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An Ultra-Lightweight Data-Aggregation Scheme

with Deep-Learning Security for Smart-Grid
Prosanta Gope, Senior Member, IEEE, Pradip Kumar Sharma, Senior Member, IEEE, and Biplab Sikdar, Senior

Member, IEEE

Abstract—Various smart meter data aggregation protocols
have been developed in literature to address the rising privacy
threats against customers’ energy consumption data. However,
most of these protocols require the smart meter (installed at
the consumer’s end) to either maintain a secret-key or to
run an authenticated key-establishment scheme for interacting
with the aggregator. Both these approaches create additional
requirements for the system. To address this issue, this paper
first proposes a machine-learning based ultra-lightweight data
aggregation scheme for smart-grids that does not require a secret-
key to be maintained for communicating with the aggregator.
In particular, unlike existing data aggregation schemes, in the
proposed data aggregation scheme, neither the server nor the
smart meter need to store any secret. Instead, for every round
of data aggregation, each smart meter uses an embedded PUF
for generating an unique random response for a given challenge.
On the other hand, the server maintains a PUF-model for each
smart meter for producing the same random response. This
unique secret key is used to ensure the privacy of the metering
data. Next, we propose an optimized data aggregation scheme
using collaborative learning to enhance the performance of the
proposed scheme.

Index Terms—Smart meters, Data aggregation, Train-PUF-
model (TPM), Collaborative learning.

I. INTRODUCTION

Future energy systems are expected to be increasingly

complex systems that will deeply integrate information and

communication technologies in their operations to optimize

system performance, reduce costs, and facilitate the integration

of new technologies and services. Instrumentation and automa-

tion facilitated by enhanced monitoring and measurement tools

will play a critical role in such power systems. Smart meters,

in particular, will play an important role in smart grids by

providing fine-grained power consumption data of a home or

enterprise. Such data is imperative for grid operations such

as demand-supply management, load forecasting, integration

of distributed generation and electric vehicles, and the imple-

mentation of energy demand management techniques (a.k.a.

demand-side management (DSM) or demand-side response

(DSR)).
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While the integration of technologies that facilitate the real-

time monitoring and control of power grids have various

advantages, they also introduce the possibility of a wide range

of cyber attacks that can adversely affect the operation of the

grid and its consumers. While attacks such as false data or

command injection target the grid infrastructure, individual

consumers may be targeted through attacks on their privacy.

The power consumption data provided by smart meters are

particularly vulnerable to privacy attacks and it has been

shown than they can used by adversaries to extract private

information such as household occupancy, behavioral patterns,

and economic status [1]. Thus, any techniques that are based

on the use of smart meter data (e.g., meter data aggregation

for load prediction) must be designed with considerations for

privacy. While the problem of privacy-preserving data aggrega-

tion for smart grids has been considered in literature, a specific

consideration for such techniques is their computational and

communication overhead. This paper addresses this problem

by developing an ultra-lightweight data aggregation scheme

for smart grids.

A. Related Work and Motivation

Aggregation protocols in smart grids aim at privately sum-

ming the readings from a given set of smart meters. Several

methods of aggregation have been proposed in literature and

they can be divided into two categories: public-key-based

schemes and masking-based schemes. In this context, most

of the public-key-based data aggregation schemes are either

based on additive homomorphic encryption [2], [3], [4] or

multiparty computation with secure secret sharing [5], [6]. On

the other hand, most of the masking-based data-aggregation

schemes are based on the approach of addition of random

values [7-8] or noisy statistics with the meter readings. Apart

from these two types, there exist some papers that have

considered faulty smart meters or non-working communication

links [9]. Also, public-key-based data aggregation schemes

[13-15] have been proposed where multiple dimensions of the

meter data have been considered. The major problem with

public-key-based schemes (such as [2], [3], [4]) is that they

cause a large computational overhead on the resource-limited

smart meters. In addition, they also have various security

issues. For instance, the data aggregation scheme presented

in [4] is susceptible to the middle-man attack. In contrast,

although existing masking-based approach may have lower

computational overhead, they need to run a secure authen-

ticated key-establishment process for establishing a secret-key
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Figure 1. System architecture for smart grid metering.

with the aggregator. For instance, the data aggregation in [8]

scheme first requires to execute an authenticated initialization

phase for establishing a secret-key between the smart meter

and the aggregator. After that, the key is used by the aggre-

gator to send a randomly generated secret. Later, the smart

meter uses the random-secret received from the aggregator

for masking the meter readings. Therefore, such approaches

not only introduce additional computational burden on the

security solution but are also executed over several phases,

which increases the communication costs. This paper seeks to

address all the above issues by proposing a new machine learn-

ing (ML) based, ultra-lightweight data aggregation scheme.

The proposed data aggregation scheme does not require any

authenticated initialization phase for sharing the random-secret

for masking. Instead, in the proposed scheme, the random-

secret for masking is generated on-the-fly. In order to do

that, here we utilize the PUF-technology, which will not only

be able to generate a unique random-key-stream for a given

challenge to ensure privacy of the metering data for each round

of data aggregation but at same time it can also ensure the

physical security of each smart meter. The major contributions

of this paper can be summarized as follows:

• We introduce a new ML-based ultra-lightweight spatial

data aggregation scheme for smart grids. The proposed

solution has significantly lower computational cost due

to masking.

• We propose an optimized version of the data aggregation

scheme using collaborative learning.

II. SYSTEM ARCHITECTURE AND THREAT MODEL

We begin with a description of our system architecture,

which is the foundation of the proposed ultra-lightweight data

aggregation scheme. Subsequently, we present the attacker

model and security goals of the proposed scheme.

A. System Architecture

Figure 1 represents our system architecture which consists

of five major entities: an utility service provider (USP), a group

of home area networks (HANs), a HAN aggregator (HA), a

set of smart meters (SMs), and a set of home gateways (HGs).

In this system architecture, each HAN consists of a group of

appliances and receives utility services (e.g., electricity) from

the USP. The HA is responsible for periodically aggregating

the electricity consumption of a group of HANs in a geo-

graphical region, and provide the aggregated result to the USP.

The aggregated result plays a vital role in maintaining balance

between power production and demand, and any incorrect data

may cause economic losses or even a blackout. In addition, the

aggregated result may be used by the USP for demand-side

management by providing time-varying pricing to HAN users.

Each SM is installed at a HAN, which is composed of a set of

home appliances, and a HG, which is basically an edge device.

The HG is responsible for collecting meter readings from the

SM installed in the HAN and then sending the readings to

the HA through an in-home network (e.g. WiFi). The USP

and HA interact via a 5G-enabled (as an example) dedicated

secure channel.

B. Threat Model

In our threat model, we consider the both the USP and HA

as trusted entities. Consumers are considered as honest-but-

curious entities that follow the protocol but can collude and

share their data to infer information about others. A malicious

consumer may also try to perform physical attacks [10] on the

smart meter to send falsified usage data. In this regard, the

consumer may try to change the settings of the HG or try to

manipulate the readings collected from the smart meter. Recall

that the communication link between the smart meter and the

HG is assumed to be secure and authenticated. However, an

outside attacker may compromise the communication between

a HG and the HA. For example, the adversary may intercept

the messages communicated between an HG and the HA, and

then may try to modify the meter reading or the intercepted

message. Additionally, an outside attacker may also try to



3

impersonate as a legitimate entity (e.g., a HG) to send data

under its name.

C. Security Goals

• Privacy of the Usage Data: Privacy of of the usage data

in an aggregation protocol is preserved as long as no

adversary is able to infer anything about the individual

measurements. It is expected that if an adversary inter-

cepts the communication between a HG and the HA, then

he/she must not be able to learn anything about the usage

data. Therefore, we need to maintain the secrecy of the

end-to-end communication between the HG and HA.

• Integrity of the Usage Data: Any changes in the

individual measurements are directly reflected on the

aggregated result. Therefore, when the HA receives any

usage data from a HG, the integrity of the usage data

must be verified.

• Authentication: If an adversary can successfully mas-

querade as a legitimate HG and send wrong information

about the individual measurements, it will lead to an in-

accurate aggregation result. Therefore, it is important that

before aggregating any usage data, the HAN aggregator

HA needs to authenticate each HG.

• Protection against any Physical Attacks: A malicious

consumer may try to change the settings of the SM

to manipulate its readings. This will result not only in

incorrect billing, but also in inaccurate decisions related

to demand and supply management. Therefore, it is

highly important to maintain physical security of each

SM installed in a HAN.

III. PROPOSED ULTRA-LIGHTWEIGHT DATA

AGGREGATION SCHEME

In this section, we present our ultra-lightweight data aggre-

gation scheme. The proposed scheme consists of two phases:

meter enrollment phase, and the data aggregation phase.

A. Meter Enrollment Phase

Each smart meter needs to enroll with the HA, which is an

integral part of the USP. We assume that each smart meter is

embedded with a PUF-circuit [10].

• Step E1: The HG (installed at the home) sends an

enrollment request to the HA through a secure channel.

• Step E2: Upon receiving the enrollment request, the

HA collects a sufficient numbers of CRPs (Challenge-

Response pairs) from the PUF embedded with the smart

meter via the HG. In this regard, the HA generates a

set of challenges and sends them to the smart meter

via the HG and then receives a response corresponding

to each challenge. After collecting a sufficient numbers

of CRPs, the HA builds a ML-based train-PUF-model

(TPM), where the number of CRPs may vary for differ-

ent PUFs. For instance, in case of a four-stage arbiter

PUF, approximately 40,000 CRPs are needed to build a

machine-learning model, whereas only 5129 CRPs are

required in the case of slender PUF [12]. After collecting

the CRPs, a ML algorithm such as Naive Bayes, or

LR (Linear Regression)-based algorithm is applied to

estimate the internal characteristics of the original PUF

(e.g., its linear delay vector) that are needed to model the

PUF behavior. Here, the simulated-PUF model (i.e., the

TPM) is expected to behave identically as the original

PUF embedded with the smart meter. That means, for a

given challenge C, both the TPM and the original PUF are

expected to generate the same response R. The response

of a PUF may be noisy, and this in turn may impact

the accuracy of the train-PUF model that is trained on

noisy data. To address this issue, an error connection code

(such as Golay codes) can be applied. Alternatively, a pre-

selection and filtering mechanism can also be applied. At

the end of this step, the HA generates an unique meter_id

for the smart meter and stores the TPM and the meter_id

in it’s secure NVM (non-volatile memory) for further

communication and also sends a copy of the meter_id

to the HG via the secure channel. After receiving the

meter_id, the HG asks the smart meter to disable the

internal fuse in the IC with the PUF, so that anyone with

access to the IC afterwards will not be able to model the

PUF.

B. Data Aggregation Phase

To ensure proper demand-response management in a power

grid, it is important to balance the power production and

demand. To support this objective, the HA periodically (say,

every 30 or 45 mins) needs to know the power consumption of

any group of n HANs. This phase of the proposed aggregation

scheme consists of the following steps:

• Step DA1: For a specific session j, a smart meter SMi

randomly generates a challenge Cij , a timestamp tj , and

then uses Cij as an input to the PUF attached with the

smart meter to obtain the PUF response kij (we call it the

PUF-Key). Hereafter, the smart meter collects the meter-

reading of that period (j-th session) (i.e., mij ), encrypts

mij , Cij and tj with the PUF-Key kij , and then sends

them to the HG. After that, the HG attaches the meter_id

and composes a message Mij consisting of the encrypted

mij , Cij , tj , along with the meter_id, and subsequently

sends the message Mij to the HA (as shown in Fig. 2).

• Step DA2: After receiving the Mij (i = 1, 2, · · · , n) from

each of the respective HGs, for each Mij , the HA first

loads the respective TPM and generates the PUF-key kij

and then uses the key to decrypt the message Mij and

check the timestamp and the challenge. If both of them

are valid, then the aggregator obtains the meter-reading

mij and after obtaining all the meter readings, the HA

computes the summation of all readings, i.e., Sumj =∑n

i=1
mij . Details of this phase are shown in Fig. 2.

C. Optimized Ultra-lightweight Data Aggregation Scheme Us-

ing Collaborative Learning

To optimize the proposed model by minimizing the number

of communications between HGs and HA, we develop a
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Figure 2. Proposed Ultra-lightweight Data Aggregation Scheme.

Figure 3. Collaborative-Learning-based Optimized Ultra-lightweight Data Aggregation Scheme.

collaborative learning based mechanism that uses and defines

a Threshold Value (TV) at each HAN. In this optimized

aggregation mechanism, each HG sends the consumption

update to the HA when the consumption data exceeds the

set threshold value. Each HAN collects its usage data samples

and the samples across HANs share the same set of features

and labels. Thus, they can choose to train models separately

and set the TV individually. Along with the consumption

data, demographics or weather data that have an impact

on power consumption may also be used to set the TV.

However, individual models are susceptible to cyber-attacks

where the adversary may inject poisoned data to comprise the

local model to set the TV. This may result in a degradation

of the overall accuracy and effectiveness of the decision-

making process for supply-demand management. In addition,

information about consumption patterns can be extracted from

individual TVs that pose a risk of sensitive user information

being leaked.

To address such issues, we propose a federated, collabora-

tive learning scheme to set the TV, as shown in Fig. 3. We

consider a scenario where the data collected by each HAN

follows the same format and has the same information fields.

Instead of training local models to set the TV individually, the

proposed model using federated learning greatly enriches the

training set, contributing to a high generalization performance

of the resulting model to set the TV. The use of federated
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Table I
PERFORMANCE COMPARISON BASED ON SECURITY GOALS

Schemes↓and Goals→ SG1 SG2 SG3 SG4 SG5

Zuo et al. [2] Yes Yes No No No

Sui et al. [3] Yes No No No Yes

Xue et al. [4] Yes Yes No No Yes

Mustafa et al. [5] Yes No No No No

Kursawe et al. [7] Yes Yes No No Yes

Gope and Sikdar [10] Yes Yes Yes No No

Ming et al. [13] Yes Yes No No No

Mohammadali et al. [14] Yes Yes Yes No Yes

Zuo et al. [15] Yes Yes No No No

Proposed Scheme Yes Yes Yes Yes Yes

SG: Security Goals; SG1: Data Confidentiality; SG2: Data Integrity; SG3: Smart-meter Authentication;

SG4: Security against physical attacks; SG5: Does not require to run any authenticated key-establishment scheme

Table II
PERFORMANCE COMPARISON BASED ON METHODOLOGIES

Schemes Aggregation Method Computational Overhead

Zuo et al. [2] Additive homomorphic encryption with noisy statistics Very High

Sui et al. [3] Signcryption with Computational and Decisional Diffie-Hellman High

Xue et al. [4] Additive homomorphic encryption and ) Threshold secret sharing Very High

Mustafa et al. [5] Multiparty computation with secure secret sharing Very High

Kursawe et al. [7] Decisional Bilinear Diffie-Hellman Very High

Gope and Sikdar [10] AKE + Addition of random values (generated from PRNG) Low

Ming et al. [13] Elliptic curve discrete logarithm problem (ECDLP) High

Mohammadali et al. [14] Additive homomorphic encryption with Nyberg’s Accumulator [11] Very High

Zuo et al. [15] Additive homomorphic ELGamal cryptosystem with Bilinear aggregated signature Very High

Proposed Scheme Encryption with One-time-Key (generated from PUF/TPM) Very Low

learning to train the model without sharing consumption data

also makes it easier to address cyber-security issues [10] and

each HAN operated by the same USP has little curious or

malicious intent towards each other. The motivation for using

federated learning is to create a generic model to define a

TV more robustly. For example, while some users may have

few data points, others may have many more. Also, in general,

different homes have different consumption patterns. However,

when it comes to defining the TV, we put more emphasis on

locality, area, and geographic aspects (e.g., consumption in

the industrial areas is comparatively higher than in commercial

and residential areas). Finally, since privacy requirements may

differ from HAN to HAN, the proposed method covers the

local and global models’ privacy with respect to all HGs in

the HAN networks. As shown in Fig. 3, each HG trains the

local model based on the local dataset and sends the local

model updates to HA. All local model updates received from

the HANs will be aggregated by the HA to generate a global

model. This global model is then disseminated to all HANs

and each HG sets the TV based on the global model to send

consumption updates to the HA. This process can be iterated

to generate the global model to tune the TV based on the

accuracy, standard deviation, and degree of heterogeneity of

local data samples.

IV. DISCUSSION

This section starts with a security analysis of the proposed

ultra-lightweight data aggregation scheme. Subsequently, we

present a comparative analysis to show its effectiveness.

A. Security Analysis

This section describes how the security goals defined in

Section II.C are achieved by the proposed scheme.

• Privacy of usage data: To ensure the privacy of the usage

data in the proposed ultra-lightweight data aggregation

scheme, each HG encrypts the meter reading. In this

context, only the HA with a valid TPM will be able to

extract the PUF-key kij . Therefore, if an eavesdropper

intercepts a message Mij , he/she will not be able to

decrypt the message. In this way, we grantee the privacy

of any usage data.

• Integrity of usage data: To ensure the integrity of the

usage data, we can simply use a key-hash function for

generating a hash-tag, e.g., ∆ij in Fig. 2, where the hash

outputs will be generated based on the PUF-key, message

Mij , and the timestamp. Now, if an adversary A intends

to modify any part of the message Mij , the aggregator

will be able detect such attempts using the hash-tag value

of ∆ij . It should be noted that if the aggregator detects

any issue in the hash-tag value of ∆ij , it will stop the

decryption of message Mij and will ask the respective

smart meter to re-send its reading. In this way, we can

also reduce the computation overhead at the aggregator’s

end.

• Authentication: To provide the authentication feature

in the proposed scheme, the challenge Cij is sent in

both encrypted and unencrypted ways. Therefore, after

receiving the message Mij , the HA needs to check the

challenge Cij with its unencrypted form, which is also

encrypted using the PUF-key. In this regard, for a given



6

Table III
MODELING ACCURACY RESULT FOR APUF

Challenge Size (in bits) Number of CRPs Training Time Prediction Accuracy (in %)

64-bits 4890 11.89 sec 99.72 %

128-bits 8680 35.94 sec 99.65 %

challenge, only a legitimate PUF device (smart meter)

will be able to generate the same PUF-key response as

the TPM. Nevertheless, the HAN aggregator can also use

the parameter ∆ij to validate any smart meter.

• Protection against physical attacks: In the proposed

scheme, each smart meter is embedded with a PUF.

Therefore, if an adversary tries to do physical attacks

(e.g., change the settings of the smart meter to influence

the bill) on a smart meter, then the behavior of the PUF

will be changed. In such cases, the PUF will not be

able generate the same response for a given challenge

as the TPM. In our system architecture, the HA will be

be able to detect such issues and report them to the USP

to take necessary actions. This ensures security against

any physical attacks.

B. Comparison

In this section, we compare the proposed scheme with other

state-of-the-art data aggregation schemes for smart grids. From

Table I, we can see that the data aggregation scheme presented

in [5] cannot ensure most of the important security goal that

are vital for smart grid security. In most of the existing data

aggregation schemes (such as [2-5], [13-15]) the smart meters

are not authenticated, making them vulnerable to several

attacks. For instance, the data aggregation scheme presented

in [4] operates without a trusted authority. Regretfully, this

work is also susceptible to the man-in-the-middle attack. On

the other hand, even though the data aggregation scheme

presented in [10] can accomplish most the security goals, it

requires the execution of an authenticated key-establishment

(AKE) scheme that leads to additional overhead on the re-

source limited smart meters. Finally, since smart meters are

installed at the customer end, they can be easily tampered

by a malicious consumer for influencing the bill. However,

none of the existing data aggregation schemes have considered

the security against physical attacks. In contrast, Section IV.A

has already shown how the proposed scheme ensures all the

security goals. One of the major differences between the pro-

posed scheme and the scheme presented in [10] is that unlike

[10], the proposed scheme can achieve all the security goals

without running a authenticated key-establishment scheme.

Next, we compare the proposed scheme with other state-of-

the-art data aggregation schemes in terms of the aggregation

method and computational overhead. From Table II, we can

see that most of the state-of-the-art data aggregation schemes

are public-key-based, where additive homomorphic encryp-

tion, with accumulator or multiparty computation with secure

secret sharing are used. For instance, the scheme presented

in [14] requires additive homomorphic encryption (Paillier

Crypto-system) with Nyberg’s Accumulator [11]). Similarly,

in [15], the proposed data aggregation scheme is based on

additive homomorphic ELGamal cryptosystem with Bilinear

aggregated signature. This results in very high computational

overhead at the resource-limited smart meters. Besides, the

execution of such approaches takes longer time as compared

to any masking-based approach (as shown in [10]). In contrast,

the proposed scheme is based on lightweight symmetric-key

encryption, where the one-time-key is generated on-the-fly just

before encryption/decryption.

C. Experimental Evaluation

To validate the effectiveness of the proposed modeling-

based data aggregation scheme and also to show how to model

a PUF’s behavior, we built simulation models of two different

Arbiter PUFs (64-bit and 128-bit APUFs) using Matlab. We

then collected CRPs from the Matlab simulation models by

considering that all stage delay parameters of each PUF are

independent and identically distributed. For each PUF, the

generated CRP set was divided into two parts: the training set

consisted of 80% of the total CRPs, while the test set consisted

of the remaining 20%. Here, we implemented a modeling

setup for Deep Feed-forward Neural Networks using Python

2.7 and the Keras 2.1.5 framework, with TensorFlow backend,

and executed the model on a Linux workstation with 64 GB

RAM and a 3.3 GHz, 4-core Intel Xeon processor. All the

experiments were conducted without explicitly parallelizing

the code across the cores. For classification of APUFs, we

found that the necessary deep learning architectures were

particularly simple, e.g., only one hidden layer with two nodes

was sufficient to model the 64-bit APUF. Table III shows

the results obtained on modeling APUFs. As expected, the

modeling accuracy achieved is very high with relatively small

training sets.

V. CONCLUSION

Smart meters play a vital role in smart grids by providing

user power consumption data at regular time intervals for

use cases such as billing, forecasting and supply-demand

management. In this paper, we first presented an efficient

ultra-lightweight data aggregation scheme for smart girds.

To enhance the performance of the proposed scheme, we

utilized a collaborative learning mechanism. Unlike existing

data aggregation schemes, the proposed solution does not

require to store any secret-key but can still ensure a higher-

level of security. Also, to the best of our knowledge, this is

first aggregation scheme that can ensure physical security of

the smart meter.
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