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Turbulent Mean Flow Reconstruction Based on Sparse

Multi-sensor Data and Adjoint-based Field Inversion

Omid Bidar∗1, Ping He†2, Sean Anderson‡1, and Ning Qin§1

1The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
2Iowa State University, Ames, Iowa, 50011, USA

There is significant interest in using limited, experimentally measurable, data to reconstruct

turbulent mean flows. One approach to achieve this is field inversion, which involves introducing

a spatially varying field in the transport equation of the turbulence model, and optimising this

field such that the error between the data and model predictions is minimised. This highly

dimensional inverse problem is solved with gradient-based optimisation, driven by efficient

derivative computations of the cost function using the adjoint method. It has been used to

achieve promising results using limited observations from one data source, such as lift force,

surface friction etc. In practice, experimental data are often disparate in nature: various

quantities from different parts of the flow domain, with varying dimensions and quality. In this

work, we will investigate the use of field inversion with disparate data based on sensor fusion and

the solution of a multi-objective optimisation, for augmenting the Spalart–Allmaras turbulence

model. The separated flows over the NASA wall-mounted hump and the periodic hill are used

as test cases, with datasets comprising of velocity profiles, surface pressure, and surface friction.

Results highlight improved mean flow reconstruction when incorporating multiple quantities.

I. Introduction
Turbulence is a ubiquitous flow phenomenon in aerospace applications, and is generally investigated using experiments

and/or computational fluid dynamics (CFD). In both approaches, limitations exist in terms of the level of fidelity and

costs. By far the most used models in practical CFD analyses are based on Reynolds-averaged Navier–Stokes (RANS)

equations, due to their relative simplicity, low computational cost, and ease of implementation. RANS equations require

a model to account for turbulence. Many of these models use the Boussinesq assumption, which relates the Reynolds

stresses to the mean flow using the eddy viscosity [1]. The cost of simplicity in RANS models is the inaccuracy in

prediction results for complex flows involving strong flow curvatures, separations, and other complex phenomena [2].

With the rise of data-driven and machine learning techniques, there has been growing interest in the synergy of the two

approachesȷ using experimental data to complement CFD simulations to study and predict turbulent flows [«].

Machine learning methods are a popular strategy used for reconstructing turbulent mean flows with data. These

approaches include the a priori/CFD-free methods and model-consistent methods. In a priori/CFD-free methods the

machine learning system is trained directly on inputs and features taken from high-fidelity data to recover discrepancies

in the Reynolds stress tensor [»]; examples include eigen-decomposition methods [5–7], neural networks [8] and

symbolic regression [9, 10]. A limitation of these approaches is that the model may become inconsistent. This can be

the case because differences exist between the features used for training, and those used for prediction, e.g. the DNS

quantities for length and time scales do not have a one-to-one correspondence to the RANS equivalents. Secondly,

generating detailed high-fidelity data for high Reynolds number flows is challenging. The so-called model-consistent

methods developed in parallel can address these issues.

In model-consistent machine learning methods the data-driven model training involves the imperfect RANS

environment by explicitly including the baseline model output in the training loss function. This is done by solving a

number of inverse problems where the goal is to minimise the discrepancy between the baseline RANS model and

measurement data, a so-called field inversion approach, sometimes also broadly termed data assimilation [11–1«].

Machine-learning algorithms, such as neural networks, can then be used to generalise the discrepancy field for improved
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predictions. Broadly, two streams of field inversion have been pursued in literatureȷ ensemble-based [1«–15], and

adjoint-based methods [11, 12, 16], both shown to be capable of reconstructing turbulent mean flows given limited,

experimentally measurable, data. The focus of this paper is on adjoint-based methods for field inversion because it can

recover finer scales compared to the ensemble-based methods.

To date, field inversion using adjoint-based methods has been limited to using only a single source of data. The

types of single source data used have included volume data (e.g. velocity profiles [12]), surface data (e.g. skin friction

[17], and pressure coefficient [18]), and integral data (e.g. lift coefficient [19])—listed in terms of lowest to highest data

sparsity. Using only a single source of data is a limitation because multiple sources can be used simultaneously to train

the model and in theory improve the accuracy of the model and ensure that it fits all available data correctly. Zhang et al.

[20] have recently demonstrated that the use of ensemble-based field inversion with multiple data sources enhances

turbulent mean flow reconstruction. However, a comparable method for using multiple data sources for adjoint-based

field inversion is a current research gap that has not yet been addressed.

The aim of this paper is to extend the adjoint-based field inversion framework, a popular data assimilation alternative

to ensemble-based methods, to make use of multiple data sources for enhanced turbulent mean flow reconstruction. The

approach we take is to use a composite objective function with least squares error terms representing the data for multiple

sensors and sources—leading to a weighted least squares optimisation problem. We investigate the multi-objective

nature of this optimisation by systematically varying the weighting terms to recover a Pareto-optimal front of the

trade-off resulting from differences in weighting the sources of data. We then modify the baseline turbulence model by

perturbing the production term of the model transport equation with a spatial scalar field defined at every mesh cell.

Subsequently, an optimisation algorithm is employed to find the optimum corrective field that minimises the errors.

In Section II we outline the RANS equations, the baseline Spalart–Allmaras model, and the field inversion formulation.

In Section III we use the NASA wall-mounted hump and periodic hill case to compare the novel multi-sensor field

inversion against scenarios where data from a single source is used. Finally, the paper is concluded in Section IV.

II. Methods

A. Incompressible RANS equations

The incompressible, steady RANS equations are solved using the simpleFoam solver in the popular open-source

CFD-code, OpenFOAMȷ

∇ ·𝑼 = 0, (1)

∇ · (𝑼𝑼) + ∇𝑝 − 𝜈eff∇ ·
(

∇𝑼 + ∇𝑼𝑇
)

= 0, (2)

where 𝑼 is the velocity, 𝑝 is the pressure, 𝜈eff = 𝜈 + 𝜈𝑡 is the effective viscosity with 𝜈 and 𝜈𝑡 representing the molecular

and turbulent kinematic viscosity, respectively.

B. Baseline Spalart–Allmaras model

The one-equation Spalart–Allmaras (S-A) model is chosen as the baseline turbulence model. It models the turbulent

kinematic viscosity using the surrogate variable �̃�, as followsȷ 𝜈𝑡 = �̃� 𝑓𝑣1. The transport equation for �̃� is [21]ȷ

∇ · (𝑼�̃�) = 𝑐𝑏1Ω̃�̃�
︸ ︷︷ ︸

production

+
1

𝜎

{

∇ · [(𝜈 + �̃�) ∇�̃�] + 𝑐𝑏2 |∇�̃� |
2
}

︸                                     ︷︷                                     ︸

transport

− 𝑐𝑤1 𝑓𝑤

(

�̃�

𝑑

)2

︸         ︷︷         ︸

dissipation

, («)

where the intermediate functions are

𝑓𝑣1 =
𝜒3

𝜒3 + 𝑐3
𝑣1

, 𝜒 =
�̃�

𝜈
, 𝑓𝑤 = 𝑔

[

1 + 𝑐6
𝑤3

𝑔6 + 𝑐6
𝑤3

]1/6

, 𝑔 = 𝑟 + 𝑐𝑤2 (𝑟
6 − 𝑟),

𝑟 =
�̃�

Ω̃𝜅2𝑑2
, Ω̃ = Ω +

�̃�

𝜅2𝑑2
𝑓𝑣2, 𝑓𝑣2 = 1 −

𝜒

1 + 𝜒 𝑓𝑣1

, 𝑐𝑤1 =
𝑐𝑏1

𝜅2
+

1 + 𝑐𝑏2

𝜎
,

(»)

with Ω representing the rotation rate, and 𝑑 the wall distance. The model constants are as followsȷ 𝑐𝑏1 = 0.1355,

𝑐𝑣1 = 7.1, 𝜎 = 2/3, 𝑐𝑏2 = 0.622, 𝜅 = 0.41, 𝑐𝑤2 = 0.622, and 𝑐𝑤3 = 2.0.
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C. Field inversion formulation

The baseline model is modified by multiplying a corrective field, 𝛽, to the production term in the transport equation

for �̃�, Eqn. «, i.e. 𝛽𝑐𝑏1Ω̃�̃�. The optimum discrepancy field, which reduces the functional error in the baseline turbulence

model, can be found by minimising an objective function of the following formȷ

min
𝛽

J =

(
𝑁𝑑∑︁

𝑖=1

𝑤𝑖

1

J0,𝑖

∥G𝑖 (𝛽) − 𝒅𝑖 ∥
2
2

)

+ 𝜆∥𝛽 − 𝛽prior∥
2
2, (5)

where ∥.∥2 is the 𝐿2 norm; the index 𝑖 ∈ R𝑁𝑑 represents the different data quantities (e.g. velocity, and pressure); 𝒅𝑖
represents the specific quantity from high-fidelity data, with G𝑖 (𝛽) representing the RANS model equivalent; 𝑤𝑖 are the

weights; J0,𝑖 are the least-square errors between the baseline model and data; 𝜆 is a regularisation parameter, and 𝛽prior

is typically assumed to be 1, to bias the solution closer the baseline model. The formulation would be ill-posed without

the regularisation term because of noisy data and the high degree of freedom in the model compared to the number

of data points. We systematically vary the weights 𝑤𝑖 to perform a multi-objective optimisation and investigate the

trade-off between weighting different sources of data and obtain the Pareto-optimal front describing this trade-off.

D. Adjoint solution and optimisation

The discrete variant of the adjoint formulation is used to efficiently compute the derivatives of the objective function

with respect to design variables. An advantage of the discrete adjoint method is the ability to employ automatic

differentiation, which is employed in this work, enabled by the open-source DAFoam package [22]. The IPOPT

optimisation software [2«], based on the interior point line search filter method, is employed for optimisation. For

detailed adjoint equations and our open-source implementation of the framework the reader is referred to [2»].

III. Results and Discussion
In this section we present the results for two separated flow casesȷ 1) the 2D NASA wall-mounted hump [25], with

available experimental data from the NASA Turbulence Modelling Resource database, and 2) flow over a periodic hill,

with detailed LES results from [26]. Both cases involve complex flow features due to separation resulting in discrepancy

between eddy viscosity model predictions compared to high-fidelity results. The cases are summarised in Table 1.

Table 1 Summary of cases, where 𝑀, 𝑅𝑒, 𝐶𝑝, 𝐶 𝑓 are the Mach number, Reynolds number, surface pressure,

and skin friction respectively.

Geometry Flow conditions Data Data type Data source

2D hump 𝑀ref = 0.1 𝑈𝑥/𝑈ref Volume Experiment

𝑅𝑒𝑐 = 936, 000 𝐶𝑝 = (𝑝 − 𝑝ref)/0.5𝜌𝑈
2
ref

Surface

Periodic hill 𝑀ref = 0.2 𝑈𝑥/𝑈𝑏 Volume LES

𝑅𝑒𝐻 = 10, 595 𝐶 𝑓 = 𝜏𝑤/0.5𝜌𝑈
2
𝑏

Surface

A. 2D NASA wall-mounted hump

This case involves flow separation, as a result of adverse pressure gradients, over a smooth hump surface, shown in

Fig. 1. Linear eddy viscosity models, such as Spalart–Allmaras, are known to poorly predict the separation, reattachment

and boundary recovery by over-predicting the size of the separation bubble due to under-predicted turbulent shear stress

in the separated region. The available data include experimental surface pressure, and velocity profiles near the hump.

The flow conditions are summarised in Table 1. For field inversion we use the surface pressure data in the region

−0.8 ≤ 𝑥/𝑐 ≤ 2.1, and four streamwise velocity profiles as shown in Fig. 1. The objective function isȷ

J =
𝑤𝑢

J0,𝑢

𝑁𝑢
𝑑∑︁

𝑖=1

[

𝑈𝑥,𝑖 (𝛽) −𝑈𝑥data ,𝑖

]2

︸                                 ︷︷                                 ︸

J𝑢

+
𝑤𝑝

J0, 𝑝

𝑁
𝑝

𝑑∑︁

𝑗=1

[

𝐶𝑝, 𝑗 (𝛽) − 𝐶𝑝data , 𝑗

]2

︸                                  ︷︷                                  ︸

J𝑝

+𝜆

𝑁𝑚∑︁

𝑘=1

[𝛽𝑘 − 1]2 , (6)
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where 𝑤𝑢 + 𝑤𝑝 = 1, and the regularisation constant 𝜆 is set to 10−6. To simulated the flow, we solve the incompressible,

two-dimensional, steady Navier–Stokes equations on a structured mesh, shown in Fig. 1.

Fig. 1 Close-up of the hump mesh from NASA Turbulence Modelling Resource.

Fig. 2 shows the root-mean-squared error in velocity and surface pressure predictions. It is clear that the total error

can be significantly reduced by all field inversion scenarios. The least effective field inversion scenarios are when using

data for only one quantity, as expected, although the reconstruction with velocity data is more effective than pressure

data. Broadly, the field inversion scenarios with multi-sensor data lead to similar total error reduction, although there

are clear differences in individual quantities. We observe that, generally, a larger weight for a particular quantity leads to

a large error reduction for that quantity, and vice-versa, as intuitively expected.

A comparison of the individual objective function terms J𝑢 and J𝑝 is shown in Fig. «. It broadly shows an emerging

Pareto front for the multi-objective optimisation, demonstrating the need for a trade-off between the two objectivesȷ

one of terms in the composite objective function degrades when the other is improved. According to both figures, the

best case scenario is with the weights, (𝑤𝑢, 𝑤𝑝) = (0.3, 0.7). However, this is not far superior to equally weighting the

objective function terms, thus it could be argued that equal weights is sufficient, for this case.

Fig. 2 The root-mean-squared error for the 2D hump for the baseline model (labelled as 𝒘 = (0, 0)), and various

field inversion scenarios. The RMSE values are normalised by the respective RMSE values of the baseline model.

Next, we will compare the baseline and field inversion results (with single and equally-weighted multi-sensor data)

in more detail. Fig. » shows the surface pressure distribution. It is clear that the S-A model struggles to accurately

»
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Fig. 3 The Pareto front plot for the 2D hump. The weights are provided next to markers: weights, 𝒘 = (𝑤𝑢, 𝑤𝑝).
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Fig. 4 Comparison of surface pressure on the hump wall. Legend: Experiment ( ), Spalart–Allmaras ( );

field inversion, 𝐶𝑝 data ( ); field inversion, 𝑈𝑥 profile data ( ); and field inversion, equally weighted 𝐶𝑝

and 𝑈𝑥 profile data ( ). The RMSE label refers to the root-mean-squared error between the simulation and

experimental data, with values colour-coded to match the legend.

predict the pressure in the separated shear layer, which is improved by all three field inversion scenarios. However, there

is still some error in the pressure distribution when using velocity profiles alone.
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Fig. 5 Comparison of velocity profiles in the 2D hump separation bubble. Legend: Experiment ( ), Spalart–

Allmaras ( ); field inversion, 𝐶𝑝 data ( ); field inversion, 𝑈𝑥 profile data ( ); and field inversion, equally

weighted 𝐶𝑝 and 𝑈𝑥 profile data ( ). The RMSE label refers to the root-mean-squared error between the

simulation and experimental data for each velocity profile location, with values colour-coded to match the legend.

The velocity profiles in Fig. 5 show that the baseline model under-predicts the streamwise velocity in the separated

shear layer closer to the hump wall. This means that the baseline model predicts a larger separation bubble, and hence

delayed reattachment, compared to the experimental data. Performing field inversion with velocity data leads to a more

accurate characterisation of the separation, as shown in the velocity profiles. Additionally, it is clear that although the

surface pressure data can lead to a very good improvement in the pressure distribution, it is less effective in reducing the
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error in the velocity predictions—supporting the case for flow reconstruction based on multi-sensor data.

(a) Velocity profiles data (b) Surface pressure data (c) Equally-weighted 𝑈 and 𝐶𝑝 data

Fig. 6 Comparison of the corrective field, 𝛽, for the 2D hump with different field inversion scenarios.

The corrective fields modifying the baseline model to reconstruct the turbulent mean flow is shown in Fig. 6.

All cases show a complex distribution where the surrogate turbulence variable, �̃�, in the S-A model is magnified or

dampened, especially in and around the separation. Interpreting the 𝛽 field with reference to the eddy viscosity 𝜈𝑡
contours in Fig. 7 shows that the various field inversion scenarios increase 𝜈𝑡 in the shear layer which reduces the size

of the separation bubble. Negative values of 𝛽 in the recirculation region and close to the hump wall lead to a reduction

of eddy viscosity, hence a slightly delayed separation.

(a) Baseline Spalart–Allmaras (b) FI, 𝑈𝑥 profiles data

(c) FI, 𝐶𝑝 surface data (d) Equally-weighted 𝑈 and 𝐶𝑝 data

Fig. 7 Comparison of the eddy viscosity, 𝜈𝑡 , for the 2D hump case before and after modifications by 𝛽 fields

shown in Fig. 6.

B. Periodic hill

The periodic hill case, shown in Fig. 8, is a simple geometry comprised of curved surfaces joined by a flat plate. As

the flow moves over the first hill, it separates with a large recirculating bubble surrounded by an unsteady shear layer. It

then reattaches, and undergoes strong acceleration at the subsequent hill. The flow at the top wall is observed to remain

attached with high pressure gradients. These complex features are poorly predicted by RANS turbulence models [27].

Additionally, this case has well defined boundary conditions, and relatively affordable computational cost which has

made it an oft-used benchmark case for high-order simulations (LES and DNS), evaluation of RANS turbulence models,

and data-driven frameworks. In this work, the LES dataset by Gloerfelt et al. [26] is used for flow reconstruction, with

the flow conditions summarised in Table 1.

We use a two-dimensional structured mesh with average 𝑦+ < 1 at the walls, taken from the dataset by Xiao et al.

[28]. No slip condition is applied at the lower and upper walls, and periodic boundary conditions are used at the hills.

A source/forcing term is added to the 𝑥-momentum equation to maintain a constant bulk velocity to achieve the LES

7



Reynolds number, defined asȷ

𝑅𝑒𝑏 =
𝑢𝑏𝐻

𝜈
, 𝑢𝑏 =

1

2.035𝐻

∫ 3.035𝐻

𝐻

𝑈𝑥 (𝑦) 𝑑𝑦, (7)

where 𝑢𝑏 is the bulk velocity, 𝐻 is the hills height, 𝜈 is the kinematic viscosity, and 𝑈𝑥 is the streamwise velocity

component.

Fig. 8 The structured periodic hill mesh, with approximately 1.5 × 104 cells.

Two sources of data are used for field inversionȷ 1) vertical continuous slice of streamwise velocity at 𝑥/𝐻 = 4

station (chosen as this is the region close to flow reattachment), and 2) the skin friction in the lower wall, defined as [29]ȷ

𝐶 𝑓 =
𝜏𝑤

0.5𝜌𝑈2
𝑏

, 𝜏𝑤 = 𝜌𝜈𝒕𝑇 · (∇𝑼 · 𝒏) , (8)

where 𝐶 𝑓 is the skin friction, 𝜏𝑤 is the wall shear stress, 𝜌 is the fluid density, 𝑼 is the velocity, 𝒕 = [𝑡1, 𝑡2, 𝑡3]
𝑇 and

𝒏 = [𝑛1, 𝑛2, 𝑛3]
𝑇 are the tangential and wall-normal vectors, respectively. The objective function is similar to the hump

case, with the 𝐶𝑝 term in Eqn. 6 replaced by 𝐶 𝑓 , and the regularisation constant is set to 𝜆 = 10−10, a very small value

to reflect high confidence in the data used for reconstruction.

Fig. 9 The periodic hill root-mean-squared error for the baseline model (labelled as 𝒘 = (0, 0)), and various

field inversion scenarios. The RMSE values are normalised by the respective RMSE values of the baseline model.
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Fig. 10 The Pareto front plot for the periodic hill. The weights are provided next to markers: weights,

𝒘 = (𝑤𝑢, 𝑤𝑝).
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Fig. 11 Comparison of skin friction on the lower wall for the periodic hill case. Legend: LES ( ); Spalart–

Allmaras ( ); FI, 𝑈𝑥 profile at 𝑥/𝐻 = 4 ( ); FI, 𝐶 𝑓 ( ); and FI, equally weighted with 𝐶 𝑓 and 𝑈𝑥 ( ).

Fig. 9 shows that all field inversion scenarios can considerably reduce the root-mean-squared errors for velocity

and skin friction prediction compared to the baseline Spalart–Allmaras model. However, using skin friction data on

the lower wall is significantly more effective compared to the velocity profile at 𝑥/𝐻 = 4. This is also reflected in the

fact that the RMSE is lower for 𝑤 𝑓 ≥ 0.5 (i.e. more biased towards fitting 𝐶 𝑓 data) compared to 𝑤𝑢 ≥ 0.5. The most

effective scenario in terms of RMSE error reduction is when the individual data terms in the objective function (i.e. J𝑢

and J𝑓 ) are equally-weighted.
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Fig. 10 shows a comparison of the individual objective terms, J𝑢 and J𝑓 , for different weights. In contrast to the

hump case, this case does not necessarily show a clear conflict between minimising the individual terms in the objective

function. While in the hump case the error reduction in an individual objective function term is proportional to the

weight, in the periodic hill case this is not as clear. In fact, field inversion scenarios with multi-sensor data can lead

to further error reduction in both objectives compared to data from a single source (unlike the hump case). This is

expected as 𝐶 𝑓 is a function of the velocity derivative at the wall, as shown in Eqn. 8.

A comparison of the skin friction predictions by the baseline model and field inversion scenarios with 𝐶 𝑓 data,

velocity profile, and both (equally-weighted) is shown in Fig. 11. The baseline model significantly over-predicts the

size of the separation bubbles, and thus a very delayed flow reattachment. The field inversion scenarios with skin

friction data, and equally weighted velocity profile and 𝐶 𝑓 data, significantly improve the prediction of separation and

reattachment between 1 ≤ 𝑥/𝐻 ≤ 4. doNeither the baseline model, nor the different field inversion scenarios capture

the slight separation at the initial hill crest, but all field inversion scenarios show improved 𝐶 𝑓 peak predictions on the

second hill, compared to the baseline case. Flow reconstruction with a single velocity profile at 𝑥/𝐻 = 4 is insufficient

to capture the complex flow characteristics in the near-wall region, although it does improve it compared to the baseline,

by reducing the size of the separation bubble—a mild separation is still observable in and after the location the LES data

suggests flow reattachment.
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0 2 » 6 8
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𝐻

(a) full 𝐶 𝑓 data

𝑦
/
𝐻

(b) 𝑈𝑥 profile data at 𝑥/𝐻 = 4

𝑦
/
𝐻

𝑥/𝐻, 1.5𝑈𝑥/𝑈𝑏 + 𝑥/𝐻

(c) Equally-weighted 𝑈𝑥 and 𝐶 𝑓 data

Fig. 12 Comparison of velocity profiles for the periodic hill case. Legend: LES ( ), Spalart–Allmaras ( ),

and field inversion ( ).

The velocity profiles shown in Fig. 12 show that field inversion with 𝐶 𝑓 data can highly improve the near wall

(lower) velocity predictions. But, the effect away from the wall is diminished, notably towards the first-half of the

domain. On the other hand, using the velocity profile can lead to improved velocity prediction through the majority
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of the domain, except some errors in the near wall region prior the second hill. It is clear that when combining both

datasets, the velocity predictions can be significantly improved throughout the domain.

(a) Velocity profiles data (b) Surface pressure data (c) Equally-weighted 𝑈 and 𝐶𝑝 data

Fig. 13 Comparison of the corrective field, 𝛽, for the periodic hill with different field inversion scenarios.

The corrective fields modifying the baseline S-A transport equation is shown in Fig. 1«. All three field inversion

scenarios show substantial changes to �̃� (thus 𝜈𝑡 ) throughout the domain, with considerable variations of 𝛽 in the

separated shear layer. In the least effective case (field inversion with velocity profile data) the eddy viscosity (Fig. 1»a)

is increased in most of the domain, with reduction (𝛽 ≤ 0) above the recirculation zone, and the boundary layer in the

top wall. In the other two cases, there are drastic magnifying of eddy viscosity in/surrounding the shear layer 1» b and

c), while eddy viscosity is reduced around the crest of the second hill (Fig. 1« b and c).

(a) FI, 𝑈𝑥 profile data (b) FI, 𝐶 𝑓 surface data (c) Equally-weighted 𝑈 and 𝐶 𝑓 data

(d) Baseline Spalart–Allmaras

Fig. 14 Comparison of the eddy viscosity, 𝜈𝑡 , for the periodic hill before and after modifications by 𝛽 fields

shown in Fig. 13.

Similar to the hump case, the baseline Spalart–Allmaras model under-predicts the eddy viscosity in the separated

shear layer, causing a large separation bubble (hence, delayed flow reattachment). Given enough data, field inversion

can remedy this issue, as demonstrated.

IV. Conclusion
In this paper the enhanced capability of turbulent mean flow reconstruction using multi-sensor data was demonstrated

for two flows involving strong pressure gradients and flow separation. The variational/adjoint-based field inversion

involved modification of the Spalart–Allmaras turbulence model through a spatial corrective field introduced in the model

transport equation. The chosen method has the advantage of model consistency over off-the-shelf machine learning

algorithms used directly on high-fidelity data without the baseline model, and is able to recover finer scales compared

to ensemble-based methods. The two cases tested showed that when using multi-sensor data, equally-weighting

the individual terms in the objective function is appropriate. It was also shown that the baseline Spalart–Allmaras

model under-predicts the eddy viscosity in the separated shear layer, which results in a larger separation bubbles than

observed in high-fidelity data. In the wall-mounted hump case we observed that velocity profiles were more effective in

reconstructing turbulent flow compared to surface pressure. On the other hand, the periodic hill case was more sensitive

to skin friction (velocity derivative) data, compared to the streamwise velocity profile.
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