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Abstract—Autonomous systems such as self-driving cars and
infrastructure inspection robots must be able to mitigate risk
by dependably detecting entities that represent factors of risk
in their environment (e.g., humans and obstacles). Nevertheless,
current machine learning (ML) techniques for real-time object
detection disregard risk factors in their training and verification.
As such, they produce ML models that place equal emphasis
on the correct detection of all classes of objects of interest—
including, for instance, buses and cats in a self-driving scenario.
To address this limitation of existing solutions, this short paper
introduces a work-in-progress method for the development of
risk-aware ML ensembles for real-time object detection. Our
new method supports the dependable use of real-time object
detection in autonomous systems by (i) identifying the risks that
require treatment, (ii) training a set of ML models that mitigate
these risks, and (iii) using multi-objective genetic algorithms to
combine the ML models into risk-aware ML ensembles. We
present preliminary experiments that show the effectiveness of
our method at constructing a dependable ML ensemble for real-
time object detection in a simulated self-driving case study.

Index Terms—object detection, risk, risk mitigation, ensembles

I. INTRODUCTION

Object detection [18], [19] is a computer vision task with
applications ranging from pedestrian detection in autonomous
driving to face recognition in smart photography. This complex
task involves detecting objects of interest and their position in
an image, and is typically performed using machine learning
(ML), computer vision techniques, or a combination thereof.
When applied online, e.g., to the successive frames of a video
stream, the task is termed real-time object detection [11], [14].

Our paper focuses on the dependable use of ML-based real-
time object detection (RTOD) in safety-critical applications
such as autonomous driving. Despite significant advances, in
particular in the area of deep-learning, RTOD cannot be 100%
accurate due to challenges ranging from insufficient training
data [7] and class imbalance [8] to inherent localisation and
identification errors [11], [17]. As such, the use of RTOD
in safety-critical applications introduces risks that need to
be systematically assessed and mitigated. To the best of our
knowledge, existing RTOD solutions disregard this need. In
particular, they place equal emphasis on the detection accuracy
of all classes of objects of interest—including, for example,
buses, cats, bikes and birds in an autonomous driving scenario.

In this paper, we introduce a work-in-progress method that
addresses this major limitation of current RTOD solutions. To
that end, we use (i) a risk management process recommended

by the ISO 31010 standard [6] to identify high-risk RTOD
misclassifications, (ii) a risk-aware deep learning technique to
produce ML models that mitigate each of these misclassifica-
tions, and (iii) a multi-objective genetic algorithm to combine
the resulting ML models into a risk-aware RTOD ensemble.
Techniques (i)–(iii) and the evaluation of our method for the
widely used VOC2012 object detection data set [3] form the
main contributions of the paper.

II. BACKGROUND

Object detection [2], [10], [18] is defined as a function that
maps an image to a list of objects O = (o1, o2, . . . , on), where
the i-th detected object oi = (ci, boxi) specifies:

• (estimate) probabilities ci = (ci1, ci2, . . . , ciN ) that object
i belongs to each of N classes of interest,

∑N

j=1cij=1;

• a “bounding box” boxi comprising the coordinates of
the top-left and bottom-right corners of the image region
where object i is located.

ML-based RTOD solutions such as YOLO [11], [13], SSD
[9] and RetinaNet [8] realise this function by means of a
complex multi-stage process:

1) In a first stage, a feature-extraction neural network (NN)
is used to detect potential objects in the input image.

2) In a second, detection stage, anchor bounding boxes (i.e.,
approximate bounding boxes drawn from a set of pre-
defined box sizes) are fitted around these objects, and
then adjusted appropriately. Next, an NN classifier is used
to estimate the probabilities that the object within each
bounding box belongs to the N classes of interest, as well
as a confidence measure that an object is actually present
in each of these boxes.

3) In a final stage, bounding box matching and labelling is
performed. To start with, irrelevant and duplicate boxes
are eliminated. A box is deemed irrelevant if the prod-
uct between its confidence measure and maximum class
probability is below a predefined “relevance” threshold. To
identify duplicates, a non-maximum suppression algorithm
processes the remaining boxes in decreasing probability
order, i.e., starting with the box i with the highest class
probability ci,j , and eliminating all unprocessed boxes that
overlap significantly with box i. The overlap between two
boxes is deemed significant if their intersection over union

(IoU) measure (i.e., the ratio between their intersection and
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Fig. 1: Risk-aware RTOD ensemble synthesis method

their union) exceeds a predefined threshold. Each remain-
ing box is then labelled with the name corresponding to
its maximum class probability.

The NNs employed by ML-based RTOD solutions are trained
and tested using large sets of image samples annotated with
both the bounding boxes and the class labels for all relevant
objects in each image. For detailed descriptions of ML-based
RTOD, we refer the reader to [8], [9], [11], [13].

III. APPROACH

Our method for the synthesis of ML ensembles for risk-
aware RTOD (Fig. 1) comprises the four steps detailed below.

Step 1: Risk-oblivious model training. In this step, we use
standard ML training to generate a set of RTOD models.
These models are obtained from the same training data set,
and different random initial weights for the RTOD NNs. In
this way, we avoid ending up with a single, low-accuracy
RTOD model due to an unfavourable selection of random
initial weight values. The models obtained in this step are
risk-oblivious because the loss function used in standard NN
training weighs the misclassification of class i1 as class
i2 ̸= i1 as equally undesirable irrespective of what the two
classes represent in the real world.

Step 2: Risk assessment. This step uses a five-point semi-
quantitative risk assessment technique from the ISO 31010
standard [6] to identify risk concerns, i.e., RTOD object
misclassifications that induce unacceptably high risks. This
assessment is underpinned by the following risk information,
which needs to be obtained from domain experts:

1) The impact level imp(i, j) ∈ {VL, L,M,H,VH} of mis-
classifying an object belonging to class i as an object from
class j ̸= i, for all 1 ≤ i, j ≤ N .1

2) The likelihood le(i) ∈ {VL, L,M,H,VH} of encountering
an object of class i in the environment where the RTOD
model will be used, for all 1 ≤ i ≤ N .

3) The likelihood of misclassification thresholds 0 = l0m <
lVLm < lLm < lMm < lHm < lVHm = 1, with the likelihood of

1
VL=very low, L=low, M=medium, H=high, VH=very high (cf. [6])
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Fig. 2: Calculation of the risk level r(i, j) for misclassifying
class i as class j given the likelihood of encounter le(i) for
class i and the impact imp(i, j) of such a misclassification,
where lm(i, j) is the calculated likelihood of misclassification.

misclassifying class i objects as class j ̸= i objects deemed
to be very low, low, medium, high, and very high when the
fraction mis(i, j) of test data set objects of class i mis-
classified as objects of type j satisfies mis(i, j) ∈ [0, lVLm ],
mis(i, j) ∈ (lVLm , lLm], mis(i, j) ∈ (lLm, lMm], mis(i, j) ∈
(lMm, lHm] and mis(i, j)∈(lHm, 1], respectively.

4) The maximum acceptable risk level arl ∈ {VL, L,M,H}
for the application using the RTOD model (arl = VH is
not used, as it would make all risks being acceptable).

Given this risk information, we consider each pair of classes
i ̸= j, and we calculate mis(i, j) as the mean fraction of
misclassifications of class i objects as class j objects over
the risk-oblivious RTOD models from Step 1. Next, we use
the thresholds lVLm , lLm, lMm and lHm to establish the likelihood
lm(i, j) ∈ {VL, L,M,H,VH} of class i being misclassified
as class j by a risk-oblivious RTOD model. Finally, we use
likelihood and risk matrices [6] to establish an overall like-
lihood l(i, j) and a risk level r(i, j) for the misclassification
of class i as class j as shown in Fig. 2. The shading of the
‘VH’ elements from the risk matrix indicates that the diagram
assumes a maximum acceptable risk level arl = H, and that
any pair of classes (i, j) whose misclassification risk level
resides in the shaded area represents a risk concern, i.e., a
risk that needs to be mitigated. The outcome of Step 2 of our
method is a set of all such risk concerns for the RTOD models.

Step 3: Risk-aware model training. If risk concerns were
identified in Step 2, this step produces a configurable number
of risk-mitigation RTOD models for each risk concern (i, j).
These are models whose NNs are trained using a loss function
L(θ) that prioritises the minimisation of misclassifying class
i as class j over that of all other misclassifications:

L(θ) = −
1

M

M
∑

k=1

N
∑

l=l

w(yk, ŷk)ykl log pkl, (1)

where θ represents the NN weights to be learnt, M is the
number of samples in the training data set, ykl = 1 if the true
class yk for the k-th sample is yk = l and ykl = 0 otherwise,
pkl is the value of the l-th NN output neuron for the k-th
sample, and (unique to our method) w(yk, ŷk) > 0 is a weight
associated with classifying sample k as class argmaxNl=1pkl =



ŷk; to obtain RTOD models that mitigate the risk concern
(i, j), we use:

w(yk, ŷk)=

{

ωN2/(N2+ω−1), if yk = i ∧ ŷk = j
N2/(N2+ω − 1), otherwise

(2)

where ω > 1 is a parameter of our risk-aware model training.
Note that (i) setting ω = 1 reduces (1) to the standard loss
function used in NN training, and (ii) the use of ω > 1
increases the contribution of the loss term ykl log pkl from (1)
for samples k of class i misclassified as class j.

We show in Section IV that using the loss function (1) can
yield RTOD models with significantly reduced misclassifica-
tion rates mis(i, j). Of course, this technique cannot guarantee
that such models will be obtained under all circumstances. For
instance, the technique may be unable to mitigate risks due to
training data sets that are unbalanced or too small, or poorly
chosen NN architectures. In such cases, the issue that led to
the risk concern needs to be fixed, or it may be possible to
mitigate the risk by reducing its impact (e.g., a self-driving car
can drive slower) or likelihood of encounter (e.g., by banning
bicycles on certain roads used by self-driving cars).

Step 4: Ensemble synthesis. In this step, we select a subset of
risk-oblivious models from Step 1 and risk-mitigating models
from Step 3, and use a multi-objective genetic algorithm (GA)
to optimise a set of weights for combining these models into
ensembles that achieve Pareto-optimal trade-offs between:

1) maximising the F1 score, an established performance
measure of ML models [10];

2) minimising the residual risk

residualRisk =
∑

1≤ i, j≤N

qr(i, j)>qarl

[qr(i, j)− q(arl)], (3)

where q(arl) and qr(i, j) are quantitative variants of
arl and r(i, j), respectively. The former is defined by
q(VL) = 1, q(L) = 2, etc. The latter is given by qr(i, j) =

q(r(i, j))−1+
miss(i,j)−lpred(r(i,j))m

l
r(i,j)
m −l

pred(r(i,j))
m

, where pred(r(i, j)) is

the predecessor of r(i, j): pred(VL)=0, pred(L)=VL, etc.

The weights (Wji)1≤j≤m,1≤i≤N , optimised by the GA are
those used to combine the lists of objects detected by m > 1
RTOD models into a single list. This combination is carried
out by first identifying sets of objects with significantly
overlapping bounding boxes (according to the IoU measure,
cf. Section II). For each such set S, which comprises at most
one object per model (remember that significantly overlapping
objects from the same model are eliminated cf. Section II), a
single object is included in the ensemble. This object has:

• bounding box coordinates computed as the mean coordi-
nates of the bounding boxes for the objects in S;

• class given by argmaxNi=1

∑

j∈J Wjic
j
i , where J ⊆ {1, 2,

. . . ,m} is the subset of models that contribute objects to
S, Wji > 0 is a weight that reflects the ability of j-th
model to detect objects of class i, and cjj is model j’s
estimate probability that the object detected is of class i.

Fig. 3: Object detection comparing four models to the risk-
aware RTOD ensemble synthesised from them.

IV. PRELIMINARY EVALUATION

To evaluate our method, we performed preliminary experi-
ments using the VOC2012 object detection data set [3], which
comprises 11,549 annotated images with objects from N = 20
classes (‘person’ and several types of vehicles, animals, etc.).
We augmented this data set to 23,292 images using Gaussian
and Pepper noise, and used 75% of these images for training
and the rest for testing. We selected the RTOD risk information
for the 20 VOC2012 classes to correspond roughly to a self-
driving car operating in an urban setting, with arl = H. The
experimental results are summarised below and detailed in our
supplementary material at https://rb.gy/lfk41w.

In Step 1, we built 30 risk-oblivious models using a ver-
sion of the YOLOv3 RTOD which was implemented using
TensorFlow 2.0 [10]. The risk assessment of these models in
Step 2 produced three risk concerns: a) motorbike predicted
as car; b) motorbike predicted as bicycle; and c) bus predicted
as car.2 Each risk-oblivious model was affected by at least
one of these concerns, and the F1 score for the risk-oblivious
models was in the range 0.56 to 0.59. In Step 3, we trained
21 risk-mitigation models for each risk concern, with seven
such models built for each ω ∈ {2, 5, 10} in (2).

In Step 4, we synthesised Pareto-optimal RTOD ensembles
using the DEAP evolutionary framework [4]. Eight models
in total were passed to the ensemble synthesis: two risk-
oblivious models and two risk-mitigation models for each
concern, giving four types of models. These models were
chosen randomly from the F1/residual-risk Pareto front for
each type of models. From this model set, the GA was allowed
to choose four models to use. We stopped the synthesis
after 50 iterations, with each generation taking approximately
35 minutes on a desktop workstation. Fig. 3 illustrates the
performance of a synthesised ensemble and its constituent
models when applied to three images from the data set. A
tick in the top left corner of the image indicates the model
correctly identified all objects, whilst a cross indicates that at

2Due to space restrictions the values used to parameterise the problem are
provided in our supplementary material at https://rb.gy/lfk41w.



Fig. 4: Pareto fronts of RTOD ensembles generated by the GA

TABLE I: The mean RTOD time to process a single image in
a batch of 100 images grows linearly with the ensemble size.

Ensemble size 1 2 4 6 8 16
RTOD time (s) 0.137 0.267 0.527 0.776 1.036 2.073

least one object was not detected or was misclassified. We can
see that the ensemble is able to successfully identify objects
even when the majority of models are unable to do so.

Fig. 4 shows the Pareto-optimal ensembles found by the
GA. As the number of generations increases, the residual risk
decreases and the F1 score improves, with diminishing returns
as more GA generations are produced. All ensembles achieved
much better F1 scores than the risk-oblivious models (0.6946
or higher compared to under 0.59 for the best risk-oblivious
model). As expected, additional F1 performance can be traded
against risk by selecting an ensemble from the Pareto front
with a different set of trained weights.

To evaluate the scalability of our method, we examined the
times taken to process an image for ensembles with increasing
numbers of models. These times (Table I), obtained on a desk-
top workstation, indicate that our method is of practical use,
and can be reduced further using the optimisations from [12].

V. RELATED WORK

Several existing RTOD solutions use ensembles of ML
models [1], [2], [5], [15], [16]. Unlike our method, most of
these solutions [2], [5] combine the output of their component
ML models with equal weights, disregarding the fact that each
model may be better at predicting certain classes. While the
RTOD ensembles proposed by [1] and [15] use weighting in
combining the outputs of their ML models, this weights are
determined using a basic heuristic that is focused on improving
accuracy by constructing averaged boxes, without explicitly
reducing the number of misclassifications. In contrast, our
method uses a multi-objective genetic algorithm that yields
RTOD ensembles with Pareto-optimal trade-offs between ob-
ject detection accuracy and risk. Finally, the RTOD ensemble
generation solution devised by [16] uses a genetic algorithm
to optimally combine the ML models from the ensemble.
However, this solution focuses exclusively on optimising the
ensemble accuracy, and therefore does not consider the risks
associated with different misclassifications like our method. To

the best of our knowledge, no existing RTOD approach con-
siders the risks corresponding to different misclassifications.

VI. CONCLUSION

We introduced a new method for the synthesis of risk-aware
ML ensembles for real-time object detection. The experimental
results presented in the paper suggest that our method can
effectively mitigate risk, supporting the development of de-
pendable RTOD-based systems for safety-critical applications.
Further evaluation for additional data sets and scenarios is
required to confirm these preliminary findings, and to help
refine the steps of the method.
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