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ARTICLE

Branched flows of flexural waves in non-uniform
elastic plates
Kevin Jose 1, Neil Ferguson 1 & Atul Bhaskar1,2✉

Flexural elastic waves and sound in solids are of great interest in wide-ranging contexts such

as ultrasound in plates, geophysics, ocean engineering, aerospace and automotive structures,

and musical acoustics. Despite bending waves being the most important elastic waves for

such surface structures, their propagation in the presence of the inevitable non-uniformity is

poorly understood. Here we show the branching and focusing behaviour of highly dispersive

flexural waves travelling in elastic plates of non-uniform thickness. The thickness profile has

isotropically correlated spatial randomness. The correlation length is much larger than the

wavelength. The location of wave focusing shows a scaling relationship with randomness,

which is consistent with those previously reported in other random media. We show this

analytically and numerically. This suggests a universality in the scaling between the location

of wave focusing with randomness and the correlation length, regardless of the physics of

the waves in question.
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W
aves in random media often exhibit spatial patterns of
branched flow1. Spatial focusing and branching of
waves in random media have been reported for elec-

tron waves2, microwaves3, tsunami waves4,5, light6,7, and ocean
hydroacoustics8. The statistics of the spatio-temporal features of
propagation, as induced by the randomness of the medium, have
been of great current interest in numerous theoretical
investigations9–11. The phenomenon has been studied for non-
linear waves too12. While branching flow of waves has been
reported in seemingly unrelated fields, the underlying governing
equation in most cases is the classical non-dispersive wave
equation ∂ttη ¼ c2∇2η, where ηðx; y; tÞ is the field variable that
depends on the position x; y and time t; c is the wave speed,
which is independent of the wavelength. By contrast, bending
waves in elastic plates are dispersive, as shorter waves travel
faster. Such structures are frequently encountered in the physics
of geological plates, glaciology of ice sheets, thin films, nano-
mechanics of 2D materials such as graphene, aerospace skin
structures, etc. Waves in thin elastic plates are governed by the bi-
harmonic Kirchhoff–Love equation13

∂ttη ¼ �α2∇4η: ð1Þ

Here, η is the transverse displacement, α2 ¼ EH2=12ρð1� ν
2Þ

combines the thickness of the plate H, Young’s modulus E,
Poisson’s ratio ν and the material density ρ. The group velocity cg
is proportional to the wave number k, i.e. cg � αk, as evident
from the fourth spatial derivative.

Consider plates of thickness much smaller than the wavelength
of interest λ, i.e. H � λ, so that higher order effects such as shear
through the thickness14 can be ignored. Likewise, rotary
inertia15–17 and kinematic non-linearity due to large rotations
associated with the so called von Karman strains18 are neglected.
We report the existence of branched flows of flexural waves in
such plates when their thickness has modest spatially correlated
randomness.

Branched flows lead to regions of localised high amplitude
called caustics or focusing events. In this work, we demonstrate
the existence of an elegant scaling between the location of the first
caustic with a suitably non-dimensionalised measure of the var-
iance in the thickness of the elastic plate, and with the spatial
correlation length of the randomness of the thickness. We do so
using analytical approaches and two different numerical methods.
The scaling we report here is consistent with similar scaling
observed in other different physical contexts1.

Results and discussion
Consider plates with small random non-uniformity in thickness
Hðx; yÞ, described by the variable h (see Fig. 1) that denotes
small fluctuations over the mean thickness H0, i.e. Hðx; yÞ ¼
H0ð1� hðx; yÞÞ; the mean of h is zero. While the results are
developed here for a plate with non uniform thickness, the results
can readily be generalised for plates with other non-uniform
properties as long as the non-uniformity is small.

A pulse with carrier frequency ω that is modulated by a
Gaussian envelope is launched at the left edge (see Methods
section). The excitation thus provided resembles the motion of a
rug transversely shaken at the left end. A plane wavefront with a
predominant wavelength λ � 2π

ffiffiffi
α

p
ω�1=2 thus propagates from

left to right.
Figure 2 shows the spatio-temporal evolution, obtained using

finite element elastodynamics simulations. A plane wave front is
launched at the left end of a plate of non-uniform thickness.
The four panels on the left show the amplitude of transverse
displacement at four successive instants of time (top to bottom;
x-y axes are normalised, see caption). Regions of highest

displacement at each successive time instant are indicated by
square boxes labelled A, B, C and D. Widening of the wavefront
due to the dispersive nature of the medium is apparent. This can
also be seen from the energy density plots (shown in light red
above each panel in Fig. 2). We observe the emergence of distinct
branches as the wave propagates. Regions of high amplitude at
each instant of time shown are zoomed into, and reproduced as
3D plots on the right (with labels A, B, C and D, indicating the
correspondence with the four figures on the left).

In a homogeneous dispersive medium of average properties,
one would observe a monotonic reduction in the highest ampli-
tudes of the wave front as it propagates (see Fig. S1, supple-
mentary information). This follows from energy conservation
since the widening of the wavefront must accompany reduction
in amplitude. The maximum amplitude seen at the same time
instant in a homogeneous plate is shown in the plots on the right
with transparent planes. The levels of these planes decrease
monotonically with time, as anticipated. However, the highest
amplitudes do not decrease for the non-uniform plate. This is due
to the emergence of branches that is attributed to scattering of the
plane wave by the non-uniformity. These branches interfere and
form locations of amplitudes much higher than what one may
expect from the dispersive wave dynamics in an equivalent
homogeneous medium. Regions with amplitudes that are lower
than those for the homogeneous case also appear, as expected
from energy conservation. See Supplementary Movie 1 for an
animation comparing flexural wave transmission in uniform and
non-uniform plates.

Scaling of the location of the first caustic with randomness. We
are now interested in the distance lf of the first high amplitude
peak from the left edge, as this quantitatively characterises the
emergence of the branching flow of waves in random elastic
plates. If the correlation length of randomness field h is Lc, then
the three length scales in the problem have the relationship
H0 � λ � Lc. The first part of the inequality enables us to ignore
shear effects through the thickness, whereas the latter justifies the
use of the eikonal equation19, which reduces the plate flexure
wave dynamics to one of ray dynamics. Then, using arguments
from stochastic dynamics (see Methods section), one obtains

hlf i / Lchh2i�1=3; ð2Þ
where the angular brackets denote mean of the respective quan-
tities; Lc is the correlation length of non-uniformity; lf is the

distance of the focusing point from the left end. Rays form
envelopes known as caustics. The first focusing point in the
branched structures of caustics will be referred to as the first

Fig. 1 Random thickness field and various length scales. a A schematic

diagram of a piece of the thin elastic plate. Thickness is greatly

exaggerated. b The plate carries a pulse with a predominant wavelength

λ � Lc, where Lc is the correlation length of randomness. c The

randomness field hðx; yÞ as a colormap, with hh2i ¼ 0:04, Lc ¼ 0:1 m.
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caustic. In the ray limit, the only length scale in the problem is the
correlation length. Hence, the linear scaling hlf i � Lc follows
immediately from dimensional arguments.

Scaling law from numerical integration of ray equations. The

scalings hlf i � Lc and hlf i � hh2i�1=3 can be obtained numerically
by integrating ray equations using a forward Euler method. As
rays propagate, those that were initially parallel to the propaga-
tion direction begin to scatter due to inhomogeneities in the
thickness of the plate. Some rays eventually cross over causing
focusing events as seen in Fig. 3a. These focusing points can be
numerically detected as the location where the curve of position

vs wavenumber in the y-direction becomes multi-valued20. In the
instance shown in Fig. 3, the location of the first such focusing
point has been indicated with a circular marker. By running
multiple instances of these ray simulations for different values of

hh2i, we obtain the dependence of hlf i on hh2i which, is in
excellent agreement with Eq. 2 (see, Fig. 3).

The linear scaling hlf i � Lc is also observed in the ray
simulations. In Fig. 3b, taking the Lc ¼ 0:1 m simulations as a
reference, we denote the trend predicted from Eq. 2 using dotted
lines. The ray simulations for Lc ¼ 0:07 m and Lc ¼ 0:15 m are in
excellent agreement with the predicted trend. Ray simulations
also confirm that hlf i is independent of wavelength (Fig. S2,

Fig. 2 Spatio-temporal evolution of a Gaussian wave packet. Transverse displacement of a thin in-homogeneous plate excited at the left edge by a pulse.

The emergence of branches with time i.e rapid variation in wave amplitude in the ey direction, is seen. Regions of highest displacement at each successive

time instant are indicated by square boxes labelled A, B, C and D. These are also zoomed into and shown on the right as 3D plots. The transparent plane in

the 3D plots marks the highest amplitude seen in a perfectly homogeneous plate, under the same excitation, at the corresponding instant of time. Branched

flow disrupts the monotonically decreasing trend of highest amplitude All lengths are normalised by the correlation length (0.1 m); the normalised

quantities are indicated by a tilde accent.

Fig. 3 Location of caustics from ray simulations. a Evolution of rays in a plate with hh2i ¼ 4:24 ´ 10�4. Individual rays are plotted as translucent curves.

Hence, caustics or focusing events, which correspond to overlapping rays appear as regions of higher intensity. The location of focusing is detected

numerically (circular marker). b Using the simulation results of eLc ¼ 1 (black dots), and linear scaling with eLc, predictions are made for the other two cases

(dotted lines) on a log-log plot. c The location of first focusing point (orange points obtained from ray simulations. Mean helfi of each cluster is indicated by

blue markers and a 2-standard-deviation width centred on the mean is indicated by a vertical blue line. The scaling helfi � hh2i�1=3, indicated by the black

dotted line on a semi-log plot, agrees extremely well with the simulations. All lengths are normalised similar to those in Fig. 2, with reference correlation

length= 0.1 m.
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supplementary information). The expected location of the first
caustic remains largely unchanged even with a 100% change in
the wavelength. Nominal thickness H0 ¼ 1 mm is used for all
finite element as well as ray dynamics simulations.

Scaling law from elastodynamic simulations. Let us return to
the full wave dynamics using finite element simulations, as
the true dispersive character of the flexural waves propagating
in elastic plates is best captured there. To detect focusing

events, we use the time integrated intensity defined as Iðx; yÞ ¼R T

0 η
2ðx; y; tÞdt where T is, approximately, the time when the

wavefront reaches the right edge. By definition, the local peaks in
Iðx; yÞ correspond to focusing events. In Fig. 4b, a typical instance
of Iðx; yÞ is shown. While plotting, the time integrated intensity is
averaged along the y axis. This makes the local peaks in intensity
visually pronounced. At each point on the x-axis one can cal-
culate the scintillation index, σðxÞ ¼ ðhI2iy=hIi2yÞ � 1 (see Fig. 4a).

The first prominent peak in σðxÞ provides the location of the first

caustic. By varying hh2i, Lc, and λ, we can, as in the case of ray
integration, bring out the effects of the variation of the severity of
randomness in the thickness, correlation length and wavelength.
Figures 4c, d show that the finite element simulations also largely
agree with the trend predicted by our analysis. The independence
of hlf i with wavelength is also confirmed via our finite element

simulations (Fig. S3, supplementary information). There is some
deviation from predicted scaling relationships at higher values of

hh2i, but this is expected, as the weak scattering assumption in the

analysis begins to break down at higher value of hh2i. In finite
element simulations (Fig. S3, supplementary material) we see that

even at lower values of hh2i, the deviation for the shortest waves

considered (eλ ¼ 0:07) seems to be slightly more pronounced than
for longer wavelengths. This may point to the minor role of
through-thickness shear which is expected to get more severe as
the wavelength decreases. Similar deviation is not seen in ray
dynamics simulations (Fig. S2, supplementary material), which is
consistent with the formulation of ray equations that ignores
through thickness shear.

Conclusions
The emergence of focusing of bending waves in random thin
elastic plates was demonstrated and quantitatively characterised.
The scaling of the location of the first focusing event with the
mean square randomness of the plate is determined when a pulse
is launched from one end of plate. The ray description of the
problem, arising from the eikonal equation for plate flexural
waves, was reduced to a system of equations consistent with
previously known scalings in other physical contexts, viz. hlf i �
Lc and hlf i � hh2i�1=3. The ray equations were then integrated
numerically and found to agree with these scaling relationships.
The location of the first caustic was found to be independent of
the wavelength and the correlation function that describes the
disorder (Methods section). The scaling relationships between the
location of focusing and disorder, the correlation length, were
also obtained by elastodynamic simulations using the finite ele-
ment method.

This work focused on thin plates where thickness shear effects
are insignificant. The existence, or absence, of branched flows in
thick plates where the wavelength is comparable to the thickness
and, therefore, thickness shear is significant, remains an open
question.

The formation of channels suggests the potential of tailoring
and shaping wave paths within such elastic waveguides, especially
when combined with acoustic metamaterials21. Since particle
separation and manipulation22 involve steering particles to nodal
lines, we anticipate that this work may potentially inform the
design of such technologies. While the analysis and computations
presented here are restricted to thickness variations, the phe-
nomenon reported here would, in principle, be observed for
spatial heterogeneity in material properties such as the modulus
of elasticity or density. Results presented here could also have
interesting implications to metrology of elastic plates, geophysics
and seismology.

Methods
Analytical proof of scaling from ray dynamics. The equation of motion for
flexural waves in a thin elastic plate with spatially non-uniform flexural stiffness is
given by19

ρH∂ttηþ ∂xxMx þ ∂yyMy þ 2∂xyMxy ¼ 0; ð3Þ

Fig. 4 Location of caustics from elastodynamic simulations. a Plot of scintillation index of wave in a thin plate with hh2i ¼ 9:06´ 10�4. The location of the

first prominent peak is lf . b Normalised time-integrated intensity plot of the same case. One can clearly see the large amplitude fluctuations caused by

random focusing. The first focusing point is detected using the scintillation index. c The scalingelf � eLc similar to that in Fig. 3 on a log-log plot. Markers

indicate mean and a 2-standard-deviation width centred on the mean is indicated by a vertical lines. d A plot of lf obtained from running multiple

simulations for multiple values of hh2i. All lengths are normalised as in Fig. 3 on a semi-log plot. Mean helfi of each cluster is indicated by blue markers and a

2-standard-deviation width centred on the mean is indicated by a vertical blue line.
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where, Mx ¼ Dð∂xxηþ ν∂yyηÞ, and My ¼ Dðν∂xxηþ ∂yyηÞ, are bending moments

per unit edge length andMxy ¼ ð1� νÞD∂xyη is the twisting moment per unit edge

length; ρ is the density of the material, Hðx; yÞ is the thickness of the plate, E is the

Young’s modulus, ν is the Poisson ratio, D ¼ EH3

12ð1�ν
2Þ is the bending rigidity of the

plate. The above governing equation is valid when D; ρ; E; ν and H are slowly
varying functions of x; y. We can write the eikonal approximation of a wave in an
inhomogenous thin plates as follows19:

∂τx ¼ ðD=ρHÞ1=2k=ω; ð4Þ

∂τk ¼ � 1

4
ðρH=DÞ∇ðD=ρHÞ; ð5Þ

where, ω is the angular frequency associated with the wavelength of interest, τ ¼
ωt and k ¼ ½kxky �T is the two dimensional wave vector. In order to demonstrate

the scaling relationship associated with branching flow, we consider a plate with
spatially uniform density, Poisson’s ratio and Young’s modulus but slowly chan-
ging thickness. Thickness can be expressed as Hðx; yÞ ¼ H0ð1� hðx; yÞÞ where H0

is the nominal thickness and jhðx; yÞj � 1. Then we can introduce the constant

γ2 ¼ EH2
0

12ð1�ν
2Þρ to rewrite D=ρH ¼ γ2ð1� hðx; yÞÞ2 . Assume that hðx; yÞ is a random

field with zero mean and isotropic spatial correlation characterised by correlation
length Lc � λ. Then eikonal equations can be rewritten as:

∂tx ¼ γð1� hÞk ð6Þ

∂tk ¼ ω

2

∇h

ð1� hÞ : ð7Þ

Barring some constants, the structure of these equations is identical, for
monochromatic waves, to those in4,5. Following the arguments presented therein
we can arrive at the scaling relationship

hlf i / Lchh2i�1=3: ð8Þ

Finite element simulation of elastodynamics. To numerically explore branching
flows in elastic plates with randomly varying properties, we consider a thin rec-
tangular plate of non-uniform thickness and dimensions Lx ´ Ly modelled using

shell finite elements in within ANSYS, a commercial finite element code. The main
propagation direction is along x-axis. The length in this direction is Lxð� LyÞ. The
thickness of the plate is given by H0ð1� hðx; yÞÞ where hðx; yÞ is a random field
with zero mean and isotropic spatial correlation length Lc . A MATLAB code was
used to generate multiple instances of the random field with desired standard
deviation and correlation length. Simulations were carried out within the ANSYS
APDL environment using SHELL181 finite elements.

SHELL181 finite elements have both membrane and flexural strain energy taken
into account. The degrees-of-freedom for each node are 3 displacements and 3
rotations. Rotational degrees-of-freedom are required in plate/shell finite elements,
unlike many 3D elasticity formulations because of the intrinsic simplification
through the thickness within the theory of plates and shells. During the
simulations, the two in-plane degrees-of-freedom were locked and so was the
rotation about the axis normal to the plate. Thus the remaining active degrees-of-
freedom for each finite element node are the transverse displacement and two
rotations. The element allows specification of different thickness values at each of
the nodes and also interpolates thickness within an element. This is crucial as we
have a spatially varying flexural rigidity field Dðx; yÞ. The approach uses variational
minimisation of the integral of the Lagrangian of the elastic continuum L ¼ T � U ,
where T is the kinetic energy and U the potential energy. Local basis functions,
known as shape functions are used to describe the elastic field in conjunction with
unknowns that are treated as the generalised coordinates of the problem. Setting

δLdt ¼ 0 within two arbitrary instances of time, where δ is “the first variation of”23

leads to a set of coupled ordinary differential equations, the spatial variable having
been eliminated in the process. These coupled ordinary differential equations were
solved using a Newmark-β scheme24. The details are omitted as the
implementation is a part of the commercial code used. Although the element is
capable of simulating dynamics of surface structures with intrinsic curvature, such
as those in elastic shells, we have simulated a structure with a plate-like flat
equilibrium shape.

The right edge is fixed and the two long edges running x-wise are free. The left
edge is excited transversely with a Gaussian pulse of dominant frequency ω to give
rise to a pulse composed predominantly of wavelength λ. Using the dispersion
relation of a homogeneous plate whose thickness is the same as nominal thickness

of the plate under consideration we can obtain ω ¼ γð2π=λÞ2 . The temporal profile
of the excitation is shown in Fig. 5.

Simulations were carried out on the normalised domain ðex;eyÞ 2 ½0; 40� ´ ½0; 8�
except for the lowest three standard deviation which were done over
ðex;eyÞ 2 ½0; 80� ´ ½0; 8�. Note that even for the lowest amount of randomness

studied helf i< 40, but it was ensured for all simulations the propagation distance
was at least twice as much as the expectation value of the first focusing event to
avoid biasing the sample. This means that for the highest 7 standard deviations
studied, a field of normalised length 40 was sufficient but for that latter a field of
normalised length 80 was used. This was done due to the computational load
associated with running these simulation. It is apparent that this has not had any
significant bias on the sample since there is no discontinuity in the trend of
the expectation value of the first focusing events. This can also be seen by looking at
the spread of data in the main text of the paper. More details about simulations can
be found in Supplementary note 1, Supplementary information.

Energy densities shown in Figs. 2 and S1 are obtained from the finite element
elastodynamic simulations by taking temporal and spatial derivatives, numerically,
to find kinetic and potential energies at each time instant shown.

Other correlation functions. A Gaussian correlation function was used to con-
struct the thickness fluctuation field hðx; yÞ for all the results reported in the main
text. We also used a power law correlation function of the form

Aðx; yÞ ¼ ð1þ ðx2 þ y2Þ=L2c Þ�2 . The scaling remains unaffected (Fig. 6). This is
consistent with literature on branching phenomenon in other physical con-
texts that the scaling of hlf i remains unchanged if other correlation functions are

used4. The only requirement is that the integral of this function over R2 be well
defined.
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Fig. 5 Displacement forcing applied in elastodynamic simulations.

Excitation applied to the left edge of the plate as a function of time in finite

element based elastodynamic simulations. The zoomed out inset shows the

full applied excitation and it can be seen that the excitation is a short initial

pulse.

Fig. 6 Scaling of location of caustics for power law correlation function.

Finite element elastodynamic simulations confirm that using a power law

correlation function of the form Aðx; yÞ ¼ ð1þ ðx2 þ y2Þ=L2c Þ
�2 instead of a

Gaussian correlation to construct hðx; yÞ does not affect the predicted

scaling of the location of the first caustic. Note that this a log-log plot.

Markers indicate the mean. A 2-standard-deviation width centred at the

mean is indicated by a vertical line.
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