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a b s t r a c t

Prior-knowledge use in neural networks, for example, knowledge of a physical system, allows network

training to be tailored to specific problems. Literature shows that prior-knowledge in neural network

training enhances predictive performance. Research to date focuses on parametric optimization rather

than structure optimization. We present a new framework to optimize the structure of a neural network

using prior-knowledge. This is achieved through optimizing the number of hidden units via a line search

and cross-validation using the empirical error to eliminate data-set/model-structure application depen-

dency for prior-knowledge guided neural networks. In addition to using the prior-knowledge in the

model training step, we propose utilizing the prior errors as part of the cross-validation performance

index to improve generalization. Results demonstrate that the proposed training framework enhances

the model’s prediction accuracy and prior-knowledge consistency for convex data sets with a unique

minimum and non-convex multi-modal data sets. The presented results yield a new understanding of

physics-guided neural networks in terms of their structural and parametric optimization.

� 2022 The Authors. Published by Elsevier B.V. This is an open access articleunder the CCBY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

Prior-knowledge is typically not exploited in machine learning

frameworks when modeling physical systems. Prior information,

such as first principle physical laws and empirically supported

relationships, could guide a learning algorithm towards a more

theory-consistent solution. Model consistency to any underlying

physical laws can improve the model’s generalization ability, espe-

cially when only a few training examples are available, which is a

common challenge when dealing with problems where data gener-

ation is very resource-intensive.

Using prior information in model training is not a new chal-

lenge in the literature. In 2017, Karpatne et al. [1] classified

theory-informed data-driven models into the following five cate-

gories: (1) choosing a suitable model design, (2) refining data

model outputs, (3) augmenting theory-based models [2], (4) hybrid

models [3,4], and (5) Navigating the search space of candidate

models. Navigating the search space of candidate models can be

influenced by prior-knowledge using four different approaches:

(1) model parameter initialization, (2) probabilistic models, (3)

theory-based regularization, and (4) constrained optimization [1].

Theory-guided parameter initialization methods such as the

matrix completion algorithm and pre-training using computa-

tional simulation data can help guide machine learning algorithms

towards generalizable and theory-consistent models [5,6]. Proba-

bilistic models in the context of theory-guided data-driven model-

ing involve including theory-guided data distributions as Bayesian

priors [7]. Theory-guided probabilistic models have shown success

in applications such as predicting subsurface aquifers connectivity

and electrical activity within the heart wall [8,9]. Theory-guided

data-driven modeling regularization methods include using and

developing new Lasso variants such as the sparse group Lasso to

impose theory-specific structures on the parameters of DS models

[10,11].

Constrained optimization methods include (1) developing con-

strained optimization methods for PDEs/non-linear transforma-

tions and (2) integrating theory-based constraints with existing

optimization techniques. In this work, for the first time in the liter-

ature, we focus on integrating theory-based constraints within

optimization methods to navigate the search space of candidate

feedforward neural network models.

Note that in the literature of theory-guided machine learning,

several terminologies are used to refer to the application-

dependent domain knowledge utilized (theory, prior, physics,

etc.). In theory-based constrained optimization, the methods

developed can be applied to any domain knowledge that can be

expressed in the form of a constraint. In this work, we choose

the term prior-knowledge-guided neural networks.

In [12], the authors construct physics-guided neural networks

with a hybrid-physics-data model that uses a physics-based mod-

el’s simulated output as an additional feature when training the
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neural network (NN). The authors introduce a method to add two

forms of physics relationships, equality and inequality constraints,

to the loss function. They use the mean square error (MSE) for the

empirical loss, a rectified linear unit (ReLU) function for the

physics-consistency loss, and elastic net regularization for model

complexity control. The model structure was set to 3 hidden layers

with 12 hidden units each. Using labeled and unlabeled data, they

demonstrate the prediction error and physics-consistency error

improvements of the physics-guided NN on a spatio-temporal

problem.

Similar to [12], the authors in [13] also add equality and

inequity physics-based constraints to the NN loss function and

use L2 regularization. The network architecture consists of two

hidden layers, with the first layer having 64 hidden units and the

second layer having 128 units. They set the L2 regularization

weight value as kR ¼ 1 and empirically optimize the physics-

based constraint loss weight kp. The authors use a 60� 20� 20

split to train, validate, and test the models. The results show

empirical error percentage improvements on noise-free and noisy

synthetic (Bohachevsky function) and real data sets.

In [6], Jia et al. use recurrent NNs (RNN) and advance the work

of [12] to estimate the spatio-temporal lake temperature. Their

first contribution is the use of theory-based simulation data to

pre-train the RNN. They also propose running a theory-based

energy balance model in parallel with the RNN. If the temporal

regression of the temperature violates the energy balance con-

straint, a penalty is added to the loss function. They perform sen-

sitivity studies on the impact of the physics-based constraint

weights by varying one weight and keeping the second weight

constant.

Wu et al. [14] demonstrated how a novel statistical covariance-

based constraint in the optimization loss function of deep convolu-

tional generative adversarial networks (DCGANs) can improve

training stability and convergence properties. They demonstrated

the performance improvement of their GANs-based physical sys-

tem emulator on the Rayleigh–Benard convection.

Liu and Wang [15] developed a multi-fidelity physics-

constrained NN (MF-PCNN) and proposed an adaptive weighting

scheme for regularization. They apply their method to PDEs from

two-dimensional heat transfer, phase transition, and dendritic

growth problems. The authors add a physics-equation-based con-

straint and initial condition (IC) and boundary condition (BC) con-

straints to the cost function. They successfully train several MF-

PCNN variants with four layers but with different hidden unit

numbers identified by conducting sensitivity studies. The authors

express that their method requires searching and sampling proce-

dures to find the optimal architecture and set it as future work.

Even though their proposed method does not use model complex-

ity control (e.g., L1 and L2 regularization), they claim that the

sensitivity studies avoid over-fitting. However, in the results, an

increase in the MSE of one of the MF-PCNN variants is attributed

to over-fitting. Their proposed adaptive weighting scheme results

in higher prediction accuracy and shorter training time than stan-

dard NNs.

In [16], the authors compute data-driven solutions to PDEs

using physics-guided neural networks (PGNN). Their method

involves training two NNs in two steps. Step one is to train a 9-

layer NN with 20 units per layer to model a data set extracted from

the initial and boundary conditions. Step two is to compute the

partial derivatives of the first NN, substitute the partial derivatives

into the PDE to define the second 9-layer NN with 20 units per

layer, and train it on collocation points. They demonstrate this

method on Burger’s equation with Dirichlet boundary conditions

in one space dimension.

The more recent work in [17] proposes a new PGNN using the

system’s variational energy as the loss function combined with

the transfer learning method. The authors argue that the proposed

loss function is easier to minimize, and hence, the proposed PGNN

performs better relative to PGNNs with residual loss functions such

as in [16,18,19]. They demonstrate the effectiveness of the pro-

posed method on six fracture mechanics problems. The neural net-

work had three hidden layers in the six fracture mechanics

problems, each consisting of 50 neurons.

In [20], the authors propose incorporating prior-knowledge in

neural network models using genetic algorithms for a metallurgy

application. The authors train and test a vanilla NN on a continuous

cooling transformation data set with seven inputs and six outputs.

They find that the resulting NN does not conform to metallurgical

engineering prior-knowledge. Accordingly, they propose a genetic-

algorithm-based multi-objective cost function constrained via

metallurgy prior-knowledge. The vanilla NN and the proposed

NN models have one hidden layer with twenty neurons. The pro-

posed model improves the mean-square error and almost com-

pletely removes the metallurgy prior-knowledge inconsistencies

studied.

Jagtapa et al. [21] introduce an optimize-able adaptive hyperpa-

rameter that changes the slope of the activation function to tune

the PGNN architecture. They show that the proposed adaptive acti-

vation function results in a faster loss function decay and a smaller

L2 regularization error. Even though the proposed method is tune-

able for any number of hidden layers, the authors choose different

numbers of hidden layers and units for each case study with no

reasoning. A more comprehensive study would include a sensitiv-

ity study on the effects of the number of hidden layers, number of

hidden units, and training data set size on the empirical perfor-

mance of the proposed method.

The work in [22] proposes a Probabilistic Physics-guided Neural

Network (PPgNN) with a novel model architecture to extend the

standard neural network approach for fatigue data analysis. Among

other methods, the proposed PPgNN utilizes a custom loss func-

tion, physics-constrained loss optimization, and a custom partially

connected neural network architecture. Their proposed PPgNN

variant has two hidden layers. Hidden layer one consists of 20 hid-

den units using the tanh activation function. Hidden layer two con-

sists of two units; unit one uses the linear activation function, and

unit two uses the exponential linear unit activation function. The

output layer has one neuron, which uses the linear activation func-

tion. The model’s final outputs are the output layer neuron and the

second hidden unit of the second hidden layer. The proposed

PPgNN is tested on fatigue data analysis data and is more consis-

tent with the domain knowledge relative to a neural network with-

out physics guidance. With further validation, the authors claim

that the proposed framework is not limited to fatigue data analysis

and can be applied to other survival data analyses via adjusting the

constraints and the network architecture according to physics

knowledge.

In [23], the authors propose novel methods to integrate seman-

tic knowledge into the learning step to improve the accuracy of

convolutional neural networks (CNNs) on image classification

tasks. The work presents a novel use of knowledge distillation, col-

lective classification, training phases, and hyperparameter cross-

validation for prior guided CNNs. They use cross-validation as a

heuristic hyperparameter tuning method to tune the penalty of

each predicate. The authors test different modeling case studies,

data set sizes, and CNN architectures. The data set size ablation

study shows that the smaller the training data set size, the more

significant the reduction of the empirical error of the proposed

methods. The work in [23] has no investigation on the random
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model weight initialization effects on the empirical error mean and

variance.

The number of hidden units dictates the NN/PGNN model’s

complexity and is commonly between 5 and 100 [24]. The number

of units should be sufficiently large to capture the data non-

linearity but not too large to avoid over-fitting and maintain the

model’s smoothness between the in-sample training data points.

Typically, the number of hidden units is chosen via application-

specific expert knowledge or empirical experimentation. The work

in [12,6,16,13,25], among several other works, either sets the num-

ber of hidden units based on expert knowledge or reports utilizing

sensitivity studies without providing a systematic framework or a

statistical analysis on the empirical and prior-consistency perfor-

mance. The authors in [16] note that the interplay between the

physics-guided NN architecture/training procedure and the com-

plexity of the modeling data is poorly understood and propose a

Bayesian approach to monitor the variance of the predictive poste-

rior distribution as possible future work.

The authors in [15] note that their method requires systematic

searching and sampling procedures to find the optimal physics-

guided NN architecture and set it as future work. The work in

[16] states that designing the correct physics-guided NN architec-

ture is an open research question and confirms observing that a

specific physics-guided NN architecture that yields accurate results

for one data set can fail for another. Therefore, there is a need for a

systematic framework along with statistical analysis.

Another gap in the PGNN literature is a lack of statistical

analysis:

� There is a lack of statistical analysis on the mean and variance of

the empirical and prior-consistency errors across different ran-

dom weight initialization of PGNN models.

� There is a lack of investigation with statistical tests on the effect

of the data set size on the mean of the empirical and prior-

consistency errors.

� There is a lack of investigation with statistical tests on the cor-

relation between the empirical and prior-consistency errors.

� There is a lack of investigation with statistical tests on the effect

of the loss weight hyperparameters on the mean of the empir-

ical and prior-consistency errors.

For more detailed literature and surveys on PGNN gaps and

methods of incorporating prior-knowledge into machine learning,

we direct the reader to [26–28]. In this work, we summarize the

literature review by highlighting the need for (1) a systematic

framework to set the number of hidden units for PGNNs, (2) statis-

tical analysis on the performance of PGNNs under varying settings,

and (3) methods to verify if and when a PGNN model can be

trusted. In this work, we aim to address the gaps discussed via

the following contributions towards prior-knowledge guided feed-

forward neural networks (PGNNs):

1. Model structure optimization via the Hidden Unit Number: A

framework to optimize the number of hidden units via a line

search and cross-validation using the empirical error to elimi-

nate data-set/model-structure application dependency for

prior-knowledge guided feedforward neural networks (model

PGNN1).

2. Model structure optimization via Prior-knowledge-guided

cross-validation: In addition to using the prior-knowledge in

the model training step, we propose utilizing the prior errors

as part of the cross-validation performance index (Eq. 3). Incor-

porating the prior-consistency error along with the empirical

error in the validation process improves generalizability (model

PGNN2).

3. Statistical study on the empirical and prior-consistency error

performance of PGNNs under the effects of random model

weight initialization, data set size, hyperparameters, and the

correlation between the empirical prior-consistency errors.

The remainder of the paper is organized as follows. The

Methodology section provides the problem formulation and meth-

ods contributions 1 and 2. The Evaluation section covers the meth-

ods used to test and benchmark the proposed methods against

reference models. The Results and Analysis Sections introduce

the benchmark testing data, demonstrate the empirical and

physics-consistency errors of the NN/PGNN models, and discuss

the results. The conclusion covers the proposed framework’s main

benefits, limitations, and future work.

2. Methodology

This work, utilizes prior-knowledge constraint losses in the cost

function of a multi-layer perceptron feedforward neural network

model. The first PGNN model, PGNN1, differs from the NN model

by incorporating the prior-based losses in the weight optimization

function. This work’s contributions are: (1) PGNN1 differs from the

literature on PGNN models by optimizing the number of hidden

units, and (2) PGNN2 incorporates the same methods in PGNN1

but additionally incorporates the prior error in the cross-

validation process.

In the following Subsections, the problem formulation and pre-

liminaries are provided in SubSection 2.1. SubSections 2.3 and 2.2

will discuss the methodologies of contributions 1 and 2, respec-

tively. Finally, SubSection 3.1 provides the model performance

testing methods.

2.1. Preliminaries

A typical NN optimization criterion typically has two loss func-

tions: an empirical loss function Le and a regularization loss func-

tion Lr (Eq. 1). To incorporate prior-knowledge, we add the prior-

knowledge-based loss function Lp to the optimization criterion as

in literature (Eq. 2) [15,13,21]. The regularization and prior-based

loss functions have the weights qr P 0 and qp P 0, respectively

(Eq. 1 and 2). Accordingly, the framework proposed leads to three

hyper-parameters: regularization loss weight (qr), prior-based loss

weights (qp), and the hidden units number (j).

LNN ¼ Le þ qrLr ð1Þ

where Le is the empirical loss, Lr is the regularization loss, and qr

is the regularization loss weight.

LPGNN ¼ Le þ qrLr þ qpLp; ð2Þ

where Lp is the prior loss and qp is the prior-based loss weight.

The cost function is non-linear and multi-modal (Eq. 2). There-

fore, the network’s initial randomweights determine the cost func-

tion solution (a local minimum), and a training algorithm does not

guarantee to find the global minimum. Furthermore, if the training

data set is randomly sampled from an available data set, then the

training data set might adversely be biased (i.e., not a representa-

tive of the physics phenomenon of study). Therefore, data models

must be trained and validated with reliable empirical evidence. It

is also necessary to ensure that the performance differences

between any proposed methods and reference models are due to

the proposed methods and not effects such as biased data sets

and random weight initialization. Accordingly, to validate the

models, repeated k-fold cross-validation (CV) is applied for the fol-

lowing reasons: (1) make efficient use of the data to do training
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and validation, (2) reduce the chance of bias and variance in the

validation performance index, and (3) address the local-

minimum problem. The literature’s CV performance index for

vanilla NNs and PGNN models has been the empirical error. The

number of CV folds was chosen to be k ¼ 5 to reduce the variance

in the validation performance index. Finally, for every set of m val-

ues (number of hidden units) and random initial weights, the 5-

fold CV is repeated 3 times using re-divided data subsets to mini-

mize the occurrence of misleading results due to bias-dominated

data subsets.

2.2. Model structure optimization via the hidden unit number

In contribution (1), we train the PGNN model across a linearly

spaced vector of 8 values within ½30;100� to estimate the best

number of hidden unit values m� value based on the empirical

error. A second search is then performed with a finer vector of

10 linearly spaced points around the best-estimated value

m� � 10. The model (PGNN1) with the best cross-validation empir-

ical error is chosen. Optimizing the number of hidden units via a

line search eliminates the data-set/model-structure application

dependency for prior-knowledge-guided feedforward neural

networks.

2.3. Model structure optimization via prior-knowledge-guided cross-

validation

In contribution (2), we propose utilizing the prior error as part

of the cross-validation performance index to optimize the number

of hidden units (PGNN2, Eq. 3). Note that the prior-based errors Ep

are application dependent and would therefore have different

means and standard deviations per application. If the empirical

error (Ee) and the prior-based errors differ by orders of magnitude,

then the cross-validation error function can be dominated by

either errors. Accordingly, the empirical and prior errors in Eq. 3

have been re-scaled via min–max normalization.

E ¼ Ee �minðEeÞ
maxðEeÞ �minðEeÞ

þ Ep �minðEpÞ
maxðEpÞ �minðEpÞ

: ð3Þ

3. Evaluation

The half sum squared error (HSSE) metric was chosen for the

empirical loss function in Eq. 1 and 2. The regularization loss func-

tion was selected as L2 regularization to penalize large weights in

the model and reduce data over-fitting.

Le ¼
1

2

X

n

i¼1

ŷ
ðiÞ � yðiÞ

� �2

; ð4Þ

where n is the number of data points and ŷi and yi are the prediction

and target for the k
th
input vector, respectively.

Lr ¼
1

2
wTw; ð5Þ

where w is a vector of the model weights.

We chose to use the boundary condition constraint (scenario 1)

in Eq. 6 as the prior loss function to demonstrate the proposed

methods in the main result in SubSection 4.1. We also investigate

using the initial condition constraint (Scenario 2) and a horizontal

symmetry constraint (Scenario 3) as prior loss functions (Eq. 7

and 8) to assess the impact of using different priors on the proposed

methods (SubSection 4.2). The prior losses are applied separately to

the reference and proposed models, where scenarios 1 to 3 are the

boundary, initial, and symmetry prior, respectively. To quantify the

prior-knowledge violations, we utilize the HSSE metric (Eq. 6, 7 8).

Lp ¼ 1

2

X

p

i¼1

ŷ
ðiÞ

X
ðiÞ
b

� �

� yðiÞ X
ðiÞ
b

� �� �2

; ð6Þ

where p is the number of samples in the boundary dataset.

Lp ¼ 1

2

X

1

i¼1

ðŷðiÞð0;0Þ � yðiÞð0;0ÞÞ2: ð7Þ

Lp ¼ 1

2

X

n

i¼1

ðŷðiÞð�x1; x2Þ � yðiÞðx1; x2ÞÞ
2
: ð8Þ

The L2 regularization loss weight (qr) and the prior loss weight

(qp) dictate the importance of model smoothness (complexity) and

prior-consistency, respectively. Since qr and qp are scalars, it is

possible to train NN/PGNNs with different combinations of q val-

ues and test the NN/PGNNs on a validation data set to identify

the best model (empirical error wise). A typical NN example of

complexity control is a one-grid search to find the optimal regular-

ization weight (qr), which results in the best PI. Similarly, a two-

grid search is used to find the optimal function width and regular-

ization weight of a Gaussian radial basis function model. State-of-

the-art methods involve online adaptive methods to update the

weights (qr and qp) during training. Optimizing the weights is out-

side the scope of this work; therefore, we chose to set them as con-

stants for the main result and perform a hyperparameter

sensitivity study in SubSections 4.1 and 4.6, respectively.

The scaled conjugate gradient (SCG) back-propagation method

was used to minimize the loss function (Eq. 1 and 2) and find the

optimal weights. Note that each input feature from each case study

was transformed separately by z-score standardization (i.e., zero

mean and unit standard deviation). The optimization algorithm

has two stopping criteria; the precision of the objective function

and the weights at the solution. The two criteria were set to

10�4. The precision in the line search parameter space was set to

Netlab’s default value (10�3) [29]. The optimization algorithm

was allowed a maximum of 1000 iterations to find the solution.

The root mean square error (RMSE) metric was chosen for the

empirical and prior-based CV error functions (Eq. (9)–(12)). Note

that the summation stop values in Eq. 9, 10, and 12 are divided

by k to take into account the CV folds.

Ee ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn=k

i¼1ðŷ
ðiÞ � yðiÞÞ

2

n=k

v

u

u

t

: ð9Þ

Ep ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pp=k

i¼1 ŷ
ðiÞðXðiÞ

b Þ � yðiÞðXðiÞ
b Þ

� �2

p=k

v

u

u

t

: ð10Þ

Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ŷð0;0Þ � yð0;0Þð Þ2
q

: ð11Þ

Ep ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn=k

i¼1 ŷ
ðiÞ �x

ðiÞ
1 ; x

ðiÞ
2

� �

� yðiÞ x
ðiÞ
1 ; x

ðiÞ
2

� �� �2

n=k

v

u

u

t

: ð12Þ

The reference and proposed models consist of two input neu-

rons (d ¼ 2), a hidden layer with a non-linear ReLu activation func-

tion, and an output layer with one neuron (c ¼ 1) and a linear

activation function. Below is a list of the differences between the

reference and proposed models.

Reference Models:

� NN�100: A vanilla NN with 100 hidden units (no prior usage in

the loss or validation performance index).
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� PGNN�30: A PGNN with 30 hidden units (no prior usage in the

validation performance index).

� PGNN�65: A PGNN with 65 hidden units (no prior usage in the

validation performance index).

� PGNN�100: A PGNN with 100 hidden units (no prior usage in

the validation performance index).

Proposed Models:

� PGNN1: A PGNN network where the number of hidden units is

optimized via a line search as detailed in SubSection 2.2 (no

prior usage in the validation function).

� PGNN2: A PGNN network where the number of hidden units is

optimized via a line search (SubSection 2.2) and the prior error

is utilized in the validation performance index (SubSection 2.3).

3.1. Model testing

Following training and validation, an out-of-sample (OOS)

empirical data set with 1000 data points was used to test the mod-

els RMSE empirical performance (Eq. 9 with k ¼ 1). The OOS empir-

ical data set was also utilized to test the symmetry prior-

consistency RMSE (Eq. 12 with k ¼ 1). Similarly, an out-of-

sample (OOS) boundary data set with 4000 data points was used

to test the models RMSE empirical performance ((Eq. 10 with

k ¼ 1). The initial prior-consistency RMSE performance was tested

via Eq. 11.

The OOS data sets were reserved and only used to test the mod-

els after they were trained and validated. Note that each PGNN/NN

model was trained and validated 24 times using randomly initial-

ized weights, and the averaged results are provided in

SubSection 4.

4. Results and analysis

4.1. Benchmark function testing

To test the proposed methods’ empirical and prior-consistency

error performance, we test 14 benchmark case studies varying

from convex functions with a unique minimum to non-convex

multi-modal functions (Table A). Further, we analyze why the pro-

posed methods improve the empirical and prior-consistency error

performance for some functions but not others and what dictates

the level of improvement. For each modeling case study, a bound-

ary data set ½Xb; yðXbÞ� of p ¼ 4000 uniformly distributed data

points was used for the prior-knowledge as discussed in SubSec-

tion 2.1. Tables 1 and 2 show the empirical and prior-consistency

RMSE mean and standard deviation using a data set of 1000 sam-

ples.The regularization weight for the NN model was set to 1e� 3.

The regularization and prior weights for the PGNNmodels were set

to 1e� 5 and 1e� 6. The median and ½0:25;0:75� quantiles of the

optimal number of hidden units selected by the proposed methods

are shown in Table 7.

The percentage change in the empirical and prior-consistency

RMSEs between the proposed methods and the reference models

are provided in Tables 3 and 4. The cells highlighted in Tables 3

and 4 indicate a statistically significant percentage change

(P< 0:05) based on an independent two-sample multivariate

Hotelling’s test (Appendix B Tables B.11 and B.12). Similarly, the

percentage change in the variance of the empirical and prior-

consistency RMSEs between the proposed methods and the refer-

ence models is provided in Tables 5 and 6. The cells highlighted

in Tables 5 and 6 indicate a statistically significant percentage

change (P< 0:05) based on a two-sample F-test for equal variance

(Appendix B Tables B.13, B.14, B.15, and B.16).

The first result to note is the lack of any statistically significant

difference in the empirical and prior-consistency error means and

variances between the vanilla NN and PGNN�100 for the 14

benchmark functions (Tables 3, 5, and 6). The vanilla NN and

PGNN�100 performance show that given an identical network

architecture, a PGNN model may not out-perform a vanilla NN if

the loss function weight hyperparameters are not tuned. There is

also no statistically significant difference between PGNN1 and

PGNN2 empirical and prior-consistency mean errors except for

the Ackley function (Table 4). However, the effect of the different

number of hidden units between PGNN1 and PGNN2 is seen in

the performance improvements of PGNN1 and PGNN2 relative to

the reference models.

By optimizing the network architecture, PGNN1 outperformed

(empirical and prior-consistency error-mean-wise) the reference

NN and PGNN-100 models for 3 and 6 functions, respectively

(Tables 3 and 4). PGNN1 reduced the empirical error variance rela-

tive to the reference NN and PGNN-100 for 6 and 3 functions,

respectively (Table 5). PGNN1 also reduced the prior-consistency

error variance relative to the reference NN and PGNN-100 for 4

and 3 functions, respectively (Table 5).

For the McCormick function, PGNN1 degraded the percentage

change in the empirical and prior-consistency errors variance rela-

tive to NN�100 and PGNN�100. The performance degradation in

PGNN1 with the McCormick function can be associated with the

hidden unit results in Table 7 since PGNN1 had the largest quantile

range ½0:25;0:75� of 39 hidden units. A larger hidden unit quantile

range is likely to correlate with the variance in the empirical and

prior-consistency errors positively. The reason for PGNN1’s perfor-

mance with the McCormick function is not clear, but it is likely to

Table 1

Empirical RMSE mean and standard deviation range across 14 benchmark functions using a training data set of 1000 samples, a regularization weight of 1e� 3 for the NN model,

and a regularization and a prior weights of 1e� 5 and 1e� 6 for PGNN models, respectively.

Benchmark Function NN�100 PGNN�100 PGNN1 PGNN2

McCormick 0:11� 0:01 0:11� 0:02 0:11� 0:04 0:10� 0:01

Griewank 0:14� 0:03 0:15� 0:03 0:13� 0:01 0:13� 0:01

Ackley 0:59� 0:00 0:59� 0:01 0:58� 0:01 0:58� 0:01

Branin 0:88� 0:13 0:88� 0:16 0:84� 0:14 0:88� 0:14

Styblinski-Tang 0:90� 0:24 0:92� 0:22 0:93� 0:22 0:93� 0:24

Booth 1:36� 0:12 1:41� 0:41 1:30� 0:11 1:31� 0:12

Three-hump Camel 2:13� 0:63 2:01� 0:43 1:82� 0:30 1:87� 0:31

Bukin N.6 2:17� 0:12 2:21� 0:17 2:16� 0:14 2:16� 0:14

Himmelblau’s 3:57� 1:74 3:72� 1:71 2:95� 0:38 3:18� 0:71

Zakharov 15:11� 5:06 14:76� 3:07 13:11� 2:48 13:90� 3:00

Bohachevsky 21:11� 3:67 21:74� 4:08 19:06� 2:96 19:21� 2:85

Rosenbrock 620:93� 279:05 644:92� 274:50 487:82� 136:64 538:26� 215:55

Beale 1252:28� 313:79 1250:56� 359:89 1146:71� 286:44 1086:34� 252:09

Goldstein-Price 19110:69� 6111:54 18938:97� 5574:39 15712:85� 3940:58 15916:60� 3574:84
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do with the data set size relative to the complexity of the function

and the untuned hyperparameters.

PGNN2 outperformed (empirical and prior-consistency error-

wise) the reference NN and PGNN-100 models for 6 and 8 func-

tions, respectively (Tables 3 and 4). PGNN2 reduced the empirical

error variance relative to the reference NN and PGNN-100 for 5

and 3 functions, respectively (Table 5). PGNN2 also reduced the

prior-consistency error variance relative to the reference NN and

PGNN-100 for 5 and 3 functions, respectively (Table 5).

The discrepancy in the error improvements between PGNN1

and PGNN2 is due to PGNN2 validating the prior-consistency of

the model in addition to its empirical generalizability. In Table 7,

PGNN2 has resulted in a smaller, larger, and equal number of hid-

den units median for 7;5, and 2 functions. We also note that

PGNN2 has a larger hidden unit quantile range ½0:25;0:75� than
PGNN1 for 12 out of the 14 benchmark functions. By incorporating

the prior-consistency error in the validation performance index,

PGNN2 re-enforces prior-consistency. PGNN2 outperforms (empir-

ical/prior error mean and variance) PGNN1 relative to the reference

models by selecting a suitable number of hidden units to avoid

under-fitting or over-fitting depending on the training/prior data

landscape versus the data set size.

The discrepancy in the error improvements of the proposed

methods between the benchmark functions is likely to be related

to (1) discrepancy in the value of the prior-knowledge for each

benchmark function, (2) training data set size, (3) prior data set

size. The training data set size effects are examined in SubSec-

tion 4.2. The prior data set size effects are not examined and are

left for future work.

A possible explanation for the discrepancy in the error improve-

ments is that the prior-knowledge has a different value for each

benchmark function depending on the training/prior data land-

scape. For example, the boundary prior is likely to be less valuable

if, for a given 3-dimensional function, the target values across a

line on the 2-dimensional landscape are highly non-linear and

non-monotonic. We propose a simple measure of boundary/train-

ing mean output ratio to give insight into the value of the boundary

prior. The prior output mean, training output mean, and bound-

ary/training output mean ratio for each benchmark function are

shown in Table 8). Using the proposed measure, we measure

Table 2

Boundary prior-consistency RMSE mean and standard deviation across 14 benchmark functions using a training data set of 1000 samples, a regularization weight of 1e� 3 for the

NN model, and a regularization and a prior weights of 1e� 5 and 1e� 6 for the PGNN models, respectively.

Benchmark Function NN�100 PGNN�100 PGNN1 PGNN2

McCormick 0:21� 0:03 0:23� 0:04 0:22� 0:09 0:20� 0:02

Griewank 0:31� 0:05 0:32� 0:05 0:28� 0:03 0:27� 0:04

Ackley 1:01� 0:02 1:00� 0:02 0:99� 0:02 0:97� 0:02

Branin 2:50� 0:47 2:50� 0:51 2:33� 0:54 2:31� 0:48

Styblinski-Tang 2:91� 0:75 2:85� 0:81 2:99� 0:83 2:78� 0:74

Booth 2:24� 0:31 2:35� 0:25 2:19� 0:21 2:18� 0:19

Three-hump Camel 12:16� 3:48 11:08� 2:72 10:34� 1:78 10:19� 1:80

Bukin N.6 2:94� 0:21 2:99� 0:27 2:90� 0:19 2:90� 0:23

Himmelblau’s 9:40� 2:59 9:68� 2:38 8:17� 1:05 8:41� 1:32

Zakharov 42:21� 15:65 42:04� 13:16 35:87� 6:48 36:36� 7:83

Bohachevsky 40:42� 8:17 40:57� 7:29 34:73� 7:50 33:73� 7:91

Rosenbrock 1992:64� 548:91 2056:07� 600:60 1869:55� 403:32 1921:96� 451:53

Beale 4262:21� 831:87 4339:32� 1025:90 4020:72� 851:43 3843:76� 761:80

Goldstein-Price 66484:35� 16126:71 67140:18� 13743:65 59491:66� 11529:53 60214:83� 10469:91

Table 3

Percentage change in the empirical and prior-consistency RMSEs for the 14 benchmark functions comparing the proposed methods to the NN reference model using 24 random

weight initializations per model variant and a training data set of 1000 samples. The regularization weight for the NN model was set to 1e� 3 for the NN model. The

regularization and prior weights for the PGNN models were set to 1e� 5 and 1e� 6, respectively. Shading indicates a statistically significant difference between the values

(critical P value 0.05).
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Spearman’s correlation and the statistical significance between the

empirical and prior-consistency RMSE percentage change and the

boundary/training mean output ratio (Table 9). From Table 9, the

boundary/training mean output ratio increases, the percentage

change between the NN and the proposed methods (PGNN1 and

PGNN2) decreases with a strong negative correlation (q < �0:60).

Similarly, as the boundary/training mean output ratio increases,

the percentage change between the PGNN�100 and the proposed

methods decreases with a moderate negative correlation

(q < �0:40). The negative correlation indicates that the prior is

more valuable (empirical and prior-consistency error-wise) when

the prior target and training data-target means differ more. This

result does not rule out the influence of other factors in the impact

of PGNN1 and PGNN2 on the empirical and prior-consistency error

performance relative to the reference models.

This study has shown that optimizing the network architecture

(PGNN1) statistically significantly improves the empirical and

prior-consistency RMSE means relative to the reference models

but can result in a larger empirical and prior-consistency variance

across randomly initialized model weights. Using the prior-

knowledge and the empirical error in the validation process,

PGNN2, results in a more informed performance index for model

candidate selection and statistically significantly improves the

empirical and prior-consistency RMSE mean and variance relative

to the reference models. PGNN2 statistically significantly improves

the empirical and prior-consistency RMSE mean and variance for

more benchmark functions than PGNN1 relative to the reference

models. Finally, The results invite further research on (1) the rela-

tionship between the empirical and prior data in the context of

physics guided loss and validation PI functions, (2) training data

Table 4

Percentage change in the empirical and prior-consistency RMSEs for the 14 benchmark functions comparing the proposed methods to thePGNN reference models using 24

random weight initializations per model variant and a training data set of 1000 samples. The regularization weight for the NN model was set to 1e� 3. The regularization and

prior weights for the PGNN models were set to 1e� 5 and 1e� 6, respectively. Shading indicates a statistically significant difference between the values (critical P value 0.05).

Table 5

Percentage change in the variance of the empirical RMSE across the model variants for the 14 benchmark functions using 24 randomweight initializations per model variant and a

training data set of 1000 samples. The regularization weight for the NN model was set to 1e� 3. The regularization and prior weights for the PGNN models were set to 1e� 5 and

1e� 6 for the PGNN models, respectively. Shading indicates a statistically significant difference between the values (critical P value 0.05).
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landscape versus prior-knowledge value, and (3) adaptive-

weighting of the prior-knowledge in PGNNs.

4.2. Data set size multivariate sensitivity study

This study aims to investigate if the data set size affects the pro-

posed methods’ multivariate empirical and prior-consistency

RMSE performance. To the best of the authors’ knowledge, this is

the first study to quantitatively examine the effect of the data set

size on the multivariate empirical and prior-consistency error vari-

ance for PGNNs. Five training data sets were created for the Boha-

chevsky and the Ackley functions; sample sizes:

200;600;1000;2000, and 4000. The samples in each data set are

uniformly distributed and bounded by the input ranges in

Table A.10. We set a regularization weight of 1e� 3 for the NN

model and regularization and a prior weight of 1e� 5 and 1e� 6

for the PGNN models. Three prior case studies were tested per

benchmark function: (1) boundary prior, (2) initial prior, and (3)

symmetry prior. The empirical and prior-consistency RMSEs are

presented in Appendix C Tables C.17 and C.18.

We perform a one-way Multivariate Analysis of Variance (MAN-

OVA) for comparing the multivariate means of the empirical and

prior-consistency errors, grouped by data set size. The dimension

result estimates the dimension of the space containing the group

Table 6

Percentage change in the variance of the boundary prior-consistency RMSE across the model variants for the 14 benchmark functions using 24 random weight initializations per

model variant and a training data set of 1000 samples. The regularization weight for the NN model was set to 1e� 3. The regularization and prior weights for the PGNN models

were set to 1e� 5 and 1e� 6, respectively. Shading indicates a statistically significant difference between the values (critical P value 0.05).

Table 7

The median and ½0:25;0:75� qauntiles of the optimal number of hidden units selected by the proposed methods across the 14 benchmark functions using 24 random weight

initializations per model variant and a training data set of 1000 samples. The regularization weight for the NN model was set to 1e� 3. The regularization and prior weights for

the PGNN models were set to 1e� 5 and 1e� 6, respectively.

Benchmark Function PGNN1 Median (quantile) PGNN2 Median (quantile)

McCormick 80:00 ð59:00� 98:00Þ 83:00 ð60:00� 100:00Þ
Griewank 56:50 ð42:00� 70:00Þ 51:50 ð38:50� 66:50Þ
Ackley 77:00 ð62:00� 91:50Þ 64:00 ð46:00� 80:00Þ
Branin 96:00 ð86:00� 104:00Þ 84:50 ð73:00� 98:50Þ
Styblinski-Tang 95:50 ð86:50� 106:00Þ 97:00 ð89:00� 107:00Þ
Booth 102:00 ð99:00� 107:00Þ 105:00 ð101:00� 110:00Þ
Three-hump Camel 98:50 ð86:00� 103:00Þ 90:00 ð81:50� 100:00Þ
Bukin N.6 100:00 ð90:50� 105:00Þ 100:50 ð93:00� 103:00Þ
Himmelblau’s 103:00 ð94:50� 110:00Þ 101:00 ð92:00� 107:00Þ
Zakharov 103:00 ð94:00� 108:50Þ 95:00 ð83:00� 101:50Þ
Bohachevsky 97:00 ð90:00� 100:50Þ 97:00 ð88:00� 105:00Þ
Rosenbrock 92:00 ð90:00� 96:00Þ 90:50 ð87:00� 98:00Þ
Beale 90:00 ð78:50� 100:00Þ 90:00 ð77:00� 100:00Þ
Goldstein-Price 92:50 ð69:00� 99:00Þ 94:00 ð70:00� 100:50Þ

Table 8

The mean of the boundary data and the training data of the 14 benchmark functions.

Benchmark Boundary Training Boundary/training

Function output mean output mean output mean ratio

McCormick 13:79 7:63 1:81

Griewank 0:94 1:00 0:94

Ackley 12:05 9:68 1:24

Branin 88:15 54:93 1:60

Styblinski-Tang 108:12 �7:59 �14:24

Booth 747:39 389:24 1:92

Three-hump Camel 1139:11 255:57 4:46

Bukin N.6 149:14 121:38 1:23

Himmelblau’s 357:00 137:34 2:60

Zakharov 8221:47 3695:84 2:22

Bohachevsky 199945:39 9940:28 2:01

Rosenbrock 316950:15 125540:62 2:52

Beale 41572:18 8614:62 4:83

Goldstein-Price 197803:51 50959:70 3:88
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means. The P values test whether the means lie in the space of

dimensions 0;1, or 2 (critical P value 0:05). The null hypothesis is

that the multivariate means of all data set sizes are equal, and

any difference observed in the multivariate means is random.

From Table C.19, PGNN1 and PGNN2 MANOVA results for the

Bohachevsky case study show a 1-dimensional statistically signif-

icant difference (P < 0:05) in the multivariate means for the three

prior scenarios. However, the multivariate means may lie on the

same line. From Table C.20, PGNN1 and PGNN2 MANOVA results

for the Ackley case study show a 2-dimensional statistically signif-

icant difference (P < 0:05) in the multivariate means for the three

prior scenarios. The multivariate means may lie on the same plane

in 2-dimensional space but not on the same line.

Qualitatively, the canonical analysis of the Bohachevsky case for

PGNN1 in Fig. C.1a, C.2a, and C.3a shows that: (a) data set size 200

is separate from and does not overlap the other data set sizes, (b)

data set size 600;1000, and 2000 are overlapping, but with distinct

centers, (c) data set sizes 2000 and 4000 are not separable, (d) the

first canonical variable approximately separates data set sizes

200;600;1000, and 2000, and (e) the second canonical variable,

does not show a clear separation between the data set sizes. The

canonical analysis of the Bohachevsky case for PGNN2 in

Fig. C.4a, C.5a, and C.6a approximately has the same results as

PGNN1.

Quantitatively, the Mahalanobis distance matrix of the Boha-

chevsky case for PGNN1 and PGNN2 in Fig. C.1b, C.2b, C.3b, C.4b,

C.5b, and C.6b confirms the canonical analysis findings and demon-

strates that the distance between the 2000 and 4000 is negligible

relative to the distances between other data set sizes. To assess if

the univariate distance between data set sizes is statistically signif-

icant, we perform a one-way analysis of variance (ANOVA) and a

multiple comparison test in SubSection D.

Qualitatively, the canonical analysis of the Ackley case for

PGNN1 in Fig. C.7a, C.8a, and C.9a shows that: (a) all data set sizes

overlap with one or more other data set sizes, but each has a dis-

tinct center, (d) the first canonical variable approximately sepa-

rates the data set sizes into three groups (1) 200, (2) 600 and

1000, and (3) 2000 and 4000, and (e) the second canonical variable

does not show a clear separation between the data set sizes. The

canonical analysis of the Ackley case for PGNN2 in Fig. C.10a,

C.11a, and C.12 approximately has the same results as the Canon-

ical analysis for PGNN1.

Quantitatively, the Mahalanobis distance matrix of the Ackley

case for PGNN1 and PGNN2 in Fig. C.7(b), C.8(b), C.9(b), C.10(b),

C.11(b), and C.12(b) confirms the canonical analysis findings and

demonstrates that the data set sizes can be separated into three

groups (1) 200, (2) 600 and 1000, and (3) 2000 and 4000. Note that

the distance between the 2000 and 4000 data set sizes is smaller

than the distance between the 600 and 1000 data set sizes. To

assess if the univariate distance between data set sizes is statisti-

cally significant, we perform a one-way ANOVA and a multiple

comparison test in SubSection D.

The MANOVA study shows a 1-dimensional statistically signifi-

cant difference (P < 0:05) in the multivariate empirical and prior-

consistency means for the three prior scenarios in the Bohachevsky

case study. However, the Ackley case study has a 2-dimensional

statistically significant difference (P < 0:05) in the multivariate

means. The change in the dimensional difference of the multivari-

ate means between the Bohachevsky and Ackley functions is likely

due to (1) the functions’ complexity and (2) the value of the prior

per function.

A prior is likely to significantly impact the empirical and prior-

consistency errors as the function complexity increases with a

fixed data set size. The value of a prior in a given case study

depends on (1) the training data set size and (2) the correlation

between the empirical and the prior-consistency errors. If the data

set size is small relative to the function complexity, then a prior is

likely to be more useful in training and validating PGNNs, and vice

versa. Similarly, if there is a strong correlation between the empir-

ical and the prior-consistency errors, then a prior is likely to be

more useful in training and validating PGNNs. In SubSection 4.4,

we report and analyze the correlation between the empirical and

the prior-consistency errors for the Bohachevsky and the Ackley

functions.

For the Bohachevsky and Ackley functions, the canonical analy-

sis and Mahalanobis distance matrix for the proposed methods

with all three priors separated the 200 data set size results from

the other data sets for PGNN1 and PGNN2. However, the 2000

and 4000 data set sizes were not separable for both functions.

The separation of the 200 data set size and lack of separation

between the 2000 and 4000 data set sizes are in line with previous

studies and show that as the data set size increases, the impact on

the empirical and prior-consistency errors reduces.

The canonical analysis and Mahalanobis distance matrix for the

proposed methods with all three priors approximately separated

the multivariate errors of the 600 and 1000 data set sizes for the

Bohachevsky, but not the Ackley function. A possible explanation

for the difference in multivariate error variance between the Boha-

chevsky and Ackley functions for the 600 and 1000 sample sizes is

that the Ackley function is more complex than the Bohachevsky

function. Since the Ackley function is more complex, smaller

changes in the data set size are likely to impact the multivariate

error performance less.

We conclude that the data set size can result in a 1-dimensional

or 2-dimensional statistically significant difference (P < 0:05) in

the multivariate empirical and prior-consistency means for convex,

and non-convex modeling problems up to a given data set size. The

functions’ complexity, the prior value, and the correlation between

the empirical and the prior-consistency errors dictate the magni-

tude of the multivariate difference between data set sizes.

4.3. Data set size univariate sensitivity study

This study examines if and how the data set size and the mod-

eling problem complexity affect the proposed methods’ effect on

the univariate empirical and prior-consistency RMSE performance.

We perform an ANOVA test (omitted but available upon request)

followed by a multiple comparison test using Tukey’s honestly sig-

Table 9

Spearman’s rho correlation and P value between the percentage change in RMSEs and the boundary/training mean output ratio across the 14 benchmark functions using a

training data set of 1000 samples.The model hyperparameters for this test include a regularization weight of 1e� 3 for the NN model, and a regularization and a prior weights of

1e� 5 and 1e� 6 for the PGNN models, respectively. P values are shaded to indicate a statistically significant correlation (critical P value 0:05).
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nificant difference procedure to determine which data set sizes sta-

tistically differ (P> 0:05, Table D.21). The ANOVA and multiple

comparison tests are performed on the Bohachevsky, and the Ack-

ley function results in SubSection 4.2.

For the Bohachevsky case study, the proposed methods (PGNN1

and PGNN2) have a statistically significant impact on the empirical

RMSE mean for the three prior scenarios up to a data set size of 600

samples. The prior-consistency error means for the initial and sym-

metry priors are statistically significantly different up to a data set

size of 600 samples. The boundary prior-consistency error mean is

statistically significantly different up to a data set size of 1000

samples.

For the Ackley case study, the proposed methods (PGNN1 and

PGNN2) have a statistically significant impact on the empirical

RMSE means for all the prior scenarios up to a data set size of

4000 samples. The proposed methods (PGNN1 and PGNN2) also

statistically significantly impact the prior-consistency RMSEmeans

for the initial prior scenario up to a data set size of 4000 samples.

For the boundary and symmetry prior scenarios, the proposed

methods have a statistically significant impact on the prior-

consistency RMSE means for data set sizes up to 2000 samples

(Table D.21). Now that we have confirmed that the proposed meth-

ods’ have a statistically significant impact on the empirical and

prior-consistency RMSEs for some data set sizes, we will assess if

there is a correlation between the data set size and the

empirical/prior-consistency RMSEs.

The ANOVA study and multiple comparison test results align

with previous studies; as the data set size increases, PGNN models

are less likely to impact the empirical and prior-consistency errors.

The proposed methods (PGNN1 and PGNN2) have a statistically sig-

nificant impact on the empirical RMSE mean for the three prior

scenarios up to a data set size of 600 samples for the Bohachevsky

function and up to 4000 samples for the Ackley function. Similarly,

the prior-consistency error means for the Bohachevsky function do

not statistically differ for data set sizes larger than 600 for the ini-

tial and symmetry priors and 1000 samples for the boundary prior.

However, for the Ackley function, the prior-consistency error

means do not statistically differ for data set sizes larger than

4000 for the initial prior and 2000 for the boundary and symmetry

priors. The Bohachevsky function is convex with a unique mini-

mum and therefore requires a smaller training data set size relative

to the Ackley function, which is non-convex and multi-modal. The

difference in complexity between the two functions explains why

the empirical and prior-consistency error variance saturates at a

smaller data set size for the Bohachevsky function.

For data set sizes 1000 and larger, PGNN1 for the Bohachevsky

function achieves the same empirical error mean across all the

three prior scenarios, indicating that with the proposed frame-

work, the number of hidden units set by PGNN1 dictates the perfor-

mance, instead of the prior type/value. PGNN1 empirical

performance with the Bohachevsky function for data set sizes

1000 and larger is also likely because of the use of a constant prior

weight instead of a tuned/adaptive weight in the loss function (Eq.

2).

Note that the initial prior is less beneficial than the boundary

and symmetry priors for the Bohachevsky function since the Boha-

chevsky function is convex. Hence, there is no statistically signifi-

cant impact on the empirical and prior-consistency RMSE means

for data sets larger than 600 samples.

We conclude this section by noting that the proposed methods

(PGNN1 and PGNN2) affect the empirical and prior-consistency

RMSEs depending on the modeling problem complexity and data

set size. As the modeling problem complexity decreases and the

data set size increases, the proposed methods are less likely to

have a statistically significant impact (P> 0:05) on the empirical

and prior-consistency RMSE.

4.4. Data set size and performance correlation study

The objective of this study is to determine the strength and

direction of correlation between the data set size and the empirical

and prior-consistency errors. We use Superman’s rank correlation

to measure the strength and direction of monotonic association

between the data set size and the empirical RMSE in the results

in SubSection 4.2. In Table E.22, we see a strong (q > 0:60) to very

strong (q > 0:80) statistically significant (P< 0:05) negative corre-

lation between the empirical RMSE and the data set size for the

three prior scenarios of the Bohachevsky and Ackley case studies.

Similarly, we use Superman’s rank correlation to measure the

strength and direction of monotonic association between the data

set size and the prior-consistency RMSE. From Table E.23, we see a

very strong (q > 0:80) statistically significant (P< 0:05) negative

correlation between the boundary and symmetry prior RMSE,

and the data set size for the three prior scenarios of the Boha-

chevsky and Ackley case studies. For the initial prior, there is a

weak (q > 0:30) statistically significant (P< 0:05) negative correla-

tion for the Bohachevsky case study and a strong (q > 0:60) statis-

tically significant (P< 0:05) negative correlation for the Ackley case

study.

The statistically significant (P< 0:05) negative correlation

between the data set size and the empirical and prior-

consistency RMSE is in line with previous studies. The weaker cor-

relation between the initial prior-consistency error and data set

size for the Bohachevsky function further supports the results

obtained in SubSection 4.3, which show that the initial prior is less

beneficial than the boundary and symmetry priors for the Boha-

chevsky function since the function is convex.

4.5. Empirical and prior-consistency error correlation study

This study aims to determine the strength and direction of cor-

relation between the empirical and prior-consistency errors across

the data set sizes examined in this work. A prior may not have

value or correlate to the empirical error where a sufficiently repre-

sentative training data set is available. Where the prior is valuable,

the relationship between the empirical and prior-consistency

errors can be a positive linear or monotonic correlation. The empir-

ical and prior-consistency errors may not be strongly correlated if

the prior is not significantly informative relative to the training

data (e.g., the initial prior scenario with the Bohachevsky function).

We use Superman’s rank correlation to measure the strength and

direction of monotonic association between the empirical RMSE

and the prior-consistency RMSEs from the data set size sensitivity

study results in SubSection 4.2. Table F.24 shows the correlation

and P value for the three prior case studies in the Bohachevsky

and the Ackley functions.

In Table F.24, for the Bohachevsky function, the reference and

proposed models have a very strong (q > 0:8) statistically signifi-

cant (P< 0:05) positive correlation between the empirical RMSE

and the prior-consistency RMSE for the boundary and symmetry

prior scenarios. For the initial prior scenario with the Bohachevsky

function, the proposed methods have a statistically significant

(P< 0:05) weak (½0:20;0:39�) to moderate (½0:40;0:59�) positive cor-
relation between the empirical RMSE and the prior-consistency

RMSE. For the initial prior scenario with the Bohachevsky function,

the reference models NN�100, PGNN�65, and PGNN�100 have a

statistically significant (P< 0:05) weak (½0:20;0:39�) positive corre-

lation between the empirical RMSE and the initial prior-

consistency RMSE. The reference model PGNN�30 has no statisti-

cally significant (P< 0:05) correlation between the empirical RMSE

and the initial prior-consistency RMSE.

In Table F.24, for the Ackley function, the reference and pro-

posed models have a very strong (q > 0:8) statistically significant
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(P< 0:05) positive correlation between the empirical RMSE and the

prior-consistency RMSE for the boundary and symmetry prior sce-

narios. For the initial prior scenario with the Ackley function, the

reference and proposed models have a statistically significant

(P< 0:05) strong positive correlation (q > 0:6) between the empir-

ical RMSE and the initial prior-consistency RMSE.

The correlation between the empirical RMSE and the prior-

consistency RMSE for the Bohachevsky and Ackley functions

mostly differ in the initial prior case study. The Bohachevsky func-

tion has a weak to moderate positive correlation, while the Ackley

function has a strong positive correlation. The correlation differ-

ence for the initial prior between the two functions is consistent

with the findings regarding the smaller benefit of the initial prior,

especially for the Bohachevsky function discussed in SubSections

4.4 and 4.3.

The data set size and correlation between the empirical and the

prior-consistency errors are also linked. For example, a boundary

prior is likely more beneficial for small data sets if a strong sym-

metrical two-dimensional monotonic relation between the func-

tion’s output and input data exists over the input data range up

to the boundary condition (e.g., Bohachevsky, Ackley, or Grie-

wank). On the other hand, the boundary prior can be less valuable

where the data set size is small and the correlation between the

empirical and prior-consistency errors is weak (e.g., Zakharov or

Three-hump Camel). The association between the data set size

and the value of the boundary prior accords with our earlier obser-

vations in SubSection 4.1, which showed better empirical/prior-

consistency RMSE mean error improvements for the Bohachevsky,

Ackley, and Griewank relative to the Zakharov and Three-hump

Camel functions.

In summary, these results show a statistically significant

(P< 0:05) positive correlation between the empirical RMSE and the

prior-consistency RMSE for the three prior scenarios of the Boha-

chevsky and Ackley case studies. The positive correlation between

the empirical RMSE and the prior-consistency RMSEs demonstrates

the importanceofdevelopingprior-consistentNNs. Thepositive cor-

relation between the empirical RMSE and the prior-consistency

RMSEs further supports using the prior-consistency error in the val-

idation performance index of PGNNs (PGNN2).

4.6. Hyperparameter sensitivity investigation

The objective of this investigation is to determine if the regular-

ization loss weight and the prior loss weight hyperparameters

impact the RMSE performance of the proposed methods and the

multivariate empirical and prior-consistency RMSE performance

difference between the reference and the proposed models. To per-

form this investigation, we train the reference and proposed mod-

els with different combinations of empirical and prior-consistency

weights and compare the multivariate empirical and prior-

consistency RMSEs via a two-sample Hotelling’s T2 test for inde-

pendent samples.

Throughout the results in this Subsection, the NN�100 refer-

ence model was trained with a regularization weight qr ¼ 1e� 3.

The PGNN�30, PGNN�65, PGNN�100, PGNN1, and PGNN2 models

were trained with the following ½qr;qp� loss weight combinations:

½1e� 3;1e� 4�; ½1e� 3;1e� 6�; ½1e� 3;1e� 6�; ½1e� 5;1e� 4�, and

½1e� 7;1e� 4� (Table G.25 and G.27). All the models were trained

24 times with randomly initialized weights for the Bohachevsky

function using a training data set of 1000 samples.

The two-sample Hotelling’s T2 test is sensitive to violations of

the assumption of equal variance and covariance. Therefore, we

must assess if the variance–covariance matrices statisitcally signif-

icantly differ to decide whether to perform a homoscedastic or a

heteroscedastic test. In this work, we use the multivariate statisti-

cal test Box’s M (assuming multivariate normality) to check the

equality of multiple covariance matrices. The Box M test is sensi-

tive to violations of multivariate non-normality [30]. The tested

data does not have a univariate or multivariate normal distribution

(results omitted). However, instead of taking on a Chi2 approxima-

tion, Box’s M test can take on an F-test approximation which is lar-

gely robust to normality violations [30,31]. Although the Chi2
approximation is more accurate for group sample sizes larger than

or equal to 20, we use the F-test approximation due to its robust-

ness to normality violations.

The null hypothesis for the Box M test is that the observed

covariance matrices for the dependent variables are equal across

groups. In other words, a non-significant test result (P> 0:05) indi-

cates that the covariance matrices are equal. If the covariance

matrices are not significantly different (homoscedastic) and the

groups’ sample size is at least 50, Hotelling’s T2 test takes a Chi2
approximation; otherwise, it takes an F approximation. If the

covariance matrices are significantly different (heteroscedastic),

Hotelling’s T2 test takes a Chi2 approximation.

We perform the Box’s M and two-sample Hotelling’s T2 tests to

assess if changing the prior weight or the regularization weight

affects the multivariate empirical and prior-consistency RMSEs of

the proposed models (Table G.26 and G.28).

The results from the prior weight 1e� 4 and the three regular-

ization weights (72 samples per model variant, 24 random weight

initializations by 3 regularization weights) were combined in a

group for each model variant, and the Box’s M and two-sample

Hotelling’s T2 tests were applied to compare the models

(Table G.29). Finally, we combine the results from the three prior

weights and the three regularization weights for each model vari-

ant (144 samples per model variant, 24 random weight initializa-

tions by 3 regularization weights, and 24 random weight

initializations by 3 prior weights) and apply the Box’s M and

two-sample Hotelling’s T2 tests (Table G.30).

We report the Box’s M statistic, Box’s M statistic P significance

level, T2 statistic (F statistic or chi-square statistic), and T2 statistic

P significance level. The hyperparameter investigation study

results in Table G.26 and G.28 show that PGNN1 and PGNN2 perfor-

mance for the Bohachevsky function is not statically significantly

affected by the prior loss weight or the regularization loss weight.

Table G.29 and G.30 show that the proposed methods PGNN1 and

PGNN2 have a statistically significant impact on the multivariate

empirical and prior-consistency error means relative to the refer-

ence models for different prior and regularization loss weights.

In conclusion, (1) the proposed methods are not affected by the

loss weight hyperparameters and (2) for a given set of hyperpa-

rameters, the proposed methods consistently improve the empiri-

cal and prior-consistency RMSE means relative to the reference

models (Table G.29 and G.30). The exception to the empirical and

prior-consistency RMSE mean improvements is for the initial prior

case study, where there is no statically significant difference in the

multivariate empirical and prior-consistency RMSE performance

between PGNN2 and PGNN�100. The lack of statically significant

difference in the multivariate errors is consistent with the findings

regarding the smaller benefit of the initial prior especially for the

Bohachevsky function discussed in SubSections 4.4, 4.3, and 4.5.

5. Conclusion

The literature on physics-guided NNs (PGNN) shows that when

PGNNs are expertly tailored to specific problems, they can perform

better than traditional NNs for small and noisy synthetic/experi-

mental data sets. Expertly tailored PGNNs have also been used as

computationally-efficient and accurate counterparts to physics-

based numerical simulations [16,32]. However, the need for expert
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knowledge to tailor the PGNN structure (number of hidden layers

and units) limits the applications and objectivity of PGNNs [15,16].

In this investigation, the aim was to develop and statistically

test a systematic framework to optimize the structure of PGNNs

while ensuring empirical generalizability and prior-consistency.

We propose a framework to optimize the number of hidden units

via a line search and cross-validation using the empirical error to

eliminate data-set/model-structure application dependency

(PGNN1). In addition to using the prior-knowledge in the model

training step, we propose utilizing the prior errors as part of the

cross-validation performance index to reinforce prior-consistency

(PGNN2). The third contribution of this work was to perform statis-

tical analysis on the empirical and prior-consistency error perfor-

mance of PGNNs under varying settings to determine when and

why the proposed methods are effective.

Optimizing the network architecture (PGNN1) with repeated

cross-validation statistically significantly improves the empirical

and prior-consistency RMSE means relative to the reference mod-

els by selecting the number of hidden units with the smallest

empirical error. However, a limitation of PGNN1 is the possibility

of a larger hidden unit quantile range across random model weight

initialization. The PGNN1 limitation is hypothesized to be due to

the data set size versus the function’s complexity and the untuned

hyperparameters.

Using the prior-knowledge and the empirical error in the valida-

tion process, PGNN2 statistically improves the empirical and prior-

consistency RMSEmean and variance relative to the referencemod-

els. By incorporating the prior-consistency error in the validation

performance index, PGNN2 re-enforces prior-consistency. PGNN2

outperforms (empirical/prior error mean and variance) PGNN1 rela-

tive to the referencemodelsby selectinga suitablenumberof hidden

units to avoid under-fitting or over-fitting depending on the train-

ing/prior data landscape versus the data set size. Further, the posi-

tive correlation between the empirical RMSE and the prior-

consistency RMSEs supports utilizing the prior-consistency error

in the validation performance index of PGNNs (PGNN2).

The data set size investigation has shown that PGNNs result in a

1-dimensional or 2-dimensional statistically significant difference

(P < 0:05) in the multivariate empirical and prior-consistency

means for convex and non-convex modeling problems up to a

2000 sample data set size. The univariate analysis has shown a sta-

tistically significant difference (P < 0:05) in the empirical and

prior-consistency errors for up to sample data set size 4000 and

2000, respectively. The functions’ complexity, the prior value,

and the correlation between the empirical and the prior-

consistency errors dictate the magnitude of the multivariate differ-

ence between data set sizes. In the hyperparameter sensitivity

investigation, we show that the proposed methods are not affected

by the loss weight hyperparameters and consistently improve the

empirical and prior-consistency RMSE means relative to the refer-

ence models.

Future work includes investigating practical applications, multi-

prior loss functions, prior adaptiveweighing, and the boundary data

set size effect on the performance of PGNNs. Additional studies

should focus on the relationship between the prior type/value and

the modeling problem landscape complexity to develop a complete

picture of the importance of priors in the context of PGNNs.
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Appendix A. Benchmark functions

The 14 benchmark functions studied in this work are presented

in Table A.10.

Table A.10

The 14 benchmark functions and their corresponding input ranges used for test the empirical and prior-consistency RMSEs of the proposed methods.

Benchmark Function Function yðx1; x2Þ x1 range x2 range

McCormick sin x1 þ x2 þ ðx1 � x2Þ2 � 1:50x1 þ 2:50x2 þ 1:00 �1:50;4:00½ � �3:00;4:00½ �
Griewank x21=4000:00þ x22=4000:00� cos x1 cos x2=

ffiffiffiffiffiffiffiffiffiffi

2:00
p� �

þ 1:00 �5:00;5:00½ � �5:00;5:00½ �

Ackley �20 exp �0:2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:5ðx21 þ x21Þ
q

h i �5:00;5:00½ � �5:00;5:00½ �

� exp 0:5ðcos 2px1ð Þ þ cos 2px2ð Þ½ � þ expð1Þ þ 20

Branin x2 � ð5:10=ð4:00p2ÞÞx21 þ ð5:00=pÞx1 � 6:00
� �

+ �5:00;10:00½ � 0:00;15:00½ �
10:00ð1� ð1=ð8:00pÞÞÞ cosðx1Þ þ 10

Styblinski-Tang x1
4 � 16:00x21 þ 5:00x1 þ x42 � 16:00x22 þ 5:00x2

� �

=2 �5:00;5:00½ � �5:00;5:00½ �
Booth x1 þ 2:00x2 � 7:00ð Þ2 þ 2:00x1 þ x2 � 5:00ð Þ2 �10:00;10:00½ � �10:00;10:00½ �
Three-hump Camel 2:00x21 � 1:05x41 þ x6=6:00þ x1x2 þ x22 �5:00;5:00½ � �5:00;5:00½ �
Bukin N.6 100:00

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jx2 � 0:01x21j
q

þ 0:01jx1 þ 10:00j �15:00;�5:00½ � �3:00;3:00½ �

Himmelblau’s x1
2 þ x2 � 11:00

� �2 þ x1 þ x22 � 7:00
� �2 �5:00;5:00½ � �5:00;5:00½ �

Zakharov x21 þ x22 þ 0:50x1 þ x2ð Þ2 þ 0:50x1 þ x2ð Þ4 �5:00;10:00½ � �5:00;10:00½ �
Bohachevsky x21 þ 2x22 � 0:3 cos 3px1ð Þ � 0:4 cos 4px2ð Þ þ 0:7 �100:00;100:00½ � �100:00;100:00½ �
Rosenbrock 100:00 x2 � x21

� �2 þ ð1:00� x1Þ2 �5:00;10:00½ � �5:00;10:00½ �
Beale 1:50� x1 þ x1x2ð Þ2 þ 2:25� x1 þ x1x

2
2

� �2 þ 2:625� x1 þ x1x
3
2

� �2 �4:50;4:50½ � �4:50;4:50½ �
Goldstein-Price 1:00þ ðx1 þ x2 þ 1:00Þ2ð19:00� 14:00x1 þ 3:00x21 � 14:00x2

h �2:00;2:00½ � �2:00;2:00½ �

þ6:00x1x2 þ 3:00x22Þ
�

� 30:00þ ð2:00x1 � 3:00x2Þ2 þ ð18:00
h

�32:00x1 þ 12:00x21 þ 48:00x2 � 36:00x1x2 þ 27:00x22Þ
�
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Appendix B. Benchmark functions statistical tests

Tables B.11 and B.12 present the independent two-sample mul-

tivariate Hotelling’s test on the percentage change in the empirical

and prior-consistency RMSEs between the proposed methods and

the reference models (Tables 3 and 4). Similarly, Tables B.13,

B.14, B.15, and B.16 present the two-sample F-test for equal vari-

ance results for the percentage change in the variance of the

empirical and prior-consistency RMSEs between the proposed

methods and the reference models (Tables 5 and 6).

Table B.11

Independent two-sample multivariate Hotelling’s test of the empirical and prior-consistency RMSEs for the 14 benchmark functions comparing the proposed methods to the

reference methods using 24 random weight initializations per model variant and a training data set of 1000 samples. The regularization weight for the NN model was set to

1e� 3. The regularization and prior weights for the PGNN models were set to 1e� 5 and 1e� 6. P values are shaded to indicate a statistically significant difference between the

values (critical P value 0.05).

Table B.12

Independent two-sample multivariate Hotelling’s test of the empirical and prior-consistency RMSEs for the 14 benchmark functions comparing the proposed methods to

thereference methods using 24 random weight initializations per model variant and a training data set of 1000 samples. The regularization weight for the NN model was set to

1e� 3. The regularization and prior weights for the PGNN models were set to 1e� 5 and 1e� 6. P values are shaded to indicate a statistically significant difference between the

values (critical P value 0.05).
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Table B.14

Two-sample F-test for equal variances of the empirical RMSE across the model variants for the 14 benchmark functions using 24 random weight initializations per model variant

and a training data set of 1000 samples. The regularization weight for the NN model was set to 1e� 3. The regularization and prior weights for the PGNN models were set to

1e� 5 and 1e� 6. P values are shaded to indicate a statistically significant difference between the values (critical P value 0.05).

Table B.13

Two-sample F-test for equal variances of the empirical RMSE across the model variants for the 14 benchmark functions using 24 random weight initializations per model variant

and a training data set of 1000 samples. The regularization weight for the NN model was set to 1e� 3. The regularization and prior weights for the PGNN models were set to

1e� 5 and 1e� 6. P values are shaded to indicate a statistically significant difference between the values (critical P value 0.05).
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Table B.15

Two-sample F-test for equal variances of the boundary prior-consistency RMSE across the model variants for the 14 benchmark functions using 24 random weight initializations

per model variant and a training data set of 1000 samples. The regularization weight for the NN model was set to 1e� 3. The regularization and prior weights for the PGNN

models were set to 1e� 5 and 1e� 6. P values are shaded to indicate a statistically significant difference between the values (critical P value 0.05).

Table B.16

Two-sample F-test for equal variances of the boundary prior-consistency RMSE across the model variants for the 14 benchmark functions using 24 random weight initializations

per model variant and a training data set of 1000 samples. The regularization weight for the NN model was set to 1e� 3. The regularization and prior weights for the PGNN

models were set to 1e� 5 and 1e� 6. P values are shaded to indicate a statistically significant difference between the values (critical P value 0.05).
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Appendix C. Data set size sensitivity MANOVA study

Tables C.17 and C.18 present the empirical and prior-

consistency RMSEs for the Bohachevsky and the Ackley functions

with different data set sizes. Tables C.19 and C.20 present the

one-way Multivariate Analysis of Variance (MANOVA) results for

the Bohachevsky and Ackley case studies, respectively. Figs. C.1a,

C.2a, C.3a, C.4a, C.5a, and C.6a demonstrate the canonical analysis

Table C.17

Empirical and prior-consistency RMSE data set size study for the Bohachevsky case study using a regularization weight of 1e� 5 and a prior weight of 1e� 6.

Model Type Prior Scenario 1 Scenario 2 Scenario 3

Weight Empirical Error Prior1 Empirical Prior2 Empirical Prior3

NN�100 66:02� 14:75 174:86� 39:55 66:02� 14:75 66:35� 41:32 66:02� 14:75 81:64� 21:72

PGNN�30 118:07� 24:08 264:62� 74:78 118:08� 25:20 76:82� 70:93 118:58� 25:19 141:93� 31:46

PGNN�65 76:58� 13:72 191:64� 37:77 76:11� 13:05 63:31� 40:69 76:61� 13:52 96:33� 20:01

200 PGNN�100 65:24� 13:26 173:57� 33:37 65:24� 13:26 70:79� 48:33 65:24� 13:26 80:64� 20:27

PGNN1 62:97� 11:62 167:72� 29:03 60:13� 8:43 68:43� 40:33 62:02� 10:26 76:08� 14:98

PGNN2 60:66� 9:76 159:63� 29:69 64:82� 12:68 57:92� 44:83 59:71� 8:37 72:63� 12:00

NN�100 25:95� 4:36 55:03� 10:03 25:95� 4:36 26:54� 24:69 25:95� 4:36 32:68� 5:39

PGNN�30 67:25� 14:93 124:81� 21:03 67:24� 14:94 62:38� 43:80 67:27� 14:93 67:75� 18:84

PGNN�65 35:23� 6:79 72:22� 18:84 35:32� 7:11 40:20� 24:10 35:37� 7:15 41:24� 7:71

600 PGNN�100 26:60� 4:86 55:44� 11:73 26:60� 4:86 26:02� 20:74 33:30� 6:46 33:30� 6:46

PGNN1 22:36� 2:78 46:42� 7:80 22:27� 3:21 31:36� 22:68 22:59� 2:92 28:03� 3:88

PGNN2 22:81� 3:08 45:91� 6:76 24:44� 4:24 19:03� 13:58 22:50� 3:20 27:60� 4:37

NN�100 21:11� 3:67 40:42� 8:17 21:11� 3:67 23:78� 16:67 21:11� 3:67 27:86� 5:55

PGNN�30 61:78� 15:65 111:01� 29:81 61:79� 15:67 63:19� 44:10 61:79� 15:67 63:72� 24:58

PGNN�65 27:83� 4:40 50:57� 10:19 27:83� 4:40 28:12� 19:00 27:83� 4:40 34:48� 6:80

1000 PGNN�100 21:74� 4:08 40:57� 7:29 21:74� 4:08 23:56� 17:01 21:74� 4:08 28:35� 6:19

PGNN1 19:06� 2:96 34:73� 7:50 19:06� 2:96 26:88� 17:88 19:06� 2:96 24:52� 4:42

PGNN2 19:21� 2:85 33:73� 7:91 20:95� 3:89 27:32� 15:56 19:44� 3:00 24:58� 4:43

NN�100 19:33� 3:53 33:42� 7:01 19:33� 3:53 28:73� 17:92 19:33� 3:53 24:82� 4:71

PGNN�30 59:33� 18:24 100:96� 31:15 59:33� 18:24 83:02� 42:94 59:33� 18:24 58:11� 25:85

PGNN�65 25:30� 4:84 43:19� 7:77 25:30� 4:84 29:70� 15:25 25:30� 4:84 30:30� 7:85

2000 PGNN�100 19:39� 3:74 33:88� 8:74 19:39� 3:74 28:98� 16:24 19:39� 3:74 25:24� 5:16

PGNN1 16:16� 2:27 26:66� 5:36 16:16� 2:27 23:20� 14:65 16:16� 2:27 19:95� 3:49

PGNN2 16:27� 2:34 26:10� 5:31 17:97� 2:71 17:81� 8:10 15:94� 1:68 19:63� 2:76

NN�100 19:18� 3:32 33:35� 6:52 19:18� 3:32 23:69� 11:50 19:18� 3:32 24:36� 4:41

PGNN�30 61:54� 14:82 104:46� 27:65 61:54� 14:82 78:11� 48:07 61:54� 14:82 58:15� 21:03

PGNN�65 24:54� 4:83 43:61� 8:11 24:54� 4:83 27:28� 14:90 24:54� 4:83 28:41� 8:29

4000 PGNN�100 18:70� 3:37 33:31� 6:85 18:70� 3:37 27:32� 16:09 18:70� 3:37 23:75� 4:19

PGNN1 16:29� 2:31 27:38� 4:21 16:29� 2:31 22:87� 10:57 16:29� 2:31 20:00� 3:34

PGNN2 16:14� 2:16 26:81� 4:07 18:23� 2:57 17:44� 9:63 16:55� 2:54 19:99� 3:50

Table C.18

Empirical and prior-consistency RMSE data set size study for the Ackley case study using a regularization weight of 1e� 5 and a prior weight of 1e� 6.

Model Type Prior Scenario 1 Scenario 2 Scenario 3

Weight Empirical Error Prior1 Empirical Prior2 Empirical Prior3

NN�100 0:65� 0:01 1:22� 0:04 0:65� 0:01 2:93� 0:31 0:65� 0:01 0:27� 0:03

PGNN�30 0:64� 0:01 1:17� 0:04 0:64� 0:01 3:33� 0:22 0:64� 0:01 0:26� 0:03

PGNN�65 0:64� 0:01 1:18� 0:04 0:64� 0:01 3:11� 0:25 0:64� 0:01 0:28� 0:03

200 PGNN�100 0:65� 0:01 1:21� 0:04 0:65� 0:01 2:91� 0:33 0:65� 0:01 0:27� 0:03

PGNN1 0:64� 0:01 1:18� 0:04 0:64� 0:01 3:12� 0:31 0:64� 0:01 0:27� 0:03

PGNN2 0:63� 0:01 1:13� 0:04 0:64� 0:01 2:75� 0:27 0:64� 0:01 0:26� 0:02

NN�100 0:59� 0:01 1:07� 0:03 0:59� 0:01 2:06� 0:29 0:59� 0:01 0:21� 0:02

PGNN�30 0:60� 0:01 1:04� 0:03 0:60� 0:01 2:66� 0:24 0:60� 0:01 0:20� 0:02

PGNN�65 0:59� 0:01 1:05� 0:04 0:59� 0:01 2:25� 0:32 0:59� 0:01 0:21� 0:02

600 PGNN�100 0:59� 0:01 1:07� 0:03 0:59� 0:01 2:01� 0:29 0:59� 0:01 0:21� 0:01

PGNN1 0:59� 0:01 1:04� 0:03 0:59� 0:01 2:19� 0:29 0:59� 0:01 0:20� 0:01

PGNN2 0:59� 0:01 1:02� 0:02 0:59� 0:01 1:96� 0:24 0:59� 0:01 0:20� 0:01

NN�100 0:59� 0:00 1:01� 0:02 0:59� 0:00 1:76� 0:27 0:59� 0:00 0:18� 0:02

PGNN�30 0:59� 0:01 0:99� 0:04 0:59� 0:01 2:55� 0:24 0:59� 0:01 0:18� 0:02

PGNN�65 0:59� 0:01 0:98� 0:02 0:59� 0:01 2:08� 0:24 0:59� 0:01 0:18� 0:02

1000 PGNN�100 0:59� 0:01 1:00� 0:02 0:59� 0:01 1:79� 0:31 0:59� 0:01 0:19� 0:02

PGNN1 0:58� 0:00 0:99� 0:02 0:58� 0:00 1:99� 0:21 0:58� 0:00 0:18� 0:01

PGNN2 0:58� 0:00 0:97� 0:02 0:59� 0:01 1:71� 0:27 0:58� 0:00 0:17� 0:01

NN�100 0:57� 0:01 0:92� 0:05 0:57� 0:01 1:91� 0:22 0:57� 0:01 0:15� 0:02

PGNN�30 0:59� 0:01 0:92� 0:03 0:59� 0:01 2:55� 0:20 0:59� 0:01 0:15� 0:03

PGNN�65 0:58� 0:01 0:91� 0:03 0:58� 0:01 2:19� 0:22 0:58� 0:01 0:14� 0:02

2000 PGNN�100 0:57� 0:01 0:92� 0:03 0:57� 0:01 1:91� 0:28 0:57� 0:01 0:14� 0:01

PGNN1 0:57� 0:01 0:91� 0:05 0:57� 0:01 1:98� 0:37 0:57� 0:01 0:13� 0:01

(continued on next page)
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of the Bohachevsky case study. Figs. C.1b, C.2b, C.3b, C.4b, C.5b, and

C.6b demonstrate the canonical analysis of the Ackley case study.

Figs. C.1b, C.2b, C.3b, C.4b, C.5b, and C.6b demonstrate the Maha-

lanobis distance matrix for the Bohachevsky case study.

Figs. C.7b, C.8b, C.9b, C.10b, C.11b, and C.12b demonstrate the

Mahalanobis distance matrix of the Ackley case study.

Table C.19

MANOVA results across the five data sizes for the Bohachevsky case study using a regularization weight of 1e� 5 and a prior weight of 1e� 6. Scenarios 1, 2, and 3 correspond to

the different priors. P values are shaded to indicate a statistically significant difference (critical P value 0:05).

Table C.20

MANOVA results across the five data sizes for the Ackley case study using a regularization weight of 1e� 5 and a prior weight of 1e� 6. Scenarios 1, 2, and 3 correspond to the

different priors. P values are shaded to indicate a statistically significant difference between the means (critical P value 0:05).

Table C.18 (continued)

Model Type Prior Scenario 1 Scenario 2 Scenario 3

Weight Empirical Error Prior1 Empirical Prior2 Empirical Prior3

PGNN2 0:57� 0:01 0:91� 0:05 0:57� 0:01 1:88� 0:32 0:57� 0:01 0:12� 0:01

NN�100 0:57� 0:02 0:93� 0:06 0:57� 0:02 1:69� 0:35 0:57� 0:02 0:14� 0:03

PGNN�30 0:58� 0:00 0:91� 0:03 0:58� 0:00 2:29� 0:18 0:58� 0:00 0:14� 0:02

PGNN�65 0:57� 0:01 0:91� 0:03 0:57� 0:01 1:88� 0:24 0:57� 0:01 0:13� 0:02

4000 PGNN�100 0:57� 0:02 0:93� 0:06 0:57� 0:02 1:63� 0:33 0:57� 0:01 0:14� 0:02

PGNN1 0:56� 0:01 0:89� 0:02 0:56� 0:01 1:59� 0:27 0:56� 0:01 0:13� 0:02

PGNN2 0:56� 0:01 0:88� 0:02 0:56� 0:01 1:48� 0:24 0:56� 0:01 0:12� 0:01

Fig. C.1. MANOVA study results for PGNN1 using the Bohachevsky function and the boundary prior: (a) Canonical analysis scatter plot and (b) Mahalanobis distances between

sample size means.
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Fig. C.2. MANOVA study results for PGNN1 using the Bohachevsky function and the initial prior: (a) Canonical analysis scatter plot and (b) Mahalanobis distances between

sample size means.

Fig. C.3. MANOVA study results for PGNN1 using the Bohachevsky function and the symmetry prior: (a) Canonical analysis scatter plot and (b) Mahalanobis distances

between sample size means.

Fig. C.4. MANOVA study results for PGNN2 using the Bohachevsky function and the boundary prior: (a) Canonical analysis scatter plot and (b) Mahalanobis distances between

sample size means.
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Fig. C.5. MANOVA study results for PGNN2 using the Bohachevsky function and the initial prior: (a) Canonical analysis scatter plot and (b) Mahalanobis distances between

sample size means.

Fig. C.6. MANOVA study results for PGNN2 using the Bohachevsky function and the symmetry prior: (a) Canonical analysis scatter plot and (b) Mahalanobis distances

between sample size means.

Fig. C.7. MANOVA study results for PGNN1 using the Ackley function and the boundary prior: (a) Canonical analysis scatter plot and (b) Mahalanobis distances between

sample size means.
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Fig. C.8. MANOVA study results for PGNN1 using the Ackley function and the initial prior: (a) Canonical analysis scatter plot and (b) Mahalanobis distances between sample

size means.

Fig. C.9. MANOVA study results for PGNN1 using the Ackley function and the symmetry prior: (a) Canonical analysis scatter plot and (b) Mahalanobis distances between

sample size means.

Fig. C.10. MANOVA study results for PGNN2 using the Ackley function and the boundary prior: (a) Canonical analysis scatter plot and (b) Mahalanobis distances between

sample size means.
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Fig. C.11. MANOVA study results for PGNN2 using the Ackley function and the initial prior: (a) Canonical analysis scatter plot and (b) Mahalanobis distances between sample

size means.

Fig. C.12. MANOVA study results for PGNN2 using the Ackley function and the symmetry prior: (a) Canonical analysis scatter plot and (b) Mahalanobis distances between

sample size means.
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Appendix D. Data set size ANOVA and multiple comparison test

study

Table D.21 presents the multiple comparison test results using

Tukey’s honestly significant difference procedure on the ANOVA

test results (omitted but available upon request).

Appendix E. Data set size and RMSE performance correlation

study

Tables E.22 and E.23 present the strength and direction of cor-

relation between the data set size and the empirical and prior-

consistency errors using Superman’s rank correlation and the

results from the data set size sensitivity study in SubSection 4.2.

Table D.21

Multiple comparison test of the empirical and prior-consistency RMSEs across the five data sizes for the three prior scenarios of the Bohachevsky and Ackley case studies.The

model hyperparameters for this test include a regularization weight of 1e� 5 and a prior weight of 1e� 6. P values are shaded to indicate a statistically significant difference

between the means (critical P value 0:05).

Table E.22

Spearman’s rho correlation and P value between the empirical RMSE and the data size for the three prior scenarios of the Bohachevsky and Ackley case studies.The model

hyperparameters for this test include a regularization weight of 1e� 5 and a prior weight of 1e� 6. P values are shaded to indicate a statistically significant correlation (critical P

value 0:05).

Table E.23

Spearman’s rho correlation and P value between the prior-consistency RMSE and the data size for the three prior scenarios of the Bohachevsky and Ackley case studies.The model

hyperparameters for this test include a regularization weight of 1e� 5 and a prior weight of 1e� 6. P values are shaded to indicate a statistically significant correlation (critical P

value 0:05).
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Appendix F. Empirical and prior-consistency performance

correlation study

Table F.24 presents the strength and direction of correlation

between the empirical and prior-consistency errors using Super-

man’s rank correlation and the results from the data set size sensi-

tivity study in SubSection 4.2.

Appendix G. Hyperparameter sensitivity investigation

Tables G.25 and G.27 present the results of training the

PGNN�30, PGNN�65, PGNN�100, PGNN1, and PGNN2 models with

the following ½qr;qp� loss weights:

½1e� 3;1e� 4�; ½1e� 3;1e� 6�; ½1e� 3;1e� 6�; ½1e� 5;1e� 4�, and

½1e� 7;1e� 4�. The NN�100 reference model was trained with a

Table F.24

Spearman’s rho correlation and P value between the empirical RMSE and the prior-consistency RMSE for the three prior scenarios of the Bohachevsky and Ackley case studies.The

model hyperparameters for this test include a regularization weight of 1e� 5 and a prior weight of 1e� 6. P values are shaded to indicate a statistically significant correlation

(critical P value 0:05).

Table G.25

Prior weight sensitivity study on the empirical and prior-consistency RMSE for the Bohachevsky case study using a 1000 sample data set and a regularization weight of 1e� 3.

Model Type Prior Scenario 1 Scenario 2 Scenario 3

Weight Empirical Error Prior1 Empirical Prior2 Empirical Prior3

NN�100 – 21:11� 3:67 40:42� 8:17 21:11� 3:67 23:78� 16:67 21:11� 3:67 27:86� 5:55

1e� 4 61:36� 15:32 111:34� 29:26 61:41� 15:41 69:33� 40:54 61:41� 15:41 61:82� 24:14

PGNN�30 1e� 6 61:44� 15:49 111:52� 29:67 61:41� 15:41 69:33� 40:54 61:41� 15:41 61:82� 24:14

1e� 8 61:41� 15:41 111:44� 29:43 61:41� 15:41 69:33� 40:54 61:41� 15:41 61:82� 24:14

1e� 4 27:19� 3:77 50:62� 9:72 27:17� 3:78 29:95� 16:87 27:17� 3:78 33:15� 5:88

PGNN�65 1e� 6 27:17� 3:78 50:42� 9:95 27:17� 3:78 29:95� 16:87 27:17� 3:78 33:15� 5:88

1e� 8 27:17� 3:78 50:43� 9:95 27:17� 3:78 29:95� 16:87 27:17� 3:78 33:15� 5:88

1e� 4 21:12� 3:68 40:23� 8:33 21:11� 3:67 23:78� 16:76 21:11� 3:67 27:86� 5:55

PGNN�100 1e� 6 21:11� 3:67 40:42� 8:17 21:11� 3:67 23:78� 16:76 21:11� 3:67 27:86� 5:55

1e� 8 21:11� 3:67 40:42� 8:17 21:11� 3:67 23:78� 16:76 21:11� 3:67 27:86� 5:55

1e� 4 19:34� 2:81 35:09� 5:49 19:38� 2:98 26:06� 17:04 19:38� 2:98 25:10� 4:71

PGNN1 1e� 6 19:38� 2:98 35:08� 6:05 19:38� 2:98 26:06� 17:04 19:38� 2:98 25:10� 4:71

1e� 8 19:38� 2:98 35:08� 6:05 19:38� 2:98 26:06� 17:04 19:38� 2:98 25:10� 4:71

1e� 4 19:66� 2:26 35:71� 5:53 20:97� 3:67 24:07� 13:09 19:65� 2:94 25:24� 4:48

PGNN2 1e� 6 19:85� 2:50 35:66� 5:71 20:97� 3:67 24:07� 13:09 19:65� 2:94 25:24� 4:48

1e� 8 19:85� 2:50 35:66� 5:71 20:97� 3:67 24:07� 13:09 19:65� 2:94 25:24� 4:48

Table G.26

T-test of the prior weight sensitivty study on the multivariate empirical and prior-consistency RMSEs for the Bohachevsky case study using a 1000 sample data set and a

regularization weight of 1e� 3. P values are shaded to indicate a statistically significant correlation (critical P value 0.05).

Model Type Prior weights Scenario 1 Scenario 2 Scenario 3

compared F P T2 P F P T2 P F P T2 P

½1e� 4;1e� 6� 0:07 0:98 0:01 1:00 0:00 1:00 0:00 1:00 0:00 1:00 0:00 1:00

PGNN1 ½1e� 4;1e� 8� 0:07 0:98 0:01 1:00 0:00 1:00 0:00 1:00 0:00 1:00 0:00 1:00

½1e� 6;1e� 8� 0:00 1:00 0:00 1:00 0:00 1:00 0:00 1:00 0:00 1:00 0:00 1:00

½1e� 4;1e� 6� 0:08 0:97 0:16 0:92 0:00 1:00 0:00 1:00 0:00 1:00 0:00 1:00

PGNN2 ½1e� 4;1e� 8� 0:08 0:97 0:16 0:92 0:00 1:00 0:00 1:00 0:00 1:00 0:00 1:00

½1e� 6;1e� 8� 0:00 1:00 0:00 1:00 0:00 1:00 0:00 1:00 0:00 1:00 0:00 1:00
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Table G.27

Regularisation weight sensitivity study on the empirical and prior-consistency RMSE for the Bohachevsky case study using a 1000 sample data set and a prior weight of 1e� 4.

Model Type L2 Scenario 1 Scenario 2 Scenario 3

Weight Empirical Error Prior1 Empirical Prior2 Empirical Prior3

NN�100 – 21:11� 3:67 40:42� 8:17 21:11� 3:67 23:78� 16:67 21:11� 3:67 27:86� 5:55

1e� 3 61:36� 15:32 111:34� 29:26 61:41� 15:41 69:33� 40:54 61:41� 15:41 61:82� 24:14

PGNN�30 1e� 5 61:78� 15:67 111:04� 29:82 61:79� 15:67 63:19� 44:10 61:79� 15:67 63:71� 24:56

1e� 7 61:47� 16:25 111:42� 27:77 61:33� 16:30 57:06� 44:01 61:33� 16:29 62:93� 24:72

1e� 3 27:19� 3:77 50:62� 9:72 27:17� 3:78 29:95� 16:87 27:17� 3:78 33:15� 5:88

PGNN�65 1e� 5 27:84� 4:40 50:99� 10:20 27:83� 4:40 28:12� 19:00 27:83� 4:40 34:48� 6:80

1e� 7 28:03� 4:02 51:99� 10:54 28:02� 4:01 28:36� 17:94 28:02� 4:01 34:45� 6:07

1e� 3 21:12� 3:68 20:23� 8:33 21:11� 3:67 23:78� 16:76 21:11� 3:67 27:86� 5:55

PGNN�100 1e� 5 21:71� 4:10 40:56� 7:34 21:74� 4:08 23:56� 17:01 21:74� 4:08 28:35� 6:19

1e� 7 21:85� 3:98 41:95� 7:45 21:83� 4:00 23:82� 12:32 21:83� 4:00 28:53� 5:82

1e� 3 19:34� 2:81 35:09� 5:49 19:38� 2:98 26:06� 17:04 19:38� 2:98 25:10� 4:71

PGNN1 1e� 5 19:19� 2:96 35:10� 7:49 19:06� 2:96 26:88� 17:88 19:06� 2:96 24:52� 4:42

1e� 7 18:59� 2:34 33:60� 5:62 18:77� 2:58 21:16� 11:81 18:50� 2:34 23:86� 4:11

1e� 3 19:66� 2:26 35:71� 5:53 20:97� 3:67 24:07� 13:09 19:65� 2:94 25:24� 4:48

PGNN2 1e� 5 19:21� 2:65 32:88� 6:79 20:95� 3:89 27:32� 15:57 19:44� 3:00 24:58� 4:43

1e� 7 19:79� 3:27 36:37� 7:13 21:22� 2:89 19:09� 13:38 18:70� 2:35 23:52� 3:95

Table G.28

T-test of the regularisation weight sensitivity study on the multivariate empirical and prior-consistency RMSEs for the Bohachevsky case study using a 1000 sample data set a

prior weight of 1e� 4. P values are shaded to indicate a statistically significant correlation (critical P value 0.05).

Table G.29

T-test for the Bohachevsky case study using the 1000 sample data set with a prior weight of 1e� 4 and the results from the three regularization weights for each model variant

(72 samples per model variant, 24 random weight initializations by 3 regularization weights). P values are shaded to indicate a statistically significant correlation (critical P

value 0.05).

Table G.30

T-test for the Bohachevsky case study using the 1000 sample data set for the results form the three prior weights and the results from the three regularization weights for each

model variant (144 samples per model variant, 24 randomweight initializations by 3 regularization weights and 24 random weight initializations by 3 prior weights). P values are

shaded to indicate a statistically significant correlation (critical P value 0.05).
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regularization weight qr ¼ 1e� 3. All the models were trained 24

times with randomly initialized weights for the Bohachevsky func-

tion using a training data set of 1000 samples.

Tables G.26 and G.28 present the Box’s M and two-sample

Hotelling’s T2 test results which assess if changing the prior weight

or the regularization weight have an effect on the multivariate

empirical and prior-consistency RMSEs of the PGNN1 and PGNN2

models.

Table G.29 presents the Box’s M and two-sample Hotelling’s T2
test results comparing the proposed models to the reference mod-

els with the prior weight 1e� 4 and the three regularization

weights (72 samples per model variant, 24 random weight initial-

izations by 3 regularization weights).

Table G.30 presents the Box’s M and two-sample Hotelling’s T2
test results comparing the proposed models to the reference mod-

els with the three prior weights and the three regularization

weights for each model variant (144 samples per model variant,

24 random weight initializations by 3 regularization weights and

24 random weight initializations by 3 prior weights).
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