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Reinforcement Learning in PatientsWithMood

and Anxiety Disorders vs Control Individuals

A Systematic Review andMeta-analysis

Alexandra C. Pike, DPhil; Oliver J. Robinson, PhD

IMPORTANCE Computational psychiatry studies have investigated how reinforcement

learning may be different in individuals with mood and anxiety disorders compared with

control individuals, but results are inconsistent.

OBJECTIVE To assess whether there are consistent differences in reinforcement-learning

parameters between patients with depression or anxiety and control individuals.

DATA SOURCESWeb of Knowledge, PubMed, Embase, and Google Scholar searches

were performed between November 15, 2019, and December 6, 2019, and repeated

on December 3, 2020, and February 23, 2021, with keywords (reinforcement learning)

AND (computationalORmodel) AND (depressionOR anxietyORmood).

STUDY SELECTION Studies were included if they fit reinforcement-learningmodels to human

choice data from a cognitive task with rewards or punishments, had a case-control design

including participants with mood and/or anxiety disorders and healthy control individuals,

and included sufficient information about all parameters in themodels.

DATA EXTRACTION AND SYNTHESIS Articles were assessed for inclusion according toMOOSE

guidelines. Participant-level parameters were extracted from included articles, and a

conventional meta-analysis was performed using a random-effects model. Subsequently,

these parameters were used to simulate choice performance for each participant on

benchmarking tasks in a simulationmeta-analysis. Models were fitted, parameters were

extracted using bayesian model averaging, and differences between patients and control

individuals were examined. Overall effect sizes across analytic strategies were inspected.

MAIN OUTCOMES ANDMEASURES The primary outcomeswere estimated

reinforcement-learning parameters (learning rate, inverse temperature,

reward learning rate, and punishment learning rate).

RESULTS A total of 27 articles were included (3085 participants, 1242 of whom had

depression and/or anxiety). In the conventional meta-analysis, patients showed lower inverse

temperature than control individuals (standardizedmean difference [SMD], −0.215; 95% CI,

−0.354 to −0.077), although no parameters were common across all studies, limiting the

ability to infer differences. In the simulationmeta-analysis, patients showed greater

punishment learning rates (SMD, 0.107; 95% CI, 0.107 to 0.108) and slightly lower reward

learning rates (SMD, −0.021; 95% CI, −0.022 to −0.020) relative to control individuals.

The simulationmeta-analysis showed nomeaningful difference in inverse temperature

between patients and control individuals (SMD, 0.003; 95% CI, 0.002 to 0.004).

CONCLUSIONS AND RELEVANCE The simulationmeta-analytic approach introduced in this

article for inferring meta-group differences from heterogeneous computational psychiatry

studies indicated elevated punishment learning rates in patients compared with control

individuals. This differencemay promote and uphold negative affective bias symptoms and

hence constitute a potential mechanistic treatment target for mood and anxiety disorders.
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A
nxiety and depression are major individual and pub-

lic health burdens.1-3 However, current treatment op-

tions have relatively low recovery rates (ranging from

28% to 52%4-6), and there are limited novel treatment pros-

pects on the horizon. Part of the difficulty in developing and

improving treatments is that we have an incomplete under-

standing of the mechanisms underlying anxiety and depres-

sion.However, a growingnumber of proposedmechanismsof

moodandanxietysymptomshaveemerged fromafieldknown

as computational psychiatry.7-11

Thebasicpremiseofcomputationalpsychiatry is thatvaria-

tions in how the brain performs computations (eg, in learn-

ing, perception, and decision-making)may, over time, gener-

ateemergentsymptomsthatareobserved invariouspsychiatric

disorders. For example, one theory is that individuals with a

higher learning rate fornegative stimuli (ie, punishment learn-

ing rate) might learn more from each negative event they ex-

perience, producing the negative affective bias that is fre-

quently associatedwithdepressive andanxiousdisorders.12,13

This theory situates the computational approachwithin clini-

cal psychology concepts that date back to the 1960s14 and

providesamechanistic and falsifiablehypothesis forhowclini-

cal phenomena like negative affective bias may emerge.

The most common class of computational models tested

in this field to date are reinforcement-learningmodels. Rein-

forcement learning can be defined as learning to obtain re-

wards and avoid punishments,15 and this type of computa-

tional model has some notable strengths. Namely, quantities

computed by thesemodels may be encoded in the phasic fir-

ing of dopamine neurons,16 providing a bridge between brain

and behavior.15 Moreover, reinforcement-learning models

can accurately mimic highly complex human behaviors.17,18

Further, there is a large body of evidence19,20 suggesting

that those with depression and anxiety may show differ-

ences in processing rewards and/or punishments. Reinforce-

ment-learning models may allow us to better understand

this phenomenon.

We are now at the point where the body of case-control

research investigating reinforcement-learning parameters in

moodandanxietydisorders is sufficiently extensive that look-

ing for overall patterns is possible. However, findings are var-

ied. For example, different studies have argued that anxiety

or depression may be associated with increased punishment

learning rates21-23 or reduced reward sensitivity.24 While

either of these differences would produce a negative bias to-

ward the processing of punishments rather than rewards, the

specifics can actually have considerable implications for how

we treat such symptoms. For instance, reduced reward sen-

sitivity in patients would require treatments that focused on

howmuch the individual liked experiencing positive events,

while treatments forelevatedpunishment learning rateswould

seek to encourage individuals to avoid immediately changing

their behavior in response to negative outcomes.

The aim of this meta-analysis is therefore to assess con-

sistencies across these reinforcement-learning studies and

generate more highly powered estimates of the underlying

group differences,25 hypothesizing that there will be a differ-

ence in reinforcement-learning parameters across groups.

We first present the results of a conventional meta-analysis.

However, this analysis was unsatisfactory for the modeling

approaches used in computational psychiatry, as studies use

both different tasks and different models to obtain their

results.26 Is there a more principled way to combine the ef-

fect sizes from different tasks, models, and parameters?

To this end, a benefit of the modeling approach is that

rather than simply taking a summary statistic over partici-

pants, individual-level trial-by-trial data are used to generate

a proposed model of the underlying mechanisms. This gen-

erativemodelalsoprovidesprecisepredictionsabouthoweach

individual’s behaviormight generalize outside of the specific

reported context. It is therefore possible to invert a reported

model and simulate data for participants, even on tasks that

they did not perform in the original study. As such, we can

simulate performance for participants across studies on stan-

dardized benchmarking tasks, removing task inconsistencies

across studies. We can then compare parameters across con-

sistentmodels inournewlystandardizeddata, removingmodel

inconsistencies across studies. This method can increase the

generalizability of these parameters, as we obtain model pa-

rameterestimates in this commonspaceanduse themtometa-

analytically estimate parameter differences across groups.

Thus, the aim of this article is to leverage the unique advan-

tages of computationalmodeling to create anovel simulation-

based meta-analytic method, which can be used to test the

hypothesis that there are case-control differences in reinforce-

ment learning across mood and anxiety disorders.

Methods

The procedure used in our meta-analysis is summarized

below and in Figure 1, and explained in more detail in the

eMethods in the Supplement.

Article Selection and Extraction ofModel Parameters

Articles were included if they met the following criteria:

1. Human participants.

2. Reported choice data from a cognitive task withmonetary

or point-based rewards or punishments.

3. Fit reinforcement-learning models to choice data.

Key Points

Question Are there differences in reinforcement learning

between patients with mood and anxiety disorders and control

individuals?

Findings In this systematic review andmeta-analysis, a novel

computational simulationmethod showed differences in

reinforcement learning between patients and control individuals.

In particular, patients showed elevated punishment learning rates

compared with control individuals.

Meaning These findings show that patients may bemore likely

than control individuals to modify their behavior in response to

punishments, suggesting a possible mechanistic treatment target

for negative affective bias symptoms.
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4. Used a case-control design comparing control individuals

with individuals with mood and/or anxiety disorders.

5. Reported sufficient statistics of all parameters in themod-

els or made individual-level parameters available.

A standard systematic search was performed according

to the Meta-analysis of Observational Studies in Epidemi-

ology (MOOSE) reporting guideline (eAppendix 1 in the

Supplement) between November 15, 2019, and December 6,

2019 (A.C.P.), and independently verified (O.J.R.). The search

was repeated on December 3, 2020, and February 23, 2021.

Further details may be found in the eMethods in the

Supplement.

Extraction ofWinningModel Parameters FromArticles

We used individual parameter estimates where available

(eMethods in the Supplement) from the best-fitting model

reportedby the studies.Where thesewerenot available in the

article or a repository, we contacted the corresponding au-

thor to request them.

Conventional Meta-analysis

Weused amodified version of the Newcastle-Ottawa scale to

assess study quality, with details and results reported in

the eMethods in the Supplement. We performed a series of

random-effectsmeta-analyseson rawvaluesof themost com-

monly reported reinforcement-learning parameters from the

included studies. Heterogeneity and publication bias were

assessed and are reported in the eResults in the Supplement.

SimulationMeta-analysis

In parallel with the conventional meta-analysis, we also per-

formed a novel simulation meta-analysis. We describe this

approach briefly here and in Figure 1 and in more detail in

the eMethods in the Supplement.

In brief,we took theoriginally reportedmodels fromeach

article (eAppendix 2 in the Supplement) and used the model

parameters reported for each participant to simulate choice

behavior on 5 new benchmarking tasks. In other words, we

used the generative models reported in the articles to antici-

Figure 1. Study Procedure
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database searching

875 Records after duplicates removed
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pate thechoicesparticipantsmighthavemade if theyhaddone

the same 5 tasks without adjusting behavioral strategy (en-

suring that all choices were in the same task space). We then

fit a selection of reinforcement-learningmodels (overlapping

with the models across all the original articles) to this new

choice data set, and then extracted parameters using bayes-

ian model averaging according to the strength of fit of each

model to the data. This ensured all results were in the same

model space. This enabled us to test the primary hypothesis:

whether any parameters differed between groups.

There are a number of different methods of parameter

estimationcommonlyused incomputationalpsychiatry.Tode-

terminewhether our findingswere robust to analyticmethod,

we used 4 different analytic strategies to estimate param-

eters. The 4 analytic strategies were combinations of maxi-

mumaposteriori and variational bayesian estimation and as-

sumed either that all patients and control individuals came

from the sameunderlyingpopulation (a single empirical prior

was used for each parameter) or that they came from 2 sepa-

rate underlying populations (2 priors were used, 1 for each

group).Weperformed fixed-effectsmeta-analyseson themost

commonparameters for illustrativepurposes to allowus tovi-

sualize consistency of effect sizes across approaches.

Results

Systematic Search

After a systematic search, 27articleswere included.21,23,24,27-50

The total number of participants included was 3085, 1242

of whom were patients with mood and anxiety disorders.

A PRISMAdiagramand a summary of the studies included, as

well as an assessment of study quality, can be found in the

eResults in the Supplement.

Conventional Meta-analysis

After individual-level parameters hadbeenextracted,weper-

formed a series of random-effects meta-analyses to examine

whether any of the most commonly reported parameters

showed differences between patients and control individu-

als. There was no parameter that all articles had in common,

highlighting the importanceofour simulationapproach for in-

ference across all included studies. There was no significant

standardizedmeandifference in a single learning rate param-

eter (9 of 27 articles reported this parameter: standardized

meandifference, 0.196 [95%CI, −0.044 to0.437];Figure 2A).

However, inverse temperature (or temperature,whichwecon-

verted to inverse temperature) was elevated in control indi-

viduals (represented in 19of27articles: standardizedmeandif-

ference, −0.215 [95%CI, −0.354 to −0.077]; Figure 2B). Some

articles reported learning rates that were separated by va-

lence: therewas no significant standardizedmean difference

in these parameters (reward learning rate was represented in

14 of 27 articles: standardized mean difference, −0.152

[95%CI,−0.310 to0.006];Figure3A;punishment learning rate

was also represented in 14 of 27 articles: standardized mean

difference,−0.037 [95%CI,−0.306 to0.232];Figure3B).There

was evidence ofmoderate to substantial heterogeneity based

on thevaluesof thebetween-studyvarianceof trueeffect sizes

(τ2) andtheapproximateproportionof totalvariability (I2) (eRe-

sults in the Supplement).

SimulationMeta-analysis

We used bayesian model averaging to obtain parameter esti-

mates from each model in proportion to empirically deter-

mined model weights based on bayesian information crite-

rion values. Subsequently, we performed 4 multivariate

analyses of variance, 1 corresponding to eachdifferent param-

eter estimation method (dependent variables included all

parameters forwhich therewas at least 1 estimate), including

group, study, and task as main effects. Each of these indi-

cated that there was a main effect of group (Table), suggest-

ing that therewas a general difference in reinforcement learn-

ing between patients and control individuals regardless of

estimation method.

Therewere also effects of study and task.Wedescribe the

effectof task further in theeResults in theSupplement.Briefly,

recovery for separate reward and punishment learning rates

was notably worse in benchmarking tasks in which rewards

and punishmentswere nonindependent. In a supplementary

analysis, we show that our findings heldwhen only including

thebenchmarking taskswithgood recovery.However, it is also

possible that this issue is present in the raw parameter data

thatweused in thismeta-analysis: not all tasks in the original

article had orthogonal rewards and punishments.

We examined the effect of group for the parameters that

were representedmost frequently after bayesianmodel aver-

aging. Statistics are shown in the eResults in the Supplement,

andasummaryof theeffect sizes foreachapproachcanbeseen

in Figure 4.

Here,we report the standardizedmeandifferences for the

4 most highly represented parameters from our simulation

meta-analysisusingbayesianmodelaveraging,combinedusing

a fixed-effects meta-analysis. Across analysis methods

(Figure4),we sawameaningful increase inpunishment learn-

ing rates (standardizedmeandifference, 0.107 [95%CI, 0.107

to 0.108]) in patients vs control individuals and a slight de-

crease in reward learning rates (standardized mean differ-

ence, −0.021 [95% CI, −0.022 to −0.020]) with single learn-

ing rates also showing a slight increase (standardized mean

difference, 0.041 [95%CI, 0.040 to0.042]). Inverse tempera-

ture, which appeared to be different in a conventional meta-

analysis, showed only a negligible difference (standardized

mean difference, 0.003 [95% CI, 0.002 to 0.004]).

Subgroup analyses that investigate how these results

varied by participant group, and meta-regressions control-

ling for study quality, year of publication, and parameter-

level uncertainty, are in the eResults in the Supplement.

Discussion

Our conventional meta-analysis suggested the only differ-

ence in reinforcement-learning parameters between patients

and control individuals was in inverse temperature, with pa-

tients showing lower inverse temperature.However, the limi-

Research Original Investigation Reinforcement Learning in Patients With Mood and Anxiety Disorders vs Control Individuals

316 JAMAPsychiatry April 2022 Volume 79, Number 4 (Reprinted) jamapsychiatry.com

Downloaded From: https://jamanetwork.com/ by a University of York User  on 07/05/2022



tations of conventional methods when applied to computa-

tional modeling research were apparent: many articles did

not have parameters in common. Using our novel meta-

analytic method to estimate parameters for all articles across

consistent task space and model space, we found meaning-

fully higher punishment learning rates and slightly lower

reward learning rates in patients than in control individuals.

This was seen alongside negligible group differences in in-

verse temperature.

Theprimaryfindingfromoursimulationmeta-analysiswas

that those with mood and anxiety disorders showed a differ-

ent balance between reward and punishment learning rates

comparedwith control participants. Specifically, patients up-

dated their learnedvaluesmeaningfullymore than control in-

dividuals after receiving a punishment and slightly less than

control individuals after receiving a rewardoutcome. This as-

sociationwith learning rateswas not apparent in our conven-

tionalmeta-analysis; however, onlyhalf (14 of 27) of the origi-

nal studies included the parameters (separate reward and

punishment learning rates) thatwe required to test this using

conventional methods. This highlights a key strength of our

new simulation approach, as we were able to test for differ-

ences in these parameters across all studies.

The second key finding is that we did not observe any

robust evidence of meaningful differences in inverse tem-

perature or outcome sensitivity across patients and control

individuals using our novel simulation method. It is worth

bearing in mind that these parameters incorporate noisiness,

participant exploration, and sensitivity to outcomes and

thus are perhaps not pure estimations of either choice sto-

chasticity or outcome sensitivity. This null finding is also

made unclear by the poorer recovery of sensitivity effect

sizes using our pipeline (eResults in the Supplement), and

the fact that a larger association with inverse temperature

was observed when controlling for study quality in a meta-

regression. However, on the basis of our results, we tenta-

tively suggest that how individuals learn and change their

behavior to outcomes may be more important than other

factors, such as how much individuals like or dislike

outcomes. Further replication using tasks and models

designed to robustly estimate these parameters will be nec-

essary to confirm this interpretation, but it is interesting that

Figure 2. Forest Plots for the Conventional Meta-analysis Comparing Learning Rate and Inverse Temperature
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our findings contrast with some accounts of depression

and anxiety,24,51 which propose that depression is associated

with reduced reward sensitivity (eg, anhedonia as a diagnos-

tic criterion) and that anxiety is associated with increased

punishment sensitivity (eg, biased attention or memory

for threats).

Figure 3. Forest Plots for the Conventional Meta-analysis Comparing Reward Learning Rate and Punishment Learning Rate
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Table. Results From theMultivariate Analysis of Variancea

Analysis method Main association Approximate F

df

P valueNumerator Denominator

VBA

1b Group 971.30 16 15 273 788 <.001

Task 60 255.67 64 61 095 164 <.001

Study 14 795.04 416 244 380 848 <.001

2c Group 10 590.50 16 15 273 788 <.001

Task 47 039.51 64 61 095 164 <.001

Study 11 683.04 416 244 380 848 <.001

MAP

1b Group 672.91 16 15 273 788 <.001

Task 20 178.88 64 61 095 164 <.001

Study 3636.98 416 244 380 848 <.001

2c Group 1707.41 16 15 273 788 <.001

Task 20 696.29 64 61 095 164 <.001

Study 6560.50 416 244 380 848 <.001

Abbreviations: MAP, maximum a

posteriori; VBA, variational bayesian

analysis.

a Full univariate results for all

parameters can be found in the

eResults in the Supplement.

bParameters were estimated using a

hierarchical bayesian approach with

only a single prior over groups.

c Parameters were estimated using a

different prior for each group.
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Our findings may help refine our understanding of nega-

tive affective bias,12 in which patients focus on negative out-

comes or occurrences. Specifically, our results allow us to

tentatively distinguish between 2 potential causes of nega-

tiveaffectivebias: greater subjectivevaluationofnegativeout-

comes and different learning in response to negative

outcomes.13Thismeta-analysis found thatpatientswithmood

and anxiety disorders learned more from each instance of a

negative outcome and showed no differences in how much

they disliked these outcomes.

Furthermore, the results we have presented may be rel-

evant to howclinicians target cognitive interventions. Rather

than encouraging individuals with depression or anxiety to

downweigh the subjective experience of negative outcomes

or to sitwithand tolerate resultingdistress (as anecessarypre-

requisite for subsequently altering behavioral responses to

distress, ie, in dialectical behavior therapy),52 interventions

should focusdirectlyonmodifyinghowan individual changes

their behavior in response to that negative outcome.21For ex-

ample, a therapist could try to encourage the individual to

pause andnot immediately change their behavior after some-

thing bad happens to provide the space to contextualize the

negative outcome. This focus on punishment learning rates

rather than punishment sensitivity could also help us under-

stand how some common interventions work. For instance,

flooding in exposure therapy (eg, where an agoraphobic indi-

vidual is taken to a busy city center)may be effective through

preventing the individual from performing their habitual be-

havioral responses to a negative outcome, rather thanby tun-

ing down their aversive response (ie, punishment sensitivity)

to the exposure (eg, the crowd of people).

One of the strengths of reinforcement-learning models

is that key quantities (ie, reward prediction errors) predicted

by these models are thought to be reflected by neural

activity.16,53-57Notably, the learning ratemay be an emergent

property of neuromodulators, and in particular catechol-

amines, suchasdopamineandnoradrenaline.58,59Thishas im-

plications for drug interventions for depression and anxiety:

if thebalanceofcatecholaminesmodulates learningrates,phar-

macological agents that affect learning rates may be of ben-

efit to patients. Much previous work has focused on neuro-

modulators in depression and anxiety, following articulation

of themonoaminehypothesis in the 1960s.60-62 Indeed,many

of the first-line treatments for these disorders are selective

serotonin reuptake inhibitors,63,64which are associated with

both serotonin and dopamine.65 However, many of these

agents were discovered serendipitously, and the mecha-

nisms by which they act on mood and anxiety symptoms

are still unclear.66As a result, there are few intermediate end

points that have been validated for use in drug discovery. The

results of this meta-analysis may point to a genuine interme-

diate end point: learning rates. In particular, individualized

measures of learning rate balance could be obtained using

straightforward behavioral tasks, thus allowing dose person-

alization and early indications of drug efficacy for individu-

als. This end point is also translationally valuable, as learning

rates can also be measured in animals, potentially allowing

preclinical drug discovery work.67 This meta-analysis there-

fore provides a possible first step toward connecting differ-

ent levels of analysis in mental health research, from

behavioral symptoms to the underlying neurobiology and

pharmacology.

Limitations

This study has several limitations. A core assumption of the

fieldof computational psychiatry is that parameters andmod-

els generalize across tasks, samples, andmodel parameteriza-

tions (highlightedby theuse of the same terms, such as learn-

Figure 4. Forest Plots of the Cohen d Effect Sizes for the 4Most Highly Represented Parameters From the SimulationMeta-analysis
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ing rate, in different studies andmodels).26 We relied on this

assumption for our conventionalmeta-analysis, although for

our simulation meta-analysis we only required that param-

eters generalizedacross tasks andsamples. Specifically,weas-

sumed that it was possible to use a model that captured be-

havior on one task to simulate behavior on another. It is

unlikely, however, that this is straightforwardly possible,26

which is reflected in the consistent effect of study we found

on all parameter values. Particularly concerning is recent em-

pirical evidence suggesting that parametersmaynot be stable

within individualseitherover time68oracrossdifferent tasks.69

In addition, parametersmay not be stable evenwithin a task;

learning rates are known to adjust with the volatility of the

environment,13,70,71which also changes between tasks, along

with other variables (eg, responses, timing, outcomes, and

contingency structure). Furthermore, parameters defined for

different taskswithdifferentunderlyingstatisticsmayplaydif-

ferent roles in new tasks. Understanding how the parameters

derived fromone task relate to another—perhapsbyestablish-

ing task-specific parameter norms or by testing the same in-

dividuals acrossmultiple tasks—will allowstronger inferences

about parameters to be drawn in this kind of meta-analytic

approach. If parameters from one task do not relate at all

to each other, this will be a serious issue for the use of

reinforcement-learningmodels in computational psychiatry.

An implicit assumption is that theseparameters are represen-

tative of underlying generative processes across tasks and

are thusmore relevant to real-world behavior than summary

statistics, such asmean accuracy. Perhaps amore realistic as-

sumption is thatparametersdogeneralize,but imperfectly, be-

tween tasks. This can be observed in related families of

models, suchasdriftdiffusionmodels, theparametersofwhich

do mostly generalize across tasks,72 including in clinical

populations.73 It is nevertheless promising that we were able

to observe consistent parameter effect sizes across different

analytic methods despite this substantial source of noise.

The results from our conventional meta-analysis differ

fromour findingsusingournovel simulationmethod.Ourcon-

ventionalmeta-analysis founddifferences in inverse tempera-

ture, but notwith learning rate, namely reduced inverse tem-

perature inpatients.Reduced inverse temperaturemay reflect

noisy choicedata,whichencompasses strategiesnot basedon

reinforcement learning, exploratory behavior, or simply non-

specific difficulties in attention and concentration8,74 that are

often observed clinically. Future work might therefore mea-

suregeneral executive functionalongside reinforcement learn-

ing to disentangle the contribution of learning-specific asso-

ciations from overall cognitive function.75,76 However, the

conventional meta-analysis was also limited by the lack of

commonality across parameters, reducing the amount of us-

able data, andby lack of generalizability across task space and

model space, which was the motivation behind the develop-

mentof ournovelmethod.Futureworkwill beneeded to fully

assess and compare the conventional methodwith our novel

one (although see the eResults in the Supplement for simula-

tions indicating the effect sizes from our novelmeta-analysis

are generally underestimates).

On a related note, it is possible that our findings were

driven, at least inpart, byour selectionofbenchmarking tasks.

As illustrated in the eResults in the Supplement, recovery de-

pends on the structure of the task. Future work might adopt

additional benchmarking tasks to further probe the robust-

ness of meta-analytic differences to task specification.

Additionally, in this novel method, we did not carry for-

ward all the informationwehadaboutparameter-level uncer-

tainty to our final inference. However, the results of a meta-

regression using parameter-level uncertainty (eResults in the

Supplement) showed that the effect of group on punishment

learning rate was robust to this source of noise.

Moreover, therewas considerableheterogeneity in the in-

cluded studies. This may be driven by the different partici-

pant groups, tasks, andmodels included in these studies, but

another important source of variance might be the variety of

different methods used in parameter estimation. Parameters

estimated in original studies may have been subject to hier-

archical fittingornot,mayberegularizedornot,mayhavebeen

constrained or not, and the original authors may or may not

have tested parameter andmodel recovery and stability. This

should not prohibit meta-analytic inference, but is an addi-

tional source of noise that should temper confidence in

meta-analytic estimates.

Conclusions

Overall, this study provides support for the hypothesis that

reinforcement learning differs across patients with mood

and anxiety disorders and control individuals. Specifically,

we demonstrated elevated punishment learning rates and

reduced reward learning rates in patients. We concluded that

negative affective bias in mood and anxiety disorders

may be driven by patients being too quick to update their

behavior in response to negative outcomes. Moreover, by

providing a formal computational account of this process,

we were able to associate these symptoms with different lev-

els of analysis (eg, neurobiological and pharmacological) and

gain a mechanistic insight into how psychological therapy

may work.
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