artefactual components are assessed for their relation to the

networks of interest and their role in semantics, therefore all

relevant measures, conditions and data exclusions are

included in the present article.

3. Results

3.1. Identifying coherent resting-state networks-of-

interest

The ICA of the RS data identified 60 components. Of these 60,

27 resting-state components were clearly attributable to

artefact, leaving 33 which may relate to neural signals. The

number of components identified and their spatial profiles are

similar to prior resting-state studies and many appear to

reflect established sensory, motor or cognitive networks (e.g.,

Smith et al., 2009). All are shown in Supplementary Figure 1.

All non-noise components images were binarised at a

voxel-level significance threshold of .001 and an FWE-

corrected critical cluster level of .05. The component corre-

sponding to the semantic network proposed in Jackson et al.

(2016) was identified in order to determine whether this is a

coherent network and its spatial extent. The seed-based result

(including all areas significantly functionally connected to the

ventral ATL) was binarised and used as a template. All ICA

components were compared to this template using the Jac-

card similarity coefficient. Only one component, Component 8

(J ¼ .166) was above the overlap threshold, shown overlaid on

the ATL seed-based network in Fig. 3A. This component con-

sisted of key semantic regions including ATL, IFG, dorsalmPFC

and IPL (see Table 2) and overlapped strongly with the seed-

based result. Component 8 is henceforth referred to as the

proposed ‘semantic network’. Overall, the component is less

extensive and shows greater bias towards the left hemisphere

than the ATL seed-based FC result but involves all the same

key regions.

All non-noise RS components were then compared to the

binarised seed-based DMN result (i.e., all areas significantly

functionally connected to a mPFC region commonly used to

identify the DMN, shown in Fig. 1C.) in the same manner.

Identifying a component corresponding to this DMN template

assessed whether there was a coherent DMN in the RS data.

Determining whether this was the same component as the

semantic network or a distinct component determined

whether the semantic network and DMN reflect one or two

coherent networks. Comparison of the seededDMN to all non-

noise components identified one component above the

threshold (Component 21; J ¼ .171). In addition, comparison to

an a prioriDMN template (Shirer et al., 2012) identified only the

same component (J ¼ .405), confirming that this is the DMN.

This was not the same component as the semantic network

(Component 21 vs 8). Component 21 is shown overlaid on the

seed-based DMN in Fig. 3B and the a priori DMN template in

Fig. 3C, and is highly similar to both. This component includes

mPFC, PCC, angular gyrus and medial and lateral temporal

lobe (see Table 2). All regions identified within the seed-based

analysis are present although the extent of the areas involved

is reduced.

Both the proposed semantic network and the DMN were

identified as components in the RS ICA. They were however,

separate components, and therefore reflect two distinct

coherent networks, one which will be referred to as the se-

mantic network (Component 8) and one the DMN (Component

21). Both ICA components included the same general regions

as the seed-based FC analyses butweremore circumscribed. It

should be noted that the degree of overlap between the two

networkswasmuch reduced by the use of ICA (as compared to

seed-based FC analyses) yet some overlap was still present,

primarily within dorsal mPFC (see Fig. 3C). The implications of

this are outlined in the Discussion. Further analyses were

focussed on determining the function of these two coherent

networks.

3.2. Investigating the function of the coherent resting-

state networks using a task ICA

Having identified two distinct coherent RSNs of interest it is

critical to determine whether they differ in terms of their

function. Not only is understanding function central to the

aims of cognitive neuroscience, but this step is necessary to

allow interpretation of the separation between the two net-

works. For example, one network could theoretically split into

two ICA components on a basis that is not psychologically

meaningful, for instance, when there is sufficient uncorre-

lated noise in different regions of a single network. However,

these two components would still show a similar task rela-

tion. Accordingly, the cognitive signature of the two RSNs of

interest was assessed with a focus on semantic cognition.

As noted above, the aim was to assess the function of

spatially and temporally coherent networks and not merely of

the constituent regions of a network. This was achieved

through identification of the network in task data. A separate

ICA of task data was used to identify the set of coherent net-

works present in this dataset. The networks-of-interest were

identified in the task data based on their spatial overlap with

the semantic and DMN RSNs, and then their functions were

formally explored by assessing the relation of their time-

course with the task model.

3.2.1. Identifying the coherent networks in the task data

Of the 92 components identified within the task data, 43 were

clearly attributable to artefact, leaving 49 which may relate to

neural signals of interest. This is a similar proportion to the RS

ICA (task ICA; 53%, RS ICA; 51%). Many of these components

appear to reflect known functional networks and all are

shown in Supplementary Figure 2.

The Jaccard similarity coefficient was used to compare

each task component to the RSNs of interest. The semantic

RSN (C8) was compared to all non-noise task components and

3 were above threshold (Task Component 13; J ¼ .199, Task

Component 80; J ¼ .170, Task Component 41; J ¼ .164).

Combining all 3 components led to the highest overlap (Task

Components 13, 80 and 41; J ¼ .262), therefore all 3 were

considered to constitute the proposed semantic network. The

overlap between these task components and the semantic

RSN is demonstrated in Fig. 4A. Each component is shown in

Fig. 4B and activity peaks are listed in Table 3. Task Compo-

nent 13 primarily consisted of bilateral dorsomedial PFC, as
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well as some IFG, AG and cingulate cortex (see Fig. 4B and

Table 3). Task Component 41 included numerous regions in

the temporal cortex (including anterior ITG and MTG as well

as posterior MTG, STG and fusiform gyrus) with additional

involvement of orbitofrontal cortex, dorsolateral prefrontal

cortex, ventromedial prefrontal cortex and angular gyrus.

Task Component 80 primarily consisted of IFG and posterior

MTG, with a left hemisphere bias (see Fig. 4B and Table 3).

Whilst these areas work together during rest, they may have

differentiable functions which could lead to a separation into

multiple components in relevant task data. Alternatively,

these regions may separate due to other systematic differ-

ences, such as uncorrelated noise, but have no difference in

function or veridical time-course. Overall, these three com-

ponents are highly similar to the coherent semantic network

identified within the RS although more right hemisphere

involvement was observed (see Fig. 4A.).

The DMN was also identified in the task data through

comparison of the coherent DMN (determined in the RS ICA)

to all non-noise task components. This identified two related

task components, one of which related to the DMN alone (T19:

J ¼ .285, see Fig. 4). This comprised core DMN regions,

including mid mPFC (Brodmann areas 10 and 11), cuneus and

precuneus as well as left lateral temporal cortex and supple-

mentary motor area. The other was Task Component 13,

already identified as relating to the semantic network

(J ¼ .217). The combination of these components showed

greater overlap than either component individually (J ¼ .342)

so both were considered part of the DMN.

In summary, four task components were highlighted as

related to the two RSNs of interest. Specifically, two task

components were identified as being uniquely related to the

semantic network, one uniquely to the DMN and one to both

networks (T13). How this component may relate to the DMN

and the proposed semantic network is considered further in

the Discussion.

3.2.2. Determining the function of the networks identified in

the task data

The function of these four task components was investigated

by extracting the beta weights associated with each condition

in the task model for that component. An ANOVAwas used to

assess whether the components activity significantly related

to the task model, consisting of semantic judgement, letter

Fig. 3 e Identifying the components-of-interest in the resting-state. A. Component 8 (green) was identified as a good match

spatially to the ATL-seeded network identified in the resting-state in Jackson et al. (2016) (blue). Overlap is shown in cyan. B.

Component 21 (green) was identified as a good match spatially to both the mPFC-seeded default mode network (upper

portion, blue) and an a priori DMN template (lower portion, blue). C. The two selected components are shown. The

component hypothesised to be semantic is shown in green and the DMN component is shown in blue. Overlap is in cyan.

Although both networks are more circumscribed than the seed-based analyses there is still some overlap, particularly

within mPFC. All results have a voxel-level significance threshold of .001 and an FWE-corrected critical cluster level of .05.
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matching baseline (an active control task) and rest conditions.

All components-of-interest showed a significant relation to

the model (T41; F(2, 68) ¼ 4.136, p ¼ .020, T80; F(2, 68) ¼ 18.386,

p < .001, T19; F(2, 68) ¼ 9.295, p < .001, T13; F(2, 68) ¼ 4.353,

p ¼ .017). Thus, planned t-tests comparing the three condi-

tions were performed (with Bonferroni correction for three

comparisons) in order to identify the cognitive ‘signature’ of

each component. The cognitive signature for each

component-of-interest is shown in Fig. 4B.

Whether each component was responsible for general se-

mantic processing was determined by the result of the se-

mantic task > non-semantic task contrast. Both semantic

network components showed significantly higher activation

for the semantic judgement than the letter matching baseline

suggesting these components are involved in semantics

(semantics > letter matching; T41; t(70) ¼ 2.578, p < .005, T80

t(70) ¼ 2.495, p < .005, Bonferroni corrected). However, the

profiles of the two components are distinct; the temporal lobe

component, T41, shows a trend towards activation for the

semantic condition (semantics > rest; t(70) ¼ .184, p ¼ 1,

Bonferroni corrected) but a trend towards deactivation of the

non-semantic task from rest (letter matching > rest; t(70) ¼ -

2.394, p ¼ .060, Bonferroni corrected), whereas the component

primarily comprised of IFG and pMTG, T80, shows activation

of both tasks from rest (semantics > rest; t(70)¼ 6.034, p < .001,

letter matching > rest; t(70) ¼ 3.539, p < .05, Bonferroni cor-

rected), yet higher involvement in the semantic condition.

Thus, T41 shows the expected pattern for a network specif-

ically involved in semantic cognition, whereas T80 shows a

more task-general pattern, yet greater involvement when se-

mantic processing is required. The relatively small difference

between the semantic condition and rest for T41 may be seen

as evidence that semantic representation processes are highly

engaged during the resting-state. Interestingly, if the critical

comparison had been to rest, T41 would not have reached

significance despite including regions known to be critical for

semantics in the patient literature, whilst T80 would be easily

identified as semantic despite its relatively task-general pro-

file (see Discussion).

The DMN component T19, showed no difference between

the two tasks (t(70) ¼ .324, p ¼ 1, Bonferroni corrected) and

therefore no evidence of a significant relation to core semantic

cognition processes. This component demonstrated signifi-

cant deactivation of both tasks from rest (semantics < rest;

t(70) ¼ 3.561, p < .05, letter matching < rest; t(70) ¼ 3.885,

p < .001, Bonferroni corrected). This is a different cognitive

signature to the semantic network and therefore supports the

assertion that the separation of the two networks is psycho-

logically meaningful and not merely artefactual. The general

pattern of deactivation found means that this component

would not be considered semantic whether the critical com-

parison was to an active baseline or to rest. The task compo-

nent related to both semantic and DMNs (T13) also showed no

significant difference between the semantic and non-

semantic tasks (semantics > letter matching; t(70) ¼ 1.538,

p ¼ .387, Bonferroni corrected) and is therefore not considered

to be involved in the semantic task. This component showed

significant deactivation for the non-semantic task and non-

significant deactivation for the semantic task

(semantics < rest; t(70) ¼ 2.95, p < .05, letter matching < rest;

t(70) ¼ 1.412, p ¼ .488, Bonferroni corrected). No relation be-

tween the semantic cognition task and any task component

related to the DMN could be identified. Demonstrating

differing cognitive profiles between the semantic network and

DMN components confirms that these networks have been

separated in a functionally meaningful manner (and not for

instance, merely due to artefact) and can therefore be

considered as distinct networks.

Although the main aim of the paper was to identify the

function of the resting-state networks of interest, assessing the

Table 2 e Peak activation in the resting-state components-of-interest. Voxels are significant at .001. Clusters are significant
with FWE-correction and a critical cluster level of .05.

Component Cluster extent (voxels) Max z value P value (FWE corrected) Peak MNI
Coordinate

Region(s)

X Y Z

8

Semantic Network

1793 >8 <.001 �48 27 �3 L IFG, TP, MTG, AG

926 7.54 <.001 �6 12 63 L SMA,dmPFC

105 5.84 <.001 �45 6 45 L preCG

247 5.48 <.001 27 �78 �33 Cerebellum

29 4.38 .012 9 �72 57 R precuneus

29 4.13 .012 �3 �51 27 L PCC

21

Default Mode Network

2106 >8 <.001 3 57 �6 Mid mPFC

615 >8 <.001 �3 �54 27 Precuneus, PCC

86 5.83 <.001 �45 �66 27 L AG

95 5.61 <.001 57 �66 30 R AG

66 4.9 <.001 63 �6 �30 R aITG, aMTG

43 4.66 .001 �51 0 21 L preCG

39 4.19 .002 �66 �18 �18 L aITG, aMTG

25 4 .029 24 �18 �12 R hippocampus

32 3.98 .008 24 �18 60 R preCG

L ¼ left R ¼ right a ¼ anterior d ¼ dorsal IFG ¼ inferior frontal gyrus TP ¼ temporal pole AG ¼ angular gyrus MTG ¼ middle temporal gyrus

SMA ¼ supplementary motor area FG ¼ fusiform gyrus mPFC ¼ medial prefrontal cortex PCC ¼ posterior cingulate cortex preCG ¼ precentral

gyrus PHG ¼ parahippocampal gyrus ITG ¼ inferior temporal gyrus.
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Fig. 4 e Determining the cognitive signature of the coherent RSNs using an ICA performed on independent task data. A. The

components from the task data were compared to the spatial profiles of the two coherent resting-state networks-of-interest

identified with ICA, the semantic network and the default mode network. This identified 3 task components relating to the

semantic network (upper row) and 2 relating to the DMN (lower row). The task components are shown in red and the
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relation of all task components to the task model could allow

identification of other networks responsible for semantics.

Therefore, all non-noise components found to have a signifi-

cant relation to the model were compared on the main condi-

tion of interest, semantics > control. This contrast was not

significant for any component (p > .05) therefore no additional

networks are argued to be responsible for semantic cognition.

4. Discussion

For resting-state (RS) connectivity research to inform cogni-

tive neuroscience, we need formal methods to determine the

relationship between coherent RSNs and their cognitive

functions. To help demonstrate how researchers can do this,

we set out a series of logical steps to identify coherent RSNs

and formally determine their cognitive signature. When

applied to our test-case cognitive domain, this allowed

demonstration of a coherent RSN responsible for general se-

mantic cognition, distinct from the DMN (which, itself,

exhibited no relationship to the kind of semantic processing

performed in the task).Whilst the precise function of the DMN

is not delineated in the current study, establishing that the

two networks have a differentiable relationship to general

semantic cognition is sufficient to demonstrate that their split

is meaningful. We will consider the specific test-case exem-

plar presented here and its implications for semantic cogni-

tion and then the potential for the current approach more

generally.

The proposed semantic network and DMN were identified

as two distinct coherent RSNs. These ICA-based networks

involved the same core regions as the seed-based FC results

(allowing identification using the a priori templates), yet

involved more circumscribed areas. The semantic network

encompassed ATL, pMTG, IPL, IFG,mPFC. The DMN comprised

core mPFC and PCC regions, as well as angular gyrus, and

medial and lateral temporal lobe, fitting the prior literature

extremely well (Buckner et al., 2008; Greicius et al., 2003;

Jackson et al., 2016). Thus, unlike the extensive, highly over-

lapping seed-based results, the two coherent networks had

very different spatial extents, including distinct but nearby

temporal and IPL regions reflecting known functional sub-

divisions (Buckner et al., 2008; Humphreys et al., 2015;

Humphreys & Lambon Ralph, 2014; Lambon Ralph, 2014;

Seghier, Fagan, & Price, 2010). Overlap remained in the mPFC

but the subregions involved were more distinct (dorsal vs mid

mPFC). Therefore, the DMN and semantic network have

distinct profiles both temporally and spatially, but were

inadequately separated with simple seed-based FC analyses,

resulting in an inaccurate representation of their spatial

topography. This may be due to any of the proposed issues

with seed-based FC analyses laid out in the Introduction.

The separation of the DMN and semantic network is

meaningful as it reflects dissociable cognitive signatures. The

function of the coherent spatiotemporal networks was

assessed by identification of the networks in the active task

data. Two task components were identified that reflected only

the proposed semantic RSN, one that reflected the DMN only

and one that related to both RSNs of interest. Only the two

components that related to the semantic network alone (a

temporal network, T41, and IFG, pMTG and supplementary

motor area, T80) were involved in a task assessing general

semantic cognition. Although very similar, the semantic

network identified in the task datawasmore extensive in both

left and right hemispheres, likely reflecting the greater pro-

portion of difficult semantic processing in this dataset. The

identification of two different semantic network components

could reflect a functional difference related to the specific task

demands. Indeed, the two task components appeared to show

somewhat different cognitive signatures, despite both being

involved in semantics. The temporal lobe component was

involved in the semantic task only, whereas the frontal

component seemed to be involved in both tasks albeit to a

different extent. These areas are consistent with a distinction

between semantic representation (dependent on the temporal

lobe) and the controlled selection and manipulation of se-

mantic information (reliant on IFG and pMTG; Davey et al.,

2016; Jefferies, 2013). These control regions primarily work in

concert with semantic areas but may also support demanding

processes in other domains, such as phonology and orthog-

raphy, which may explain their more task-general role

(Gough, Nobre, & Devlin, 2005; Vigneau et al., 2006). The cur-

rent results are consistent with a semantic control network

previously hypothesised on the basis of seed-based analyses

(Davey et al., 2016; Vatansever et al., 2017). The consistency

and functional significance of the split within the semantic

network should be explored further using similar methods.

The temporal lobe component would have been missed if an

active baseline was not used for comparison, suggesting that

semantic representation areas are highly engaged during rest,

whereas control regionsmay bemore critical in task contexts.

This supports the hypothesis that a large amount of semantic

processing occurs within the resting-state, yet suggests this

depends upon the action of the semantic network and not the

DMN. The hypothesised role of the proposed semantic

network in general semantic cognition was supported.

No evidence was found for the involvement of the DMN in

semantic cognition. The DMN deactivated equivalently

resting-state components used as templates in green. One of these components is the same for the two networks (T13). All

are shown at a voxel-wise significance threshold of .001 FWE-corrected at the cluster level with a critical cluster level of .05.

B. Each task component matching the semantic network, the default mode network or both is shown in red alongside its

cognitive signature determined based on the fit to the task model. The semantic judgement task > rest is shown in orange

and the letter matching baseline > rest is shown in purple. Differences significant at p < .05 are highlighted with an asterisk.

As a substantial amount of semantic processing may occur during rest, here the critical contrast of interest is semantic

judgement > control i.e., the difference between the two columns. The significance (at p < .05) of this difference is

highlighted with a brace. Here T41 and T80 that correspond with the semantic network are found to be critical for

semantics, whereas the DMN-related components are not.
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during the semantic task and non-semantic tasks. This

conflicts with the results of previous univariate analyses

showing reduced deactivation for semantic tasks or over-

lapping regions deactivating for non-semantic tasks and

activating for semantic tasks (Binder et al., 1999, 2009;

Seghier & Price, 2012; Shapira-Lichter et al., 2013). However,

univariate analyses are not capable of accounting for the

known overlap between the DMN and other networks,

including the semantic network, nor are they capable of

delineating the edge between the nearby regions constituting

these distinct networks. By assessing the cognitive signature

of the coherent DMN for the first time we avoided the effect

of overlapping networks and showed no relation between the

DMN and task semantics. It is critical to remember that the

current test case is only sufficient to investigate the role of

the DMN in general semantics and more precise hypotheses

may be advanced relating the network to specific semantic

subprocesses. For instance, it may be that there are addi-

tional processes critical during rest that require complex

combinations of concepts, such as combinatorial or senten-

tial semantics (Binder et al., 2009; Humphries, Binder,

Medler, & Liebenthal, 2007). Other processes may necessi-

tate the involvement of semantics with other domains or

specific types of concepts, such as social items (Irish& Piguet,

2013; Mars et al., 2012; Price, Bonner, Peelle, & Grossman,

2015). These processes may or may not require the DMN.

Using the current method, it is possible for researchers to

assess these relatively specific hypotheses to identify the

exact role of the DMN in future studies. Only by precisely

specifying and then testing hypotheses can the function of

the DMN and other RSNs become known.

One task component (T13) overlapped with both the se-

mantic network and the DMN (see Fig. 4A). This dorsomedial

PFC component was not involved in semantic cognition. It

may be that some of the variance in the dorsomedial PFC

time-course may be best explained as a component separate

from both the semantic and DMNs. The dorsomedial PFC has

been linked to ‘unconstrained’ semantic processing (Binder

et al., 2009) and domain general control processes

(Fedorenko, Duncan, & Kanwisher, 2013; Noonan et al., 2013).

Indeed, the topography of this component suggests it may

relate to the salience network (Seeley et al., 2007). Alterna-

tively, the separation of this componentmay reflect noise and

not a meaningful functional distinction. Further investigation

of the connectivity of the dorsomedial PFC may allow inter-

pretation of its function.

Table 3 e Peak activation in the task components-of-interest. Voxels are significant at .001. Clusters are significant using
FWE-correction and a critical cluster level of .05.

Component Relation Cluster extent
(voxels)

Max z
value

P value
(FWE corrected)

Peak MNI
Coordinate

Region(s)

X Y Z

T41 Semantic Network 1544 7.05 <.001 �57 �9 �9 L temporal, lOFC, vAG

702 6.53 <.001 51 �30 0 R temporal

56 5.06 <.001 36 48 12 R DLPFC

60 4.69 <.001 �3 54 �12 L vmPFC

33 4.09 .002 45 �57 42 R IPL

T80 Semantic Network 1890 7.73 <.001 �45 30 12 L IFG, insula, preCG

60 4.99 <.001 30 39 �9 R lOFC

148 4.96 <.001 �36 �60 39 L IPL

218 4.95 <.001 45 27 18 R IFG

167 4.93 <.001 �60 �48 3 L pMTG, pSTG

116 4.84 <.001 �3 6 66 SMA

47 4.83 <.001 �48 �54 �21 L pFG, pITG

24 4.73 .019 �9 54 30 L dmPFC

20 4.53 .046 �63 �27 27 L SMG

30 4.31 .005 �15 �66 �12 L occipital, cerebellum

37 4.09 .001 9 �81 �30 Cerebellum

21 3.67 .036 24 �69 �54 Cerebellum

T19 DMN 1479 >8 <.001 0 54 �6 Mid mPFC

32 4.42 .004 �6 �66 15 Cuneus, precuneus

24 4.34 .019 �63 �15 �18 L aMTG

20 3.95 .046 �6 9 66 L SMA

T13 Both 2011 6.98 <.001 �3 51 36 dmPFC, DLPFC

276 6.3 <.001 �48 36 �12 L IFG

103 5.52 <.001 �30 �84 �33 Cerebellum

110 5.35 <.001 �51 �63 24 vAG

195 4.9 <.001 48 33 �6 R IFG, superior TP

42 4.87 <.001 0 39 �24 mOFC

49 4.53 <.001 3 �18 45 Mid CC

27 4.8 .006 27 �78 �33 Cerebellum

L ¼ left R ¼ right a ¼ anterior p ¼ posterior v ¼ ventral d ¼ dorsal m ¼ medial l ¼ lateral TP ¼ temporal pole MTG ¼ middle temporal gyrus

FG¼ fusiform gyrus ITG¼ inferior temporal gyrus AG¼ angular gyrus IPL¼ inferior parietal lobe SMA¼ supplementarymotor area IFG¼ inferior

frontal gyrus PFC¼ prefrontal cortex OFC¼ orbitofrontal cortex DLPFC¼ dorsolateral prefrontal cortex preCG¼ precentral gyrus CC¼ cingulate

cortex.
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The semantic and DMNs are distinct coherent RSNs with

dissociable functions. This is highly consistent with the

observation that semantic regions deactivate for non-

semantic tasks, yet core DMN regions, deactivate in both se-

mantic and non-semantic tasks (Humphreys et al., 2015). The

currentmodel-free technique extends thiswork by identifying

the precise spatial extent of the two networks, taking into

consideration spatial overlap. The deactivation of both se-

mantic and DMN regions during non-semantic processing

may lead to a correlation between the networks despite their

distinct functional roles (Humphreys et al., 2015). This corre-

lation will be increased by motion as the networks involve

many nearby regions (Power et al., 2014, 2015; Van Dijk et al.,

2012) and will result in over-extensive seed-based FC results.

An alternate description of the results would be that multiple

task-negative subnetworks constitute the DMN, including the

semantic network and the ‘core’ DMN (Andrews-Hanna et al.,

2010). This is a valid conceptualisation of the current results.

However, it is unclear how much this hierarchical under-

standing contributes if the subnetworks perform distinct

functions. Critically, the use of a single well-known label for a

host of networks responsible for distinguishable processes

may not aid communication of important results. An under-

standing of the functional role of other subnetworks, in

particular the core default mode regions, may help determine

the best way to conceptualise the relationship between these

networks.

The current methodology allowed the identification of

coherent RSNs and determination of their cognitive signature

through the coordinated use of both RS and active task data.

The first step was to split the resting-state data into distinct

components using a high-dimensional ICA. The Jaccard sim-

ilarity metric was used to systematically identify the RSNs of

interest in the resulting ICA components based on compari-

sonwith a priori templates and seed-based results. An ICAwas

performed on independent data including a semantic task and

an active baseline, and the task components related to the

RSNs of interest identified by comparison to the RS ICA com-

ponents. The relation of these components with the task

model could then be assessed to determine the functional

significance of their separation and test their hypothesised

relations to cognitive domains.

The use of ICAwas shown to be critical as distinct coherent

networks could be identified in the RS data, unlike in the seed-

based FC analyses. This highlights the inadequacies of seed-

based analysis and suggests researchers should identify

coherent networks with ICA, as suggested previously

(Beckmann et al., 2005; Calhoun et al., 2001; Griffanti et al.,

2014). Estimating the dimensionality for each ICA allows the

use of an appropriate number of components for that dataset

without the need to search multiple results spaces, which

would disallow a simple interpretation. Use of the Jaccard

similarity metric quantitatively demonstrated the identity of

the resting-state and task components in order to reduce

researcher bias. Adopting a similar approach may help re-

searchers avoid the overwhelming prospect of interpreting

each of the many components identified in an ICA, promoting

functional interpretation and therefore reducing the detach-

ment from function often found in RS studies. Determining

the cognitive signature of a network is critical to show that

separations are meaningful, as well as to inform cognitive

neuroscience. The function of the spatiotemporally coherent

network (and not simply constituent areas which may be

involved in multiple networks) can be formally determined if

the network of interest is identified in task data using ICA.

This may be advantageous compared to assessing the activity

of constituent regions (e.g., Laird et al., 2009) due to the

involvement of regions in multiple networks. Whilst the

combination of networks involved in an activity map can be

estimated using spatial linear regression (Connolly et al.,

2016), this may lack precision compared to splitting the task

data into distinct components and does not allow full

assessment of the cognitive signature of each network

involved. Comparison of the spatial extent of a network to

activity maps is inadequate to determine its function. The

present results demonstrate that the overlap between the

DMN and areas identified in a meta-analysis of semantic

cognition (e.g., Binder et al., 2009) is insufficient to confirm a

functional role of the DMN in semantics. Formal testing of the

hypothesised role of a RSN is critical. Contrasting a networks

activity between a task and the resting-state is not sufficient

to understand its role. Any taskmay appear similar to rest due

to periods of inactivity, off-task thoughts during the task of

interest, or domain-general processing. However, processes

that occur frequently during rest will exacerbate this simi-

larity and may result in the inability to identify networks

critical for this function. An active baseline provides a known

entity with which to compare the task-of-interest, allowing

greater interpretation (Frackowiak, 1991).

In order to use this approach, researchers would need data

obtained during a well-executed task with an appropriate

baseline, as well as an appropriate template for their RSN of

interest. Many researchers will have task data in their domain

of interest that can be reused or access to freely available task

datasets, such as those provided as part of the Human Con-

nectome Project (Van Essen et al., 2013). The dataset should

possess sufficient power to allow separation in to a high

number of dimensions otherwise RSNs responsible for

distinct cognitive domains yet with correlated timecourses

may not be well separated. Templates for well-known RSNs

are freely available, whilst novel RSNs can be assessed using

seed-based methods in order to generate templates prior to

the ICA. The flexibility of the template overlapping steps

outlined here mean that templates do not have to perfectly

match the component to be identified, therefore the ‘best

guess’ at a RSN may be used. Overall, these requirements are

not likely to be too restrictive. It is possible that a RSN of in-

terest may not be identifiable in some task data due to state-

dependent connectivity changes, although this may suggest

that the RSN is not responsible for a key process in this task.

Additionally, a RSN could be responsible for a process that is

not typically studied with task fMRI. In this case this approach

may be used to reject other hypotheses, perhaps allowing

future hypothesis generation and the creation of more appli-

cable task fMRI datasets.

The steps used here to identify coherent RSNs and deter-

mine their cognitive signature are described in detail, in order

that other researchers are able to use the same approach to

determine the function of RSNs of interest to them. Unlike

much prior research (e.g., Bertolero et al., 2015; Bzdok et al.,
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2016; Cole et al., 2014; Crossley et al., 2013; Krienen et al., 2014;

Laird et al., 2011; Smith et al., 2009; Yeo et al., 2015) showing a

general similarity between networks identified in rest and

task states, the steps presented here are designed to allow a

simple assessment of the function of a specific RSN of interest.

Identifying a set of RSNs and their corresponding functions

would be extremely fruitful for future research, for instance,

allowing greater interpretation of the changes in resting-state

connectivity induced in disease states. In particular, the same

method could be used to test further predictions regarding the

role of the DMN; assessing whether it is responsible for a

specific form of semantic processing, such as social seman-

tics, or processing within a different domain, such as episodic

cognition, or whether it may be more reasonable to assess its

role in forms of cognitive control that could be crucial during

rest (Bar, 2009; Crittenden, Mitchell, & Duncan, 2015).
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