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Abstract

The mosquito Aedes aegypti is the primary vector of many disease-causing viruses, includ-

ing dengue (DENV), Zika, chikungunya, and yellow fever. As consequences of climate

change, we expect an increase in both global mean temperatures and extreme climatic

events. When temperatures fluctuate, mosquito vectors will be increasingly exposed to tem-

peratures beyond their upper thermal limits. Here, we examine how DENV infection alters

Ae. aegypti thermotolerance by using a high-throughput physiological ‘knockdown’ assay

modeled on studies in Drosophila. Such laboratory measures of thermal tolerance have pre-

viously been shown to accurately predict an insect’s distribution in the field. We show that

DENV infection increases thermal sensitivity, an effect that may ultimately limit the geo-

graphic range of the virus. We also show that the endosymbiotic bacteriumWolbachia

pipientis, which is currently being released globally as a biological control agent, has a simi-

lar impact on thermal sensitivity in Ae. aegypti. Surprisingly, in the coinfected state,Wolba-

chia did not provide protection against DENV-associated effects on thermal tolerance, nor

were the effects of the two infections additive. The latter suggests that the microbes may act

by similar means, potentially through activation of shared immune pathways or energetic

tradeoffs. Models predicting future ranges of both virus transmission andWolbachia’s effi-

cacy following field release may wish to consider the effects these microbes have on host

survival.

Author summary

Changes in global climate, which include higher temperatures and more frequent extreme

temperature events, are expected to cause dramatic shifts in the distributions of infectious

diseases. The geographic range of the mosquito Aedes aegypti continues to expand, risking
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greater incidence of viral diseases including dengue (DENV), Zika, chikungunya, and yel-

low fever. One emerging solution to control these viruses is the release of the insect bacte-

riumWolbachia, whose infection in mosquitoes reduces virus transmission to humans.

However, the effects of rising temperatures on the efficacy of this tool are unclear. Here,

we studied whether DENV andWolbachia can alter the thermal sensitivity of the mos-

quito Ae. aegypti by using a heat-based physiological assay. We demonstrate that, sepa-

rately, DENV andWolbachia infections increase mosquito thermal sensitivity, causing

more rapid death when mosquitoes are exposed to extreme heat. The impacts of the

microbes on mosquito thermal sensitivity were similar but not additive, suggesting they

effect the mosquito in similar ways. Our work demonstrates that future global projections

of DENV transmission risk and ofWolbachia’s potential efficacy may need to consider

the impact of these microbes on vector survival.

Introduction

Mosquitoes are responsible for transmitting a diverse array of human disease-causing viruses

such as Zika (ZIKV), chikungunya (CHIKV), West Nile, yellow fever, and dengue (DENV) [1,

2]. The most prevalent of these viruses is DENV. Transmitted by the mosquito Aedes aegypti,

DENV is responsible for an estimated 390 million cases of dengue fever globally each year [3,

4]. While usually associated with a self-limiting febrile illness, DENV can also cause severe dis-

ease that may result in death [4–6]. Without effective antiviral drugs or a vaccine for DENV,

ZIKV, or CHIKV, vector control has remained the primary strategy for reducing the incidence

of these human diseases [7, 8]. Traditionally, such strategies have relied on insecticide use and

larval habitat reduction. A more recent and promising approach involves the use of the insect

endosymbiotic bacteriumWolbachia pipientis [9]. This self-spreading, vertically inherited bac-

terium has been transinfected into Ae. aegypti, where it is being released globally into wild

populations for biological control (biocontrol) becauseWolbachia limits the replication of

viruses inside the mosquito, including DENV [10, 11].

Ae. aegypti is a highly anthropophilic species, restricted to regions with human settlements,

where it breeds in human-made containers inside and near housing. The increasing incidence

of dengue fever globally is in part due to the ever-expanding geographic range of the vector [5,

12]. Aided by increasing urbanization and climate change, 50% of the world’s population is

expected to live in association with Ae. aegypti by 2050 [13]. Changes in global temperature

will shift the map of dengue fever in the following two ways: by increasing risk in previously

temperate areas and reducing risk in some regions that exceed mosquito thermal optima [14–

16]. The operative temperature range for Ae. aegypti is between 15.0 and 35.0˚C [15], and tem-

peratures outside this range can cause reductions in survival and reproduction and can impact

developmental time between stages (i.e., eggs, larva, pupae) [17]. Because the mosquito body

temperature is entirely dependent on their environment, they are highly susceptible to various

aspects of thermal stress [16]. Thermal stress can be triggered in response to rising average

temperatures, as well as extreme climatic events such as heat spikes [18] that are expected to

result from greater climate variability.

The individual thermal optima of DENV andWolbachia will also affect global distributions

of disease. Warmer ambient temperatures have been associated with increased viral replication

in mosquitoes and, consequently, a shorter extrinsic incubation period [19–21]. This parame-

ter represents the time window between when a mosquito first takes an infectious blood meal

and when it can transmit virus to a human via a subsequent bite, with a shorter extrinsic
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incubation period leading to greater transmission rates [22]. Laboratory studies that have

reared mosquitoes under different diurnal temperature ranges, which more closely match nat-

ural conditions, have also demonstrated changes in Ae. aegypti susceptibility to DENV [23]. At

the molecular level, higher temperatures in mosquito cell culture systems appear to increase

viral attachment and entry into cells due to assistance from heat shock proteins [24–26]. All of

these parameters affect viral population dynamics in the vector that in turn will affect virus

transmission rates at the population level [27–29]. In Drosophila, higher ambient temperatures

have been shown to increaseWolbachia replication rates too but can also become lethal

depending on the strain [30–35]. Ae. aegypti infected with the wMel strain ofWolbachia

exhibit reduced maternal transmission rates in response to heat spikes that can lead to the pro-

duction of uninfected offspring [36]. More recently, several studies in Drosophila species have

demonstrated thatWolbachia infection can change the host insect’s thermal preference [37],

of which the directionality varies by bacterial strain [38]

More broadly, infection in invertebrates has been shown to substantially increase host or

vector susceptibility to thermal stress [39–42]. A recent study conducted by Hector et al., 2019

showed that Daphnia magna (water flea) infected with the bacterial pathogen Pasteuria ramosa

exhibit a reduction in thermal limits up to 2˚C. InDrosophila melanogaster, immune activation

induced by bacterial challenge was shown to affect the temperature at which physiological fail-

ure occurred, reducing the overall thermal tolerance (i.e. critical thermal maximum) of the

host [39]. Parallel studies have not been carried out for the major mosquito vectors of human

disease-causing viruses. In the case ofWolbachia, a single study in Ae. aegypti has revealed that

exposure to heat stress made the vector susceptible to starvation in the presence of the symbi-

ont [43]. Both DENV andWolbachia are pervasive throughout mosquito tissues [44, 45] and,

therefore, have substantial potential to affect host physiology either directly at the cellular level

or indirectly through physiological tradeoffs resulting from activation of the vector’s immune

response [46, 47].

Laboratory-based physiological performance assays are commonly used in invertebrates to

characterize thermal tolerance [39, 48, 49]. By use of either dynamic or static regimes, these

assays provide physiological parameter estimates to inform species distribution models

(SDMs). SDMs are important tools used for predicting changes in climate and the response of

species and habitats to environmental perturbations. One of the climatic factors commonly

used in SDMs is temperature, as it is a major determining factor in the fitness of ectotherms

like insects. Critical thermal maxima experiments have been shown to effectively predict an

organism’s geographic range [50–54]. More specifically, studies using these experimental

assays have suggested that tolerance to extreme heat events near upper critical limits is more

indicative of species distributions than tolerance to average daily temperatures [50]. In this

study, we used a thermal knockdown assay at a temperature near mosquito upper thermal lim-

its to examine the impact of DENV andWolbachia infection, singly and in coinfection, on Ae.

aegypti thermal tolerance. We hypothesized that the two agents would increase mosquito sen-

sitivity to heat. Any such effect would have the potential to mediate global disease distributions

as well as the geographic range over whichWolbachia-based biocontrol may be effective.

Results

DENV-infected mosquitoes have greater theromosenstivity

By immersing individual mosquitoes in glass vials in water heated to 42˚C, which is beyond

the critical maximum temperature, and measuring their time to immobilization, we obtained a

measure of ‘knockdown’ (KD) time (Fig 1). This assay and others like it are commonly used in
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Drosophila species to obtain estimates of thermal sensitivity but has not previously used to

study mosquitoes.

To test whether DENV and orWolbachia infection alter mosquito thermal sensitivity, we

submerged mosquitoes (+/-Wolbachia, +/-DENV) in glass vials in a water bath heated to

42˚C, representing the upper critical thermal limit (CTmax) for the mosquitoes, as determined

by pilot assays. We then visually monitored the time it took for mosquitoes to become immo-

bilized (on their backs), and this ‘knockdown’ (KD) time was recorded using a barcode

scanner.

First, we fed DENV to 9-day-old mated female mosquitoes via a blood meal and then

allowed the virus to replicate for 8 days before performing the knockdown assay. Age-matched

controls were fed virus-free blood of the same donor and stock. Mosquitoes infected with

DENV showed a greater sensitivity to heat (Fig 2) (according to a generalized linear model; S1

Table: ‘DENV Infection’: F = 22.46, df = 2, p<0.0001), an effect observed to vary among tem-

poral replicates (“Replicate”: F = 5.07, df = 3, p = 0.035). On average, DENV-infected mosqui-

toes had a median KD time that was 2.9-fold faster than that of DENV-uninfected mosquitoes.

Tukey’s post-hoc comparisons indicated that the impact of DENV was significant (p<0.0001)

for 2 of the 4 temporal replicates (S2 Table). As genetic and environmental effects should be

uniform across replicates, differences in the impact of DENV could be explained by day/circa-

dian rhythms. There was, however, no clear trend of KD time decreasing or increasing with

time of day/sequential replicate.

Viral load does not determine time to thermal knockdown

We then examined whether there was a relationship between viral load and time to knock-

down (Fig 3), as pathogen load often predicts virulence in many systems, including DENV

[55]. Surprisingly, we saw no such relationship between dengue load and knockdown time in

our) WT+(Wildtype) line (Pearson correlation, df = 57, p>0.05) despite that mosquito body

loads ranged from 106 to 108 viral genome copies/mosquito.

Thermal limits under viral and bacterial infection

SeveralWolbachia strains are being released globally [56, 57]. Here, we used wAlbB, a strain

transferred from Aedes albopictus [10] into Ae. aegypti that has shown promise with respect to

Fig 1. Experimental setup to measure thermal sensitivity of DENV- andWolbachia-infected mosquitoes.

https://doi.org/10.1371/journal.pntd.0009548.g001
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reducing incidence of dengue fever following field releases in Malaysia [57]. We assessed the

effect ofWolbachia infection (wAlbB) vs. wildtype on mosquito knockdown time in associa-

tion with DENV infection (+/-) (Fig 4). In our generalized linear model (DENV +Wolbachia

+ DENV:Wolbachia + Rep), ‘DENV infection’ (F = 94.64, df = 1, p< .0001), ‘Wolbachia infec-

tion’ (F = 23.75, df = 1, p< .0001), and ‘Temporal Replicate’ (F = 5.05 df = 5, p = 0.0002) were

all significant, with both infections increasing thermal sensitivity or decreasing knockdown

(KD) time (S3 Table). There was also a significant interaction between ‘DENV infection’ and

‘Wolbachia infection’ (F = 55.68, df = 1, p< .0001). Because ‘Temporal Replicate’ was signifi-

cant, we then followed with individual ANOVAs for each replicate (S4 Table) so that we could

carry out individual Tukey’s post hoc comparisons (S5 Table). In 6/6 replicates, DENV infec-

tion significantly reduced KD time. On average, across replicates, the median KD time of

DENV-infected mosquitoes (D+W-) was 4.5-fold more rapid (Fig 4) than that of uninfected

controls (D-W-). This knockdown (KD) appears to be faster than that seen in experiment 1

(Fig 2), but comparisons across experiments are not valid given different virus preparations

and use of separate mosquito cohorts.Wolbachia infection also reduced median KD time in

4/6 replicates (#’s 2, 4–6), conferring a 2.5-fold faster average KD time thanWTmosquitoes in

Fig 2. Thermal limits under viral infection. Knockdown time is expressed in seconds for DENV-infected (D+) and
DENV-uninfected (D-) mosquitoes with noWolbachia present in either treatment. Each replicate (4) contained 20
individuals per treatment (40 total per block). Box plots represent individual replicate medians and confidence
intervals. Both the factors ‘DENV Infection’ (p<0.001) and ‘Replicate’ (p = 0.035) were significant by ANOVA. p-
values report Tukey’s post hoc comparison for each replicate.

https://doi.org/10.1371/journal.pntd.0009548.g002
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the absence of DENV (D-W+ vs D-W-). Not surprisingly, the double-negative state (D-W-)

has a longer KD time than D+W+ for all 6 replicates. IfWolbachia-mediated blocking was pro-

tecting the mosquito from DENV-induced thermal sensitivity, it would be seen in the D+W-

vs D+W+ comparison. None of these comparisons were significant for any of the replicates.

Additionally, if the two infections were additive, one would expect D+W+ to have a faster KD

time than either D+W- or D-W+. None of these comparisons are significant for any of the

Fig 3. Relationship between viral load and thermal knockdown in mosquitoes. Relationship between knockdown
time (seconds) and DENV load (per mosquito) in wildtype (D+/W−) mosquitoes. Each point represents a single
mosquito with individuals from all 4 replicate experiments. There was no significant relationship (Pearson correlation,
p>0.05) between knockdown time and DENV load for the pooled set or for individual replicate experiments.

https://doi.org/10.1371/journal.pntd.0009548.g003

Fig 4. Impact of dual microbe infection on mosquito thermal sensitivity. The effect ofWolbachia and DENV
infection on knockdown time (seconds) across 6 temporal replicates, each containing 10 mosquitoes per the 4
treatment combinations. Box plots represent individual replicate medians and confidence intervals for wildtype
infected (D+/W-) and uninfected (D-/W-) mosquitoes, along withWolbachia infected (W+) and uninfected (W-)
individuals. Key Tukey’s post hoc comparisons for each replicate are described in the text and S5 Table. In brief, the
effects of DENV andWolbachia individually were significant in all 6 replicates, as was the comparison between the
single infection (DENV) and the double infection (DENV andWolbachia).

https://doi.org/10.1371/journal.pntd.0009548.g004
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replicates. However, in only one replicate (#5), the DENV effect is greater than theWolbachia

effect (D+W- vs D-W+), increasing KD time. This pattern of DENV potentially being stronger

thanWolbachia is also in keeping with thatWolbachia was significant in 5/6 ANOVAs com-

pared to 6/6 for DENV (S4 Table).

Microbial load does not determine time to thermal knockdown

As in Experiment 1 above, there was no evidence that KD time was determined by DENV load

in Experiment 2 (Pearson correlation, df = 98, p = 0.2048) (S1 Fig). As for DENV above, we

examined whether a relationship existed between total body load ofWolbachia and knock-

down(KD) time (Fig 5). There was no significant relationship for the data when pooled across

replicate (Pearson correlation, df = 117, p>0.05) or when analyzed individually (S6 Table).

Interestingly, we noted thatWolbachia loads were lower when DENV was present (Figs 5 and

S2; F = 1.924, df = 116, p<0.0001), which may relate to a virus-induced immune killing ofWol-

bachia or resource competition betweenWolbachia and DENV, as both microbes share similar

host resources [58]. We therefore also split the mosquitoes into DENV+ or -, pooled across

replicates, and retested for a correlation betweenWolbachia load and knockdown(KD) time

but saw none for either D+W+ (p>0.05, df = 57) or D-W+ (p>0.05, df = 46).

Discussion

The impact of DENV infection on vector thermal sensitivity has implications for global dengue

risk under a changing climate. Numerous studies have mapped the likely range of Ae. aegypti

into the future, based on its current occupation of global thermal zones and mechanistic effects

of temperature on mosquito and pathogen traits [14, 15]. At lower temperatures, the virus may

fail to replicate fast enough to traverse the mosquito body and be transmitted [59], reducing

transmission risk in some areas. At slightly higher temperatures, the virus may replicate faster

until reaching a performance maximum of its own [23]. Our work suggests an additional fac-

tor may affect viral success in a temperature-dependent manner—the impact on mosquito

survival.

Fig 5. Relationship between bacterial load and time to knockdown in mosquitoes. Each point represents a single
mosquito, with individuals from all 4 replicate experiments presented on one graph. There was no significant
relationship (Pearson correlation, p<0.05) between knockdown time andWolbachia load for the pooled set or for
individual replicate experiments analyzed separately (S6 Table).

https://doi.org/10.1371/journal.pntd.0009548.g005
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Although the assay used here represents a simplified model of heat stress, future climate

models point to increasing frequencies of extreme temperature events, making short exposures

to high temperatures a threat to the survival of DENV andWolbachia infected mosquitoes.

Substantial evidence from Drosophila and other insects suggests that their ability to survive

heat stress is highly predictive of an insect’s current distribution and therefore also likely its

future range [48, 49]. Thermal sensitivity (KD) measures, specifically, have been shown to be a

relevant proxy for fitness under field relevant conditions [50]. In agreement with this, variation

seen in Drosophila populations for measures such as thermal knockdown (KD) time is predic-

tive of an ability to respond to artificial selection for thermal resistance/sensitivity, and as a

result single trait physiological measures like these can be used effectively for developing

SDMs [51, 60].

The findings forWolbachia wAlbB indicate that the symbiont increases mosquito thermal

sensitivity, although not to the same level as DENV. Both agents infect a diversity of tissues

throughout the body [11] and, although not cytotoxic, evoke an immune stress response in Ae.

aegypti [61, 62]. Most studies suggest that DENV has little effect on host fitness except in rare

cases [63] Additionally, becauseWolbachia lacks a complete set of metabolic pathways, it rep-

resents an energetic drain on host resources, including amino acids [64]. Three outcomes were

possible for the relationship between DENV andWolbachia coinfection and KD time, namely,

protective, additive, or similar. A protective effect might have been expected given thatWolba-

chia-mediated blocking is known to limit DENV loads in the body [61] (also seen in this study

S3 Fig), although we did not see a correlation betweenWolbachia and DENV loads (r = -0.052,

p = 0.96). This would only be the case if increasing loads of DENV led to faster KD times, but

we saw no relationship. An additive effect might have suggested that the two infectious agents

acted on independent aspects of mosquito physiology and both cause thermal sensitivity. We

saw no difference in thermal sensitivity between the single and doubly infected mosquitoes.

We also saw no relationship betweenWolbachia load and KD time, like DENV, indicating that

having more of either agent did not lead to greater virulence. Taken together, our data agree

with a model of the symbiont and virus acting via a shared mechanism. One possible explana-

tion is that the microbes activate similar innate immune pathways [47, 61, 65]. The effect of

this activation may have direct pleiotropic effects on thermal tolerance or act through energetic

tradeoffs. Interestingly, any triggering of the heat shock response by DENV infection [62] itself

was not powerful enough, or long lasting enough, to mitigate the impact of either DENV or

Wolbachia on KD times.

To capture the impact of viral infection upon mosquito thermal limits, we assayed individu-

als in the thermal KD setup by using a static tolerance assay as compared to a dynamic assay,

in which the insect is gradually exposed to ramping temperatures until thermal knockdown

(KD) is achieved. However, whether these two physiological assays provide comparable mea-

sures for heat tolerance has been questioned [66]. The overall outcome for both assays is

dependent on the duration of heat exposure and the temperature at which thermal stress

occurs [50]. In nature, ambient temperatures are rarely constant, and mosquitoes and their

pathogen are subjected to temperatures that may fluctuate throughout the day [67]. Dynamic

assays have been promoted for their ecological relevance due to their gradual increase in tem-

perature versus an acute exposure to high temperature [68, 69]. A study conducted by Rezende

et al., 2014 looked at this interaction between the intensity of heat stress and exposure duration

through the development of thermal tolerance landscapes (TTLs), which depict the parametri-

zation of survival time as a function of constant temperatures plus thermal exposure duration.

In a past study, this group showed that TTLs are able to predict survival in thermally variable

environment’s when using empirical data that have incorporated either dynamic or static mea-

sures of thermal stress.
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To mediate any discrepancies between dynamic and static assays, Jørgensen et al., 2019

developed a model that allowed for the direct comparison of static and dynamic measures of

heat tolerance from KD data obtained from Drosophila [50]. They showed that a dynamic

CTmax, at any given heating rate, can be effectively modeled from static measurements like

ours and used to predict species distributions [50]. Although the assay we used is a simplified

representation of heat stress, future climate models point to increasing frequencies of extreme

temperature events, making short exposures to high temperatures relevant. Future studies

should examine these effects in the context of diurnal temperature range variability reflecting

natural temperatures and repeated exposure to heat shock events.

Transient exposure exceeding the mean temperature beyond thermal optima can have

costly fitness effects on an individual [70, 71]. Maximum thermal tolerance in an individual is

dependent on cell performance and actions of different systems, including respiratory, circula-

tory, and nervous [72, 73]. High heat denatures enzymes and disturbs cellular membranes that

thus impact cellar processes that the insect may rely on to function [72, 73]. Our measurement

of thermal limits may have some confounding impacts on desiccation or starvation stress [74].

However, studies with Drosophila show that an exposure time of 60–90 minutes was not suffi-

cient to trigger either a starvation or desiccation response [69]. Additionally, in our system,

these responses were likely minimized because mosquitoes were provided sugar water and

vials were not sealed until 25 minutes before their thermal knockdown with humid air [69].

Future research examining the interaction of multiple related stressors will provide interesting

insight into the range of responses that might be seen in wild populations with more complex

environments under predicted climate shifts. Additionally, our study did not allow for the host

to respond behaviorally to heat stress. In the field, mosquitoes may use various responses, such

seeking shade or cooler areas, when thermally stressed [75]. In general, they may also close spi-

racles to reduce dehydration and activate a series of pathways at the cellular level, including

heat shock [62, 76].

Daily and seasonal fluctuation is higher in temperate regions, whereas tropical areas experi-

ence less seasonality [77]. Species from temperate areas and high-altitude regions have broader

thermal tolerance thresholds, as they can tolerate warming due to their ability to respond to

variable temperatures [78]. Tropical species like mosquitoes, however, are living close to their

optimal temperatures for performance [67, 79] and experience little variation in daily and sea-

sonal fluctuation [77, 80, 81]. The impact of global climate change on mosquito-borne disease

will depend strongly on species thermal history and their overall tolerance and ability to with-

stand change and adapt [16, 70, 82, 83]. The context of our findings should be considered

within the realm of local thermal adaption, which may lead to different responses between

populations, and how they respond to thermally taxing conditions. Furthermore, environmen-

tal conditions experienced across the larval stage of the mosquito can have an impact on mos-

quito response to thermal stress [84]. Thermal acclimation can a happen within a population

and affect subsequent adult traits that can happen irrespective of any local adaption [67, 79]. In

our case, mosquitoes were lab reared at constant temperatures, but if larval rearing conditions

varied within a range of thermal conditions or mosquitoes were locally adapted, we may con-

clude that KD could differ depending on their prior thermal exposure.

With this study, we now add increased thermal sensitivity to a list of heat-associated effects

for adultWolbachia-infected mosquitoes that include increased susceptibility to starvation

[43], reductions in maternal transmission rates ofWolbachia, and loss of cytoplasmic incom-

patibility [36]. These temperature-associated effects may reduce the competitiveness ofWolba-

chia-infected mosquitoes in extremely hot or variable environments and affect the efficacy of

the biocontrol strategy. Additionally,Wolbachia transinfected into mosquitoes induces fitness

costs that produce bistable frequency equilibria, which limit how the symbiont spreads in
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populations when established from low infection frequencies [85]. Increased thermal sensitiv-

ity may contribute to these net fitness costs and bistable equilibria. Naturally occurringWolba-

chia infections commonly evoke a lower immune response, potentially from a longer history

of coevolution with their hosts [86]. One solution for protectingWolbachia’s use for biocontrol

in hotter regions might involve adapting mosquito:Wolbachia pairings to higher temperatures

or for reduced immune responses in the laboratory by using artificial selection before release

into the field.

Several factors may have affected our study design or should be considered in future stud-

ies. First, the effect of infection on KD time may rely heavily on the combination ofWolbachia

strain, virus and mosquito genotypes, and their past histories of thermal adaptation. Addition-

ally, some genotypes of both the host and pathogen may be better able to compensate for ther-

mal stress [40]. Thermal tolerance should therefore be examined for combinations of key

circulating viruses andWolbachia release strains in diverse Ae. aegypti populations from dif-

ferent global regions. Second, factors like mosquito age at exposure, reproductive status, body

size or nutritional status, blood meal history, and other coinfecting microbes/the microbiome

may also play a role in thermal tolerance. Third, as for the Drosophila literature [48], it will be

important to assess how these laboratory measures of thermal sensitivity relate to fitness mea-

sures in the field and how the interaction between viral infection and temperature affect the

distribution of virus transmission. Fourth, it would be interesting to assess whether thermal

sensitivity effects due toWolbachia are also present in the larval stage. If so, they may affect the

successful field release ofWolbachia via egg stage [87].

In conclusion, our work suggests that DENV- andWolbachia-induced increases in mos-

quito thermal sensitivity may limit the geographic range of the virus’s transmission to humans

and the ability of the symbiont to be used for biocontrol. We suggest that future models pre-

dicting dengue distribution may also need to incorporate the interaction between virus and

vector survival to be accurate, particularly at the edge of a mosquito’s distribution where the

potential impact of these microbes would likely be greatest in hotter and more thermally vari-

able regions of the mosquitos’ range.

Materials &methods

Mosquitoes

Within a year of this study, the wAlbBWolbachia-infected Ae. aegypti line was backcrossed for

7 generations to a wild-caught mosquito line (AFM-Wildtype [WT]), that was collected from

the field in Mérida, Mexico, by Pablo Manrique. This process homogenized the nuclear genetic

background with the field line but would have retained the mitochondria from theWolbachia-

infected line. We used this continuously maintained line (~1 year) for the DENV+/- experi-

ments. Furthermore, because this population was not naturally infected withWolbachia, we

also used it as a negative control for subsequentWolbachia experiments. Both lines were

reared under standard conditions: 12hr light/dark, 26˚C, 60% relative humidity, ad libitum

Tetramin fish food at the larval phase, and 10% sucrose as adults.

Virus

We used DENV serotype 2 for all experiments, as it has been previously shown to form strong

infections in the mosquito in the laboratory [11]. Originally isolated from a patient in East

Timor, the ET-300 strain (GenBank EF440433.1), with approximately 20 passages, was used in

the assay, as done previously in a study ofWolbachia:mosquito:DENV interactions [88]. Ae.

albopictus C6/36 cells were grown at 26˚C in RPMI 1640 medium (Invitrogen, Carlsbad, CA)

supplemented with 10% fetal bovine serum (FBS), 1× Glutamax (Invitrogen), and HEPES
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buffer. Cells were first allowed to form monolayers of around 60–80% confluence in T-175

flasks (Sigma Aldrich, St. Louis, MO) and then were inoculated with DENV and maintained in

RPMI medium supplemented with 2% FBS. At day 7 post-inoculation, live virus was harvested,

titrated via absolute quantification RT-qPCR, and adjusted to a final viral load of 107 DENV

copies per ml.

Mosquito infections with DENV

Before an infectious blood meal, mated, 9-day-old female mosquitoes were sorted into groups

of 100 in 68-oz paper cartons. Sucrose was removed from the mosquitoes 24 hrs before oral

infection and replaced with water. Double-chamber glass feeders were covered with pig intes-

tine previously immersed in a 10% sucrose solution. Water heated to 37˚C was circulated in

the outer chamber of the feeders, and a 1:1 mix of defibrinated human blood and the previ-

ously titrated DENV virus was placed inside the feeder. The final feed concentration was 2.5e7

DENV copies/ml. In parallel, all DENV−mosquitoes were fed a solution containing a 1:1 ratio

of blood without virus and RPMI 1640 cell culture media to serve as mock controls. After 24

hrs, all blood fed mosquitoes were identified by visual inspection under chilling and returned

to the cartons.

Thermal knockdown assay

The thermal sensitivity of infected and uninfected mosquitoes was measured using a static

heat shock assay (Fig 1) based on previous work in Drosophila [89]. KD experiments were car-

ried out at 42˚C, as pilot studies indicated this temperature represented the critical thermal

maximum of the mosquitoes (S7 Table). Exposure to 42˚C led to death in 97% of individuals

trialed in the WT line even without the presence of DENV. From the literature, this tempera-

ture also represents some of the upper thermal extremes insects may encounter in nature due

to global climate change [17]. Mosquitoes were moved 24 hrs after blood feeding to individual

40-ml glass vials with mesh lids topped with cotton balls soaked in 10% sucrose that were

changed daily. All vials were housed in environmental chambers maintained at 26˚C and 65%

relative humidity. Knockdown (KD) assays were performed 8 days after blood feed, allowing

time for the virus to disseminate throughout the body and affect mosquito physiology [19].

Before each assay (<25 minutes), the mesh lids to the vials were replaced with solid plastic.

The assays themselves were also carried out in the environmental chambers, so air captured in

the vials upon sealing was at 65% relative humidity. The vials containing the mosquitoes were

then attached to a plastic board in groups of 40 via anchored clips, randomized with respect to

treatment. The board with vials was immersed in a water bath heated to 42˚C and allowed a

60-second acclimation period. Mosquitoes were then monitored visually for immobility and

time to thermal knockdown (KD) was scored using Brady labels and a TriCoder Scanner

(Worth Data Inc., Santa Cruz, California). Immobility was confirmed by tapping on the vial

while it was still immersed in the water bath. Mosquitoes did not recover after thermal knock-

down(KD). The DENV status of all individuals was confirmed by PCR as described below.

Mosquito nucleic acid extraction

Upon completion of each KD experiment, individual whole mosquitoes were anesthetized by

chilling and placed in 1.5-ml microfuge tubes (Sarstedt, Nümbrecht, Germany) containing

300 μl of TRIzol reagent (Invitrogen, Carlsbad, CA, USA) and a 2.8-mm ceramic bead. Sam-

ples were homogenized on a Bead Ruptor Elite (Omni International, USA) and then frozen at

−80˚C. Total RNA was extracted with the Direct-zol RNA 96 Magbead Zymo kit (Zymo

Research, Irvine, CA) according to the manufacturer’s protocol. Following this step, the
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samples were processed using an automatic magnetic bead purification system (MagMAX

Express 96 system, Applied Biosystems). RNA was eluted in 50 μl RNase free water. RNA was

then treated with 5 units of DNase I (Sigma-Aldrich) at room temperature for 15 min, fol-

lowed by inactivation with 50 mM EDTA at 70˚C for 10 min. To measureWolbachia loads,

extractions for both RNA and DNA were performed using the column-based Direct-zol DNA/

RNAMiniprep kit. RNA was eluted in 50 μl RNase free water, followed by DNA elution in

50 μl of Direct-zol DNA Elution Buffer. Total RNA and DNA concentrations were determined

with a NanoDrop model 2000/2000C (Thermo Scientific, Waltham, MA).

DENV quantification

DENV virus was quantified using TaqMan Fast Virus 1-step Master Mix (Thermo Fisher Sci-

entific) in 10-μl reaction volumes with DENV-specific primers and probes [90] (S8 Table).

The following protocol was used: reverse transcription at 50˚C for 5 min, followed by 50

amplification cycles 95˚C for 20 sec, and amplification cycling at 95˚C for 3 sec and 60˚C for

30 sec. A standard reference curve of known quantities of a DENV-2 genomic fragment was

used for absolute quantification by qPCR. The DENV-2 genomic fragment was previously

inserted into a plasmid and transformed into Escherichia coli as described [90]. The linearized

and purified fragment was serially diluted ranging from 107to 102 copies and used to create a

standard curve of DENV amplification. The standard curve was run in duplicate on each

96-well plate, and the limit of detection was set at 102 copies. All samples were run in

duplicate.

Wolbachia quantification

Wolbachia load was assessed as previously reported including published primers and probes

[90]. In brief, a multiplex qPCR reaction amplifying the targetWolbachia-specific surface pro-

tein wsp and mosquito ribosome subunit 17 housekeeping gene RpS17 was performed. The

RpS17 gene was used to normalize wsp gene copies. Quantitative PCR reactions were run in

duplicate and performed in a 10-μl total volume containing 1× Lightcycler 480 Probes Master

reaction mix, 5 μM of each wsp primers and probe, 2.5 μM each of RpS17 primers and probe,

and 1 μl of DNA template. Cycling was performed using a LightCycler480 Instrument

(Roche), with 1 cycle at 95˚C for 5 min; followed by 45 amplification cycles of 95˚C for 10 s,

60˚C for 15 s, and 72˚C for 1 s; and a final cooling cycle of 40˚C for 10 s. Target to housekeep-

ing gene ratios were calculated using the Livak’s 2−ΔΔCTmethod relative quantification algo-

rithm in the Lightcycler 480 software (Roche).

Experimental design and statistical analysis

In the first set of experiments, mosquitoes withoutWolbachia were infected with DENV (pas-

sage 36) as described above and tested for KD in 4 temporal replicates each containing 20 indi-

vidual mosquitoes per treatment (+/−DENV). All mosquitoes were from the same generation/

population of mosquitoes. In the second set of experiments, we explored bothWolbachia (+/-)

and DENV (+/-) infection.Wolbachia-free mosquitoes were drawn from the same population

as above, 3 generations hence. As for the first experiment, live virus was cultured to feed to

these mosquitoes, from virus passaged 38 times. Any mosquitoes not infected with DENV in

DENV+ treatments (~4% inW- mosquitoes in experiments 1 and 2 and 53%W+ mosquitoes

in experiment 2) were excluded from the data analysis. All knockdown data were log trans-

formed before analysis to correct issues with skew. In experiment 2, each of the 4 combinations

of infection status was represented by 10 individual mosquitoes in a temporal replicate. These

experiments were then replicated 6 times (blocks). All statistics were carried out using JMP
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Version 4 for Mac (SAS Institute Inc., Cary, NC, USA). Knockdown (KD) time was examined

using general linear models with ‘DENV infection,’ ‘temporal replicate,’ and ‘Wolbachia infec-

tion’ as fixed effects where relevant. The relationships between each DENV load andWolba-

chia load and KD time were examined with Pearson’s correlation.
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