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ABSTRACT

Prior-knowledge use in neural networks, for example, knowledge of a physical system, allows network
training to be tailored to specific problems. Literature shows that prior-knowledge in neural network
training enhances predictive performance. Research to date focuses on parametric optimization rather
than structure optimization. We present a new framework to optimize the structure of a neural network
using prior-knowledge. This is achieved through optimizing the number of hidden units via a line search
and cross-validation using the empirical error to eliminate data-set/model-structure application depen-
dency for prior-knowledge guided neural networks. In addition to using the prior-knowledge in the
model training step, we propose utilizing the prior errors as part of the cross-validation performance
index to improve generalization. Results demonstrate that the proposed training framework enhances
the model’s prediction accuracy and prior-knowledge consistency for convex data sets with a unique
minimum and non-convex multi-modal data sets. The presented results yield a new understanding of
physics-guided neural networks in terms of their structural and parametric optimization.

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

Prior-knowledge is typically not exploited in machine learning
frameworks when modeling physical systems. Prior information,
such as first principle physical laws and empirically supported
relationships, could guide a learning algorithm towards a more
theory-consistent solution. Model consistency to any underlying
physical laws can improve the model’s generalization ability, espe-
cially when only a few training examples are available, which is a
common challenge when dealing with problems where data gener-
ation is very resource-intensive.

Using prior information in model training is not a new chal-
lenge in the literature. In 2017, Karpatne et al. [1] classified
theory-informed data-driven models into the following five cate-
gories: (1) choosing a suitable model design, (2) refining data
model outputs, (3) augmenting theory-based models [2], (4) hybrid
models [3,4], and (5) Navigating the search space of candidate
models. Navigating the search space of candidate models can be
influenced by prior-knowledge using four different approaches:
(1) model parameter initialization, (2) probabilistic models, (3)
theory-based regularization, and (4) constrained optimization [1].

Theory-guided parameter initialization methods such as the
matrix completion algorithm and pre-training using computa-
tional simulation data can help guide machine learning algorithms
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towards generalizable and theory-consistent models [5,6]. Proba-
bilistic models in the context of theory-guided data-driven model-
ing involve including theory-guided data distributions as Bayesian
priors [7]. Theory-guided probabilistic models have shown success
in applications such as predicting subsurface aquifers connectivity
and electrical activity within the heart wall [8,9]. Theory-guided
data-driven modeling regularization methods include using and
developing new Lasso variants such as the sparse group Lasso to
impose theory-specific structures on the parameters of DS models
[10,11].

Constrained optimization methods include (1) developing con-
strained optimization methods for PDEs/non-linear transforma-
tions and (2) integrating theory-based constraints with existing
optimization techniques. In this work, for the first time in the liter-
ature, we focus on integrating theory-based constraints within
optimization methods to navigate the search space of candidate
feedforward neural network models.

Note that in the literature of theory-guided machine learning,
several terminologies are used to refer to the application-
dependent domain knowledge utilized (theory, prior, physics,
etc.). In theory-based constrained optimization, the methods
developed can be applied to any domain knowledge that can be
expressed in the form of a constraint. In this work, we choose
the term prior-knowledge-guided neural networks.

In [12], the authors construct physics-guided neural networks
with a hybrid-physics-data model that uses a physics-based mod-
el’s simulated output as an additional feature when training the

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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neural network (NN). The authors introduce a method to add two
forms of physics relationships, equality and inequality constraints,
to the loss function. They use the mean square error (MSE) for the
empirical loss, a rectified linear unit (ReLU) function for the
physics-consistency loss, and elastic net regularization for model
complexity control. The model structure was set to 3 hidden layers
with 12 hidden units each. Using labeled and unlabeled data, they
demonstrate the prediction error and physics-consistency error
improvements of the physics-guided NN on a spatio-temporal
problem.

Similar to [12], the authors in [13] also add equality and
inequity physics-based constraints to the NN loss function and
use ., regularization. The network architecture consists of two
hidden layers, with the first layer having 64 hidden units and the
second layer having 128 units. They set the %, regularization
weight value as iz =1 and empirically optimize the physics-
based constraint loss weight 4,. The authors use a 60 — 20 — 20
split to train, validate, and test the models. The results show
empirical error percentage improvements on noise-free and noisy
synthetic (Bohachevsky function) and real data sets.

In [6], Jia et al. use recurrent NNs (RNN) and advance the work
of [12] to estimate the spatio-temporal lake temperature. Their
first contribution is the use of theory-based simulation data to
pre-train the RNN. They also propose running a theory-based
energy balance model in parallel with the RNN. If the temporal
regression of the temperature violates the energy balance con-
straint, a penalty is added to the loss function. They perform sen-
sitivity studies on the impact of the physics-based constraint
weights by varying one weight and keeping the second weight
constant.

Wau et al. [14] demonstrated how a novel statistical covariance-
based constraint in the optimization loss function of deep convolu-
tional generative adversarial networks (DCGANs) can improve
training stability and convergence properties. They demonstrated
the performance improvement of their GANs-based physical sys-
tem emulator on the Rayleigh-Benard convection.

Liu and Wang [15] developed a multi-fidelity physics-
constrained NN (MF-PCNN) and proposed an adaptive weighting
scheme for regularization. They apply their method to PDEs from
two-dimensional heat transfer, phase transition, and dendritic
growth problems. The authors add a physics-equation-based con-
straint and initial condition (IC) and boundary condition (BC) con-
straints to the cost function. They successfully train several MF-
PCNN variants with four layers but with different hidden unit
numbers identified by conducting sensitivity studies. The authors
express that their method requires searching and sampling proce-
dures to find the optimal architecture and set it as future work.
Even though their proposed method does not use model complex-
ity control (e.g., #; and %, regularization), they claim that the
sensitivity studies avoid over-fitting. However, in the results, an
increase in the MSE of one of the MF-PCNN variants is attributed
to over-fitting. Their proposed adaptive weighting scheme results
in higher prediction accuracy and shorter training time than stan-
dard NNs.

In [16], the authors compute data-driven solutions to PDEs
using physics-guided neural networks (PGNN). Their method
involves training two NNs in two steps. Step one is to train a 9-
layer NN with 20 units per layer to model a data set extracted from
the initial and boundary conditions. Step two is to compute the
partial derivatives of the first NN, substitute the partial derivatives
into the PDE to define the second 9-layer NN with 20 units per
layer, and train it on collocation points. They demonstrate this
method on Burger’s equation with Dirichlet boundary conditions
in one space dimension.
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The more recent work in [17] proposes a new PGNN using the
system’s variational energy as the loss function combined with
the transfer learning method. The authors argue that the proposed
loss function is easier to minimize, and hence, the proposed PGNN
performs better relative to PGNNs with residual loss functions such
as in [16,18,19]. They demonstrate the effectiveness of the pro-
posed method on six fracture mechanics problems. The neural net-
work had three hidden layers in the six fracture mechanics
problems, each consisting of 50 neurons.

In [20], the authors propose incorporating prior-knowledge in
neural network models using genetic algorithms for a metallurgy
application. The authors train and test a vanilla NN on a continuous
cooling transformation data set with seven inputs and six outputs.
They find that the resulting NN does not conform to metallurgical
engineering prior-knowledge. Accordingly, they propose a genetic-
algorithm-based multi-objective cost function constrained via
metallurgy prior-knowledge. The vanilla NN and the proposed
NN models have one hidden layer with twenty neurons. The pro-
posed model improves the mean-square error and almost com-
pletely removes the metallurgy prior-knowledge inconsistencies
studied.

Jagtapa et al. [21] introduce an optimize-able adaptive hyperpa-
rameter that changes the slope of the activation function to tune
the PGNN architecture. They show that the proposed adaptive acti-
vation function results in a faster loss function decay and a smaller
&, regularization error. Even though the proposed method is tune-
able for any number of hidden layers, the authors choose different
numbers of hidden layers and units for each case study with no
reasoning. A more comprehensive study would include a sensitiv-
ity study on the effects of the number of hidden layers, number of
hidden units, and training data set size on the empirical perfor-
mance of the proposed method.

The work in [22] proposes a Probabilistic Physics-guided Neural
Network (PPgNN) with a novel model architecture to extend the
standard neural network approach for fatigue data analysis. Among
other methods, the proposed PPgNN utilizes a custom loss func-
tion, physics-constrained loss optimization, and a custom partially
connected neural network architecture. Their proposed PPgNN
variant has two hidden layers. Hidden layer one consists of 20 hid-
den units using the tanh activation function. Hidden layer two con-
sists of two units; unit one uses the linear activation function, and
unit two uses the exponential linear unit activation function. The
output layer has one neuron, which uses the linear activation func-
tion. The model’s final outputs are the output layer neuron and the
second hidden unit of the second hidden layer. The proposed
PPgNN is tested on fatigue data analysis data and is more consis-
tent with the domain knowledge relative to a neural network with-
out physics guidance. With further validation, the authors claim
that the proposed framework is not limited to fatigue data analysis
and can be applied to other survival data analyses via adjusting the
constraints and the network architecture according to physics
knowledge.

In [23], the authors propose novel methods to integrate seman-
tic knowledge into the learning step to improve the accuracy of
convolutional neural networks (CNNs) on image classification
tasks. The work presents a novel use of knowledge distillation, col-
lective classification, training phases, and hyperparameter cross-
validation for prior guided CNNs. They use cross-validation as a
heuristic hyperparameter tuning method to tune the penalty of
each predicate. The authors test different modeling case studies,
data set sizes, and CNN architectures. The data set size ablation
study shows that the smaller the training data set size, the more
significant the reduction of the empirical error of the proposed
methods. The work in [23] has no investigation on the random
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model weight initialization effects on the empirical error mean and
variance.

The number of hidden units dictates the NN/PGNN model’s
complexity and is commonly between 5 and 100 [24]. The number
of units should be sufficiently large to capture the data non-
linearity but not too large to avoid over-fitting and maintain the
model’s smoothness between the in-sample training data points.
Typically, the number of hidden units is chosen via application-
specific expert knowledge or empirical experimentation. The work
in [12,6,16,13,25], among several other works, either sets the num-
ber of hidden units based on expert knowledge or reports utilizing
sensitivity studies without providing a systematic framework or a
statistical analysis on the empirical and prior-consistency perfor-
mance. The authors in [16] note that the interplay between the
physics-guided NN architecture/training procedure and the com-
plexity of the modeling data is poorly understood and propose a
Bayesian approach to monitor the variance of the predictive poste-
rior distribution as possible future work.

The authors in [15] note that their method requires systematic
searching and sampling procedures to find the optimal physics-
guided NN architecture and set it as future work. The work in
[16] states that designing the correct physics-guided NN architec-
ture is an open research question and confirms observing that a
specific physics-guided NN architecture that yields accurate results
for one data set can fail for another. Therefore, there is a need for a
systematic framework along with statistical analysis.

Another gap in the PGNN literature is a lack of statistical
analysis:

e There is a lack of statistical analysis on the mean and variance of
the empirical and prior-consistency errors across different ran-
dom weight initialization of PGNN models.

e There is a lack of investigation with statistical tests on the effect
of the data set size on the mean of the empirical and prior-
consistency errors.

e There is a lack of investigation with statistical tests on the cor-
relation between the empirical and prior-consistency errors.

e There is a lack of investigation with statistical tests on the effect
of the loss weight hyperparameters on the mean of the empir-
ical and prior-consistency errors.

For more detailed literature and surveys on PGNN gaps and
methods of incorporating prior-knowledge into machine learning,
we direct the reader to [26-28]. In this work, we summarize the
literature review by highlighting the need for (1) a systematic
framework to set the number of hidden units for PGNNSs, (2) statis-
tical analysis on the performance of PGNNs under varying settings,
and (3) methods to verify if and when a PGNN model can be
trusted. In this work, we aim to address the gaps discussed via
the following contributions towards prior-knowledge guided feed-
forward neural networks (PGNNs):

1. Model structure optimization via the Hidden Unit Number: A
framework to optimize the number of hidden units via a line
search and cross-validation using the empirical error to elimi-
nate data-set/model-structure application dependency for
prior-knowledge guided feedforward neural networks (model
PGNN,).

. Model structure optimization via Prior-knowledge-guided
cross-validation: In addition to using the prior-knowledge in
the model training step, we propose utilizing the prior errors
as part of the cross-validation performance index (Eq. 3). Incor-
porating the prior-consistency error along with the empirical
error in the validation process improves generalizability (model
PGNN,).
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3. Statistical study on the empirical and prior-consistency error
performance of PGNNs under the effects of random model
weight initialization, data set size, hyperparameters, and the
correlation between the empirical prior-consistency errors.

The remainder of the paper is organized as follows. The
Methodology section provides the problem formulation and meth-
ods contributions 1 and 2. The Evaluation section covers the meth-
ods used to test and benchmark the proposed methods against
reference models. The Results and Analysis Sections introduce
the benchmark testing data, demonstrate the empirical and
physics-consistency errors of the NN/PGNN models, and discuss
the results. The conclusion covers the proposed framework’s main
benefits, limitations, and future work.

2. Methodology

This work, utilizes prior-knowledge constraint losses in the cost
function of a multi-layer perceptron feedforward neural network
model. The first PGNN model, PGNNj, differs from the NN model
by incorporating the prior-based losses in the weight optimization
function. This work’s contributions are: (1) PGNN; differs from the
literature on PGNN models by optimizing the number of hidden
units, and (2) PGNN, incorporates the same methods in PGNN;
but additionally incorporates the prior error in the cross-
validation process.

In the following Subsections, the problem formulation and pre-
liminaries are provided in SubSection 2.1. SubSections 2.3 and 2.2
will discuss the methodologies of contributions 1 and 2, respec-
tively. Finally, SubSection 3.1 provides the model performance
testing methods.

2.1. Preliminaries

A typical NN optimization criterion typically has two loss func-
tions: an empirical loss function #. and a regularization loss func-
tion #; (Eq. 1). To incorporate prior-knowledge, we add the prior-
knowledge-based loss function .#, to the optimization criterion as
in literature (Eq. 2) [15,13,21]. The regularization and prior-based
loss functions have the weights p, > 0 and p, > 0, respectively
(Eq. 1 and 2). Accordingly, the framework proposed leads to three
hyper-parameters: regularization loss weight (p,), prior-based loss
weights (p,), and the hidden units number (j).

fNN:$e+prfr (1)

where . is the empirical loss, .#; is the regularization loss, and p,
is the regularization loss weight.

Lpann = Le + prLr + P L, (2)

where %, is the prior loss and p, is the prior-based loss weight.
The cost function is non-linear and multi-modal (Eq. 2). There-
fore, the network’s initial random weights determine the cost func-
tion solution (a local minimum), and a training algorithm does not
guarantee to find the global minimum. Furthermore, if the training
data set is randomly sampled from an available data set, then the
training data set might adversely be biased (i.e., not a representa-
tive of the physics phenomenon of study). Therefore, data models
must be trained and validated with reliable empirical evidence. It
is also necessary to ensure that the performance differences
between any proposed methods and reference models are due to
the proposed methods and not effects such as biased data sets
and random weight initialization. Accordingly, to validate the
models, repeated k-fold cross-validation (CV) is applied for the fol-
lowing reasons: (1) make efficient use of the data to do training
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and validation, (2) reduce the chance of bias and variance in the
validation performance index, and (3) address the local-
minimum problem. The literature’s CV performance index for
vanilla NNs and PGNN models has been the empirical error. The
number of CV folds was chosen to be k = 5 to reduce the variance
in the validation performance index. Finally, for every set of m val-
ues (number of hidden units) and random initial weights, the 5-
fold CV is repeated 3 times using re-divided data subsets to mini-
mize the occurrence of misleading results due to bias-dominated
data subsets.

2.2. Model structure optimization via the hidden unit number

In contribution (1), we train the PGNN model across a linearly
spaced vector of 8 values within [30,100] to estimate the best
number of hidden unit values m* value based on the empirical
error. A second search is then performed with a finer vector of
10 linearly spaced points around the best-estimated value
m* + 10. The model (PGNN, ) with the best cross-validation empir-
ical error is chosen. Optimizing the number of hidden units via a
line search eliminates the data-set/model-structure application
dependency for prior-knowledge-guided feedforward neural
networks.

2.3. Model structure optimization via prior-knowledge-guided cross-
validation

In contribution (2), we propose utilizing the prior error as part
of the cross-validation performance index to optimize the number
of hidden units (PGNN,, Eq. 3). Note that the prior-based errors &,
are application dependent and would therefore have different
means and standard deviations per application. If the empirical
error (&) and the prior-based errors differ by orders of magnitude,
then the cross-validation error function can be dominated by
either errors. Accordingly, the empirical and prior errors in Eq. 3
have been re-scaled via min-max normalization.

Ee — min(&e)
max(&e) — min(&e.)

&p — min(&y)

£= max(&,) - min(é;)

3)

3. Evaluation

The half sum squared error (HSSE) metric was chosen for the
empirical loss function in Eq. 1 and 2. The regularization loss func-
tion was selected as %, regularization to penalize large weights in
the model and reduce data over-fitting.

where n is the number of data points and y; and y; are the prediction
and target for the k™ input vector, respectively.

1 T
= jw w
where w is a vector of the model weights.

We chose to use the boundary condition constraint (scenario 1)
in Eq. 6 as the prior loss function to demonstrate the proposed
methods in the main result in SubSection 4.1. We also investigate
using the initial condition constraint (Scenario 2) and a horizontal
symmetry constraint (Scenario 3) as prior loss functions (Eq. 7
and 8) to assess the impact of using different priors on the proposed
methods (SubSection 4.2). The prior losses are applied separately to
the reference and proposed models, where scenarios 1 to 3 are the
boundary, initial, and symmetry prior, respectively. To quantify the
prior-knowledge violations, we utilize the HSSE metric (Eq. 6, 7 8).

(4)

& ()
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where p is the number of samples in the boundary dataset.
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The #, regularization loss weight (p,) and the prior loss weight
(p,) dictate the importance of model smoothness (complexity) and
prior-consistency, respectively. Since p, and p, are scalars, it is
possible to train NN/PGNNs with different combinations of p val-
ues and test the NN/PGNNs on a validation data set to identify
the best model (empirical error wise). A typical NN example of
complexity control is a one-grid search to find the optimal regular-
ization weight (p,), which results in the best PI. Similarly, a two-
grid search is used to find the optimal function width and regular-
ization weight of a Gaussian radial basis function model. State-of-
the-art methods involve online adaptive methods to update the
weights (p, and p,) during training. Optimizing the weights is out-
side the scope of this work; therefore, we chose to set them as con-
stants for the main result and perform a hyperparameter
sensitivity study in SubSections 4.1 and 4.6, respectively.

The scaled conjugate gradient (SCG) back-propagation method
was used to minimize the loss function (Eq. 1 and 2) and find the
optimal weights. Note that each input feature from each case study
was transformed separately by z-score standardization (i.e., zero
mean and unit standard deviation). The optimization algorithm
has two stopping criteria; the precision of the objective function
and the weights at the solution. The two criteria were set to
107“. The precision in the line search parameter space was set to
Netlab’s default value (1073) [29]. The optimization algorithm
was allowed a maximum of 1000 iterations to find the solution.

The root mean square error (RMSE) metric was chosen for the
empirical and prior-based CV error functions (Eq. (9)-(12)). Note
that the summation stop values in Eq. 9, 10, and 12 are divided
by k to take into account the CV folds.

; 2
| Ze -y
S(0) i UG
o T -yed)) o)
§p = ok .
&y =1/ (7(0,0) - y(0,0))". (11)
ik (50 (o) 0yl (5@ D))
& — 1:1<X ( X ’Kz) Y (K] % )) (12)
P n/k '

The reference and proposed models consist of two input neu-
rons (d = 2), a hidden layer with a non-linear ReLu activation func-
tion, and an output layer with one neuron (¢ = 1) and a linear
activation function. Below is a list of the differences between the
reference and proposed models.

Reference Models:

e NN-100: A vanilla NN with 100 hidden units (no prior usage in
the loss or validation performance index).
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e PGNN-30: A PGNN with 30 hidden units (no prior usage in the
validation performance index).

e PGNN-65: A PGNN with 65 hidden units (no prior usage in the
validation performance index).

e PGNN—-100: A PGNN with 100 hidden units (no prior usage in
the validation performance index).

Proposed Models:

o PGNN;: A PGNN network where the number of hidden units is
optimized via a line search as detailed in SubSection 2.2 (no
prior usage in the validation function).

e PGNN,: A PGNN network where the number of hidden units is
optimized via a line search (SubSection 2.2) and the prior error
is utilized in the validation performance index (SubSection 2.3).

3.1. Model testing

Following training and validation, an out-of-sample (OOS)
empirical data set with 1000 data points was used to test the mod-
els RMSE empirical performance (Eq. 9 with k = 1). The OOS empir-
ical data set was also utilized to test the symmetry prior-
consistency RMSE (Eq. 12 with k=1). Similarly, an out-of-
sample (OOS) boundary data set with 4000 data points was used
to test the models RMSE empirical performance ((Eq. 10 with
k = 1). The initial prior-consistency RMSE performance was tested
via Eq. 11.

The OOS data sets were reserved and only used to test the mod-
els after they were trained and validated. Note that each PGNN/NN
model was trained and validated 24 times using randomly initial-
ized weights, and the averaged results are provided in
SubSection 4.

4. Results and analysis
4.1. Benchmark function testing

To test the proposed methods’ empirical and prior-consistency
error performance, we test 14 benchmark case studies varying
from convex functions with a unique minimum to non-convex
multi-modal functions (Table A). Further, we analyze why the pro-
posed methods improve the empirical and prior-consistency error
performance for some functions but not others and what dictates
the level of improvement. For each modeling case study, a bound-
ary data set [X,,y(Xp)] of p=4000 uniformly distributed data
points was used for the prior-knowledge as discussed in SubSec-
tion 2.1. Tables 1 and 2 show the empirical and prior-consistency

Table 1
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RMSE mean and standard deviation using a data set of 1000 sam-
ples.The regularization weight for the NN model was set to 1e — 3.
The regularization and prior weights for the PGNN models were set
to 1e — 5 and 1e — 6. The median and [0.25,0.75] quantiles of the
optimal number of hidden units selected by the proposed methods
are shown in Table 7.

The percentage change in the empirical and prior-consistency
RMSEs between the proposed methods and the reference models
are provided in Tables 3 and 4. The cells highlighted in Tables 3
and 4 indicate a statistically significant percentage change
(P< 0.05) based on an independent two-sample multivariate
Hotelling’s test (Appendix B Tables B.11 and B.12). Similarly, the
percentage change in the variance of the empirical and prior-
consistency RMSEs between the proposed methods and the refer-
ence models is provided in Tables 5 and 6. The cells highlighted
in Tables 5 and 6 indicate a statistically significant percentage
change (P< 0.05) based on a two-sample F-test for equal variance
(Appendix B Tables B.13, B.14, B.15, and B.16).

The first result to note is the lack of any statistically significant
difference in the empirical and prior-consistency error means and
variances between the vanilla NN and PGNN-100 for the 14
benchmark functions (Tables 3, 5, and 6). The vanilla NN and
PGNN-100 performance show that given an identical network
architecture, a PGNN model may not out-perform a vanilla NN if
the loss function weight hyperparameters are not tuned. There is
also no statistically significant difference between PGNN; and
PGNN2 empirical and prior-consistency mean errors except for
the Ackley function (Table 4). However, the effect of the different
number of hidden units between PGNN; and PGNN, is seen in
the performance improvements of PGNN; and PGNN, relative to
the reference models.

By optimizing the network architecture, PGNN; outperformed
(empirical and prior-consistency error-mean-wise) the reference
NN and PGNN-100 models for 3 and 6 functions, respectively
(Tables 3 and 4). PGNN; reduced the empirical error variance rela-
tive to the reference NN and PGNN-100 for 6 and 3 functions,
respectively (Table 5). PGNN; also reduced the prior-consistency
error variance relative to the reference NN and PGNN-100 for 4
and 3 functions, respectively (Table 5).

For the McCormick function, PGNN; degraded the percentage
change in the empirical and prior-consistency errors variance rela-
tive to NN-100 and PGNN-100. The performance degradation in
PGNN; with the McCormick function can be associated with the
hidden unit results in Table 7 since PGNN; had the largest quantile
range [0.25,0.75] of 39 hidden units. A larger hidden unit quantile
range is likely to correlate with the variance in the empirical and
prior-consistency errors positively. The reason for PGNN;’s perfor-
mance with the McCormick function is not clear, but it is likely to

Empirical RMSE mean and standard deviation range across 14 benchmark functions using a training data set of 1000 samples, a regularization weight of 1e — 3 for the NN model,
and a regularization and a prior weights of 1e — 5 and 1e — 6 for PGNN models, respectively.

Benchmark Function NN-100 PGNN-100 PGNN; PGNN,
McCormick 0.11 +0.01 0.11 +£0.02 0.11 +£0.04 0.10+0.01
Griewank 0.14+0.03 0.15+0.03 0.134+0.01 0.13+0.01
Ackley 0.59 £+ 0.00 0.59 +£0.01 0.58 +0.01 0.58 +0.01
Branin 0.88+0.13 0.88+0.16 0.84+0.14 0.88+0.14
Styblinski-Tang 0.90+0.24 0.92+0.22 0.934+0.22 093+0.24
Booth 1.36+0.12 1.41 +£0.41 1.30+0.11 1.31+£0.12
Three-hump Camel 2.134+0.63 2.01+0.43 1.82 +£0.30 1.87 £0.31
Bukin N.6 217 £0.12 2214017 2.16+0.14 2.164+0.14
Himmelblau’s 357+1.74 3.72+1.71 2.95+0.38 3.184+0.71
Zakharov 15.114+5.06 14.76 +3.07 13.11+2.48 13.90 +3.00
Bohachevsky 21.11+3.67 21.74 +£4.08 19.06 +2.96 19.21+£2.85
Rosenbrock 620.93 +279.05 644.92 +274.50 487.82 +136.64 538.26 +215.55
Beale 1252.28 £313.79 1250.56 + 359.89 1146.71 + 286.44 1086.34 + 252.09

Goldstein-Price 19110.69 +6111.54

18938.97 4 5574.39

15712.85 4+ 3940.58

15916.60 4 3574.84
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Boundary prior-consistency RMSE mean and standard deviation across 14 benchmark functions using a training data set of 1000 samples, a regularization weight of 1e — 3 for the

NN model, and a regularization and a prior weights of 1e — 5 and 1e — 6 for the PGNN models, respectively.

Benchmark Function NN-100 PGNN-100 PGNN;, PGNN,
McCormick 0.21 +£0.03 0.23 +£0.04 0.22 +0.09 0.20 +0.02
Griewank 0.31+0.05 0.32+0.05 0.28 +0.03 0.27+£0.04
Ackley 1.01 £0.02 1.00 £0.02 0.99 +0.02 0.97 +£0.02
Branin 2.50+047 2.50+0.51 233+0.54 231+048
Styblinski-Tang 2914+0.75 2.854+0.81 2.99+0.83 2.78+0.74
Booth 2244031 2.354+0.25 2.19+0.21 2.18 +0.19
Three-hump Camel 12.16 £3.48 11.08 £2.72 1034 +1.78 10.19+1.80
Bukin N.6 2.94+0.21 2.99 +£0.27 2.90+0.19 2.90+0.23
Himmelblau’s 9.40+2.59 9.68 +2.38 8.17+1.05 8.41+1.32
Zakharov 4221 +£15.65 42.04 £13.16 35.87 +£6.48 36.36 +7.83
Bohachevsky 40.42 +8.17 40.57 +£7.29 34.73 £7.50 33.73+791
Rosenbrock 1992.64 +548.91 2056.07 + 600.60 1869.55 + 403.32 1921.96 +451.53
Beale 4262.21 +831.87 4339.32 + 1025.90 4020.72 + 851.43 3843.76 + 761.80

Goldstein-Price 66484.35 +16126.71

67140.18 + 13743.65

59491.66 + 11529.53

60214.83 + 10469.91

Table 3

Percentage change in the empirical and prior-consistency RMSEs for the 14 benchmark functions comparing the proposed methods to the NN reference model using 24 random
weight initializations per model variant and a training data set of 1000 samples. The regularization weight for the NN model was set to 1le — 3 for the NN model. The
regularization and prior weights for the PGNN models were set to 1e — 5 and 1e — 6, respectively. Shading indicates a statistically significant difference between the values

(critical P value 0.05).

Benchmark [NN,PGNN-100] [NN,PGNN; ] [NN,PGNN;]
Function Empirical Prior =~ Empirical  Prior Empirical ~ Prior
McCormick 1.54 4.78 2.74 2.11 -5.63 -7.89
Griewank 1.73 255 -12.09 -11.41 -11.84 -12.17
Ackley -0.07 -045 044 -1.86 -0.37 -3.93
Branin 0.09 0.02 -4.56 -6.96 —-0.31 —7.88
Styblinski-Tang 1.46 -184 241 296 3.10 -4.51
Booth 3.48 5.00 -4.37 -2.39 -3.77 -2.64
Three-hump Camel —5.80 -885 -14.62 -1491 -12.11 —-16.16
Bukin N.6 1.75 1.74 -0.44 -132 -0.75 -1.09
Himmelblau’s 441 3.02 —-17.40 -13.10 -10.7 -10.51
Zakharov -2.36 -041 -13.26 -15.03 -8.04 -14.10
Bohachevsky 296 0.38 -9.73 -14.08  -9.04 -16.54
Rosenbrock 3.86 3.18 -21.44 —6.18 —-13.31 -3.55
Beale -0.14 1.81 -8.43 -5.67 -13.25 -9.82
Goldstein—Price -0.90 0.99 -17.78 -1052 -16.71 -9.43

do with the data set size relative to the complexity of the function
and the untuned hyperparameters.

PGNN, outperformed (empirical and prior-consistency error-
wise) the reference NN and PGNN-100 models for 6 and 8 func-
tions, respectively (Tables 3 and 4). PGNN, reduced the empirical
error variance relative to the reference NN and PGNN-100 for 5
and 3 functions, respectively (Table 5). PGNN, also reduced the
prior-consistency error variance relative to the reference NN and
PGNN-100 for 5 and 3 functions, respectively (Table 5).

The discrepancy in the error improvements between PGNN;
and PGNN, is due to PGNN, validating the prior-consistency of
the model in addition to its empirical generalizability. In Table 7,
PGNN; has resulted in a smaller, larger, and equal number of hid-
den units median for 7,5, and 2 functions. We also note that
PGNN, has a larger hidden unit quantile range [0.25,0.75] than
PGNN; for 12 out of the 14 benchmark functions. By incorporating
the prior-consistency error in the validation performance index,
PGNN, re-enforces prior-consistency. PGNN, outperforms (empir-
ical/prior error mean and variance) PGNN;j relative to the reference
models by selecting a suitable number of hidden units to avoid

under-fitting or over-fitting depending on the training/prior data
landscape versus the data set size.

The discrepancy in the error improvements of the proposed
methods between the benchmark functions is likely to be related
to (1) discrepancy in the value of the prior-knowledge for each
benchmark function, (2) training data set size, (3) prior data set
size. The training data set size effects are examined in SubSec-
tion 4.2. The prior data set size effects are not examined and are
left for future work.

A possible explanation for the discrepancy in the error improve-
ments is that the prior-knowledge has a different value for each
benchmark function depending on the training/prior data land-
scape. For example, the boundary prior is likely to be less valuable
if, for a given 3-dimensional function, the target values across a
line on the 2-dimensional landscape are highly non-linear and
non-monotonic. We propose a simple measure of boundary/train-
ing mean output ratio to give insight into the value of the boundary
prior. The prior output mean, training output mean, and bound-
ary/training output mean ratio for each benchmark function are
shown in Table 8). Using the proposed measure, we measure
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Percentage change in the empirical and prior-consistency RMSEs for the 14 benchmark functions comparing the proposed methods to thePGNN reference models using 24
random weight initializations per model variant and a training data set of 1000 samples. The regularization weight for the NN model was set to 1e — 3. The regularization and
prior weights for the PGNN models were set to 1e — 5 and 1e — 6, respectively. Shading indicates a statistically significant difference between the values (critical P value 0.05).

Benchmark [PGNN-100,PGNN;] [PGNN-100,PGNN;] [PGNN;,PGNN,]
Function Empirical  Prior Empirical  Prior Empirical  Prior
McCormick 1.17 -2.55 —7.06 -12.09 -8.14 -9.79
Griewank —-13.58 =130l -13.34 —14.36 0.28 -0.86
Ackley -0.37 -1.42 —-0.30 -3.50 0.07 =211
Branin —4.65 -6.98 —0.40 -7.90 4.45 —-0.99
Styblinski—Tang 093 4.89 1.61 =212 0.67 -7.25
Booth -7.59 -7.04 =740l -7.28 0.63 —-0.26
Three-hump Camel -9.36 —6.65 —-6.70 -8.02 2.94 —-1.47
Bukin N.6 -2.15 -3.02 —2.46 -2.78 -0.31 0.24
Himmelblau’s —-20.89 —-15.64 —-14.54 —-13.14 8.03 2.97
Zakharov -11.17 —-14.68 -5.82 -13.75 6.02 1.09
Bohachevsky —-12.33 —14.40 —11.65 —-16.86 0.77 -2.86
Rosenbrock —24.36 =007 -16.54 -6.52 10.34 2.80
Beale -8.30 -7.34 -13.13 -11.42 -5.26 —4.40
Goldstein—Price —17.03 -11.39 —15.96 -10.31 1.30 1.22

Table 5

Percentage change in the variance of the empirical RMSE across the model variants for the 14 benchmark functions using 24 random weight initializations per model variant and a
training data set of 1000 samples. The regularization weight for the NN model was set to 1e — 3. The regularization and prior weights for the PGNN models were set to 1e — 5 and
1e — 6 for the PGNN models, respectively. Shading indicates a statistically significant difference between the values (critical P value 0.05).

Benchmark Percentage change (%)
Function [NN-100, [NN-100, [NN-100, [PGNN-100, [PGNN-100, [PGNN;,
PGNN-100] PGNN;] PGNN;] PGNN;] PGNN;] PGNN;]
McCormick 46.31 USIES?) —-20.86 618.71 —45.91 —92.47
Griewank -6.32 —73.56 -70.02 -71.77 —68.00 13.36
Ackley 83.12 26.99 10.48 —30.65 —-39.67 -13.00
Branin 40.35 6.99 5.81 -23.77 —24.61 -1.10
Styblinski-Tang 14.35 -16.23 -0.31 -2.19 16.40 19.00
Booth 31.33 —-19.60 -2.87 —38.78 —-26.04 20.81
Three-hump Camel —-54.14 -76.99 =75.72 —49.83 —47.07 5.50
Bukin N.6 106.06 29.75 31.38 -37.03 -36.24 1.25
Himmelblau’s -3.36 —95.20 —83.63 —95.03 —83.06 241.16
Zakharov -35.13 —75.87 —64.91 —62.81 —45.91 4545
Bohachevsky 23.80 -34.73 -39.50 -47.27 -51.13 -7.31
Rosenbrock -3.23 -76.02 —-40.33 -75.22 —-38.34 148.86
Beale 31.54 -16.67 -35.46 —-36.65 -50.93 —22.55
Goldstein—Price -16.81 —58.43 —65.79 -50.03 -58.87 -17.70

Spearman’s correlation and the statistical significance between the
empirical and prior-consistency RMSE percentage change and the
boundary/training mean output ratio (Table 9). From Table 9, the
boundary/training mean output ratio increases, the percentage
change between the NN and the proposed methods (PGNN; and
PGNN,) decreases with a strong negative correlation (p < —0.60).
Similarly, as the boundary/training mean output ratio increases,
the percentage change between the PGNN—-100 and the proposed
methods decreases with a moderate negative correlation
(p < —0.40). The negative correlation indicates that the prior is
more valuable (empirical and prior-consistency error-wise) when
the prior target and training data-target means differ more. This
result does not rule out the influence of other factors in the impact
of PGNN; and PGNN,, on the empirical and prior-consistency error
performance relative to the reference models.
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This study has shown that optimizing the network architecture
(PGNN;) statistically significantly improves the empirical and
prior-consistency RMSE means relative to the reference models
but can result in a larger empirical and prior-consistency variance
across randomly initialized model weights. Using the prior-
knowledge and the empirical error in the validation process,
PGNN,, results in a more informed performance index for model
candidate selection and statistically significantly improves the
empirical and prior-consistency RMSE mean and variance relative
to the reference models. PGNN, statistically significantly improves
the empirical and prior-consistency RMSE mean and variance for
more benchmark functions than PGNN; relative to the reference
models. Finally, The results invite further research on (1) the rela-
tionship between the empirical and prior data in the context of
physics guided loss and validation PI functions, (2) training data
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Percentage change in the variance of the boundary prior-consistency RMSE across the model variants for the 14 benchmark functions using 24 random weight initializations per
model variant and a training data set of 1000 samples. The regularization weight for the NN model was set to 1e — 3. The regularization and prior weights for the PGNN models
were set to 1e — 5 and 1e — 6, respectively. Shading indicates a statistically significant difference between the values (critical P value 0.05).

Benchmark Percentage change (%)
Function [NN-100, [NN-100, [NN-100, [PGNN-100, [PGNN-100, [PGNN;,
PGNN-100] PGNN;] PGNN;] PGNN; ] PGNN;] PGNN;]
McCormick 23.88 660.26 -49.92 513.69 -59.58 -93.41
Griewank -10.40 —59.27 —46.13 —54.54 —39.88 32.25
Ackley 1.67 11.52 -30.41 9.68 -31.55 -37.59
Branin 21.93 36.66 8.42 12.08 -11.08 —-20.67
Styblinski-Tang 15.57 19.48 -3.31 3.39 -16.34 -19.08
Booth -35.58 -52.19 —60.70 -25.79 -38.99 =17.79
Three-hump Camel —39.24 —74.01 -73.29 -57.22 -56.04 2.5
Bukin N.6 63.33 -21.47 14.05 -51.92 -30.17 4523
Himmelblau’s -15.62 —83.69 —73.86 —80.67 —69.03 60.21
Zakharov -29.31 —82.85 —74.98 —75.74 —64.60 4593
Bohachevsky -20.26 -15.66 —-6.08 5.77 17.79 11.36
Rosenbrock 19.72 —46.01 -32.34 —54.90 —43.48 25,53
Beale 52.09 4.76 -16.14 -31.12 —44.86 -19.95
Goldstein—Price -27.37 —48.89 —57.85 -29.62 —41.97 -17.54

Table 7

The median and [0.25,0.75] qauntiles of the optimal number of hidden units selected by the proposed methods across the 14 benchmark functions using 24 random weight
initializations per model variant and a training data set of 1000 samples. The regularization weight for the NN model was set to 1e — 3. The regularization and prior weights for

the PGNN models were set to 1e — 5 and 1e — 6, respectively.

Benchmark Function

PGNN; Median (quantile)

PGNN, Median (quantile)

McCormick 80.00 (59.00 — 98.00) 83.00 (60.00 — 100.00)
Griewank 56.50 (42.00 — 70.00) 51.50 (38.50 — 66.50)
Ackley 77.00 (62.00 - 91.50) 64.00 (46.00 — 80.00)
Branin 96.00 (86.00 — 104.00) 84.50 (73.00 — 98.50)
Styblinski-Tang 95.50 (86.50 — 106.00) 97.00 (89.00 — 107.00)
Booth 102.00 (99.00 - 107.00) 105.00 (101.00 — 110.00)
Three-hump Camel 98.50 (86.00 — 103.00) 90.00 (81.50 — 100.00)
Bukin N.6 100.00 (90.50 — 105.00) 100.50 (93.00 — 103.00)
Himmelblau’s 103.00 (94.50 - 110.00) 101.00 (92.00 - 107.00)
Zakharov 103.00 (94.00 — 108.50) 95.00 (83.00 - 101.50)
Bohachevsky 97.00 (90.00 — 100.50) 97.00 (88.00 — 105.00)
Rosenbrock 92.00 (90.00 — 96.00) 90.50 (87.00 — 98.00)
Beale 90.00 (78.50 — 100.00) 90.00 (77.00 — 100.00)
Goldstein-Price 92.50 (69.00 — 99.00) 94.00 (70.00 — 100.50)

Table 8
The mean of the boundary data and the training data of the 14 benchmark functions.

Benchmark Boundary Training Boundary/training
Function output mean output mean output mean ratio
McCormick 13.79 7.63 1.81

Griewank 0.94 1.00 0.94

Ackley 12.05 9.68 1.24

Branin 88.15 54.93 1.60
Styblinski-Tang 108.12 -7.59 -14.24

Booth 747.39 389.24 1.92

Three-hump Camel 1139.11 255.57 4.46

Bukin N.6 149.14 121.38 1.23
Himmelblau’s 357.00 137.34 2.60

Zakharov 8221.47 3695.84 222

Bohachevsky 199945.39 9940.28 2.01

Rosenbrock 316950.15 125540.62 2.52

Beale 4157218 8614.62 4.83
Goldstein-Price 197803.51 50959.70 3.88

landscape versus prior-knowledge value, and (3) adaptive-
weighting of the prior-knowledge in PGNNs.
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4.2. Data set size multivariate sensitivity study

This study aims to investigate if the data set size affects the pro-
posed methods’ multivariate empirical and prior-consistency
RMSE performance. To the best of the authors’ knowledge, this is
the first study to quantitatively examine the effect of the data set
size on the multivariate empirical and prior-consistency error vari-
ance for PGNNs. Five training data sets were created for the Boha-
chevsky and the Ackley functions; sample sizes:
200,600, 1000, 2000, and 4000. The samples in each data set are
uniformly distributed and bounded by the input ranges in
Table A.10. We set a regularization weight of 1e — 3 for the NN
model and regularization and a prior weight of 1e — 5 and 1e — 6
for the PGNN models. Three prior case studies were tested per
benchmark function: (1) boundary prior, (2) initial prior, and (3)
symmetry prior. The empirical and prior-consistency RMSEs are
presented in Appendix C Tables C.17 and C.18.

We perform a one-way Multivariate Analysis of Variance (MAN-
OVA) for comparing the multivariate means of the empirical and
prior-consistency errors, grouped by data set size. The dimension
result estimates the dimension of the space containing the group
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Table 9
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Spearman’s rho correlation and P value between the percentage change in RMSEs and the boundary/training mean output ratio across the 14 benchmark functions using a
training data set of 1000 samples.The model hyperparameters for this test include a regularization weight of 1e — 3 for the NN model, and a regularization and a prior weights of
1le —5 and 1e — 6 for the PGNN models, respectively. P values are shaded to indicate a statistically significant correlation (critical P value 0.05).

p(P)
[NN-100,  [NN-100,  [NN-100,  [PGNN-100, [PGNN-100, [PGNNj,
PGNN-100] PGNN;] PGNN,] PGNN, ] PGNN, ] PGNN, ]
Bmpirical —0.24(0.40) _ —0.67 (0.01) —0.76 (0.00) —0.54 (0.05%) —0.57 (0.03) _ 0.35(0.23)
Prior 0.09(0.77)  -053(0.06) —-042(0.14) —0.47(0.09) -0.34(0.24)  0.28(0.33)

means. The P values test whether the means lie in the space of
dimensions 0, 1, or 2 (critical P value 0.05). The null hypothesis is
that the multivariate means of all data set sizes are equal, and
any difference observed in the multivariate means is random.

From Table C.19, PGNN; and PGNN, MANOVA results for the
Bohachevsky case study show a 1-dimensional statistically signif-
icant difference (P < 0.05) in the multivariate means for the three
prior scenarios. However, the multivariate means may lie on the
same line. From Table C.20, PGNN; and PGNN, MANOVA results
for the Ackley case study show a 2-dimensional statistically signif-
icant difference (P < 0.05) in the multivariate means for the three
prior scenarios. The multivariate means may lie on the same plane
in 2-dimensional space but not on the same line.

Qualitatively, the canonical analysis of the Bohachevsky case for
PGNN;j in Fig. C.1a, C.2a, and C.3a shows that: (a) data set size 200
is separate from and does not overlap the other data set sizes, (b)
data set size 600, 1000, and 2000 are overlapping, but with distinct
centers, (c) data set sizes 2000 and 4000 are not separable, (d) the
first canonical variable approximately separates data set sizes
200,600, 1000, and 2000, and (e) the second canonical variable,
does not show a clear separation between the data set sizes. The
canonical analysis of the Bohachevsky case for PGNN, in
Fig. C4a, C.5a, and C.6a approximately has the same results as
PGNN;.

Quantitatively, the Mahalanobis distance matrix of the Boha-
chevsky case for PGNN; and PGNN; in Fig. C.1b, C.2b, C.3b, C.4b,
C.5b, and C.6b confirms the canonical analysis findings and demon-
strates that the distance between the 2000 and 4000 is negligible
relative to the distances between other data set sizes. To assess if
the univariate distance between data set sizes is statistically signif-
icant, we perform a one-way analysis of variance (ANOVA) and a
multiple comparison test in SubSection D.

Qualitatively, the canonical analysis of the Ackley case for
PGNN; in Fig. C.7a, C.8a, and C.9a shows that: (a) all data set sizes
overlap with one or more other data set sizes, but each has a dis-
tinct center, (d) the first canonical variable approximately sepa-
rates the data set sizes into three groups (1) 200, (2) 600 and
1000, and (3) 2000 and 4000, and (e) the second canonical variable
does not show a clear separation between the data set sizes. The
canonical analysis of the Ackley case for PGNN, in Fig. C.10a,
C.11a, and C.12 approximately has the same results as the Canon-
ical analysis for PGNNj.

Quantitatively, the Mahalanobis distance matrix of the Ackley
case for PGNN; and PGNN, in Fig. C.7(b), C.8(b), C.9(b), C.10(b),
C.11(b), and C.12(b) confirms the canonical analysis findings and
demonstrates that the data set sizes can be separated into three
groups (1) 200, (2) 600 and 1000, and (3) 2000 and 4000. Note that
the distance between the 2000 and 4000 data set sizes is smaller
than the distance between the 600 and 1000 data set sizes. To
assess if the univariate distance between data set sizes is statisti-
cally significant, we perform a one-way ANOVA and a multiple
comparison test in SubSection D.

The MANOVA study shows a 1-dimensional statistically signifi-
cant difference (P < 0.05) in the multivariate empirical and prior-
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consistency means for the three prior scenarios in the Bohachevsky
case study. However, the Ackley case study has a 2-dimensional
statistically significant difference (P < 0.05) in the multivariate
means. The change in the dimensional difference of the multivari-
ate means between the Bohachevsky and Ackley functions is likely
due to (1) the functions’ complexity and (2) the value of the prior
per function.

A prior is likely to significantly impact the empirical and prior-
consistency errors as the function complexity increases with a
fixed data set size. The value of a prior in a given case study
depends on (1) the training data set size and (2) the correlation
between the empirical and the prior-consistency errors. If the data
set size is small relative to the function complexity, then a prior is
likely to be more useful in training and validating PGNNs, and vice
versa. Similarly, if there is a strong correlation between the empir-
ical and the prior-consistency errors, then a prior is likely to be
more useful in training and validating PGNNs. In SubSection 4.4,
we report and analyze the correlation between the empirical and
the prior-consistency errors for the Bohachevsky and the Ackley
functions.

For the Bohachevsky and Ackley functions, the canonical analy-
sis and Mahalanobis distance matrix for the proposed methods
with all three priors separated the 200 data set size results from
the other data sets for PGNN; and PGNN,. However, the 2000
and 4000 data set sizes were not separable for both functions.
The separation of the 200 data set size and lack of separation
between the 2000 and 4000 data set sizes are in line with previous
studies and show that as the data set size increases, the impact on
the empirical and prior-consistency errors reduces.

The canonical analysis and Mahalanobis distance matrix for the
proposed methods with all three priors approximately separated
the multivariate errors of the 600 and 1000 data set sizes for the
Bohachevsky, but not the Ackley function. A possible explanation
for the difference in multivariate error variance between the Boha-
chevsky and Ackley functions for the 600 and 1000 sample sizes is
that the Ackley function is more complex than the Bohachevsky
function. Since the Ackley function is more complex, smaller
changes in the data set size are likely to impact the multivariate
error performance less.

We conclude that the data set size can result in a 1-dimensional
or 2-dimensional statistically significant difference (P < 0.05) in
the multivariate empirical and prior-consistency means for convex,
and non-convex modeling problems up to a given data set size. The
functions’ complexity, the prior value, and the correlation between
the empirical and the prior-consistency errors dictate the magni-
tude of the multivariate difference between data set sizes.

4.3. Data set size univariate sensitivity study

This study examines if and how the data set size and the mod-
eling problem complexity affect the proposed methods’ effect on
the univariate empirical and prior-consistency RMSE performance.
We perform an ANOVA test (omitted but available upon request)
followed by a multiple comparison test using Tukey’s honestly sig-
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nificant difference procedure to determine which data set sizes sta-
tistically differ (P> 0.05, Table D.21). The ANOVA and multiple
comparison tests are performed on the Bohachevsky, and the Ack-
ley function results in SubSection 4.2.

For the Bohachevsky case study, the proposed methods (PGNN;
and PGNN,) have a statistically significant impact on the empirical
RMSE mean for the three prior scenarios up to a data set size of 600
samples. The prior-consistency error means for the initial and sym-
metry priors are statistically significantly different up to a data set
size of 600 samples. The boundary prior-consistency error mean is
statistically significantly different up to a data set size of 1000
samples.

For the Ackley case study, the proposed methods (PGNN; and
PGNN,) have a statistically significant impact on the empirical
RMSE means for all the prior scenarios up to a data set size of
4000 samples. The proposed methods (PGNN; and PGNN,) also
statistically significantly impact the prior-consistency RMSE means
for the initial prior scenario up to a data set size of 4000 samples.
For the boundary and symmetry prior scenarios, the proposed
methods have a statistically significant impact on the prior-
consistency RMSE means for data set sizes up to 2000 samples
(Table D.21). Now that we have confirmed that the proposed meth-
ods’ have a statistically significant impact on the empirical and
prior-consistency RMSEs for some data set sizes, we will assess if
there is a correlation between the data set size and the
empirical/prior-consistency RMSEs.

The ANOVA study and multiple comparison test results align
with previous studies; as the data set size increases, PGNN models
are less likely to impact the empirical and prior-consistency errors.
The proposed methods (PGNN; and PGNN,) have a statistically sig-
nificant impact on the empirical RMSE mean for the three prior
scenarios up to a data set size of 600 samples for the Bohachevsky
function and up to 4000 samples for the Ackley function. Similarly,
the prior-consistency error means for the Bohachevsky function do
not statistically differ for data set sizes larger than 600 for the ini-
tial and symmetry priors and 1000 samples for the boundary prior.
However, for the Ackley function, the prior-consistency error
means do not statistically differ for data set sizes larger than
4000 for the initial prior and 2000 for the boundary and symmetry
priors. The Bohachevsky function is convex with a unique mini-
mum and therefore requires a smaller training data set size relative
to the Ackley function, which is non-convex and multi-modal. The
difference in complexity between the two functions explains why
the empirical and prior-consistency error variance saturates at a
smaller data set size for the Bohachevsky function.

For data set sizes 1000 and larger, PGNN; for the Bohachevsky
function achieves the same empirical error mean across all the
three prior scenarios, indicating that with the proposed frame-
work, the number of hidden units set by PGNN; dictates the perfor-
mance, instead of the prior type/value. PGNN; empirical
performance with the Bohachevsky function for data set sizes
1000 and larger is also likely because of the use of a constant prior
weight instead of a tuned/adaptive weight in the loss function (Eq.
2).

Note that the initial prior is less beneficial than the boundary
and symmetry priors for the Bohachevsky function since the Boha-
chevsky function is convex. Hence, there is no statistically signifi-
cant impact on the empirical and prior-consistency RMSE means
for data sets larger than 600 samples.

We conclude this section by noting that the proposed methods
(PGNN; and PGNN,) affect the empirical and prior-consistency
RMSEs depending on the modeling problem complexity and data
set size. As the modeling problem complexity decreases and the
data set size increases, the proposed methods are less likely to
have a statistically significant impact (P> 0.05) on the empirical
and prior-consistency RMSE.

473

Neurocomputing 491 (2022) 464-488
4.4. Data set size and performance correlation study

The objective of this study is to determine the strength and
direction of correlation between the data set size and the empirical
and prior-consistency errors. We use Superman’s rank correlation
to measure the strength and direction of monotonic association
between the data set size and the empirical RMSE in the results
in SubSection 4.2. In Table E.22, we see a strong (p > 0.60) to very
strong (p > 0.80) statistically significant (P< 0.05) negative corre-
lation between the empirical RMSE and the data set size for the
three prior scenarios of the Bohachevsky and Ackley case studies.

Similarly, we use Superman’s rank correlation to measure the
strength and direction of monotonic association between the data
set size and the prior-consistency RMSE. From Table E.23, we see a
very strong (p > 0.80) statistically significant (P< 0.05) negative
correlation between the boundary and symmetry prior RMSE,
and the data set size for the three prior scenarios of the Boha-
chevsky and Ackley case studies. For the initial prior, there is a
weak (p > 0.30) statistically significant (P< 0.05) negative correla-
tion for the Bohachevsky case study and a strong (p > 0.60) statis-
tically significant (P< 0.05) negative correlation for the Ackley case
study.

The statistically significant (P< 0.05) negative correlation
between the data set size and the empirical and prior-
consistency RMSE is in line with previous studies. The weaker cor-
relation between the initial prior-consistency error and data set
size for the Bohachevsky function further supports the results
obtained in SubSection 4.3, which show that the initial prior is less
beneficial than the boundary and symmetry priors for the Boha-
chevsky function since the function is convex.

4.5. Empirical and prior-consistency error correlation study

This study aims to determine the strength and direction of cor-
relation between the empirical and prior-consistency errors across
the data set sizes examined in this work. A prior may not have
value or correlate to the empirical error where a sufficiently repre-
sentative training data set is available. Where the prior is valuable,
the relationship between the empirical and prior-consistency
errors can be a positive linear or monotonic correlation. The empir-
ical and prior-consistency errors may not be strongly correlated if
the prior is not significantly informative relative to the training
data (e.g., the initial prior scenario with the Bohachevsky function).
We use Superman’s rank correlation to measure the strength and
direction of monotonic association between the empirical RMSE
and the prior-consistency RMSEs from the data set size sensitivity
study results in SubSection 4.2. Table F.24 shows the correlation
and P value for the three prior case studies in the Bohachevsky
and the Ackley functions.

In Table F.24, for the Bohachevsky function, the reference and
proposed models have a very strong (p > 0.8) statistically signifi-
cant (P< 0.05) positive correlation between the empirical RMSE
and the prior-consistency RMSE for the boundary and symmetry
prior scenarios. For the initial prior scenario with the Bohachevsky
function, the proposed methods have a statistically significant
(P< 0.05) weak ([0.20,0.39]) to moderate ([0.40, 0.59]) positive cor-
relation between the empirical RMSE and the prior-consistency
RMSE. For the initial prior scenario with the Bohachevsky function,
the reference models NN—-100, PGNN—-65, and PGNN-100 have a
statistically significant (P< 0.05) weak ([0.20, 0.39]) positive corre-
lation between the empirical RMSE and the initial prior-
consistency RMSE. The reference model PGNN-30 has no statisti-
cally significant (P< 0.05) correlation between the empirical RMSE
and the initial prior-consistency RMSE.

In Table F.24, for the Ackley function, the reference and pro-
posed models have a very strong (p > 0.8) statistically significant
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(P< 0.05) positive correlation between the empirical RMSE and the
prior-consistency RMSE for the boundary and symmetry prior sce-
narios. For the initial prior scenario with the Ackley function, the
reference and proposed models have a statistically significant
(P< 0.05) strong positive correlation (p > 0.6) between the empir-
ical RMSE and the initial prior-consistency RMSE.

The correlation between the empirical RMSE and the prior-
consistency RMSE for the Bohachevsky and Ackley functions
mostly differ in the initial prior case study. The Bohachevsky func-
tion has a weak to moderate positive correlation, while the Ackley
function has a strong positive correlation. The correlation differ-
ence for the initial prior between the two functions is consistent
with the findings regarding the smaller benefit of the initial prior,
especially for the Bohachevsky function discussed in SubSections
4.4 and 4.3.

The data set size and correlation between the empirical and the
prior-consistency errors are also linked. For example, a boundary
prior is likely more beneficial for small data sets if a strong sym-
metrical two-dimensional monotonic relation between the func-
tion’s output and input data exists over the input data range up
to the boundary condition (e.g., Bohachevsky, Ackley, or Grie-
wank). On the other hand, the boundary prior can be less valuable
where the data set size is small and the correlation between the
empirical and prior-consistency errors is weak (e.g., Zakharov or
Three-hump Camel). The association between the data set size
and the value of the boundary prior accords with our earlier obser-
vations in SubSection 4.1, which showed better empirical/prior-
consistency RMSE mean error improvements for the Bohachevsky,
Ackley, and Griewank relative to the Zakharov and Three-hump
Camel functions.

In summary, these results show a statistically significant
(P< 0.05) positive correlation between the empirical RMSE and the
prior-consistency RMSE for the three prior scenarios of the Boha-
chevsky and Ackley case studies. The positive correlation between
the empirical RMSE and the prior-consistency RMSEs demonstrates
the importance of developing prior-consistent NNs. The positive cor-
relation between the empirical RMSE and the prior-consistency
RMSEs further supports using the prior-consistency error in the val-
idation performance index of PGNNs (PGNN,).

4.6. Hyperparameter sensitivity investigation

The objective of this investigation is to determine if the regular-
ization loss weight and the prior loss weight hyperparameters
impact the RMSE performance of the proposed methods and the
multivariate empirical and prior-consistency RMSE performance
difference between the reference and the proposed models. To per-
form this investigation, we train the reference and proposed mod-
els with different combinations of empirical and prior-consistency
weights and compare the multivariate empirical and prior-
consistency RMSEs via a two-sample Hotelling’s T test for inde-
pendent samples.

Throughout the results in this Subsection, the NN—-100 refer-
ence model was trained with a regularization weight p, = 1le — 3.
The PGNN-30, PGNN-65, PGNN—100, PGNN;, and PGNN, models
were trained with the following [p,, p,] loss weight combinations:
[le—3,1e — 4],[1e —3,1e — 6],[1le — 3,1e — 6],[1e — 5,1e — 4], and
[le — 7,1e — 4] (Table G.25 and G.27). All the models were trained
24 times with randomly initialized weights for the Bohachevsky
function using a training data set of 1000 samples.

The two-sample Hotelling’s T, test is sensitive to violations of
the assumption of equal variance and covariance. Therefore, we
must assess if the variance-covariance matrices statisitcally signif-
icantly differ to decide whether to perform a homoscedastic or a
heteroscedastic test. In this work, we use the multivariate statisti-
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cal test Box’s M (assuming multivariate normality) to check the
equality of multiple covariance matrices. The Box M test is sensi-
tive to violations of multivariate non-normality [30]. The tested
data does not have a univariate or multivariate normal distribution
(results omitted). However, instead of taking on a Chi, approxima-
tion, Box’s M test can take on an F-test approximation which is lar-
gely robust to normality violations [30,31]. Although the Chi,
approximation is more accurate for group sample sizes larger than
or equal to 20, we use the F-test approximation due to its robust-
ness to normality violations.

The null hypothesis for the Box M test is that the observed
covariance matrices for the dependent variables are equal across
groups. In other words, a non-significant test result (P> 0.05) indi-
cates that the covariance matrices are equal. If the covariance
matrices are not significantly different (homoscedastic) and the
groups’ sample size is at least 50, Hotelling’s T, test takes a Chi,
approximation; otherwise, it takes an F approximation. If the
covariance matrices are significantly different (heteroscedastic),
Hotelling’s T, test takes a Chi, approximation.

We perform the Box’s M and two-sample Hotelling’s T, tests to
assess if changing the prior weight or the regularization weight
affects the multivariate empirical and prior-consistency RMSEs of
the proposed models (Table G.26 and G.28).

The results from the prior weight 1e — 4 and the three regular-
ization weights (72 samples per model variant, 24 random weight
initializations by 3 regularization weights) were combined in a
group for each model variant, and the Box’s M and two-sample
Hotelling’s T, tests were applied to compare the models
(Table G.29). Finally, we combine the results from the three prior
weights and the three regularization weights for each model vari-
ant (144 samples per model variant, 24 random weight initializa-
tions by 3 regularization weights, and 24 random weight
initializations by 3 prior weights) and apply the Box’s M and
two-sample Hotelling’s T, tests (Table G.30).

We report the Box’s M statistic, Box’s M statistic P significance
level, T, statistic (F statistic or chi-square statistic), and T, statistic
P significance level. The hyperparameter investigation study
results in Table G.26 and G.28 show that PGNN; and PGNN, perfor-
mance for the Bohachevsky function is not statically significantly
affected by the prior loss weight or the regularization loss weight.
Table G.29 and G.30 show that the proposed methods PGNN; and
PGNN, have a statistically significant impact on the multivariate
empirical and prior-consistency error means relative to the refer-
ence models for different prior and regularization loss weights.

In conclusion, (1) the proposed methods are not affected by the
loss weight hyperparameters and (2) for a given set of hyperpa-
rameters, the proposed methods consistently improve the empiri-
cal and prior-consistency RMSE means relative to the reference
models (Table G.29 and G.30). The exception to the empirical and
prior-consistency RMSE mean improvements is for the initial prior
case study, where there is no statically significant difference in the
multivariate empirical and prior-consistency RMSE performance
between PGNN, and PGNN-100. The lack of statically significant
difference in the multivariate errors is consistent with the findings
regarding the smaller benefit of the initial prior especially for the
Bohachevsky function discussed in SubSections 4.4, 4.3, and 4.5.

5. Conclusion

The literature on physics-guided NNs (PGNN) shows that when
PGNNSs are expertly tailored to specific problems, they can perform
better than traditional NNs for small and noisy synthetic/experi-
mental data sets. Expertly tailored PGNNs have also been used as
computationally-efficient and accurate counterparts to physics-
based numerical simulations [16,32]. However, the need for expert
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knowledge to tailor the PGNN structure (number of hidden layers
and units) limits the applications and objectivity of PGNNs [15,16].

In this investigation, the aim was to develop and statistically
test a systematic framework to optimize the structure of PGNNs
while ensuring empirical generalizability and prior-consistency.
We propose a framework to optimize the number of hidden units
via a line search and cross-validation using the empirical error to
eliminate data-set/model-structure application dependency
(PGNN;y). In addition to using the prior-knowledge in the model
training step, we propose utilizing the prior errors as part of the
cross-validation performance index to reinforce prior-consistency
(PGNN,). The third contribution of this work was to perform statis-
tical analysis on the empirical and prior-consistency error perfor-
mance of PGNNs under varying settings to determine when and
why the proposed methods are effective.

Optimizing the network architecture (PGNN;) with repeated
cross-validation statistically significantly improves the empirical
and prior-consistency RMSE means relative to the reference mod-
els by selecting the number of hidden units with the smallest
empirical error. However, a limitation of PGNN; is the possibility
of a larger hidden unit quantile range across random model weight
initialization. The PGNN; limitation is hypothesized to be due to
the data set size versus the function’s complexity and the untuned
hyperparameters.

Using the prior-knowledge and the empirical error in the valida-
tion process, PGNN, statistically improves the empirical and prior-
consistency RMSE mean and variance relative to the reference mod-
els. By incorporating the prior-consistency error in the validation
performance index, PGNN, re-enforces prior-consistency. PGNN,
outperforms (empirical/prior error mean and variance) PGNN; rela-
tive to the reference models by selecting a suitable number of hidden
units to avoid under-fitting or over-fitting depending on the train-
ing/prior data landscape versus the data set size. Further, the posi-
tive correlation between the empirical RMSE and the prior-
consistency RMSEs supports utilizing the prior-consistency error
in the validation performance index of PGNNs (PGNN,).

The data set size investigation has shown that PGNNs result in a
1-dimensional or 2-dimensional statistically significant difference
(P < 0.05) in the multivariate empirical and prior-consistency
means for convex and non-convex modeling problems up to a
2000 sample data set size. The univariate analysis has shown a sta-
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tistically significant difference (P < 0.05) in the empirical and
prior-consistency errors for up to sample data set size 4000 and
2000, respectively. The functions’ complexity, the prior value,
and the correlation between the empirical and the prior-
consistency errors dictate the magnitude of the multivariate differ-
ence between data set sizes. In the hyperparameter sensitivity
investigation, we show that the proposed methods are not affected
by the loss weight hyperparameters and consistently improve the
empirical and prior-consistency RMSE means relative to the refer-
ence models.

Future work includes investigating practical applications, multi-
prior loss functions, prior adaptive weighing, and the boundary data
set size effect on the performance of PGNNs. Additional studies
should focus on the relationship between the prior type/value and
the modeling problem landscape complexity to develop a complete
picture of the importance of priors in the context of PGNNs.

CRediT authorship contribution statement

Mohamed Atwya: Conceptualization, Methodology, Software,
Validation, Formal analysis, Investigation, Data curation, Writing
- original draft, Writing - review & editing, Visualization. George
Panoutsos: Conceptualization, Writing - review & editing, Super-
vision, Funding acquisition.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.
Acknowledgment

This work was supported by The University of Sheffield and the

UK EPSRC Future Manufacturing Hub - Manufacture using
Advanced Powder Processes (MAPP) through Grant EP/P006566/1.

Appendix A. Benchmark functions

The 14 benchmark functions studied in this work are presented
in Table A.10.

The 14 benchmark functions and their corresponding input ranges used for test the empirical and prior-consistency RMSEs of the proposed methods.

Benchmark Function Function y(x1,x2) X; range X, range
McCormick SinX; + Xy + (X1 — X2)? — 1.50%; + 2.50x; + 1.00 [-1.50,4.00] [-3.00,4.00]
Griewank X2 /4000.00 -+ x2 /4000.00 — cos x; cos (xz /\/2.00) +1.00 [-5.00,5.00] [-5.00,5.00]
Ackl ~5.00,5.00 ~5.00,5.00
ckley ~20exp [-0.2,/05(¢ + )| [ I [-5.00,5.00]
—exp [0.5(cos (271 ) 4 cos (27X;3)] 4+ exp(1) + 20
Branin (x2 — (5.10/(4.0072))x% + (5.00/7)x; — 6.00) + (—5.00,10.00] (0.00,15.00]
10.00(1 — (1/(8.00m))) cos(x) + 10
Styblinski-Tang (x1* — 16.00x? + 5.00x; + x3 — 16.00x3 + 5.00x;) /2 [~5.00,5.00] [~5.00,5.00]
Booth (X1 +2.00x; — 7.00)% + (2.00%; + X, — 5.00)? (~10.00,10.00] (~10.00,10.00]
Three-hump Camel 2.00x% - 1.05)(‘1l +x5/6.00 + X1 X, + x% [~5.00,5.00] [-5.00,5.00]
Bukin N.6 100.00,/|x, — 0.01x3| 4 0.01|x; + 10.00] [-15.00, -5.00] [-3.00,3.00]
Himmelblau’s (02 + %2 — 11.00)% 4 (x; + 23 — 7.00)° [~5.00,5.00] (~5.00,5.00]
Zakharov X2 + 23 + (0.50%; +X2)% + (0.50%; +xp)* [~5.00,10.00] [-5.00,10.00]
Bohachevsky xf + 2x§ — 0.3 cos (37x;) — 0.4 cos (4mx,) + 0.7 [—100.00, 100.00] [~100.00, 100.00]
Rosenbrock ]00‘00()(2 _ X%)Z +(1.00 — x; )2 [-5.00,10.00] [-5.00,10.00]
Beale (150 — x1 +x1%2)% + (2.25 — %1 +x132)° + (2.625 — %1 + x123)° (-4.50,4.50] (-4.50,4.50]
Goldstein-Price [~2.00,2.00] (~2.00,2.00]

[1 .00 + (%1 +X; +1.00)2(19.00 — 14.00x; + 3.00x? — 14.00x,

+6.00%; %, +3.00x2)] x [30‘00 +(2.00x; — 3.00x,)2 + (18.00
—32.00%; + 12.00x2 + 48.00x; — 36.00x; %, +27.00x2)]
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Appendix B. Benchmark functions statistical tests the reference models (Tables 3 and 4). Similarly, Tables B.13,
B.14, B.15, and B.16 present the two-sample F-test for equal vari-
Tables B.11 and B.12 present the independent two-sample mul- ance results for the percentage change in the variance of the

tivariate Hotelling’s test on the percentage change in the empirical empirical and prior-consistency RMSEs between the proposed
and prior-consistency RMSEs between the proposed methods and methods and the reference models (Tables 5 and 6).

Table B.11

Independent two-sample multivariate Hotelling’s test of the empirical and prior-consistency RMSEs for the 14 benchmark functions comparing the proposed methods to the
reference methods using 24 random weight initializations per model variant and a training data set of 1000 samples. The regularization weight for the NN model was set to
1e — 3. The regularization and prior weights for the PGNN models were set to 1e — 5 and 1e — 6. P values are shaded to indicate a statistically significant difference between the
values (critical P value 0.05).

Benchmark [NN,PGNN-100] [NN,PGNN; ] [NN,PGNN,]
Function F P T? p F P T? P F p T? P
McCormick 046 071 497 016 932 0.00 020 09 176 0.15 466 0.11
Griewank 090 044 073 070 610 0.00 790 002 451 000 791 0.02
Ackley 1.05 037 046 080 043 073 823 002 027 085 4195 0.0
Branin 043 073 000 100 036 078 143 050 0.68 056 691 0.04
Styblinski-Tang 030 082 064 073 061 061 014 093 0.66 058 251 030
Booth 096 041 229 034 1.09 035 333 021 205 010 223 035
Three-hump Camel 220 0.09 177 043 3.8 0.01 523 0.07 358 001 729 003
Bukin N.6 135 026 096 063 234 007 1.78 043 097 041 026 088
Himmelblau’s 041 075 0.16 092 1381 0.00 471 009 555 000 320 020
Zakharov 034 079 036 084 545 000 339 018 330 002 390 0.14
Bohachevsky 0.67 057 080 068 054 065 637 005 073 053 867 002
Rosenbrock 0.11 095 0.15 093 351 0.0l 465 010 0.60 062 148 049
Beale 1.18 032 355 0.9 207 010 243 031 245 006 459 0.12

Goldstein—Price 091 044 160 046 327 0.02 1138 0.00 336 0.02 11.62 0.00

Table B.12

Independent two-sample multivariate Hotelling’s test of the empirical and prior-consistency RMSEs for the 14 benchmark functions comparing the proposed methods to
thereference methods using 24 random weight initializations per model variant and a training data set of 1000 samples. The regularization weight for the NN model was set to
1e — 3. The regularization and prior weights for the PGNN models were set to 1e — 5 and 1e — 6. P values are shaded to indicate a statistically significant difference between the
values (critical P value 0.05).

Benchmark [PGNN-100,PGNN; ] [PGNN-100,PGNN,] [PGNN;,PGNN,]
Function F p T? P F P T? P F p T? p
McCormick 7.73 0.00 3.89 0.14  2.65 0.05% 1440 0.00 11.12  0.00 1.63 0.44
Griewank 4.79 0.00 1234 0.00 4.83 0.00 12.67 0.00 0.89 045 0.85 0.66
Ackley 0.35 0.79 436 0.13 093 042 3587 0.00 0.70 0.55 1493 0.00
Branin 1.13 036 1.36 052 1.70 0.16 7.56 0.03 0.77 0.51 451 0.12
Styblinski-Tang 0.16 092 096 0.63 090 045 0.78 0.69 1.75 0.16 3.12 0.23
Booth 0.49 0.69  9.86 0.01 050 0.68 886  0.02 027 085 0.14 0.93
Three-hump Camel 1.87 0.13 322 022 204 0.11 1.88 0.41 0.12 099 1.81 0.42
Bukin N.6 1.62 0.18 241 032 074 053 1.43 0.50 1.93 0.12  0.61 0.74
Himmelblau’s 12.80 0.00 852 0.1 530 0.00 6.11 0.05* 3.23 0.02 211 0.35
Zakharov 373 0.01 432 0.12 199 0.11 5.61 0.08 0.90 044 190 0.40
Bohachevsky 1.29 0.28 = 8.09 0.03 204 0.11 9.70 0.01 0.14 094 0.83 0.67
Rosenbrock 352 0.01 652 004 071 0.55 231 0.33 1.55 0.20 0.95 0.63
Beale 0.70 055 142 050 131 0.27 3.63 0.18 0.13 095 0.60 0.75

Goldstein—Price 342 0.02 6.11 0.05* 331 002 6.04 005 0.10 0.96 0.08 0.96
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Two-sample F-test for equal variances of the empirical RMSE across the model variants for the 14 benchmark functions using 24 random weight initializations per model variant
and a training data set of 1000 samples. The regularization weight for the NN model was set to 1e — 3. The regularization and prior weights for the PGNN models were set to

1le —5 and 1e — 6. P values are shaded to indicate a statistically significant difference between the values (critical P value 0.05).

Benchmark [NN-100,PGNN-100] [NN-100,PGNN;] [NN-100,PGNN;]
Function F p F p F p
McCormick 0.68 0.37 0.10 0.00 1.26 058
Griewank 1.07 0.88 3.78 0.00 334 001
Ackley 0.55 0.15 0.79 0.57 091 0.81
Branin 0.71 042 0.93 0.87 095 0.89
Styblinski-Tang 1.17  0.71 1.19 0.67 1.00 099
Booth 0.76 052 124  0.61 1.03 095
Three-hump Camel 2.18 0.07 4.35 0.00 412 0.00
Bukin N.6 0.49 0.09 0.77 0.54 0.76 052
Himmelblau’s 1.03 094 20.84 0.00 6.11 0.00
Zakharov 1.54 031 4.14  0.00 285 0.02
Bohachevsky 0.81 0.61 1.53 0.31 1.65 0.24
Rosenbrock 1.03 094 4.17 0.00 1.68 0.22
Beale 0.76 052 1.20 0.67 1.55 030
Goldstein—Price 1.20 0.66 241 0.04 292 0.01

Table B.14

Two-sample F-test for equal variances of the empirical RMSE across the model variants for the 14 benchmark functions using 24 random weight initializations per model variant
and a training data set of 1000 samples. The regularization weight for the NN model was set to 1e — 3. The regularization and prior weights for the PGNN models were set to

le —5 and le — 6. P values are shaded to indicate a statistically significant difference between the values (critical P value 0.05).

Benchmark [PGNN-100,PGNN;] [PGNN-100,PGNN;] [PGNN;,PGNN;]
Function F P F P F P
McCormick 0.16 0.00 247 0.03 15.18 0.00
Griewank 2.20  0.06 1.66 0.23 0.76 0.51
Ackley 091 0.33 1.46 0.37 1.60 0.27
Branin 0.89 0.79 1.12  0.78 1.26 0.58
Styblinski-Tang 0.97 094 1.20 0.67 1.24 0.62
Booth 1.35 048 1.64 0.24 1.22 0.64
Three-hump Camel = 2.34  0.05% 227 0.05 097 095
Bukin N.6 2.08 0.09 1.43 040 0.69 0.38
Himmelblau’s 5.17 0.00 3.23 0.01 0.62 0.27
Zakharov 4.12 0.00 2.83 0.02 0.69 0.37
Bohachevsky 0.95 0.89 0.85 0.70 0.90 0.80
Rosenbrock 222 0.06 1.77 0.18 0.80 0.59
Beale 1.45 0.38 1.81 0.16 1.25 0.60
Goldstein—Price 1.42 041 1.72  0.20 1.21 0.65
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Two-sample F-test for equal variances of the boundary prior-consistency RMSE across the model variants for the 14 benchmark functions using 24 random weight initializations
per model variant and a training data set of 1000 samples. The regularization weight for the NN model was set to 1e — 3. The regularization and prior weights for the PGNN
models were set to 1e — 5 and 1e — 6. P values are shaded to indicate a statistically significant difference between the values (critical P value 0.05).

Benchmark [NN-100,PGNN-100] [NN-100,PGNN;] [NN-100,PGNN,]
Function F P F P F P
McCormick 0.81 0.61 0.13 0.00 200 0.10
Griewank 1.12  0.79 246 0.04 1.86 0.15
Ackley 098 097 090 0.80 144  0.39
Branin 0.82 0.64 0.73 046 092 0.85
Styblinski-Tang 087 0.73 0.84 0.67 1.03 094
Booth 1.55  0.30 209 0.08 254 0.03
Three-hump Camel 1.65 0.24 3.85 0.00 3.74 0.00
Bukin N.6 0.61 0.25 1.27 057 0.88 0.76
Himmelblau’s 1.19  0.69 6.13 0.00 3.83 0.00
Zakharov 141 041 5.83 0.00 4.00 0.00
Bohachevsky 1.25 0.59 1.19 0.69 1.26 0.88
Rosenbrock 0.84 0.67 1.85 0.15 148 0.36
Beale 0.66 032 095 091 1.19 0.68
Goldstein—Price 1.38 045 196 0.11 237 0.04

Table B.16

Two-sample F-test for equal variances of the boundary prior-consistency RMSE across the model variants for the 14 benchmark functions using 24 random weight initializations
per model variant and a training data set of 1000 samples. The regularization weight for the NN model was set to 1e — 3. The regularization and prior weights for the PGNN
models were set to 1e — 5 and 1e — 6. P values are shaded to indicate a statistically significant difference between the values (critical P value 0.05).

Benchmark [PGNN-100,PGNN;] [PGNN-100,PGNN;] [PGNN;,PGNN;]
Function F P F P F P
McCormick 0.14  0.00 1.85 0.15 13.29  0.00
Griewank 354  0.00 3.12  0.01 0.88  0.77
Ackley 144 0.39 1.66 0.23 1.15 0.74
Branin 1.31 0.52 1.33  0.50 1.01 0.98
Styblinski-Tang 1.02 0.96 0.86 0.72 0.84  0.68
Booth 1.63 0.25 1.35 048 0.83 0.65
Three-hump Camel  1.99 0.11 1.89 0.13 0.95 0.90
Bukin N.6 1.59 0.27 1.57 0.29 099 098
Himmelblau’s 20.14  0.00 590 0.00 029  0.00
Zakharov 2.69 0.02 1.85 0.15 0.69 038
Bohachevsky 1.90 0.13 205 0.09 1.08 0.86
Rosenbrock 4.04 0.00 1.62  0.25 0.40 0.03
Beale 1.58 0.28 204 0.09 1.29 0.55
Goldstein—Price 2.00 0.10 243  0.04 1.22 0.64
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Appendix C. Data set size sensitivity MANOVA study

Tables C.17 and C.18 present the empirical and prior-
consistency RMSEs for the Bohachevsky and the Ackley functions
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with different data set sizes. Tables C.19 and C.20 present the
one-way Multivariate Analysis of Variance (MANOVA) results for
the Bohachevsky and Ackley case studies, respectively. Figs. C.1a,
C.2a, C.3a, C4a, C.53, and C.6a demonstrate the canonical analysis

Table C.17
Empirical and prior-consistency RMSE data set size study for the Bohachevsky case study using a regularization weight of 1e — 5 and a prior weight of 1e — 6.
Model Type Prior Scenario 1 Scenario 2 Scenario 3
Weight Empirical Error Prior; Empirical Prior, Empirical Priors
NN-100 66.02 +14.75 174.86 +39.55 66.02 + 14.75 66.35 +41.32 66.02 + 14.75 81.64 +21.72
PGNN-30 118.07 +24.08 264.62 +74.78 118.08 + 25.20 76.82 +70.93 118.58 +25.19 141.93 + 31.46
PGNN-65 76.58 £13.72 191.64 +37.77 76.11 £13.05 63.31 +40.69 76.61 +13.52 96.33 +20.01
200 PGNN-100 65.24 +13.26 173.57 £ 33.37 65.24 +13.26 70.79 + 48.33 65.24 + 13.26 80.64 +20.27
PGNN; 62.97 +11.62 167.72 +29.03 60.13 +8.43 68.43 +40.33 62.02 +10.26 76.08 + 14.98
PGNN, 60.66 +9.76 159.63 +29.69 64.82 +£12.68 57.92 +44.83 59.71 £ 8.37 72.63 +12.00
NN-100 25.95+4.36 55.03 +10.03 25.95 +4.36 26.54 +24.69 25.95 +4.36 32.68 +5.39
PGNN-30 67.25 +14.93 124.81 +21.03 67.24 £ 14.94 62.38 +43.80 67.27 +14.93 67.75+18.84
PGNN-65 35.23+6.79 72.22+18.84 3532+7.11 40.20 +24.10 3537+7.15 4124 +7.71
600 PGNN-100 26.60 +4.86 55.44 +11.73 26.60 + 4.86 26.02 +20.74 33.30+6.46 33.30+6.46
PGNN; 22.36+2.78 46.42 +7.80 2227 +£3.21 31.36 +22.68 22.59 +2.92 28.03 +3.88
PGNN, 22.81+3.08 4591 +6.76 24.44 +£424 19.03 £13.58 22.50 +3.20 27.60 +4.37
NN-100 21.11 £3.67 40.42 +£8.17 21.11 +£3.67 23.78 +16.67 21.11+3.67 27.86 +5.55
PGNN-30 61.78 + 15.65 111.01 +29.81 61.79 + 15.67 63.19 +44.10 61.79 + 15.67 63.72 + 24.58
PGNN-65 27.83 +£4.40 50.57 +10.19 27.83 +£4.40 28.12 +19.00 27.83 +4.40 34.48 +6.80
1000 PGNN-100 21.74 +4.08 40.57 £7.29 21.74 +£4.08 23.56 +17.01 21.74 +4.08 28.35+6.19
PGNN; 19.06 +2.96 34.73 £7.50 19.06 +2.96 26.88 +17.88 19.06 +2.96 24.52 +4.42
PGNN, 19.21+2.85 33.73+£791 20.95 +3.89 27.32 +15.56 19.44 +3.00 24.58 +4.43
NN-100 19.33 £3.53 33.42 +7.01 19.33 £3.53 28.73 +£17.92 19.33 +£3.53 2482 +4.71
PGNN-30 59.33+18.24 100.96 +31.15 59.33+18.24 83.02 +42.94 59.33+18.24 58.11+25.85
PGNN-65 2530+4.84 4319+7.77 2530+ 4.84 29.70 +15.25 2530+4.84 30.30+7.85
2000 PGNN-100 19.39 +£3.74 33.88 +8.74 19.39+3.74 28.98 +16.24 19.39+3.74 25.24+5.16
PGNN;4 16.16 £2.27 26.66 +5.36 16.16 £2.27 23.20 + 14.65 16.16 £2.27 19.95+3.49
PGNN, 16.27 +£2.34 26.10 +£5.31 17.97 £2.71 17.81+8.10 15.94 +1.68 19.63 +£2.76
NN-100 19.18 £3.32 33.35+6.52 19.18 £3.32 23.69 +11.50 19.18 £3.32 2436 +4.41
PGNN-30 61.54 +14.82 104.46 + 27.65 61.54 +14.82 78.11 + 48.07 61.54 + 14.82 58.15+21.03
PGNN-65 24.54 +4.83 43.61+8.11 2454 +4.83 27.28 +14.90 24.54 +4.83 28.41 +8.29
4000 PGNN-100 18.70 £3.37 33.31+6.85 18.70 +£3.37 27.32+16.09 18.70 +£3.37 23.75+4.19
PGNN; 16.29 +2.31 27.38 +4.21 16.29 +2.31 22.87 +£10.57 16.29 +2.31 20.00 +3.34
PGNN; 16.14 +2.16 26.81 +4.07 18.23 +£2.57 17.44 +9.63 16.55+2.54 19.99 +3.50
Table C.18
Empirical and prior-consistency RMSE data set size study for the Ackley case study using a regularization weight of 1e — 5 and a prior weight of 1e — 6.
Model Type Prior Scenario 1 Scenario 2 Scenario 3
Weight Empirical Error Prior, Empirical Prior, Empirical Priors
NN-100 0.65 +0.01 1.22 +£0.04 0.65 +0.01 2.93+0.31 0.65 +0.01 0.27 +£0.03
PGNN-30 0.64 +0.01 1.17 £ 0.04 0.64 +£0.01 3.334+0.22 0.64 +£0.01 0.26 +0.03
PGNN-65 0.64 +0.01 1.18 £ 0.04 0.64 +0.01 3.11+0.25 0.64 +0.01 0.28 +0.03
200 PGNN-100 0.65 +0.01 1.21+0.04 0.65 +0.01 291+033 0.65 +0.01 0.27 +£0.03
PGNN; 0.64 +0.01 1.18 £0.04 0.64 +0.01 3.12 +0.31 0.64 +0.01 0.27 +£0.03
PGNN, 0.63 +£0.01 1.134+0.04 0.64 +0.01 2.75+0.27 0.64 +£0.01 0.26 +0.02
NN-100 0.59 +0.01 1.07 £0.03 0.59 +0.01 2.06 +£0.29 0.59 +0.01 0.21+0.02
PGNN-30 0.60 +0.01 1.04 +0.03 0.60 + 0.01 2.66 +0.24 0.60 + 0.01 0.20 +0.02
PGNN-65 0.59 +0.01 1.05 +0.04 0.59 +0.01 2.25+0.32 0.59 +0.01 0.21 +£0.02
600 PGNN-100 0.59 4+ 0.01 1.07 £0.03 0.59 +0.01 2.01+0.29 0.59 +0.01 0.21+0.01
PGNN; 0.59+0.01 1.04 +0.03 0.59 +0.01 2.19+0.29 0.59 +0.01 0.20 + 0.01
PGNN, 0.59+0.01 1.02 +0.02 0.59 +0.01 1.96 +0.24 0.59 +0.01 0.20 +0.01
NN-100 0.59 £ 0.00 1.01 £0.02 0.59 £+ 0.00 1.76 £0.27 0.59 + 0.00 0.18 £0.02
PGNN-30 0.59 +0.01 0.99 + 0.04 0.59 +0.01 2.55+0.24 0.59 +0.01 0.18 +£0.02
PGNN-65 0.59 +0.01 0.98 +0.02 0.59 +0.01 2.08 +0.24 0.59 +0.01 0.18 +£0.02
1000 PGNN-100 0.59+0.01 1.00 +0.02 0.59 +£0.01 1.79+£0.31 0.59 +£0.01 0.19 £0.02
PGNN; 0.58 +0.00 0.99 +0.02 0.58 +0.00 1.99 +0.21 0.58 +0.00 0.18 +£0.01
PGNN, 0.58 +0.00 0.97 +£0.02 0.59 +0.01 1.71+0.27 0.58 +0.00 0.17 +£0.01
NN-100 0.57 +£0.01 0.92 +0.05 0.57 +£0.01 1.91+022 0.57 +£0.01 0.15 +0.02
PGNN-30 0.59 +0.01 0.92 +0.03 0.59 +0.01 2.55+0.20 0.59 +0.01 0.15 +0.03
PGNN-65 0.58 +-0.01 0.91+0.03 0.58 +-0.01 2.19+0.22 0.58 +0.01 0.14 +0.02
2000 PGNN-100 0.57 +£0.01 0.92 +0.03 0.57 +£0.01 1.91+028 0.57 +£0.01 0.14 +0.01
PGNN; 0.57 +£0.01 0.91 +£0.05 0.57 +£0.01 1.98 +0.37 0.57 +£0.01 0.13 +£0.01
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Table C.18 (continued)

Model Type Prior Scenario 1 Scenario 2 Scenario 3
Weight Empirical Error Priory Empirical Prior; Empirical Priors
PGNN, 0.57 +0.01 0.91 +0.05 0.57 +0.01 1.88+0.32 0.57 +0.01 0.12 +0.01
NN-100 0.57 +0.02 0.93 + 0.06 0.57 +0.02 1.69+0.35 0.57 +0.02 0.14+0.03
PGNN-30 0.58 +0.00 0.91+0.03 0.58 +0.00 229+0.18 0.58 +0.00 0.14 +0.02
PGNN-65 0.57 +0.01 0.91+0.03 0.57 +0.01 1.88+0.24 0.57 +0.01 0.13 +0.02

4000 PGNN-100 0.57 +0.02 0.93 + 0.06 0.57 +0.02 1.63+0.33 0.57 +0.01 0.14 +£0.02
PGNN; 0.56 +0.01 0.89 +0.02 0.56 +0.01 1.594+0.27 0.56 +0.01 0.13 +£0.02
PGNN, 0.56 +0.01 0.88 +0.02 0.56 +0.01 1.48 +£0.24 0.56 +0.01 0.12 +0.01

Table C.19

MANOVA results across the five data sizes for the Bohachevsky case study using a regularization weight of 1e — 5 and a prior weight of 1e — 6. Scenarios 1, 2, and 3 correspond to
the different priors. P values are shaded to indicate a statistically significant difference (critical P value 0.05).

Model Type Scenario 1 Scenario 2 Scenario 3
Dimension P; P, Dimension P, P, Dimension P, P,
PGNN; 1 0.00 090 1 0.00 099 1 0.00 0.35
PGNN;, 1 0.00 082 1 0.00 035 1 0.00 052
Table C.20

MANOVA results across the five data sizes for the Ackley case study using a regularization weight of 1e — 5 and a prior weight of 1e — 6. Scenarios 1, 2, and 3 correspond to the
different priors. P values are shaded to indicate a statistically significant difference between the means (critical P value 0.05).

Model Type Scenario 1 Scenario 2 Scenario 3
Dimension P; P, Dimension P, P, Dimension P, P,
PGNN; 2 0.00 000 2 0.00 0.00 2 0.00 0.00
PGNN, 2 0.00 000 2 0.00 0.00 2 0.00 0.00
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Fig. C.1. MANOVA study results for PGNN; using the Bohachevsky function and the boundary prior: (a) Canonical analysis scatter plot and (b) Mahalanobis distances between
sample size means.

of the Bohachevsky case study. Figs. C.1b, C.2b, C.3b, C.4b, C.5b, and lanobis distance matrix for the Bohachevsky case study.
C.6b demonstrate the canonical analysis of the Ackley case study. Figs. C.7b, C.8b, C.9b, C.10b, C.11b, and C.12b demonstrate the
Figs. C.1b, C.2b, C.3b, C.4b, C.5b, and C.6b demonstrate the Maha- Mahalanobis distance matrix of the Ackley case study.

480



M. Atwya and G. Panoutsos Neurocomputing 491 (2022) 464-488

Sample size
[+ 200 + 600 - 1000 + 2000 - 4000 S \QQQ (]9@ @QQ
10 F 5 T . T = T .c ]
* . 200 7140 83.95 96.21 95.63
= .. . 80
9 L4 . L o e 8
< 5| - . * ] Ry 7140 g
g . B 60 %
T 2 1000 EEKE 2
(&) [¢}
‘€ . IS 40 §
c 0 . ° o e 1 © ©
S TR qs- D 2000 [EPEN 1.85 042 000 0.00 <
O . -',-':‘} N 20 =
5 . 4000 JERNRM 1.78 038 0.00 0.00
» 2 N v X 0
Canonical variable 2
(a) (b)

Fig. C.2. MANOVA study results for PGNN; using the Bohachevsky function and the initial prior: (a) Canonical analysis scatter plot and (b) Mahalanobis distances between
sample size means.
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Fig. C.3. MANOVA study results for PGNN; using the Bohachevsky function and the symmetry prior: (a) Canonical analysis scatter plot and (b) Mahalanobis distances
between sample size means.
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Fig. C.4. MANOVA study results for PGNN, using the Bohachevsky function and the boundary prior: (a) Canonical analysis scatter plot and (b) Mahalanobis distances between
sample size means.
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Fig. C.5. MANOVA study results for PGNN, using the Bohachevsky function and the initial prior: (a) Canonical analysis scatter plot and (b) Mahalanobis distances between
sample size means.
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Fig. C.6. MANOVA study results for PGNN, using the Bohachevsky function and the symmetry prior: (a) Canonical analysis scatter plot and (b) Mahalanobis distances
between sample size means.
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Fig. C.7. MANOVA study results for PGNN; using the Ackley function and the boundary prior: (a) Canonical analysis scatter plot and (b) Mahalanobis distances between
sample size means.
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Fig. C.8. MANOVA study results for PGNN; using the Ackley function and the initial prior: (a) Canonical analysis scatter plot and (b) Mahalanobis distances between sample

size means.
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Fig. C.9. MANOVA study results for PGNN; using the Ackley function and the symmetry prior: (a) Canonical analysis scatter plot and (b) Mahalanobis distances between

sample size means.
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Fig. C.10. MANOVA study results for PGNN, using the Ackley function and the boundary prior: (a) Canonical analysis scatter plot and (b) Mahalanobis distances between

sample size means.
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Fig. C.11. MANOVA study results for PGNN, using the Ackley function and the initial prior: (a) Canonical analysis scatter plot and (b) Mahalanobis distances between sample
size means.
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Fig. C.12. MANOVA study results for PGNN, using the Ackley function and the symmetry prior: (a) Canonical analysis scatter plot and (b) Mahalanobis distances between
sample size means.
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Appendix D. Data set size ANOVA and multiple comparison test
study

Table D.21 presents the multiple comparison test results using

Tukey’s honestly significant difference procedure on the ANOVA
test results (omitted but available upon request).

Table D.21

Neurocomputing 491 (2022) 464-488

Appendix E. Data set size and RMSE performance correlation
study

Tables E.22 and E.23 present the strength and direction of cor-
relation between the data set size and the empirical and prior-
consistency errors using Superman’s rank correlation and the
results from the data set size sensitivity study in SubSection 4.2.

Multiple comparison test of the empirical and prior-consistency RMSEs across the five data sizes for the three prior scenarios of the Bohachevsky and Ackley case studies.The
model hyperparameters for this test include a regularization weight of 1e — 5 and a prior weight of 1e — 6. P values are shaded to indicate a statistically significant difference

between the means (critical P value 0.05).

Model Type  Data set size Empirical RMSE P values Prior-consistency RMSE P values

compared Bohachevsky Scenario Ackley Scenario Bohachevsky Scenario Ackley Scenario
1 2 3 1 2 3 1 2 3 1 2 3

[200, 600] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
[200, 1000] 0.00 0.00 0.00 0.00 0.00 000 0.00 0.00 0.00 0.00 0.00 0.00
[200, 2000] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 000 0.00 0.00 0.00 0.00
[200, 4000] 0.00 0.00 0.00 0.00 0.00 000 0.00 0.00 0.00 0.00 0.00 0.00

PGNN; [600, 1000] 027 0.10 0.13 022 030 028 0.04 097 049 0.00 0.12 0.00
[600, 2000] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 075 0.00 0.00 0.09 0.00
[600, 4000] 0.00 0.00 0.00 0.00 0.00 000 0.00 072 0.00 0.00 0.00 0.00
[1000,2000] 040 0.17 0.30 0.00 0.00 0.00 029 098 022 0.00 1.00 0.00
[1000,4000] 045 0.21 0.34 0.00 0.00 000 038 098 0.23 0.00 0.00 0.00
[2000,4000] 1.00 1.00 1.00 0.00 0.00 0.00 1.00 1.00 1.00 021 0.00 1.00

________ [200,600] 000 0.0 0.00 000 000 000 000 000 000 000 000 000

[200, 1000] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 000 0.0 0.00 0.00 0.00
[200, 2000] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 000 0.00 0.00 0.00 0.00
[200, 4000] 0.00 0.00 0.00 0.00 0.00 000 0.00 0.00 0.00 0.00 0.00 0.00

PGNN, [600, 1000] 0.09 034 0.13 043 0.00 029 0.03 072 047 0.00 0.02 0.00
[600, 2000] 0.00 0.01 0.00 0.00 089 0.00 0.00 1.00 0.00 0.00 0.87 0.00
[600, 4000] 0.00 0.01 0.00 0.00 0.00 000 0.00 1.00 0.00 0.00 0.00 0.00
[1000,2000] 0.25 0.50 0.06 0.00 0.00 0.00 036 060 0.06 0.00 0.20 0.00
[1000,4000] 0.21 0.59 0.17 0.00 0.00 0.00 046 0.56 0.10 0.00 0.03 0.00
[2000,4000] 1.00 1.00 0.99 0.00 0.04 0.01 100 100 1.00 0.12  0.00 0.99

Table E.22

Spearman’s rho correlation and P value between the empirical RMSE and the data size for the three prior scenarios of the Bohachevsky and Ackley case studies.The model
hyperparameters for this test include a regularization weight of 1e — 5 and a prior weight of 1e — 6. P values are shaded to indicate a statistically significant correlation (critical P

value 0.05).
Model Type Bohachevsky Case Study Ackley Case Study
Scenario 1 Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 3
P Pvalue p Pvalue p Pvalue p Pvalue p Pvalue p P value
PGNN; -0.83  0.00 -0.82  0.00 -0.83  0.00 -0.92  0.00 -0.92  0.00 -0.93  0.00
PGNN, -0.83  0.00 -0.76 = 0.00 -0.82  0.00 -0.90  0.00 -091  0.00 -0.92  0.00
Table E.23

Spearman’s rho correlation and P value between the prior-consistency RMSE and the data size for the three prior scenarios of the Bohachevsky and Ackley case studies.The model
hyperparameters for this test include a regularization weight of 1e — 5 and a prior weight of 1e — 6. P values are shaded to indicate a statistically significant correlation (critical P

value 0.05).
Model Type Bohachevsky Case Study Ackley Case Study
Scenario 1 Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 3
14 Pvalue p Pvalue p Pvalue p Pvalue p Pvalue p P value
PGNN; -0.85  0.00 -0.34  0.00 -0.82  0.00 -0.92 = 0.00 -0.79 = 0.00 -091  0.00
PGNN, -0.84 = 0.00 -0.34  0.00 -0.80  0.00 -0.92  0.00 -0.72 = 0.00 -0.93  0.00
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Appendix F. Empirical and prior-consistency performance
correlation study

Table F.24 presents the strength and direction of correlation
between the empirical and prior-consistency errors using Super-
man'’s rank correlation and the results from the data set size sensi-
tivity study in SubSection 4.2.

Table F.24
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Appendix G. Hyperparameter sensitivity investigation

Tables G.25 and G.27 present the results of training the
PGNN-30, PGNN-65, PGNN—100, PGNN;, and PGNN, models with
the following [0 Pp) loss weights:
[1le—3,1e—4],[le—3,1e —6],[1e — 3,1e — 6],[1e — 5,1e — 4], and
[1e — 7,1e — 4]. The NN-100 reference model was trained with a

Spearman’s rho correlation and P value between the empirical RMSE and the prior-consistency RMSE for the three prior scenarios of the Bohachevsky and Ackley case studies.The
model hyperparameters for this test include a regularization weight of 1e — 5 and a prior weight of 1e — 6. P values are shaded to indicate a statistically significant correlation

(critical P value 0.05).

Model Type Bohachevsky Case Study Ackley Case Study
Scenario 1 Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 3
P Pvalue p Pvalue p Pvalue p Pvalue p Pvalue p P value
NN 094  0.00 0.34  0.00 0.98  0.00 0.95  0.00 0.74  0.00 0.90  0.00
PGNN-30 095 0.00 0.11 0.24 0.89  0.00 0.92 = 0.00 0.85 0.00 0.85 0.00
PGNN-65 093  0.00 0.26  0.00 095 0.00 0.93  0.00 0.77 = 0.00 0.88  0.00
PGNN-100 096  0.00 036  0.00 0.98  0.00 0.94 = 0.00 0.75  0.00 0.89  0.00
PGNN; 094  0.00 043  0.00 0.98 0.00 094 0.00 0.85 0.00 0.90 0.00
PGNN, 095 0.00 037  0.00 0.97 0.00 0.93  0.00 0.76 ~ 0.00 0.88  0.00
Table G.25
Prior weight sensitivity study on the empirical and prior-consistency RMSE for the Bohachevsky case study using a 1000 sample data set and a regularization weight of 1e — 3.
Model Type Prior Scenario 1 Scenario 2 Scenario 3
Weight Empirical Error Prior; Empirical Prior, Empirical Priors
NN-100 - 21.11+3.67 40.42 +8.17 21.11 £3.67 23.78 +16.67 21.11+3.67 27.86 +£5.55
le—4 61.36 +15.32 111.34+29.26 61.41 +15.41 69.33 +40.54 61.41+15.41 61.82 +24.14
PGNN-30 le—6 61.44 +15.49 111.52 +29.67 61.41+15.41 69.33 +40.54 61.41+1541 61.82 +24.14
le—8 61.41 +£15.41 111.44 £29.43 61.41 +15.41 69.33 +40.54 61.41 +15.41 61.82 +24.14
le—4 27.19+3.77 50.62 +£9.72 27.17 +£3.78 29.95 +16.87 2717 +3.78 33.15+5.88
PGNN-65 le—6 27.17 £3.78 50.42 +£9.95 27.17 £3.78 29.95 + 16.87 27.17 £3.78 33.15+5.88
le—8 2717 £3.78 50.43 +£9.95 27.17 £3.78 29.95 +16.87 2717 £3.78 33.15+5.88
le—4 21.12+3.68 40.23 +8.33 21.11 £3.67 23.78 £16.76 21.11+3.67 27.86 +£5.55
PGNN-100 le—6 21.11+3.67 40.42 +8.17 21.11+3.67 23.78 +16.76 21.11+3.67 27.86 +£5.55
le—8 21.11+3.67 40.42 +8.17 21.11+3.67 23.78 +16.76 21.11+3.67 27.86 +£5.55
le—4 19.34 +£2.81 35.09+5.49 19.38 £2.98 26.06 +17.04 19.38 +£2.98 25.10+4.71
PGNN; le—6 19.38 £2.98 35.08 +6.05 19.38 £2.98 26.06 +17.04 19.38 £2.98 25.10+4.71
le—8 19.38 £2.98 35.08 +6.05 19.38 £2.98 26.06 +17.04 19.38 £2.98 25.10+4.71
le—4 19.66 + 2.26 35.71 +£5.53 20.97 +3.67 24.07 +13.09 19.65 +2.94 25.24 +4.48
PGNN, le-6 19.85 +2.50 35.66 +5.71 20.97 +3.67 24.07 +13.09 19.65 +2.94 25.24 +4.48
le—8 19.85 +2.50 35.66 +5.71 20.97 +3.67 24.07 +13.09 19.65 +2.94 25.24 +4.48
Table G.26

T-test of the prior weight sensitivty study on the multivariate empirical and prior-consistency RMSEs for the Bohachevsky case study using a 1000 sample data set and a
regularization weight of 1e — 3. P values are shaded to indicate a statistically significant correlation (critical P value 0.05).

Model Type Prior weights Scenario 1 Scenario 2 Scenario 3
compared F P T, P F P T, P F P T, P
[le—4,1e - 6] 0.07 0.98 0.01 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00
PGNN; [le—4,1e - 8] 0.07 0.98 0.01 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00
[le—6,1e — 8] 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00
[le—4,1e - 6] 0.08 0.97 0.16 0.92 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00
PGNN, [le—4,1e - 8] 0.08 0.97 0.16 0.92 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00
[le—6,1e - 8] 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00
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Table G.27
Regularisation weight sensitivity study on the empirical and prior-consistency RMSE for the Bohachevsky case study using a 1000 sample data set and a prior weight of 1e — 4.
Model Type > Scenario 1 Scenario 2 Scenario 3
Weight Empirical Error Prior, Empirical Prior; Empirical Priors
NN-100 - 21.11 +£3.67 40.42 +8.17 21.11+3.67 23.78 £ 16.67 21.11 +£3.67 27.86 £5.55
le-3 61.36 +£15.32 111.34 +29.26 61.41 £ 15.41 69.33 +40.54 61.41 +£15.41 61.82 £24.14
PGNN-30 le—5 61.78 +£15.67 111.04 +29.82 61.79 +£15.67 63.19 £ 44.10 61.79 +15.67 63.71 + 24.56
le—7 61.47 £16.25 111.42 £27.77 61.33 £16.30 57.06 + 44.01 61.33 £16.29 62.93 £24.72
le-3 27.19+3.77 50.62 +9.72 2717 +3.78 29.95+16.87 27.17 £3.78 33.15+5.88
PGNN-65 le—5 27.84 £ 4.40 50.99 +10.20 27.83+4.40 28.12 £ 19.00 27.83 £4.40 34.48 £6.80
le—7 28.03 £4.02 51.99 + 10.54 28.02 +£4.01 28.36 +£17.94 28.02 +£4.01 34.45 +£6.07
le-3 21.12+3.68 20.23 +8.33 21.11 +£3.67 23.78 +16.76 21.11+3.67 27.86 +£5.55
PGNN-100 le—5 21.71+£4.10 40.56 +7.34 21.74+4.08 23.56 +17.01 21.74 £4.08 28.35+6.19
le—7 21.85+3.98 41.95+7.45 21.83+4.00 23.82+12.32 21.83 £4.00 28.53+5.82
le-3 19.34 +2.81 35.09 +5.49 19.38 +2.98 26.06 +17.04 19.38 +£2.98 25.10 £4.71
PGNN; le-5 19.19 +2.96 35.10+7.49 19.06 + 2.96 26.88 +17.88 19.06 +2.96 24.52 +4.42
le—7 18.59 +2.34 33.60 +5.62 18.77 £2.58 21.16 £11.81 18.50 +2.34 23.86 +4.11
le-3 19.66 +2.26 35.71+5.53 20.97 +3.67 24.07 +13.09 19.65 +2.94 25.24+4.48
PGNN, le—5 19.21 £2.65 32.88+6.79 20.95+3.89 27.32+15.57 19.44 +3.00 2458 +4.43
le—7 19.79 +£3.27 36.37+7.13 21.22+2.89 19.09 + 13.38 18.70 £2.35 23.52+3.95
Table G.28

T-test of the regularisation weight sensitivity study on the multivariate empirical and prior-consistency RMSEs for the Bohachevsky case study using a 1000 sample data set a
prior weight of 1e — 4. P values are shaded to indicate a statistically significant correlation (critical P value 0.05).

Model Type Reg. weights Scenario 1 Scenario 2 Scenario 3
compared F P T? P F P T? P F P T? P
[le-3,1e—5] 092 043 0.07 097 003 099 019 091 046 071 022 090

PGNN; [le-3,1e-7] 043 073 110 059 116 032 171 044 082 049 140 051

[le-5,1e-7] 094 042 071 071 138 025 177 043 121 030 069 0.71
[le-3,1e—5] 044 072 284 026 040 075 062 074 388 001 067 0.72
PGNN, [le-3,1e-7] 101 039 016 092 042 074 175 043 299 003 205 039
[le-5,1e—7] 059 062 397 0.16 085 046 409 015 071 055 090 0.65

Table G.29
T-test for the Bohachevsky case study using the 1000 sample data set with a prior weight of 1e — 4 and the results from the three regularization weights for each model variant
(72 samples per model variant, 24 random weight initializations by 3 regularization weights). P values are shaded to indicate a statistically significant correlation (critical P
value 0.05).

Models Scenario 1 Scenario 2 Scenario 3

compared F P T? P F P T? P F P T? P
[PGNN-30,PGNN; ] 66.58 0.00 53141 000 6896 0.00 53792 000 11182 0.00 87543 0.00
[PGNN-30,PGNN;] 64.11 0.00 520.08 0.00 6345 0.00 48384 0.00 101.06 0.00 847.02 0.00
[PGNN-65,PGNN; ] 6.22 0.00 22895 0.00 3.65 0.01 221.12 0.00 20.65 0.00 262.65 0.00
[PGNN-65,PGNN,] 5.02 0.00 20096 0.00 1.68 0.17 11586 0.00 12.84 0.00 229.74 0.00
[PGNN-100,PGNN;] @ 3.03 0.03 29.65 0.00 237 0.07 = 20.68 0.00 299 0.03 21.17 0.00
[PGNN-100,PGNN,] @ 3.06 0.03 25.13 0.00 0.59 0.62 0.70 0.70 337 0.02 20.37 0.00
[PGNN;,PGNN;] 0.12 095 173 042 137 0.25 14.80 0.00 1.62 0.18 3.79 0.15

Table G.30

T-test for the Bohachevsky case study using the 1000 sample data set for the results form the three prior weights and the results from the three regularization weights for each
model variant (144 samples per model variant, 24 random weight initializations by 3 regularization weights and 24 random weight initializations by 3 prior weights). P values are
shaded to indicate a statistically significant correlation (critical P value 0.05).

Models Scenario 1 Scenario 2 Scenario 3

compared F P T2 p F P T2 P F P T2 p
[PGNN-30,PGNN; ] 131.76  0.00 1069.33 0.00 13229 0.00 10837 0.00 225.18 0.00 1898.06 0.00
[PGNN-30,PGNN;] 13494 0.00 1052.08 0.00 126.66 0.00 99591 0.00 216.50 0.00 1850.09 0.00
[PGNN-65,PGNN; ] 11.68 0.00 428.14 0.00 5.35 0.00 41601 0.00 4890 0.00 48394 0.00
[PGNN-65,PGNN,] 11.70 0.00 402.15 0.00 4095 0.00 43349 0.00 4095 0.00 433.49 0.00
[PGNN-100,PGNN;] = 4.63 0.00 49.71 0.00 3.32 0.02 32.57 0.00 552 0.00 30.53 0.00
[PGNN-100,PGNN,] 6.82 0.00 42.27 0.00 220 0.09 059 074 3.89 0.01 31.37 0.00
[PGNN;,PGNN;] 0.63 0.60 249 0.29 434 0.00 23.90 0.00 0.90 0.44 648 0.04
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regularization weight p, = 1e — 3. All the models were trained 24
times with randomly initialized weights for the Bohachevsky func-
tion using a training data set of 1000 samples.

Tables G.26 and G.28 present the Box’s M and two-sample
Hotelling’s T, test results which assess if changing the prior weight
or the regularization weight have an effect on the multivariate
empirical and prior-consistency RMSEs of the PGNN; and PGNN,
models.

Table G.29 presents the Box’s M and two-sample Hotelling’s T,
test results comparing the proposed models to the reference mod-
els with the prior weight 1e — 4 and the three regularization
weights (72 samples per model variant, 24 random weight initial-
izations by 3 regularization weights).

Table G.30 presents the Box’s M and two-sample Hotelling’s T,
test results comparing the proposed models to the reference mod-
els with the three prior weights and the three regularization
weights for each model variant (144 samples per model variant,
24 random weight initializations by 3 regularization weights and
24 random weight initializations by 3 prior weights).
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