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Abstract. One of the dominant challenges in data-based Structural
Health Monitoring (SHM), is the scarcity of measured data correspond-
ing to different damage states of the structures of interest. A new arse-
nal of advanced technologies is described here that can be used to solve
this problem. This new generation of methods is able to transfer health
inferences and information between structures in a population-based en-
vironment – Population-based SHM (PBSHM).

In the category of homogenous populations (sets of nominally-identical
structures), the idea of a Form can be utilised, as it encodes information
about the ideal or typical structure, together with information about
variations across the population.

In the case of sets of different structures and thus heterogeneous popu-
lations, technologies of transfer learning are described as a powerful tool
for sharing inferences, that is also applicable in the homogenous cases. In
order to avoid negative transfer and assess the likelihood of a meaningful
inference, an abstract representation framework for spaces of structures,
will be analysed as it can capture similarities between structures via the
framework of graph theory.

This chapter presents and discusses all of these very recent developments
and provides illustrative examples.

Keywords: Population-based Structural Health Monitoring (PBSHM),
Machine Learning, Graph Theory, Complex Networks, Transfer Learn-
ing, Forms.

1 Population-based Structural Health Monitoring

Despite significant successes in data-based approaches to structural health moni-
toring (SHM) [1], several limitations have prevented wide-scale adoption of these
techniques in industry. One of these limitations, that prevents data-based ap-
proaches from progressing beyond novelty detection, is a scarcity of measured
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data corresponding to the damage-states of interest for the structures in ques-
tion. This sparsity of labelled health-state data means that supervised (and even
semi-supervised) techniques are limited in their effectiveness, unable to classify
observations on a structure that correspond to a health state not previously seen
on the structure (unless inspections are performed for the particular observation
in question). As a consequence, conventional data-based approaches that are de-
veloped for individual structures are often limited in industrial applications to
performing novelty detection (in an absence of labelled health-state data), where
these techniques typically are not only sensitive to damage, but detect novelty
for a variety of reasons, such as due to confounding influences and other benign
effects [2].

In the light of these challenges, population-based structural health monitor-
ing (PBSHM) [3, 4, 5, 6, 7], provides a variety of tools that seek to expand the
available data for performing SHM, by considering observations from a popu-
lation of structures. By utilising data from multiple structures, observations of
health-states from across the population can be shared in diagnosing different
members of the population. A population-based viewpoint therefore overcomes
problems associated with a scarcity of health-state (or usually, damage-state)
labelled data, and enables diagnostic predictions from the start of an SHM cam-
paign. This chapter introduces key concepts for PBSHM, such as population
types and the tools most applicable for each type, with the focus of this chapter
being on learning for PBSHM.

It is helpful at this stage to provide an illustration of a typical industrial set-
ting for PBSHM. Imagine a scenario in which an asset manager of a wind farm
is interested in performing SHM for each wind turbine in the farm, depicted in
Figure 1. Each wind turbine in the farm is of the same model type and can be
considered nominally identical – this type of population is termed a homoge-
neous population [3, 4, 5]. During the complete operational phase each structure
may transition from its normal operating condition to a different health-state;
however, it is unlikely that any one turbine will observe all health-states of in-
terest to the asset manager (particularly as these structures are designed for low
failure rates). The lack of observed labelled health-states for each wind turbine
means that conventional data-based SHM is limited to novelty detection. In fact,
even observing the complete normal condition for any one wind turbine may not
be possible for a variety of reasons, such as local differences in weather, local
interactions between structures, and different operational patterns. Despite the
fact that some wind turbines may have limited or no labelled health-state data,
the asset manager is still tasked with maintaining and monitoring the complete
population. The asset manager therefore requires a population-based approach
to SHM, where the information across the population is used to create a machine
learner that will both generalise across the population and will allow label infor-
mation to be transferred to any wind turbine in the farm, allowing robust health
diagnostics for all wind turbines in the population. Figure 1 demonstrates this
process, where data from across the farm are mapped into some space where a
data-based model can be constructed utilising the population-level information.
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Fig. 1. A typical population-based structural health monitoring scenario. The scenario
depicts a population of wind turbines ({S1,S2,S3}) where different types of damage
have been observed for each wind turbine over their operational phase (N - normal
condition, Dh - damage to the rotor hub, Db - damage to a blade, Dt - damage on
the tower). Population-based SHM methods seek to define some model that captures
information from across the population, generally via some mapping φ.

The above example describes a scenario involving a homogeneous population
where the structures are nominally identical. A second category of population
also exists, termed a heterogeneous population, where every structure in the pop-
ulation is different for various reasons, broadly categorised as geometric, mate-
rial and topological differences [3, 4, 5]. Staying with the wind-farm illustration,
imagine the asset manager is tasked with overseeing multiple wind farms sit-
uated around the world, with each farm containing wind turbines of different
model types. A population-based approach can be extended to consider a larger
population, covering all the wind turbines in the portfolio. However, more care
must be taken in scenarios where the differences between structures in a popula-
tion are large. For example, the asset manager must consider the physics of the
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structures that are grouped into a population; are there common failure types
that each turbine will experience such that labelled data can be shared, are there
sub-systems or components that are common across the population? To answer
these questions it will be necessary to demonstrate an abstract representation
framework for spaces of structures, as this will allow an engineer to quantify and
capture similarities between structures via the framework of graph theory.

A key component of population-based SHM concerns how learning algorithms
are constructed in a population setting. Clearly, data from one structure cannot
naively be used to classify data from another structure, without some mapping
to harmonise datasets, as the generative distributions from each member of the
population will be different. In the context of population types, this chapter
outlines two key technology types for performing population-based SHM, the
concept of a Form and transfer learning. Each are suited to different problem
types in PBSHM, which are discussed within the chapter. Briefly, a Form seeks
to capture the essence of a population, typically by defining a data-based model
that captures the expected normal condition as well as the variability across the
population. By contrast, transfer learning seeks to leverage information from
source structures where label information is known and transfer this knowledge
via some mapping to partially or unlabelled target structures. These types of
learning are outlined in the context of each population type along with illustra-
tive examples.

2 Homogeneous Populations

2.1 The concept of a Form

As discussed, homogeneous populations are groups of structures that can be
considered nominally identical [3]. Some examples include same-model vehicle
fleets, or turbines within a wind farm. In this special case, a general and shared
representation – referred to as the Form – may be be used to monitor the
collected group of systems.

The concept of the Form for PBSHM is motivated by the work of Plato.
Initially in Meno [8] and later The Republic [9], Plato considers Forms to be the
essence of things, existing as abstract entities: eternal, immutable, and repre-
sentative of the highest level of reality. Ordinary objects derive their nature and
properties by ‘participating’ in the Forms. For example, all cats in the world are
recognisable as such because they participate in the Form of cat.

To apply Plato’s Form to a group of structures for monitoring purposes, an
extension is needed: not only to capture the essence of things, but the extent
of variations in their participants [3]. For example, consider a specific model
of vehicle; one could argue that the essential nature of the vehicle is captured
in the complete design specification; in reality, variations will occur over the
production-run: manufacturing tolerances, changes in operating environments,
as well as other inconsistencies.

Herein, the term form will be used in a mathematical sense to denote a
model, in some feature space, of an object (the uncapitalised form distinguishes
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the model from the conceptual Form). The model attempts to capture the two
ingredients of the extended Form: the essential nature of the object and the
variations encountered when the object is embodied in the real world. The object
of interest need not be the structure itself, but rather a feature or measurement
vector – which represents the structure for SHM purposes. The feature, therefore,
is part of the description of the form.

A motivating example: wind turbine power curves For a specific model
of turbine, the power curve captures the relationship between wind speed and
power output; the associated function can be used as a indicator of performance
[10, 11]. For a wind farm consisting of identical turbines, this trend should be
relatively consistent across the group. Variations in the power curve can exist
for an array of reasons; the results of operator control, or shadowing and wake
effects from other turbines [12], for example.

Intuitively, the power-curve defines a convenient object (i.e. feature) to con-
sider as the form for a wind-farm. This relationship captures the essential nature
of power production, while also the variations across the group. To demonstrate,
operational power-curve data (SCADA [11]) from a wind farm are presented in
Figure 2a. A regression of these data should generalise to future measurements,
given optimal power-generation for turbines within the farm.

(a) Optimal power curves: three
turbines over three weeks.

(b) Curtailed power curves: seven
turbines over nine weeks.

Fig. 2. Wind farm power curves (normalised).

In practice, however, only a subset of measurements or turbines would be
approximated by a form modelled on the data in Figure 2a. This is because, in
actuality, power-curtailments will appear as additional functional components;
that is, further variations in the form. An example of operational data including
curtailments is shown in Figure 2b; here, three trends can be observed in the
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power data: (i) the ideal power curve (ii) ≈50%-limited output, and (iii) zero-
limited output. Curtailments usually correspond to the output being controlled
(or limited) by the operator for various reasons; e.g. responding to requirements
of the electrical grid [13] or the mitigation of loading/wake effects [12]. As a re-
sult, the form object is multi-valued, differing significantly from the ideal curve.
However, as these data capture important variations that are expected in prac-
tice, they should be useful to model a more complete form for the wind farm.

The power curve form as a mixture of Gaussian Processes As the func-
tional feature (Figure 2b) is multi-valued, conventional regression would prove
inappropriate for this expression of the form. The work in [14] proposes that an
overlapping mixture of probabilistic regression models (Gaussian Processes) is
used to approximate the power-curve relationship.

Specifically, the overlapping mixture of regression models (introduced by
Lázaro-Gredilla et al. [15]) assumes that there are K latent functions to ap-
proximate the form,

y
(k)
i =

{

f (k)(xi) + ǫi

}K

k=1
(1)

i.e. the power yi at each input xi (wind speed) is found by evaluating one of K
latent functions f (k)(xi) with additive noise ǫi. From the power-curve data, it
should be clear that an appropriate number of components is K = 3: (i) ideal,
(ii) 50% limited, and (iii) zero power.

Labels to assign each observation {xi, yi} to function k are unknown, so a
latent variable is introduced to the model, Z; this is a binary indicator matrix,
such that Z[i, k] 6= 0 indicates that observation i was generated by function k.
There is only one non-zero entry per row in Z (each observation is found by
evaluating one function only). Therefore, for N data, the likelihood of the model
is [15],

p

(

y |
{

f (k)
}K

k=1
,Z,x

)

=

N,K
∏

i,k=1

p
(

yi | f
(k)(xi)

)Z[i,k]

(2)

A Gaussian Process (GP) is associated with each of the (three) latent func-
tions f (k). Briefly, each GP can be described by its mean and kernel func-
tion [16], which can be specified for power-curve modelling; for details, refer
to [14]. Unlike a conventional GP, the computation of the posterior distribution
p
(

Z, {f (k)} | D
)

is intractable; thus, methods for approximate inference are im-
plemented to infer the latent variables and functions – a variational inference
and Expectation Maximisation (EM) approach was proposed in [17]. Addition-
ally, input-dependant noise is approximated according to the scheme [18]. The
resulting form is presented in Figure 3.
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Fig. 3. The wind farm form as an overlapping mixture of Gaussian processes.

The form for wind farm performance monitoring To demonstrate the
form as a performance-monitoring (or diagnostic) tool, the model can be com-
pared to future (test) data from all turbines within the population. As such, the
form is treated as a general model, and used to make predictions across the wind
farm.

In the experiments presented in [3], a similar power-curve model was used
to inform outlier analysis, by measuring the deviation of future data from the
form (via the combined predictive-likelihood of the mixture model). Examples of
(weekly) data (from across the wind farm) that appeared as inlying or outlying
with respect to the form are shown in Figure 4. In other words, data that appear
likely or unlikely when compared to the currently-modelled population form
respectively. The examples are sampled at random from the most extreme inlying
and outlying weeks of data in the test set [3].

(a) Inlying (high likelihood). (b) Outlying (low likelihood).

Fig. 4. Weekly datasets, compared to the form in [3].
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Specifically, Figure 4b resembles a typical sub-optimal power curve [10]. On
the other hand, the inlying example in Figure 4a resembles one of the permitted
normal conditions associated with the form – in this case, the ideal curve.

Form difficulties: increased population variance As variation across indi-
viduals increases, variation in the population-data is also likely to increase; thus
it becomes progressively difficult to approximate the form. In particular, when
the underlying distributions of data vary dramatically between individuals, more
involved techniques are required to infer a shared model. An idea presented in
[19] suggests that dissimilar population data might be projected into a shared
and more consistent space, where the form can then be inferred. These concepts
align closely with those of transfer learning.

2.2 Transfer learning for homogeneous populations

Transfer learning – a branch of machine learning – provides an alternative view-
point to the concept of a form. Rather than seeking to capture the essence and
variation of a population, transfer learning seeks to leverage label information
from source structures in aiding classification of unlabelled (or partially-labelled)
target structures. Transfer learning is applicable across a variety of PBSHM sce-
narios, including homogeneous populations, where the data vary too greatly to
be modelled by the form framework in the previous section, preventing a learner
trained on one (or more) structure(s) from generalising to another.

Two objects are required to formally define transfer learning,

• A domain D = {X , p(X)}, consists of a feature space X and a marginal
probability distribution p(X) over the feature data X = {xi}

N
i=1 ∈ X , a

finite sample from X .
• A task T = {Y, f(·)}, consists of a label space Y and a predictive function
f(·) which can be inferred from training data {xi, yi}

N
i=1 where xi ∈ X and

yi ∈ Y.

Using these objects, transfer learning between a single source domain and single
target domain is defined as [20],

Definition 1. Transfer learning is the process of improving the target pre-
diction function f(·) in the target task Tt using knowledge from a source domain
Ds and a source task Ts (and a target domain Dt), whilst assuming Ds 6= Dt

and/or Ts 6= Tt.

Within the field of transfer learning, domain adaptation arguably offers one of
the most useful tools for PBSHM and is defined as,

Definition 2. Domain adaptation is the process of improving the target pre-
diction function f(·) in the target task Tt using knowledge from a source domain
Ds and a source task Ts (and a target domain Dt), whilst assuming Xs = Xt and
Ys = Yt, but that p(Xs) 6= p(Xt) and typically that p(Ys | Xs) 6= p(Yt | Xt).
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Domain adaptation is appropriate for scenarios where a classifier will not gener-
alise across domains because of differences in the underlying data distributions,
such as the example outlined in Figure 1. For this reason, the transfer learning
methods demonstrated in this chapter are therefore all forms of domain adapta-
tion.

To contextualise transfer learning for homogeneous populations, a case study
is provided. The case study considers a special case of the homogeneous pop-
ulation type, when the source and target structure are exactly equivalent, i.e.
they are the same structure. Even in this context, PBSHM provides a useful
framework for overcoming challenges with data-based SHM; in this particular
instance, the problem of structural repairs and how they change the underlying
data distribution of a system. Structural repairs introduce modifications that
change (even if locally) the mass, stiffness and damping of the structure, caus-
ing shifts in the underlying generating distributions and manifest as drift in the
output feature space. This dataset shift means that a data-based model trained
on pre-repair labelled data will not generalise to the post-repair structure be-
cause the distributions of the dataset in training and testing are not the same.
The implication of this dataset shift is that a new labelling campaign would be
required every time structural repairs are made. Instead, a PBSHM viewpoint
can be taken by treating the two datasets as coming from a population of two
homogeneous structures. The following case study considers two datasets from
the same Gnat trainer aircraft, before and after the inspection panels have been
removed and reattached (simulating a repair scenario).

The Gnat aircraft dataset was collected as part of an experimental campaign
in which a network of uni-axial accelerometers were used to obtain transmis-
sibility features (under white-noise excitation) from the starboard wing of a
Gnat trainer aircraft in situ [21]. During the experiments, psuedo-damage was
introduced into the structure by removing individual inspection panels – the
locations of which are represented in Figure 5. The sensor network was de-
signed such that each transmissibility path targeted a specific inspection panel
(i.e. the transmissibility targeting panel 1 (P1), denoted T1, is computed from
the reference accelerometer AR and response A1), with each transmissibility
covering a frequency range of 1024-2048Hz containing 1024 spectral lines, with
the magnitudes being utilised as the feature data. In the following analysis the
feature data are seven stacked transmissibilities (i.e. R1024×7) covering panels
{P1, P2, P4, P5, P7, P8, P9} where the label space is Y ∈ {1, 2, 4, 5, 7, 8, 9} (with
only the panels with a large surface area being considered in this analysis). For
more details about the experiments, the reader is referred to [21].

The dataset simulates a repair scenario, because the experimental sequence
(removing all panels one-by-one and replacing them on the structure with the
same applied torque on the fasteners) was repeated twice. In fact, the mainte-
nance process on the Gnat aircraft wing typically involves removing and reat-
taching inspection panels. In order to visualise the problem caused by the repair
action, Figures 6 and 7 present two depictions of the dataset. Figure 6 demon-
strates the changes in the first transmissibility path before (show in red) and
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Fig. 5. A representative schematic of
the Gnat aircraft starboard wing (not
to scale), depicting inspection panel, ac-
celerometer and transmissibility path lo-
cations. Recreated from [21].

Fig. 6. A comparison of T1 for the pre-
(red) and post-repair (blue) scenarios; top
and bottom sub-panels depict the normal
condition and the removal of Panel One.

Fig. 7. Visualisation of the pre- and post-
repair datasets; the first two principal com-
ponents of the pre-repair (•) and post-
repair (+) datasets.

after (depicted in blue) repairs had taken place for two health states, the undam-
aged normal condition (top sub-panel) and when Panel One has been removed
(bottom sub-panel). It is clear from this figure that there are larger changes
due to the repair action than due to damage (for example the large differences
around 200 to 400 spectral lines between pre- and post-repair transmissibilities),
and hence a classifier will not generalise from the pre- to post-repair scenar-
ios. Figure 7 shows the first two principal components of the complete feature
space, demonstrating that the data distributions have changed significantly be-
tween the pre- and post-repair structural states, and hence p(Ys, Xs) 6= p(Yt, Xt)
(where the pre-repair data has been denoted as the source domain, subscript s,
and the post-repair data is denoted as the target domain, subscript t), so domain
adaptation is applicable.

In order to harmonise the pre- and post-repair datasets, such that label in-
formation from the pre-repair dataset can be used to diagnose the unlabelled
post-repair data, a domain adaptation algorithm has been applied. The algo-
rithm, metric-informed joint domain adaptation [22], seeks to find a mapping
Z = KW ∈ R

(Ns+Nt×k), by learning some weight matrix W ∈ R
(Ns+Nt×k) that
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Fig. 8. Transfer components of the pre-
repair (•) and post-repair (+) from the
metric-informed joint domain adaptation
approach.

Fig. 9. Comparison of classification accu-
racy given feature spaces with no transfer
learning (Data and PCA) and the feature
space after transfer learning (M-JDA).

projects a kernel matrix, formed from the joint dataset K ∈ R
(Ns+Nt×Ns+Nt),

onto a k-dimensional space. The weight matrix is inferred by minimising the dis-
tances between the joint distributions from the source and target data, formed
as an optimisation problem that minimises the maximum mean discrepancy dis-
tance between the marginal and class conditional distributions (for more infor-
mation about the algorithm, the reader is referred to [22]). The projected space,
defined by a set of transfer components, where k = 2, is shown in Figure 8,
where the algorithm has matched the joint distributions in the projected space.
In this space, label data from the pre-repair state can be used to classify the
post-repair data, transferring the label information. A k-nearest neighbour clas-
sifier was trained on the pre-repair data from three different feature spaces, the
original transmissibilities (Data), the principal components of the transmissibil-
ities (PCA) and the transfer components (M-JDA). The classification results in
Figure 9 show that domain adaptation has allowed for label information to be
successfully transferred to the target domain, signified by classification accura-
cies in the target domain of 100%, and that, because of differences in between
the pre- and post-repair datasets, a classifier trained on either the pre-repair
transmissibilities or principal components, does not generalise to the post-repair
data.

3 Heterogeneous Populations

3.1 Transfer learning for heterogeneous populations

In the field of population-based SHM, heterogeneous populations provide a more
complex set of challenges for transfer learning. The reason for this increased dif-
ficulty is that transfer learning assumes that there is some shared commonality
between the source and target domains. Heterogeneous population push these
assumptions towards their limits, and as structures in a population become more
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dissimilar, the risk of negative transfer increases. The term negative transfer de-
scribes the scenario where transfer learning incorrectly maps information from
one domain onto another, reducing the performance of the learner (discussed
in more detail in Section 3.2). It is therefore important in heterogeneous pop-
ulations to understand and quantify the level of similarity between structures,
such that transfer learning is only attempted in contexts where transfer will
be successful and beneficial. Later on in this chapter, an approach for assess-
ing the similarities between structures (before attempting transfer learning) is
introduced. Briefly, the approach converts structures into an abstract representa-
tion, called Irreducible Element models, where a graph theory framework can be
used to quantity similarities. The remainder of this section looks at illustrating
transfer learning in the context of heterogeneous populations via two example
populations of n-storey buildings.

The first example considers a population of two n-storey structures, a three-
storey structure where the feature data are labelled, denoted the source structure,
and a four-storey target structure, where the feature data is unlabelled. The two
structures form a heterogeneous population as they have different topologies –
with their nominal geometries and material properties being the same. Each
structure is modelled as a lumped-mass model, shown in Figure 10, where the
spring stiffness between each floor is modelled as four springs in parallel. The
SHM problem is that of locating damage, in the form of open cracks at one of
the beams at a particular floor using lateral bending natural frequencies of the
whole structure as features.

In this example, the PBSHM problem is that of transferring localisation la-
bels from the three-storey structure to the four-storey structure. An interesting
challenge arises in the context of a heterogeneous population when performing a
localisation task between structures with different topology, namely that the la-
bels spaces between the two structure are not exactly equivalent, termed label in-
consistency. This phenomenon means that care must be taken when transferring
information between members of a heterogeneous population. In this example,
both structures have an undamaged condition (Y = 1), and can be damaged at
floors one to three (Y = {2, 3, 4} respectively). As a result, the complete label set
from the three-storey structure can be transferred to the four-storey structure,
where the algorithm should not try to pair data points relating to damage at the
fourth floor (Y = 5) of the target structure with data from the source structure.
This type of PBSHM problem is termed an L+1-problem, as there is one more
class label in the target domain than in the source domain (i.e. Ys ∈ {1, 2, 3, 4}
and Yt ∈ {1, 2, 3, 4, 5}. Furthermore, most domain adaptation techniques require
that both the source and target feature spaces to be of the same dimension,
such that negative transfer is minimised. In this example, the feature spaces are
the first three bending natural frequencies such that both feature spaces are R3,
with Figure 11 presenting a visualisation of the first two natural frequencies for
each structure.

The approach taken to solve this particular L+ 1-problem is outlined next.
Firstly, an unsupervised clustering method (namely a Gaussian mixture model)
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Fig. 10. Schematic of the
n-storey building structures
lumped-mass models, panel (a),
and beam component, panel (b).

Fig. 11. A visualisation of the first two natural
frequencies (in Hz) from the three- (•) and four
(+) storey structures.

is used to identify and group the unlabelled target domain feature data. Once
unlabelled target clusters are identified, each target cluster is removed itera-
tively from the domain adaptation training dataset. A mapping, in the form of
Z = KW ∈ R

(Ns+Nt×k) is subsequently identified from the (complete) source
dataset to the particular target dataset (where one cluster has been removed);
where the domain adaptation algorithm uses the maximum mean discrepancy
as a cost function and k = 2. The algorithm then selects the mapping that
produces the smallest distance between the source and target training datasets.
This methodology is based on a naive form of manifold assumption, i.e. it is ex-
pected that the manifold of the source and target clusters is the ‘same’. Figure
12 presents the ‘optimal’ mapping, where the correct target clusters were used
in training, and the distance – in the form of a maximum mean discrepancy
distance (MMD) – between the mappings with different target clusters removed.
It can be seen that the ‘optimal’ mapping is selected by this approach, as the
smallest MMD distance is produced when the target cluster corresponding to
Y = 5 (i.e. damage at the fourth storey) is removed in training. A classifier
trained on the source domain data in the transfer component space in Figure 12
can be shown to classify the target structure with 100% accuracy using a semi-
supervised Gaussian mixture model. This case study demonstrates the challenges
heterogeneous populations cause for transfer learning techniques, with care being
needed in order to minimise negative transfer.

The second example involves a heterogeneous population comprised of a nu-
merical physics-based model and an experimental structure, as displayed in Fig-
ure 13. The aim in this example is to transfer damage-extent label information
from an unvalidated (and in this case a deliberately poor-performing) numeri-
cal model to unlabelled data from an experimental structure. This case demon-
strates the flexibility of a PBSHM approach in which a variety of sources of label
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Fig. 12. Transfer learning results for the three- to four-storey example. Left panel
displays the transfer components for the three- (•) and four-storey (+) structures,
with the right panel demonstrating the maximum mean discrepancy (MMD) distances
in the transformed space when one cluster has been removed from the target domain.

information can be utilised, and shows a significant advantage of the PBSHM
viewpoint, namely that damage-state data can be generated in a cost-effective
manner from physics-based models, even when computer model validation is
challenging. The numerical model, constructed using the approach in Figure 10
as a three degree-of-freedom lumped-mass model, was formed using the measured
dimensions of the experimental structure and with typical material properties
that matched those from the structure.

Fig. 13. Experimental three-
storey building structure [5].

Fig. 14. The transfer components from the numer-
ical (·) and experimental (• predicted label and ©
true label) datasets.

The SHM problem was to classify the extent of damage, in the form of open
cracks from 0mm to 20mm, where label Y = 1 denotes the undamaged condition,
Y = 2 refers to a 5mm crack, Y = 3 for a 10mm crack etc. Again, it is reiterated
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that the numerical model has been oversimplified such that the example demon-
strates the effectiveness of domain adaptation in utilising physics-based models
in labelling real world structures. The simplified physics-based model therefore
reflects that physics-based models are challenging to validate in SHM contexts
and may not fully agree with observational data, because of model form-errors.
The feature data in this example were the first three lateral bending natural
frequencies of the system.

Domain adaptation was applied such that a mapping in the form of Z =
KW ∈ R

(Ns+Nt×k) could be identified (where k = 2), using an MMD-based cost
function [5]. The inferred mapping is visualised in Figure 14 where it can be
seen that the numerical and experimental data have been aligned. A k-nearest
neighbour classifier was trained using the numerical model data, both before
and after the transfer mapping. The classifier trained on the untransformed data
produced a testing accuracy in the target domain of 48%; this is compared to
a testing accuracy 88% from the classifier trained on the transfer components.
This result demonstrates the effectiveness and applicability of utilising both
physics-based models and observational datasets within a PBSHM framework.

Both of these case studies highlight the potential of PBSHM beyond popula-
tions of nominally-similar structures. Of course, there are a number of research
questions that are posed by considering the full extent of heterogeneous popu-
lations. It is therefore important to explore similarities between structures and
datasets, and to form groupings of PBSHM problems that address each scenario,
while monitoring the potential for negative transfer.

3.2 The problem of negative transfer

Negative transfer has been mentioned several times in this chapter because of
the risk it poses to making inferences of health states in a PBSHM approach.
As previously stated, negative transfer occurs when class data from a source do-
main has been incorrectly and confidently paired with class data from a target
domain, i.e. Class One in the source domain is mapped onto Class Two in the
target domain. Generally, negative transfer is any scenario where transfer learn-
ing reduces the performance on a classifier when compared to not performing any
transfer. Negative transfer is a particular concern for a PBSHM viewpoint, as
typically there are no labelled data points in the target domain that can be used
to validate the inferred transfer mapping. As such, it is important to quantify
how related the source and target structures are and to only perform transfer
when positive transfer is likely. This is a significant and open research question,
with the following section outlining one approach to identified the similarities
between members of a population.

To illustrate the effect of negative transfer, the three- to four-storey example
is reintroduced. The problem in this example was to transfer localisation labels
from the three-storey source structure to the unlabelled four-storey target struc-
ture. The problem is an L + 1-problem, meaning that there is one more class
label in the target domain than in the source domain, and that all other class
labels exist in both domains. Figure 15 illustrates the identified mapping when
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data corresponding to classes Ys ∈ {1, 2, 3, 4} and Yt ∈ {1, 2, 4, 5} were used to
train the domain adaptation mapping – this gave the second smallest distance
in Figure 15 and therefore was not selected as the optimal mapping, but will
be useful for this discussion. Of particular note, negative transfer has occurred
between the source data for class Y = 3 and the target data for class Y = 4.
This is interesting, as source data for class Y = 4 were used in training, but
the domain adaptation algorithm, given no label information about the target,
has inferred a mapping that incorrectly pairs these classes. Negative transfer
has also occurred between class Y = 4 in the source domain and Y = 5 in the
target, which arises as the cost function in the domain adaptation approach only
considers a mapping with the smallest distance between the two domains.

Fig. 15. An example of negative transfer between the three- and four-storey structures.
The left panel shows the first two natural frequencies of the source domain data (•)
used in training, the middle panel shows the first two natural frequencies of the training
target data (+), and the right panel shows the inferred transfer components after
domain adaptation, where negative transfer has occurred.

In this example, it should be clear that the risk of negative transfer was high,
as the data from the source and target domains did not correspond to the same
classes in training. However, it is worth noting that negative transfer can occur
in scenarios where both the source and target training data do refer to the same
classes, and where the two datasets are more dissimilar than can be accounted for
given the assumptions and adaptation method (i.e. the type of mapping) used in
the transfer learning algorithm. For PBSHM to be applied with confidence using
transfer learning approaches, it will be important to estimate the probability of
negative transfer from an algorithm, such that the risk of negative transfer is
always a minimum, and if possible, zero.

3.3 Abstract representation framework for spaces of structures

The abstract representation mentioned previously in this chapter is a method
for describing engineering structures systematically in a way that lends itself
to comparison. This abstract representation focusses on three areas believed
to be important for avoiding negative transfer in an SHM context: geometry,
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material properties, and topology. This abstract representation is known as an
Irreducible Element (IE) model. The Irreducible Elements which give the mod-
elling approach its name describe the constituent parts of a given structure. In a
simplified example describing a wind turbine, these elements could be considered
to be the blades, the hub, the nacelle, the tower and the foundations (Figure 16).
These elements possess attributes which describe their geometry and material
properties.

Fig. 16. A simple illustrative example of how a wind turbine (a) may be concep-
tualised as a series of elements (b). These elements then form the nodes in a graph
representation of the structure (c), with the physical connections between elements
represented by the edges in said graph.

These elements are connected by joints, labelled with numerals in Figure 16.
Joints describe the physical connections between elements. Describing the phys-
ical connections between elements requires a description of which elements are
connected by a particular joint, as well as the nature of a particular connection;
for example, whether a connection is welded or bolted. Combining the joints
with the elements within a structure allows one to determine the topology of the
structure.

Boundary conditions, describing how a structure interacts with its environ-
ment, are also included in the IE model. The boundary conditions constitute an
element-joint pair (element 1 and joint 7 in Figure 16), where a special element
describes the nature of the boundary, for example, the ground, and the joint
describes the nature of the connection between the structure and the bound-
ary. Together, the element-joint pair fully describes the effect of the boundary
condition on the behaviour of the structure.

Isomorphic to the information within the IE model is the attributed graph
(AG) representation of the physical structure; that is, the representations in
panel b) and c) within Figure 16, contain the same physical structural informa-
tion. One could consider that the AG provides a more structured form of the
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data describing an IE model, and as such facilitates the storage and creation of
IE models within a database. The formal data structure of an AG also facilitates
the use of graph-matching algorithms to find similar physical structures within
said database.

In PBSHM, IE models can be used to compare two structures to determine
the overall level of similarity. If two models are sufficiently similar, then transfer
between the two structures should be possible. What ‘sufficiently similar’ means
however, is a complicated question; one way of determining this is to examine the
largest substructure common to two structures. If the largest common substruc-
ture is in fact as large as the two structures in question, then the two structures
can be said to be homogeneous. In which case, as discussed, not only should
transfer learning be possible, but in some cases may not even be required. Of
course, for the majority of comparisons between structures, this situation will
not be the case, with the largest substructure only representing only a small part
of the overall structure. In this case, transfer learning may be possible within the
substructure. For example, in Figures 17 and 18, which show the AGs for two
different beam and slab bridges, the intermediate pier is topologically identical
in both. If upon further examination, the attributes show that this pier is iden-
tical in terms of geometrical and material properties, then it would seem that
some form of information transfer should be possible between the intermediate
piers within these two bridges, making allowances for the influence from the rest
of the structure. At the very least, the label spaces would be consistent between
the two.

Fig. 17. A graph representation of a beam
and slab bridge, located near Castledaw-
son in Northern Ireland. This bridge fea-
tures a deck supported by four longitudi-
nal beams, as well as columns at the North
and South abutments.

Fig. 18. A graph representation of a
slightly different beam and slab bridge, lo-
cated near Randalstown in Northern Ire-
land. This bridge features a deck sup-
ported by five longitudinal beams, and the
cap beams sit directly on top of the foun-
dations at either abutment.
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A more complex problem would be transferring between the deck and para-
pet sections for the two bridges, since in Figure 18 there is an additional support
beam. Here the label spaces are not consistent if one were to attempt a damage
localisation problem. However, in theory, both deck sections should still exhibit
some similar behaviour, since both are plate type elements supported with lon-
gitudinal beams for support and intermediate piers and so some physics should
be common to the two decks. Therefore, there would be an expectation that
some information could be transferred from a classifier trained on one bridge to
another.

The largest common substructure found for the two bridges in fact involves
not only the intermediate pier, but also the four longitudinal beams within the
deck structure, the parapets, the deck itself and associated boundary conditions,
as well as the cap beams linking the deck to either the supports or foundations.
This situation creates a problem where there is still a label mismatch between
the substructure and the original substructure, shown in Figure 18. How to cope
with these issues and how to perform meaningful similarity comparisons within
a transfer learning context remain open research questions.

A definition of similarity for PBSHM needs to be designed with transfer
learning in mind and will likely vary depending on the SHM problem in question.
A set of criteria informed by cases where negative transfer is likely to occur
would be a useful thing to have. Currently it is hoped that by ensuring material,
geometric and topological similarity, the criteria for transfer learning yielding
improved classifier performance are met.

4 Conclusions and Future Directions

Clearly, the subject of PBSHM is in its infancy. While there have been scattered
papers on SHM in systems-of-systems or on fleet-based maintenance etc. the
formal framework presented in this chapter has only the theoretical foundations
established [3, 4, 5, 6, 7]. This situation means that the scope for ‘future work’
is very open indeed; however, to bring a little focus to the discussion, it will be
suggested here that there are three main areas in which research is needed.

The general framework is based on knowledge transfer in populations, where
the structures of the population are represented in an abstract representation
space; this suggest the three areas for development. In the first case, the ab-
stract representation of the structures requires research. There will need to be
rules for building IE models with consistency and for developing the theory of
the representation space in which the structures are embedded. Perhaps most
important is that the representation space should have a metric (or metrics),
so that structures can be compared; transfer of knowledge will be contingent
on structures being ‘close together’ in some sense, so that negative transfer is
avoided.

The second main area for research is on transfer. As discussed in the main
body of this chapter, transfer learning has only recently been considered for PB-
SHM; the problems which arise are difficult. In the worst case scenario, different
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structures will have different label spaces and current technology can not be
applied with confidence. New transfer learning algorithms are needed, perhaps
informed by physics, as a great deal is known about the dynamics of structures.

Finally, in order to transfer knowledge, one must have knowledge. Data for
diagnostics can come from sensors on the structures or from model predictions;
these data should be optimised for diagnostics across populations and this pro-
duces demands and constraints that have not been seen before in conventional
SHM. In particular, the role of physics-based models is very interesting in PB-
SHM. Because the main algorithms will come from transfer learning, it will
not be necessary that models conform perfectly to their physical counterparts
(although digital twin technology may offer prospects in terms of high-fidelity
representation); it will only be required that transfer is possible. In fact, the way
that models of structures will be embedded in populations means that they are
not distinct from real structures. PBSHM therefore offers the prospect of a final
convergence of model-based and data-based SHM.
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