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Abstract: Somatic mutations drive cancer development and may contribute to ageing and other 36 
diseases1,2. Yet, the difficulty of detecting mutations present only in single cells or small clones 37 
has limited our knowledge of somatic mutagenesis to a minority of tissues. To overcome these 38 
limitations, we introduce nanorate sequencing (NanoSeq), a new duplex sequencing protocol 39 
that avoids end-repair-associated errors to achieve mutation detection error rates <5 errors per 40 
billion base pairs in single DNA molecules from populations of cells. This rate is two orders 41 
of magnitude lower than typical somatic mutation loads, enabling the study of somatic mutation 42 
in any tissue independently of clonality. We exploit the single-molecule sensitivity of NanoSeq 43 
to study somatic mutations in non-dividing cells across several tissues, comparing stem cells 44 
to differentiated cells and studying mutagenesis in the absence of cell division. Differentiated 45 
cells in blood and colon displayed remarkably similar mutation loads and signatures to their 46 
corresponding stem cells, despite mature blood cells having undergone a considerable number 47 
of additional cell divisions. We then characterised the mutational landscape of post-mitotic 48 
neurons and polyclonal smooth muscle. This confirmed that neurons accumulate somatic 49 
mutations at a constant rate throughout life in the absence of cell division, with similar mutation 50 



rates and signatures to a variety of mitotically-active tissues. Together these results suggest 51 
that mutational processes independent of cell division are important contributors to adult 52 
somatic mutagenesis. We anticipate that the ability to reliably detect mutations in single 53 
molecules of DNA could transform our understanding of mutagenesis in vivo and in vitro, and 54 
enable somatic mutation studies in large-scale cohorts. 55 
 56 
Introduction 57 
 58 
Somatic mutations occur in our cells as we age, driving cancer development and potentially 59 
contributing to ageing and other diseases. Despite their importance, their study remains 60 
challenging due to technical limitations. Because any given somatic mutation in a normal tissue 61 
is typically present in a small group of cells or even in a single cell, detecting them requires 62 
special approaches, such as ultra-deep sequencing of small biopsies3-5, laser microdissection6-63 
8, isolation of single-cells followed by in vitro expansion into organoids or colonies9-11, or 64 
single-cell sequencing12-14. While these technologies are changing our understanding of 65 
somatic mutagenesis, the error rate of single-cell sequencing remains high15, and other 66 
approaches are typically limited to mitotically-active cell types.  67 
 68 
As a result of technical limitations, the rates and patterns of somatic mutation across most 69 
human cell types remain underexplored. This is especially the case for non-dividing cells, 70 
including the differentiated cells that make up the bulk of mitotically-active tissues and are 71 
responsible for tissue function, as well as post-mitotic tissues, such as cortical neurons or 72 
cardiac muscle, which are of particular interest in human ageing, neurodegeneration and 73 
cardiovascular disease. Post-mitotic tissues can also shed light on the contribution of cell 74 
division and DNA replication to somatic mutation in human tissues. To address these 75 
questions, here we develop a new sequencing protocol that reliably detects mutations in single 76 
molecules of DNA from populations of cells, enabling the study of somatic mutation in any 77 
tissue or cell population. 78 
 79 
NanoSeq achieves error rates two orders of magnitude below somatic mutation rates 80 
 81 
The fundamental limitation of standard sequencing methods for the study of genetically 82 
heterogenous samples is the need to detect the same mutation in multiple cells to distinguish 83 
genuine mutations from sequencing errors, a consequence of their error rates being above 10-3 84 
errors per base pair (bp)16. Several protocols have been developed to increase the accuracy of 85 
standard sequencing methods by tagging individual molecules of DNA with unique molecular 86 
barcodes and reading the same molecule multiple times, reducing error rates by single-87 
molecule consensus sequencing16. The most accurate approaches are based on duplex 88 
consensus sequencing17,18, which rely on sequencing copies of both strands of a DNA molecule 89 
to remove sequencing errors (present in individual reads) and PCR errors (present in copies of 90 
one of the two strands) (Fig 1a). 91 
 92 
Duplex sequencing has a theoretical error rate <10-9 errors/bp, which is the probability of two 93 
early and complementary PCR errors in both strands16. Given that this theoretical limit is lower 94 
than the typical mutational load of human tissues, it raises the possibility of quantifying somatic 95 
mutation rates in any cell type, independently of its clonal architecture. This is the rationale of 96 
BotSeqS, a whole-genome duplex sequencing protocol19. In practice, however, mapping errors 97 
and the accidental copying of errors between strands during library preparation violate the 98 
independence of both strands and limit the accuracy of duplex sequencing19,20. The actual error 99 
rates of duplex sequencing protocols have remained difficult to measure16, but some protocols 100 



report error rates above 10-7 errors/bp20, translating into hundreds to thousands of errors per 101 
diploid genome. 102 
 103 
A difficulty in measuring the error rate of existing duplex sequencing protocols has been the 104 
lack of control samples with known mutation rates. To evaluate the performance of the existing 105 
BotSeqS protocol (Fig 1a), we first analysed a sample of granulocytes from a 59-year-old 106 
donor from whom 110 single-cell derived blood colonies had been whole-genome sequenced21 107 
(Supplementary Table 1,2). We found that the estimates of mutation burden per diploid 108 
genome from BotSeqS were two-fold higher than those from the colonies (Fig 1b), and that 109 
the substitution profiles were dissimilar (cosine similarity of 0.71; Fig 1c), with increased C>A 110 
and C>G substitution rates. Analysing the distribution of substitutions across the reads revealed 111 
a large excess of G>T/C substitutions near the 5’ends of DNA fragments, and an imbalance 112 
over C>A/G substitutions that affected the entire read length (Fig. 1d and Extended Data 113 
Figures 1 and 2). These substitution imbalances are incompatible with real mutations and 114 
reflect errors introduced during library preparation22 (Methods, Supplementary Note 1). We 115 
confirmed that the same imbalances, together with an additional C>T asymmetry, were present 116 
in the original BotSeqS publication19 (Fig 1d). Extensive trimming of read ends only partially 117 
alleviated these errors (Extended Data Fig 2). Based on these results, we estimate that BotSeqS 118 
introduced ~1,500 errors per diploid genome in our samples, equivalent to an error rate ~2.6 x 119 
10-7 errors/bp. 120 
 121 
DNA damage in one strand can be fixed as an apparent mutation in both DNA strands during 122 
end repair, violating the error-correction mechanism of duplex sequencing (Fig 1e, Extended 123 
Data Fig 1c-d). To solve this, we developed NanoSeq, a protocol that prevents copying errors 124 
between strands by avoiding end repair and by blocking nick extension. First, we replaced 125 
sonication and end repair with restriction enzyme fragmentation (Fig 1e). We chose HpyCH4V 126 
based on in silico estimations of achievable genomic coverage (Methods; Supplementary 127 
Table 3; Supplementary Note 2). Although restriction enzymes provide partial coverage of 128 
the genome (29% using HpyCH4V), the fraction covered is sufficiently random to accurately 129 
estimate mutation rates and signatures, and they enable the generation of NanoSeq libraries 130 
from as little as 1 ng of DNA (Methods). Alternatively, we show that sonication followed by 131 
exonuclease blunting can be used for applications requiring whole-genome coverage 132 
(Methods, Supplementary Note 3, Extended Data Fig 3). Second, we introduced dideoxy 133 
non-A nucleotides (ddBTPs) during A-tailing, to avoid errors from nick extension (Fig 1e; 134 
Methods; Extended Data Fig 1e; Supplementary Note 4). Adapters with sufficiently diverse 135 
random barcodes were used to tag PCR duplicate families (Supplementary Note 5). As it is 136 
standard in somatic mutation calling, a polyclonal matched normal sample is used alongside 137 
NanoSeq to distinguish germline and somatic mutations (Methods). 138 
 139 
Duplex sequencing and BotSeqS often suffer from low efficiency due to suboptimal recovery 140 
of reads from both original strands. We show that mathematical modelling of family sizes and 141 
qPCR quantification of the library can be used to maximise the duplex coverage independently 142 
of the amount of input DNA (Methods, Extended Data Fig 4a-d). A robust bioinformatic 143 
pipeline was developed to avoid false positive mutation calls from mapping errors or low-level 144 
DNA contamination (Extended Data Fig 4e,f; Methods; Supplementary Note 6), and to 145 
distinguish germline from somatic mutations.  146 
 147 
Applying the NanoSeq protocol to the same sample of granulocytes from the 59-year-old donor 148 
(Supplementary Table 1,2), yielded nearly-identical burden estimates and substitution 149 
profiles to the colonies (cosine similarity of 0.98) (Fig 1c; Methods; Supplementary Note 7; 150 



Extended Data Fig 5a,b). We detected no evidence of substitution imbalances except for a 151 
slight enrichment of A>T over T>A, which we have not seen in subsequent libraries (Fig 1d). 152 
To measure the error rate of NanoSeq we then applied it to samples with low mutation burdens: 153 
a sperm sample from a 21-year-old donor and cord blood granulocytes from two neonates. 154 
Seven replicates of the sperm sample yielded low mutation burdens, with ~52 mutations per 155 
haploid sperm cell (1.8 x 10-8 mutations/bp or ~2.5 mutations/year/cell), consistent with current 156 
estimates of the mutation rate in the paternal germline from trio studies23,24 (Fig 1f). NanoSeq 157 
estimates from cord blood granulocytes were compared to 100 single-cell derived cord blood 158 
colonies from two different donors. Corrected NanoSeq estimates (Methods) were higher than 159 
those from blood colonies (109 vs 66 mutations per cell; 95% Poisson confidence intervals 95-160 
125; Fig 1g). This difference could be due to NanoSeq errors, higher burden in granulocytes 161 
than stem-cell-derived colonies, or both. Consistent with most mutations detected by NanoSeq 162 
being genuine, comparison of both mutational spectra did not detect significant differences 163 
between them (Fig 1h, Methods). 164 
 165 
Together, the sperm and cord blood data indicate that the error rate of NanoSeq is considerably 166 
lower than 5 x 10-9 errors/bp (<30 errors per diploid genome), two orders of magnitude lower 167 
than the BotSeqS error rate and the somatic mutation load of most human tissues studied to 168 
date. Analysis of insertions and deletions (indels) in cord blood similarly confirms that the 169 
NanoSeq indel error rate is <3 x 10-9 errors/bp (Methods; Extended Data Fig 5c; 170 
Supplementary Note 8).  171 
 172 
To our knowledge, these are the lowest confirmed error rates of any DNA sequencing protocol. 173 
These error rates open the door to the accurate study of somatic mutations in any tissue type, 174 
independent of clonality. We take advantage of this unprecedented ability to reliably study 175 
non-dividing cells across four tissues, addressing two elusive questions in the field of somatic 176 
mutagenesis: the difference in mutation rates between stem cells and terminally-differentiated 177 
cells in mitotically-active tissues, and the rates and patterns of mutation in post-mitotic tissues. 178 
 179 
 180 



 181 

 182 
Figure 1 | Standard BotSeqS and NanoSeq sequencing protocols. a, Fundamentals of duplex sequencing 183 
protocols. b, Mutation burden estimates in granulocytes using BotSeqS and NanoSeq, compared to standard 184 
results with single-cell derived blood colonies. Box plot show the interquartile range, median and 95% 185 
confidence interval for the median. BotSeqS and NanoSeq bars show 95% Poisson confidence intervals. c, 186 
Comparison of BotSeqS and NanoSeq granulocyte substitution profiles with blood colonies data (the 187 
calculation of expected cosine similarities is explained in the Methods section). The same filtering 188 
approaches were used for both BotSeqS and NanoSeq. d, Substitution imbalances are present in standard 189 
BotSeqS protocols but absent from NanoSeq (Extended Data Figs 1a,b and 2). Imbalances were tested with 190 
a binomial test assuming p of 0.5 and p-values were corrected with Benjamini and Hochberg's FDR method. 191 
e, Standard BotSeqS (top) and the new NanoSeq approach (bottom) for genome fragmentation and library 192 
preparation. f, NanoSeq mutation burden estimates for seven sperm samples from a 21-year-old donor 193 
compared to reported estimates of mutation burden in sperm, showing 95% Poisson confidence intervals. g, 194 
NanoSeq mutation burden estimates for cord blood granulocytes compared to single-cell derived cord blood 195 
colonies, showing 95% Poisson confidence intervals; Box plot show the interquartile range, median and 95% 196 
confidence interval for the median, with the mean and its 95% confidence interval shown in red. h, 197 
Comparison between cord blood colonies and granulocyte substitution profiles.  198 
 199 



 200 
Similar mutation burden in stem and differentiated cells, in blood and colon 201 
 202 
Most of our knowledge of mutagenesis in normal tissues is restricted to stem or proliferating 203 
cells. Since stem cells are believed to be genetically more protected than differentiated cells25, 204 
differentiated cells could conceivably have higher mutational loads and undescribed mutational 205 
signatures14. 206 
 207 
We first addressed this question in the haematopoietic system, comparing the mutational 208 
landscape of mature granulocytes to that of haematopoietic stem cell and multipotent 209 
progenitor cells (HSC/MPPs) (Methods). The haematopoietic system is organised 210 
hierarchically, with a heterogeneous pool of slow-cycling stem cells at the top of the hierarchy 211 
sustaining the production of large numbers of differentiated cells through the extensive 212 
proliferation of intermediate progenitor cells (Fig 2a). Given the number of divisions 213 
separating slow-cycling stem cells and granulocytes, a considerably higher mutation burden in 214 
granulocytes as well as mutational signatures associated with proliferation may be expected. 215 
We used NanoSeq to sequence 18 samples of granulocytes from 9 healthy donors, ranging from 216 
20 to 80 years of age (Supplementary Table 1,2). We compared these data to standard whole-217 
genome sequencing of 60 single-cell derived HSC/MPPs colonies from 6 donors (Extended 218 
Data Fig 6a; Supplementary Table 1,2) and published data from 110 colonies from one 219 
donor21 (Methods). 220 
 221 
These data revealed that terminally-differentiated granulocytes have remarkably similar 222 
mutation burdens and mutational signatures to HSC/MPPs (Fig 2a). Linear mixed-effect 223 
regression reveals indistinguishable slopes for HSC/MPPs colonies and granulocytes (P=0.90), 224 
with a combined estimate of ~19.8 mutations/year (CI95% 18.3-21.4, Methods). This slope, 225 
which reflects the accumulation of somatic mutations with age, provides an estimate of the 226 
mutation rate in the stem cells responsible for long-term maintenance of the haematopoietic 227 
system. Measured as the difference between intercepts, the excess of mutations in granulocytes 228 
over HSC/MPPs colonies is estimated to be ~57.7 mutations and not significantly different 229 
from zero (CI95%: -13.1-121.1, P=0.12, Methods). 230 
 231 
The similarity in mutation burden and mutational signatures between granulocytes and 232 
HSC/MPPs is surprising given that HSC/MPPs are expected to have undergone many fewer 233 
cell divisions on average. HSCs are believed to divide around once a year and our conservative 234 
estimates suggest that at least an average of 28 additional divisions must separate stem cells 235 
from differentiated cells to explain the production of ~1014 mature cells per year (Fig 2a; 236 
Supplementary Note 9). The observation that a considerable increase in cell divisions does 237 
not cause a proportional increase in mutation burden suggests that replication errors are only 238 
responsible for a minority of the mutations that occur in haematopoietic stem cells 239 
(Supplementary Note 9). 240 
 241 
A caveat for the comparison between HSC/MPPs colonies and granulocytes is that HSC/MPPs 242 
are a heterogeneous population and estimates of mutation burden from colonies successfully 243 
grown in vitro may not reflect the mutation rate of the more quiescent stem cells responsible 244 
for long-term maintenance of the haematopoietic system. However, a similar conclusion can 245 
be drawn from the regression data on granulocytes alone, without comparison to the 246 
HSC/MPPs colonies. The strong linear relationship with age and the small intercept for 247 
granulocytes alone (157.4 mutations, CI95%: -106.4-423.5, compared to the slope of ~19.8 248 
mutations/year) suggests that the majority of the mutations observed in adult granulocytes 249 



accumulated in stem cells responsible for long-term maintenance, and that only a small 250 
minority of mutations are accrued during transient proliferation and terminal differentiation 251 
(Supplementary Note 9). 252 
 253 

 254 
Figure 2 | Mutation analyses of differentiated cells. a, Schematic representation of the hematopoietic 255 
lineage showing which cell types and donors were analysed.  b, Substitutions per cell for donors of different 256 
ages, comparing estimates from NanoSeq granulocytes (red) to standard sequencing of single-cell derived 257 
blood colonies (dark cyan boxplots); boxplots and confidence intervals as in Fig 1b; red and dark cyan 258 
dashed lines are linear mixed regression models; linear mixed model 95% confidence intervals for NanoSeq 259 
data calculated through parametric bootstrapping. For granulocytes, the intercept is 137.6 [CI95% -117.6-260 
413.2] and the slope 20.6 [15.8-25.2]. For blood colonies, the intercept is 120.4 [27.9-218.5] and the slope 261 
19.8 [18.2-21.4]. c, Comparison between standard methods and NanoSeq burden estimates for colonic crypts 262 
from three donors. d, Substitution profiles for colonic crypts from the three donors and cosine similarities to 263 
profiles obtained with standard methods. e, Accumulation of substitutions throughout life in colonic crypts 264 
from 5 donors, excluding substitutions attributed to the episodic colibactin signature; confidence intervals 265 
as in panel b. Intercept of 156.9 [-1776.8-2117.7] and slope of 50.9 [9.8-91.1] (54.1 [43.0-64.9] without 266 
intercept). 267 
 268 
To extend the comparison of stem cells and differentiated cells to another tissue with a well-269 
understood stem cell organisation, we studied colonic epithelium. Estimates of the somatic 270 
mutation rate in colonic stem cells are available from whole-genome sequencing of clonal 271 
organoids derived from Lgr5+ cells10 and from sequencing single colonic crypts6. Genome 272 
sequencing of whole crypts can be used to estimate the somatic mutation rate of colonic stem 273 
cells, as colonic crypts are clonally derived from a single stem cell. However, the process of 274 
reaching clonality through genetic drift in the population of stem cells within a crypt is 275 
estimated to take several years in humans26, which could lead to an underestimation of mutation 276 
burdens using single-crypt sequencing. 277 
 278 



For three previously-studied donors we compared standard whole-genome sequencing of laser-279 
microdissected colonic crypts6 to NanoSeq data from single crypts or groups of crypts. This 280 
revealed similar estimates of mutation burden, despite the lag to clonality in standard 281 
sequencing (Fig 2c). Mutational burden and signatures from differentiated cells in colonic 282 
epithelium were overall consistent with those found by previous studies on colonic stem cells, 283 
with a dominance of SBS1, SBS5 and, in some donors, a colibactin signature27 (Fig 2d,e). 284 
 285 
Overall, NanoSeq data on granulocytes and colonic epithelium yielded similar estimates of 286 
mutation burden and mutational signatures to their corresponding stem cells. While larger 287 
studies will be needed to identify subtler differences in mutation rates between stem cells and 288 
differentiated cells in granulocytes and colon, and to address this question in other cell types, 289 
these results provide an early view into the somatic mutation landscape of two differentiated 290 
cell types. 291 
 292 
Lifelong mutagenesis in post-mitotic neurons and polyclonal smooth muscle 293 
 294 
Cortical neurons are a prime example of a post-mitotic tissue. This makes them both a key cell 295 
type to study somatic mutagenesis in the absence of cell division, and also inaccessible to 296 
traditional sequencing methods. Single-cell sequencing has provided insights into somatic 297 
mutation in neurons12,13, although it remains unclear to what extent amplification artefacts 298 
affected these results. Despite the technical challenges impeding progress, somatic mutation in 299 
healthy neurons and in neurodegeneration has attracted considerable interest1,13,28,29. 300 
 301 
We applied NanoSeq to frontal cortex neurons from 8 healthy donors and 9 Alzheimer's disease 302 
(AD) patients (Supplementary Table 1), using nuclei sorting with the NeuN neuronal marker 303 
(Methods; Extended Data Fig 7a). These data revealed a tight linear accumulation of 20.0 304 
substitutions (linear regression, CI95%:19.1-20.9) and 3.1 indels (CI95%:2.9-3.3) per year, 305 
approximately constant throughout life (Fig 3a,b). This confirms that mutations accumulate in 306 
a clock-like fashion in cortical neurons, in the absence of cell division, consistent with 307 
observations from single-cell sequencing13. 308 
 309 
These data shed new light on previously published single-neuron sequencing results. A study 310 
using SNP-phased error-corrected single-cell sequencing reported three dominant signatures 311 
in neurons, one that increased linearly with age and two that did not13. The spectrum found by 312 
NanoSeq, the burden per genome and the mutation rate per year closely resemble the age-313 
associated signature in that study (cosine similarity 0.96; Extended Data Fig 7b,c). The other 314 
two mutational signatures, responsible for around 72% of all mutations reported in the study 315 
and highly variable across single-cell libraries (Extended Data Fig 7d), appear exclusively in 316 
single-cell data and seem more consistent with amplification errors or transient DNA damage. 317 
Consistent with this hypothesis, the dominant signature in single-neuron data closely resembles 318 
a single-cell-specific signature reported in vitro15 (cosine similarity 0.97, Extended Data Fig 319 
7b). 320 
 321 
To better understand the mutational processes active in neurons in the absence of cell division, 322 
we carried out signature decomposition on NanoSeq data from neurons together with data from 323 
granulocytes, colonic crypts and smooth muscle (described below). Three signatures were 324 
extracted (Fig 3e): signatures A and C imperfectly resembled SBS5 (cosine similarity 0.80) 325 
and SBS16 (0.78), respectively, while signature B closely matched SBS1 (C>T changes at CpG 326 
dinucleotides, cosine similarity 0.96). It is conceivable that SBS5, which appears to be a 327 
ubiquitous signature in normal tissues and cancer genomes30, reflects a collection of co-328 



occurring processes, rather than a single mutational process, leading to some differences across 329 
tissues. The observation in post-mitotic neurons of signatures resembling SBS5 and SBS16 330 
suggests that these common processes, whose aetiologies remain poorly understood, can occur 331 
independently of cell division. 332 
 333 
The substitution and indel spectra from neurons (Fig 3c,d) showed some differences with those 334 
from granulocytes (Fig 1c) and smooth muscle (Fig 3l,m). T>C substitutions are more frequent 335 
in neurons, especially at ApT dinucleotides (Fig 3c), and, together with C>G and C>T, show 336 
strong transcriptional strand biases (Extended Data Fig 8). Interestingly, signature B (SBS1), 337 
which is often assumed to be linked to cell division, accumulates at a low rate with age in 338 
neurons (1.8 substitutions per year, linear regression CI95% 0.23-3.3, P = 0.03; Extended 339 
Data Fig 7e). The presence of C>T mutations at CpG sites in neurons is better appreciated 340 
normalising the rates by the trinucleotide frequency in the genome (Extended Data Fig 9a,b), 341 
and implies that C>T mutations caused by 5-methylcytosine deamination can be fixed in both 342 
DNA strands without cell division. In contrast to other somatic tissues, in neurons we did not 343 
find a clear association between expression levels and substitution rates across genes (Fig 3f) 344 
and the enrichment of mutations in heterochromatin was weaker (Fig 3g). Comparison of the 345 
mutational spectra between active and inactive chromatin regions revealed different 346 
contribution of the three mutational signatures across tissues (Extended Data Fig 8a). 347 
 348 
Indel analysis revealed a higher relative frequency of indels in neurons than in other tissues, 349 
caused by an unusual signature characterised by indels longer than 1bp (Fig 3d,m; Extended 350 
Data Fig 9c). This indel signature and its association with highly expressed genes has some 351 
resemblance to a little-understood mutational process recently described in cancer genomes31 352 
(Extended Data Fig 9d). 353 
 354 
Although the difference is small, AD donors showed a slightly lower substitution rate than 355 
healthy donors (linear regression, 19.1 (CI95%:18.1-20.0) vs 21.6 (CI95% 20.5-22.7) 356 
substitutions/year, P = 0.006). This difference was significant for signatures A and B but not 357 
C (p_A= 0.02; p_B = 0.03; p_C = 0.55; Fig 3i; Extended Data Fig 7e). The difference in 358 
mutation burden between controls and AD donors could merely reflect differences in the 359 
patient cohorts or be related to the pathogenesis of the disease, for example due to differences 360 
in metabolism or variable death rates across subpopulations of neurons in AD. Studies with 361 
larger cohorts will be required to validate and explain this observation. 362 
 363 
To extend these analyses to another tissue not amenable to standard sequencing methods, we 364 
studied smooth muscle. Visceral smooth muscle cells are believed to divide infrequently in 365 
normal conditions32. Using laser microdissection, we collected samples of smooth muscle from 366 
10 donors and from two different organs, bladder and colon (Supplementary Table 1,2; 367 
Extended Data Fig 6b, 10a). As expected for a polyclonal tissue, standard whole-genome 368 
sequencing detected few mutations and at low allele frequencies in these samples (Extended 369 
Data Fig 10b,c, Methods). In contrast, NanoSeq revealed that the substitution and indel 370 
burdens increase linearly with age, with ~24.7 substitutions per year per diploid genome 371 
(CI95%:22.5-27.0) and ~2.1 indels per year (95%:1.7-2.5) (Fig 3j,k). Despite their different 372 
anatomical origin, smooth muscle cells from the bladder and colon walls showed relatively 373 
similar mutation rates (mixed-effects linear regression, P = 0.6 for substitutions, P = 0.04 for 374 
indels).  375 
 376 
The mutation spectrum of smooth muscle partially resembled that of granulocytes (Fig 3l,m, 377 
Fig 1c). All three signatures (A-C) accumulated linearly with age in smooth muscle (Extended 378 



Data Fig 7f), with similar contributions in smooth muscle from bladder and colon and across 379 
donors (Fig 3n). The smooth muscle spectra also resemble that of skeletal muscle satellite cells, 380 
studied by in vitro expansion11 (Supplementary Note 10).  381 
 382 
Altogether, granulocytes, smooth muscle and neurons showed more limited variation in 383 
mutation rate and spectra across individuals than has been observed in epithelia exposed to 384 
exogenous mutagens, such as skin3, colon6 (Fig 2c), bronchus33 or bladder8,34. This suggests 385 
that the rate of endogenous mutagenesis across individuals is modest, at least in the cohort 386 
studied. The observation of a linear accumulation of mutations in post-mitotic neurons, with 387 
similar burdens and signatures to some mitotically active tissues, suggest that dominant 388 
mutational processes observed across tissues may act independently of cell division. 389 
 390 
 391 

 392 
Figure 3 | Mutation landscape in neurons and smooth muscle. a-b, Substitution and indel accumulation 393 
per neuron throughout life; point estimate confidence intervals as in Fig 2a; grey area shows simple linear 394 
model 95% confidence intervals. Intercept and slope for substitutions: 210.5 [-26.9-448.0] and 17.1 [13.7-395 
20.5] (20.0 [19.1-20.9] without intercept), respectively. Intercept and slope for indels: 45.9 [-10.2-102.0] 396 
and 2.5 [1.7-3.3] (3.1 [2.9-3.3] without intercept), respectively. c-d, Substitution and indel spectra in neurons 397 
from healthy and Alzheimer's disease donors; a description of each type of indel can be found in Extended 398 



Data Figure 5d. e, Signature decomposition using granulocytes, colonic crypts, smooth muscle and neurons 399 
substitution data. f, Substitution rates in the whole cohort for genes in quartiles of expression, showing 400 
different types of substitutions and indels. Lines show Poisson 95% confidence intervals. g, Substitution 401 
rates in transcribed and quiescent/heterochromatin DNA across different cell types. Lines show Poisson 95% 402 
confidence intervals; the corresponding mutation spectra are shown in Extended Data Fig 8a). h, Indel rates 403 
in the whole cohort for genes in quartiles of expression, showing different types of indels. Lines show 404 
Poisson 95% confidence intervals. i, Contribution of signatures A, B and C in neurons.  j-k, Substitutions 405 
and indels per cell in smooth muscle from 10 donors spanning different ages; point estimate confidence 406 
intervals and linear mixed model confidence intervals as in Fig 2b. Intercept and slope for substitutions: 407 
239.3 [-211.5-653.9] and 20.7 [13.6-28.0] (24.5 [22.4-26.8] without intercept), respectively. Intercept and 408 
slope for indels: 50.0 [2.6-97.2] and 1.3 [0.4-2.3] (2.2 [1.8-2.7] without intercept), respectively. l-m, 409 
Substitution and indel spectra in smooth muscle. n, Exposure to signatures A, B and C in smooth muscle for 410 
each donor and organ of origin. o-p, Substitution and indel accumulation per year across different cell types. 411 
 412 
 413 
Discussion 414 
 415 
Building on duplex sequencing and BotSeqS, we have developed a protocol with mutation-416 
detection error rates in single DNA molecules under 5 errors per billion sites. This error rate 417 
enables the study of mutation rates and signatures in any human tissue or cell subpopulation. 418 
 419 
Most of our current knowledge of somatic mutagenesis is restricted to mitotically-active cells. 420 
We have exploited the ability to sequence any cell type to explore the mutational landscape of 421 
non-dividing cells in a diversity of mitotically-active or inactive tissues. This has enabled us to 422 
compare the mutational landscape of differentiated cells and stem cells in blood and colon, and 423 
to study somatic mutagenesis in the absence of cell division. A remarkable observation that 424 
emerges from these data is that somatic mutation rates vary modestly (~2-3 fold) across a 425 
diverse range of somatic cell types, largely independently of cell division rates (Fig 3o,p, 426 
Suppl. Note 6). Indeed, similar mutation rates are found in non-dividing cortical neurons, in 427 
smooth muscle and in blood; or in colonic epithelium, which divides every few days, and in 428 
mostly quiescent hepatocytes10 or urothelial cells (Fig 3o,p). 429 
 430 
DNA replication and cell division have long been assumed to be major sources of somatic 431 
mutations, either due to DNA polymerase errors or the fixation of unrepaired damage during 432 
replication35. However, the linear accumulation of somatic mutations in post-mitotic neurons 433 
confirms that dominant mutational processes can occur independently of cell division. These 434 
mutations may result from the interplay between endogenous DNA damage and repair that 435 
cells are engaged in at all times. The similar mutation burden and signatures in granulocytes 436 
and in the stem cells responsible for long-term maintenance of blood, despite a different 437 
divisional load, could also be consistent with a time-dependent rather than a division-dependent 438 
accumulation of somatic mutations during haematopoiesis. Altogether, it is conceivable that 439 
division-independent mutational processes play a larger role in adult somatic mutagenesis than 440 
it is commonly assumed. 441 
 442 
In addition to enabling studies on somatic mutagenesis in any tissue, the ability to accurately 443 
detect mutations in single molecules of DNA has wider applications. NanoSeq could be used 444 
for mutagenesis screens and in vitro studies, exposing cell cultures or experimental models to 445 
different mutagens and quantifying mutagenesis across the genome and over time, without the 446 
need of single-cell bottlenecks36,37. Sonication followed by exonuclease digestion opens the 447 
door to targeted applications, to study the landscape of driver or pathogenic mutations from 448 
polyclonal samples with reliable single-molecule detection, across tissues and conditions. 449 
Being insensitive to clonality, NanoSeq can also be used to efficiently and accurately quantify 450 



somatic mutation rates and signatures in liquid or non-invasive tissue samples, enabling studies 451 
of somatic mutagenesis in large-scale cohorts, across genetic backgrounds, exposures and risk 452 
factors, in health and disease. 453 
 454 
 455 
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Methods 549 
 550 
Granulocytes and HSC/MPP colonies: sorting, colony growth and mutation calling 551 
 552 
We use two different terms to refer to colonies derived from haematopoietic stem cells (HSC) 553 
or progenitor cells, depending on the membrane markers used for cell sorting: HSPCs, which 554 
refer to CD34+ pools, and HSC/MPPs, which refer to CD34+ CD38- CD45RA- cells.  555 
 556 
A sample of granulocytes from a 59-year-old male donor (PD43976_59yo) from whom 110 557 
HSPC colonies were available21 was used for initial validation of the BotSeqS and NanoSeq 558 
protocols (Supplementary Tables 1,2). To estimate the NanoSeq error rate, cord blood 559 
granulocytes from two neonatal donors were sequenced by NanoSeq and the mutation burdens 560 
and spectra compared to those from 50 HSC/MPP colonies per donor. For the comparison of 561 
differentiated and stem cells, NanoSeq data from granulocytes from 9 donors of different ages 562 
was compared to standard sequencing of single-cell derived HSC/MPP colonies from 6 donors 563 
(10 HSC/MPP colonies per donor) and 110 HSPC colonies already available from a 59-year-564 
old donor21. These 110 HSPC included 67 HSC/MPPs, 32 megakaryocyte–erythrocyte 565 
progenitors (MEP), 7 granulocyte–macrophage progenitors (GMP) and 4 common myeloid 566 
progenitors (CMP).  567 
 568 
For PD43976_59yo, HSPC colonies were grown and mutations called as described in Lee Six 569 
et al.21. For the remaining donors, whole blood was diluted with PBS and mononuclear cells 570 
(MNC) were isolated using lymphoprepTM (STEMCELL Technologies) density gradient 571 
centrifugation. The red blood cell and granulocyte fraction of the blood was then removed. The 572 
MNC fraction was depleted of red blood cells by lysis steps involving 3 incubations at room 573 
temperature for 20 mins/10 mins/10 mins respectively with RBC lysis buffer (BioLegend). 574 
CD34+ selection of peripheral blood and cord blood samples was undertaken using the 575 
EasySep human whole blood CD34 positive selection kit (STEMCELL Technologies) as per 576 
the manufacturer’s instructions. Bone marrow samples did not undergo CD34+ selection prior 577 
to sorting. 578 
 579 
MNC or CD34 enriched samples were centrifuged and resuspended in PBS/3%FBS containing 580 
an antibody panel consisting of (antibody/fluorochrome): CD3/FITC, CD90/PE, 581 
CD49f/PECy5, CD38/PECy7, CD19/A700, CD34/APC Cy7, CD45RA/BV421, and 582 
Zombie/Aqua. 583 
 584 
Cells were stained (30 minutes at 4oC) in the dark before washing, centrifugation (500 x g at 585 
room temperature) and resuspension in PBS/3%FBS for cell sorting. Index sorting of 586 
‘HSC/MPP pool’ cells was performed on a BD AriaIII Cell Sorter (BD Biosciences) at the 587 
NIHR Cambridge BRC Cell Phenotyping Hub, as per the gating structure in Extended Data 588 
Fig 6a (CD34+, CD38- and CD45RA-). 589 
 590 
‘HSC/MPP pool’ cells were single-cell sorted into Nunc 96 well flat-bottomed TC plates 591 
(ThermoFisher) containing 100 µl supplemented StemPro media (Stem Cell Technologies). 592 
MEM media contained StemPro Nutrients (0.035%, Stem Cell Technologies), L-Glutamine 593 
(1%, ThermoFisher), Penicillin-Streptomycin (1%, ThermoFisher) and cytokines (SCF, 100 594 
ng/ml; FLT3, 20 ng/ml; TPO, 100 ng/ml; EPO 3 ng/ml; IL-6, 50 ng/ml; IL-3, 10 ng/ml; IL-11, 595 
50 ng/ml; GM-CSF, 20 ng/ml; IL-2 10 ng/ml; IL-7 20 ng/ml; lipids 50 ng/ml) to promote 596 
differentiation towards Myeloid/Erythroid/Megakaryocyte (MEM) and NK lineages. Manual 597 
assessment of colony growth was made at 14 days. Colonies were topped up with an additional 598 



50 µL MEM media on day 15 if the colony was ≥1/4 size of well. Following 21 ± 2 days in 599 
culture, colonies were selected by size criteria. Colonies ≥ 3000 cells in size were harvested 600 
into a U bottomed 96 well plate (ThermoFisher). Plates were then centrifuged (500 x g for 5 601 
minutes), media was discarded, and the cells were resuspended in 50 µl PBS prior to freezing 602 
at -80ºC. Colonies < 3000 cells but > 200 cells in size were harvested into 96 well skirted 603 
LoBind plates (Eppendorf) and centrifuged (800 x g for 5 min). Supernatant was removed to 604 
5-10 µL using an aspirator prior to DNA extraction on the fresh cell pellet. 605 
 606 
DNA extraction was performed using the DNeasy 96 blood and tissue plate kit (Qiagen) for 607 
larger HSC colonies, or the Arcturus Picopure DNA Extraction kit (ThermoFisher) for smaller 608 
HSC colonies. Both kits were used as per the manufacturer’s instructions. Extracted DNA (1-609 
5ng) from each colony was processed using a recently developed low-input enzymatic 610 
fragmentation-based library preparation method38. All samples were subjected to whole 611 
genome sequencing at 8-35X coverage on either the HiSeq X or the NovaSeq platforms 612 
(Illumina) to generate 150 bp paired-end reads. BWA mem was used to align sequences to the 613 
human reference genome (NCBI build37). 614 
 615 
The haematological samples in the study were obtained from several sources: the Cambridge 616 
Blood and Stem Cell Biobank, the Cambridge Biorepository for Translational Medicine, and 617 
the Cambridge Bioresource (REC references: 07-MRE05-44, 18/EE/0199, 15/EE/0152 - 618 
NRES Committee East of England - Cambridge South). 619 
 620 
Sperm samples 621 
 622 
DNA was extracted from sperm samples from two donors, aged 21 and 73 years, and sequenced 623 
using the NanoSeq protocol (REC ethics approval: EC04/015, London - Westminster REC; 624 
16/NE/003, NRES Committee North East-Newcastle and North Tyneside 1). Because of the 625 
low mutation burden of the germline, we sequenced 7 separate aliquots of sperm DNA from 626 
the 21-year-old donor to estimate the error rate of the NanoSeq protocol (Supplementary 627 
Tables 1,2). 628 
 629 
Laser microdissection of colonic crypts and bladder/colon smooth muscle  630 
 631 
Colon and bladder biopsies were obtained from deceased organ donors (ranging in age from 632 
25 to 78; Supplementary Table 1) at the time of organ donation. This tissue was collected as 633 
part of the Cambridge Biorepository for Translational Medicine program (REC reference: 634 
15/EE/0152 NRES Committee East of England – Cambridge South). Families of the donors 635 
provided informed consent for the use of this material in research. Different microbiopsies 636 
from these specimens have been used in previously published studies6,34,39. 637 
 638 
Colon biopsies were fresh frozen at the time of collection and stored at -80 ˚C. The colon 639 
biopsies subsequently underwent formalin-free fixation for 24 hours in PAXgene Tissue Fix 640 
containers (PreAnalytiX, Hombrechtikon, Switzerland) before being transferred to PAXgene 641 
STABILIZER solution (PreAnalytiX). Bladder biopsies underwent formalin-free fixation at 642 
the time of collection and were stored at -20 ˚C 38. 643 
 644 
Prior to laser-capture microdissection, samples were processed, embedded in paraffin and 645 
sectioned as described previously34. Microbiopsies were dissected using an LMD7 microscope 646 
(Leica Microsystems). Examples of microdissected regions for both specimen types can be 647 
found in Extended Data Figures 6 and 10. Proteolysis of isolated regions was performed using 648 



an Arcturus PicoPure DNA Extraction Kit (Thermo Fisher Scientific, Waltham, MA, USA). 649 
Cell lysate was stored at -20 °C prior to library preparation. 650 
 651 
Neuron nuclei sorting from frontal cortex samples 652 
 653 
Frozen biopsies of frontal cortex from eight healthy and nine Alzheimer’s disease donors were 654 
collected by the Cambridge Brain Bank (Supplementary Tables 1,2; REC ethics approval: 655 
10/H0308/56, East of England, Nottingham). Neuronal nuclei were isolated, stained and 656 
extracted from the frontal cortex samples as per Krishnaswami et al.40. Briefly, small cuts of 657 
1-2 mm were taken from fresh frozen samples. Dounce homogenisation was then used to free 658 
nuclei before filtration, density centrifugation and immunostaining. Samples were stained 659 
using DAPI (Thermo Fisher, D1306) and Milli-Mark™ Anti-NeuN-PE Antibody (MilliPore, 660 
FCMAB317PE). The immunostained samples were then sorted using FACS as per the gating 661 
strategy in Extended data Fig 7a. 15,000 nuclei were collected into 20 µl Arcturus PicoPure 662 
DNA Extraction Kit (Thermo Fisher Scientific) before undergoing digestion. Nuclear lysate 663 
was then stored at -20ºC prior to library preparation. 664 
 665 
The distributions of NeuN-PE intensities in most samples revealed a bimodal distribution. As 666 
a quality control, we fitted a mixture of two Gamma distributions to the NeuN-PE intensities 667 
for every samples. Only samples with 10-fold (1 log10 unit) separation between the mean of 668 
both peaks were considered for analysis, which led to the exclusion of an outlier sample. 669 
 670 
BotSeqS and NanoSeq library preparation protocols 671 
 672 
BotSeqS libraries were prepared as follows: DNA was fragmented using focused  673 
ultrasonication (Covaris 644 LE220) and purified by 2.5x AMPure XP (Beckman Coulter). 10 674 
ng of sonicated DNA was end-repaired and ligated using the NEBNext Ultra II kit (New 675 
England Biolabs) including 0.66 µl 1.5 µM xGen Duplex Seq Adapters - Tech Access 676 
(Integrated DNA Technologies, IDT: 1080799). 677 
 678 
NanoSeq libraries were prepared as follows: 10 ng of genomic DNA or LCM cut sections in 679 
20 µl buffer were purified using 100 µl of a 50:50 water and AMPure XP bead mixture and 680 
eluted in 20 µl nuclease free water. 20 µl of the bead suspension was taken forward into an on-681 
bead fragmentation reaction. Fragmentation occurred in a final volume of 25 µl including 2.5 682 
µl 10x CutSmart buffer (500 mM Potassium Acetate, 200 mM Tris-acetate, 100 mM 683 
Magnesium Acetate, 1 mg/ml BSA, pH 7.9 at 25°C), 0.5 µl 5 U/µl HpyCH4V (Supplementary 684 
Note 2), and 2 µl dH20. Fragmentation reactions were incubated at 37 ºC for 15 min, purified 685 
with 2.5x AMPure XP beads and resuspended in 15 µl nuclease-free water. Fragmented DNA 686 
was A-tailed in 15 µl reactions including 10 µl fragmentation product, 1.5 µl 10x NEBuffer 4 687 
(500 mM Potassium Acetate, 200 mM Tris-acetate, 100 mM Magnesium Acetate, 10 mM DTT, 688 
pH 7.9 at 25°C), 0.15 µl 5 U/µl Klenow fragment (3′→5′ exo-, New England Biolabs), either 689 
1.5 µl 1 mM dATP or 1.5 µl 1 mM dATP/ddBTPs (Supplementary Note 3), and 1.85 µL 690 
dH2O. Reactions were incubated at 37 ºC for 30 mins. The 15 µl A-tailing reaction product was 691 
added to 22.4 µl ligation mix, which consisted of 2.24 µl 10x NEBuffer 4, 3.74 µl 10 mM ATP, 692 
0.33 µl 15 µM xGen Duplex Seq Adapters (IDT: 1080799), 0.56 µl 400 U/µl T4 DNA ligase 693 
(New England Biolabs), and 15.53 µl dH2O. Reactions were incubated at 20 ºC for 20 min and 694 
subsequently purified with 1x AMPure XP beads and resuspended in 50 µl of nuclease free 695 
water.  696 
 697 



DNA quantification, dilution and PCR amplification 698 
 699 
DNA was quantified by qPCR using a KAPA library quantification kit (KK4835). The supplied 700 
primer premix was first added to the supplied KAPA SYBR FAST master mix. In addition, 20 701 
µl of 100 µM NanoqPCR1 primer (HPLC: 5′-ACACTCTTTCCCTACACGAC-3′) and 20 µl 702 
of 100 µM NanoqPCR2 primer (HPLC: 5′-GTGACTGGAGTTCAGACGTG-3′) were added 703 
to the KAPA SYBR FAST master mix. Samples were diluted 1 in 500 using nuclease-free 704 
water and reactions were set up in a 10 µl reaction volume (6 µl master mix, 2 µl 705 
sample/standard, 2 µl water) in a 384 well plate. Samples were run on the Roche 480 706 
Lightcycler and analysed using absolute quantification (2nd Derivative Maximum Method) 707 
with the high sensitivity algorithm. nM (fmol/µl) was determined as follows: mean of sample 708 
concentration x dilution factor (500) x 452/573/1000 (where 452 is the size of the standard in 709 
bp and 573 is the proxy for the average fragment length of the library in bp), and multiplied by 710 
an adjustment factor of 1.5. Samples were diluted to the desired fmol amount (typically 0.3 711 
fmol for a 15x run) in 25 µl using nuclease free water. 712 
 713 
Libraries were subsequently PCR amplified in a 50 µl reaction volume comprising of 25 µl 714 
sample, 25 µl NEBNext Ultra II Q5 Master Mix and UDI containing PCR primers (dried). The 715 
reaction was cycled as follows: step1: 98 ºC 30 seconds, step2: 98 ºC 10 seconds, step3: 65 ºC 716 
75 seconds, step4: return to step2 13 times, step5: 65 ºC for 5 min, step6: hold at 4 ºC. The 717 
number of PCR cycles is dependent upon the input: 0.1 fmol = 16 cycles, 0.3 fmol = 14 cycles, 718 
0.6 fmol = 13 cycles, 5 fmol = 10 cycles. 719 
 720 
The PCR product was subsequently cleaned up using two consecutive 0.7x AMPure XP clean-721 
ups. Each sample was quantified using the AccuClear Ultra High Sensitivity dsDNA 722 
Quantification kit (Biotium) and pooled. Libraries were sequenced on Illumina sequencing 723 
platforms e.g. NovaSeq using 150 paired-end reads.  724 
 725 
Library dilution and sequencing efficiency 726 
 727 
The efficiency and cost-effectiveness of duplex sequencing depends on optimising the 728 
duplicate rate to maximise the number of read bundles (defined as a family of PCR duplicates) 729 
with at least 2 duplicate reads from each original strand. Too high duplicate rates result in few 730 
read bundles of unnecessarily large sizes, whereas too low duplicate rates result in many read 731 
bundles with few having two or more read pairs from each strand. 732 
 733 
To maximise the efficiency of the protocol, we studied analytically and empirically the 734 
relationship between the number of DNA molecules in the library (library complexity) and the 735 
resulting duplicate rate as a function of the number of read pairs sequenced. We found that 736 
optimal duplicate rates and optimal efficiency can be ensured across a wide range of samples. 737 
If we assume negligible PCR biases, with copies from all original ligated DNA fragments 738 
represented in equimolar amounts in the amplified library, the bundle size distribution of 739 
observed reads can be modelled as a zero-truncated Poisson distribution. Let r (sequence ratio) 740 
be the ratio between the number of sequenced reads and the number of amplifiable DNA 741 
fragments in the original library. The mean read bundle size (m) can then be estimated as the 742 
mean of the zero-truncated Poisson distribution: 𝑚 = 	 $

%&'()
 . This parameter then enables a 743 

simple estimation of the duplicate rate of a library (d, defined as the fraction of reads that are 744 
duplicate copies, and identified as reads having the same barcodes and the same 5’ and 3’ 745 
coordinates):  𝑑 = 	+&%
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 747 
We can define the efficiency of a duplex sequencing library (E) as the ratio between the number 748 
of base pairs with duplex coverage (bundles with ≥ 2 reads from both strands) and the number 749 

of base pairs sequenced. This can be modelled as: 𝐸 =
/(123;	56)

6

+
 , where the numerator is the 750 

probability of a read bundle having at least two reads from both strands (i.e. usable bundles), 751 
based on the zero-truncated Poisson distribution (denoted as P), and the denominator is the 752 
sequence investment in each read bundle (i.e. the average read bundle size). Based on this 753 
equation, we can estimate numerically that the optimal duplicate rate is ~81% (Extended Data 754 
Fig 4a, Supplementary Code) and that duplicate rates between 65-90% would yield ≥80% of 755 
the maximum attainable efficiency. In terms of r, the optimum r is 5.1 read pairs sequenced 756 
per original DNA fragment (ropt), with values within 2.7-9.6 yielding ≥80% of the maximum 757 
efficiency. Knowing the concentration of a NanoSeq (or BotSeqS) library in fmol/µl (estimated 758 
using a qPCR reaction on an aliquot of the library), we can use ropt to calculate the volume of 759 
library that needs to be amplified to yield optimal duplicate rates (i.e. maximum duplex 760 
efficiency), as a function of the desired amount of raw sequencing: 𝑓𝑚𝑜𝑙;<= = 	

>
?	$@AB

. Here, N 761 

is the number of paired-end reads that will be sequenced and f is the number of DNA fragments 762 
per fmol of library (referring specifically to ligated and amplifiable fragments within the size 763 
selection range). Using an initial set of libraries, we compared a range of library inputs (fmol) 764 
to the estimated number of unique molecules in the library inferred from the sequencing data 765 
(using Piccard’s software). This analysis revealed that, for our choice of restriction enzyme 766 
and size selection conditions, f approximately equated to 108 fragments/fmol (Supplementary 767 
Code). 768 
 769 
Using the above equation, we can optimise the efficiency of NanoSeq independently of the 770 
input amount of DNA in a given sample. For example, ~0.3 fmols of library yield optimal 771 
duplicate rates when using 150 million 150 bp paired-end reads, which are the equivalent of 772 
~15x coverage in standard human whole-genome sequencing. ~0.6 fmol yield optimal 773 
efficiency when using 300 million reads (30x whole-genome equivalent). Note that, as 774 
predicted by the equations above, deviations ~2-fold from ropt still yield high efficiency. Using 775 
these equations we reliably obtained near-optimal duplicate rates from a wide diversity of 776 
samples (Extended Data Fig 4, Supplementary Table 2). Overall, we found that ~30x of 777 
standard sequencing output (~300x106 150bp PE reads) yielded approximately 3 Gb of high-778 
accuracy duplex coverage (a haploid genome equivalent) after application of all computational 779 
filters. 780 
 781 
Our choices of restriction enzyme and size selection restrict the coverage to ~30% of the human 782 
genome. Although the covered regions are sufficiently diverse to enable unbiased estimates of 783 
burden and signatures (Methods), applications that require full genome coverage, such as 784 
targeted sequencing, would require alternative fragmentation strategies. One option may be 785 
exonuclease blunting after sonication, instead of end repair. Nevertheless, for the study of 786 
burden and signatures, the use of restriction enzymes has two interesting advantages. First, this 787 
protocol is able to work with very low inputs of DNA. We estimated library yields for a range 788 
of input DNA amounts (Extended Data Fig 4b) and found that the minimum DNA input 789 
required to obtain 0.3 fmol for a 15x run (corresponding to about 1.5-3 Gb of effective duplex 790 
coverage) was ~1 ng of input DNA. This low-input requirement enables the application of 791 
NanoSeq to microscopic areas of tissue (as shown for colonic crypts and smooth muscle) and 792 
to rare cell populations using flow sorting. A second advantage is that, since coverage is 793 
concentrated in ~30% of the human genome, matched normal samples can be sequenced at 794 



lower cost by using undiluted NanoSeq libraries (≥3 fmol of library sequenced at 8x genome 795 
equivalent is enough to provide high matched normal coverage in the 30% of informative 796 
genome). 797 
 798 
Sequencing, preprocessing and filtering of BotSeqS and NanoSeq libraries 799 
 800 
Standard sequencing matched-normal libraries were aligned to the human reference genome 801 
(GRCh37, hs37d5 build) using BWA-MEM v0.7.5a-r405 41 with default parameters. 802 
Alignments were sorted by coordinate and read duplicates were marked using biobambam2 42 803 
v2.076 bamsormadup. Matched-normal reads were filtered if marked as duplicate, 804 
supplementary, QC fail, unmapped or secondary alignments. For some samples, as described 805 
above, instead of standard whole-genome sequencing, we used undiluted NanoSeq libraries 806 
(typically ~5 fmol) as matched normals, reducing the costs of sequencing matched normal 807 
samples. 808 
 809 
NanoSeq and BotSeqS libraries were sequenced using 150 bp paired-end reads, in HiSeq2500, 810 
HiSeqX and NovaSeq platforms.  811 
 812 
NanoSeq sequencing reads begin with adapter sequences: NNNT or NNNXT for BotSeqS 813 
libraries and NNNTCA or NNNXTCA for HpyCH4V libraries (HpyCH4V cuts at TGCA 814 
motifs). NNN is a random three nucleotide barcode, T is the adapter overhang and X is a 815 
‘spacer’ nucleotide designed to increase nucleotide diversity in the sequencing run. We used a 816 
custom Python script to process demultiplexed fastq files by extracting the three-nucleotide 817 
barcode, clipping remaining adapter bases (2 bases for BotSeqS and 4 bases for NanoSeq 818 
libraries) and appending barcode sequences to the fastq header. Barcodes with non-canonical 819 
bases (not A, C, G or T) were filtered out. Reads were aligned to hs37d5 using bwa mem 820 
(v0.7.5a-r405), using the -C option to append barcode sequences to alignments. Alignments 821 
were sorted by coordinate, duplicates were marked, and reads were annotated with read 822 
coordinate, mate coordinate and optical duplicate auxiliary tags using biobambam2 v2.076 823 
bamsormadup and bammarkduplicatesopt (optminpixeldif=2500). Reads were filtered when 824 
they were not marked as proper-pairs or were marked as optical duplicate, supplementary, QC 825 
fail, unmapped or secondary alignments. Each read was marked with an auxiliary tag 826 
comprised of reference name, sorted read and mate fragmentation breakpoints, forward and 827 
reverse read barcodes, and read strand. 828 
 829 
Consensus base quality scores 830 
 831 
Bayes’ theorem was used to compute the posterior probability of each base call B given the 832 
pileup of reads D from one strand of a template molecule at one genomic position. There are 833 
four possible genotypes i ∈ (A, C, G, T). The posterior probability is calculated using: 834 
 835 

𝑃(𝐵|𝐷) =
𝑃(𝐵)𝑃(𝐷|𝐵)

	∑ 𝑃(𝐵I)𝑃(𝐷|𝐵I)I
 836 

 837 
Under a uniform prior, where any of the four possible genotypes are equally likely, the equation 838 
can be simplified to: 839 
 840 

𝑃(𝐵|𝐷) =
𝑃(𝐷|𝐵)

∑ 𝑃(𝐷|𝐵I)I
 841 



 842 
To calculate P(D|B), information is integrated from reads in D, where bj ∈ (A, C, G, T) is the 843 
base of read j = 1...d: 844 
 845 

𝑃(𝐷|𝐵I) =J𝑃K𝑏M|𝐵IN
MOP

MO%

 846 

 847 
To calculate P(bj|Bi) we use the probability that base bj is an error, calculated from its Phred 848 
quality score qj: 849 
 850 

𝑃K𝑏M|𝐺IN = 1 − 𝑒M	𝑖𝑓	𝑏M = 𝐵I, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	𝑒M/3 851 
 852 
where 853 
 854 

𝑒M = 10
&]^
%_  855 

 856 
We note that the final probability P(D|B) is the probability that the base call is correct after 857 
sequencing and not the probability that the base represents the correct genotype of the original 858 
template strand, where independence between observations cannot be assumed. P(B|D) is 859 
rescaled into a Phred quality score Q using: 860 
 861 

𝑄 = −10	𝑙𝑜𝑔%_	𝑃(𝐵|𝐷)	 862 
 863 
In cases where the two read mates overlap, the consensus base quality is calculated using both 864 
forward and reverse reads. 865 
 866 
Base calling and filtering 867 
 868 
We developed a set of filters that successfully reduced false positive calls. An important feature 869 
of the bioinformatic pipeline is that we apply the same filters to call reference and mutated 870 
bases, which allows direct calculation of mutation rates. 871 
 872 
The calling method requires a matched normal to filter out germline SNPs. An additional mask 873 
to filter sites that are problematic is also advisable. This matched normal can be obtained by 874 
standard protocols or by sequencing undiluted NanoSeq libraries (≥3 fmol), as explained 875 
above.  876 
 877 
The filters applied are the following: 878 
 879 

1. We require that each read bundle (i.e. group of PCR duplicates) has at least two reads 880 
from each of the two original DNA strands. 881 

2. The consensus base quality score should be at least 60. This guarantees that there is 882 
strong support for a given base call from the duplicate reads that form a read bundle. 883 

3. The minimum difference between the primary alignment score (AS) and the secondary 884 
alignment score (XS) should be higher than 50, to keep only read pairs with 885 
unambiguous mapping. This filter is essential to remove mapping artefacts and a 886 



minimum AS-XS of 50 is applied also to the matched normal. For sites where the two 887 
mates overlap the minimum of the average AS-XS for forward and reverse mates is 888 
taken. 889 

4. The average number of mismatches in a group of reads (forward or reverse) should not 890 
be higher than 2. This filter is important to exclude reads with unreliable mappings. 891 
Where a consensus base call is different from the reference, mismatches from this call 892 
are not consider when calculating the number of mismatches, hence avoiding a bias in 893 
the filtering of mutation and reference calls. This filter is also applied to the matched 894 
normal. For sites where the two mates overlap the maximum of the average NM for 895 
forward and reverse mates was taken. 896 

5. No 5′ clips are allowed.  897 
6. No improper pairs are allowed in the read bundle to avoid unreliable mappings. 898 
7. Base calls in read ends, defined as those within 8 bp from the 5′ or 3′ ends, are discarded 899 

because these regions are more likely to be unreliably mapped, especially when there 900 
are nearby indels. 901 

8. Reads in the read bundle must contain no indels (except for indel calling). 902 
9. The matched normal must have ≥ 15x coverage at a given site to make the risk of 903 

undetected heterozygous SNPs negligible. For non-neat matched normals we also 904 
require that there are at least 5 reads from each strand.  905 

10. When a mutation is to be called, we require that the base is not seen with a frequency 906 
higher than 0.01 in the matched normal. This filter is not applied when counting 907 
reference calls, but we have assessed that our results are stable with different thresholds. 908 

11. Finally, a site should not overlap the common SNP and noisy sites masks (see Genome 909 
masks). Base calls failing this requirement are also counted to obtain a qualitative 910 
diagnostic of potential contamination of the input DNA with DNA from a different 911 
individual. In the presence of contamination, mutation rates can be considerably 912 
inflated if these masks are not applied.  913 

 914 
Indel calling 915 
 916 
To call indels we first identify read bundles with potential indels, defined as those containing 917 
sites with at least 90% of forward and reverse reads having an indel. Read bundles with AS-918 
XS ≤ 50, 5′ clipping or with coverage in the matched normal lower than 16 were filtered out. 919 
Indels close to read ends (10 bp) were not called. For each of the read bundles potentially 920 
containing an indel, the corresponding reads were extracted from the BAM file, removing PCR 921 
duplicate flags and creating a mini read bundle BAM. For each of the read bundle BAMs we 922 
run samtools mpileup to generate genotype likelihoods in BCF format, as follows: 923 

 924 
samtools mpileup --no-BAQ  -d 250 -m 2 -F 0.5 -r $chr:$start-$end --BCF --output-925 
tags DP,DV,DP4,SP -f $ref_genome -o genotype_likelihods.bcf read_bundle.bam 926 

 927 
where $chr, $start and $end are the mapping coordinates of the read bundle. Next, we call 928 
indels and normalise the output using bcftools as follows: 929 
 930 

bcftools index -f genotype_likelihods.bcf genotype_likelihods.indexed.bcf 931 
 932 
bcftools call --skip-variants snps --multiallelic-caller --variants-only  -O v 933 
genotype_likelihods.bcf -o bcftools.tmp.vcf 934 
 935 
bcftools norm -f $ref_genome bcftools.tmp.vcf > bcftools.tmp2.vcf 936 



 937 
For each of the sites involved in an indel we check whether it overlaps a site masked by our 938 
common SNP and noise masks (see Genome masks), in which case the indel is flagged as 939 
MASKED and not further analysed. 940 
 941 
The final step involves revisiting the matched normal to inspect if there are indels in a window 942 
of ± 5 bp around each candidate indel. For this step we use the bam2R function from R package 943 
deepSNV43. Reads with mapping quality lower than 10 or with any of the following flags are 944 
ignored: "read unmapped", "not primary alignment", "read fails platform/vendor quality 945 
checks", "read is PCR or optical duplicate", and "supplementary alignment". If the proportion 946 
of indels in the matched normal within the ± 5 bp window around the candidate somatic indel 947 
is higher that 1%, the indel is disregarded. 948 
 949 
Substitution imbalances 950 
 951 
To detect asymmetries in substitution patterns, variants were assigned to the forward or reverse 952 
strand according to their distance from fragmentation breakpoints. Variants closest to the 5′ of 953 
the forward read were assigned to the forward strand. Variants closest to the 5′ of the reverse 954 
read were assigned to the reverse strand and reverse complemented. Variants equidistant from 955 
both fragmentation breakpoints were not counted. 956 
 957 
Genome masks 958 
 959 
We applied two masks to filter duplex sequencing data. The first mask comprised common 960 
SNPs and spanned a total of 27,204,965 bp. Autosomal and X-chromosome common SNPs 961 
were defined as SNPs with allele frequency (AF) > 0.1% and a “PASS” flag in gnomAD. Y-962 
chromosome and mitochondrial SNPs were defined as SNPs with AF>0.1% from 1000 963 
Genomes Project (1KGP) data44,45. This SNP mask is important to reduce the impact of 964 
potential inter-individual DNA contamination (Supplementary Note 6).  965 
 966 
A second mask was developed to remove unreliable calls or sites prone to alignment artefacts. 967 
To build this noise mask we gathered together gnomAD indel calls with AF>1% and SNP calls 968 
with AF>0.1% that were not flagged as “PASS”. The noise mask also contains sites with 969 
elevated error-rates. To generate it, mismatch rates were calculated for every genomic position 970 
across a panel of 448 in-house standard whole-genome samples. Sites with mismatch rates 971 
(coverage-weighted mean VAF) > 0.01 were incorporated into the noise mask. Altogether, the 972 
second mask comprised 22,474,160 bp. 973 
 974 
Both masks are available at https://github.com/fa8sanger/NanoSeq_Paper_Code. 975 
 976 
Detection of human DNA contamination 977 
 978 
Contamination of duplex sequencing libraries with DNA from other individuals could 979 
artificially inflate mutation burden estimates, mainly because germline SNPs in the 980 
contaminant DNA may appear as somatic mutations.  981 
 982 
Even a small percentage of contamination can have a large impact on burden estimates. The 983 
burden associated to SNPs in the contaminant would be: 984 
 985 



𝐵𝑢𝑟𝑑𝑒𝑛d>/ = 	
𝑁d>/ ∗ 	𝑓g;h=

𝐺  986 
 987 
being NSNP the number of SNPs in the contaminant not shared with the sample at hand, fcont the 988 
contamination fraction and G the size of the diploid human genome. Accordingly, 1% 989 
contamination would result in a BurdenSNP of ~5x10-6 if there are 3 million non-shared SNPs. 990 
This burden is much higher than the usually observed somatic mutation rates.  991 
 992 
First, we analysed how many SNPs across 2,504 individuals from the 1000 Genomes Project 993 
would remain after filtering with our common SNPs mask (n=26,111,286; Methods). Our 994 
results show that on average 55,685 SNPs would remain unfiltered for a given contaminant 995 
individual. Hence, for 1% contamination, filtering of common SNPs would reduce BurdenSNP 996 
from 5x10-6 to 9x10-8 SNPs/bp. We note that the number of unfiltered SNPs varies largely 997 
across continental groups, with averages of 25,666 and 82,765 per individual in Europe and 998 
South Asia, respectively (Supplementary Note 6). 999 
 1000 
To estimate the extent of contamination we rely on VerifyBamID2 46, which we evaluated 1001 
simulating contamination fractions below 1%, for both bams sequenced with standard methods 1002 
and with the NanoSeq protocol (Extended Dat Fig 4e,f; Supplementary Note 6). To obtain 1003 
more stable estimates we increased the number of markers from 100K to 500K, by randomly 1004 
choosing additional SNPs with MAF > 0.05 from the 1000 Genomes Project 20130502 release. 1005 
 1006 
In silico decontamination 1007 
 1008 
We detected that some libraries were contaminated with DNA from other analysed samples. In 1009 
cases where the contaminant can be identified, it is possible to remove the mutation calls 1010 
corresponding to contaminant SNPs by using the corresponding BAM files. This simple 1011 
approach proved useful to clean contaminated substitution calls and resulting mutation burden 1012 
corrections were in line with VerifyBamId contamination estimates. That is, mutation burdens 1013 
of non-contaminated samples remained unaltered after in silico decontamination, whereas the 1014 
mutation burdens of contaminated samples decreased proportionally to the estimated 1015 
contamination level. 1016 
 1017 
This approach was applied to two plates where some samples showed signs of contamination. 1018 
Mutation calls occurring at SNP sites in any of the other samples in the plate were removed. 1019 
To accomplish this we required that each mutation was supported by fewer than 10 base calls 1020 
across the matched normals of samples in the plate and that the maximum support from any 1021 
one matched normal sample was lower than 3 reads. These values were found empirically for 1022 
the data at hand and should be adjusted when larger panels of matched normals or very high 1023 
coverage samples are analysed. 1024 
 1025 
Correction of mutation burden and trinucleotide substitution profiles 1026 
 1027 
Each library preparation method has its own fragmentation and amplification biases and 1028 
captures a different subset of the total genome. For instance, amplification biases during library 1029 
preparation often lead to lower coverage in GC-rich genomic regions47. Since substitution rates 1030 
show strong trinucleotide context dependence, taking into consideration differences in 1031 
sequence composition can be important when comparing mutation burdens and substitution 1032 
profiles between sequencing protocols. Biases can be particularly noticeable with NanoSeq 1033 



restriction enzyme libraries, where trinucleotides overlapping the restriction enzyme site 1034 
(TGCA in the case of HpyCH4V) are depleted when read ends are filtered. There are 32 1035 
different trinucleotides where the central nucleotide is a pyrimidine. Let t denote the count of 1036 
a given trinucleotide of type i = 1...32. The frequency of each trinucleotide is calculated 1037 
separately for the genome 𝑓I

iand for the NanoSeq experiment (weighted by the coverage at 1038 
each site) 𝑓I'  where: 1039 
 1040 

𝑓I =
𝑡I

∑ 𝑡Ij3
IO%

 1041 

 1042 
The ratio of genomic to experimental frequencies for a given trinucleotide is: 1043 
 1044 

𝑟I =
𝑓I
i

𝑓I'
 1045 

 1046 
There are six classes of substitution where the mutated base is a pyrimidine (C>A, C>G, C>T, 1047 
T>A, T>C, T>G), and for each trinucleotide context there are three possible substitutions. Each 1048 
trinucleotide-substitution count (e.g. ATG>C, where T>C) is corrected by the ratio of genomic 1049 
to experimental frequencies for the corresponding trinucleotide (ATG). For instance,  let sATG>C 1050 
denote the count of substitution T>C in trinucleotide context ATG, the substitution count is 1051 
corrected as follows: 1052 
 1053 

𝑠klmnop = 𝑠klmno𝑟klm  1054 
 1055 
This correction is applied to each of the 96 possible trinucleotide substitutions (h). The 1056 
corrected substitution counts provide a substitution profile projected onto the human genome, 1057 
and are also used to calculate the corrected mutation burden: 1058 
 1059 

𝛽p =
∑ 𝑠Iprs
tO%
∑ 𝑡Ij3
IO%

 1060 

 1061 
 1062 
Correction of NanoSeq mutation burden in cord blood by accounting for missed early 1063 
embryonic mutations 1064 
 1065 
Given their low burden, a substantial fraction of the mutation burden in cord blood HSC/MPP 1066 
colonies is attributable to early embryonic mutations shared by multiple colonies. In the 1067 
NanoSeq bioinformatic protocol, mutations with a VAF higher than 0.01 in the matched normal 1068 
are considered germline SNPs and are filtered out from further analysis. Not accounting for the 1069 
loss of early embryonic mutations can have a measurable impact on burden estimates in cord 1070 
blood. Taking advantage of the availability of multiple HSC/MPP colonies per donor, we could 1071 
quantify the loss of embryonic variants and correct the burden estimate accordingly. For each 1072 
of the 50 blood colonies we estimated the global VAF of each mutation in the remaining 49 1073 
colonies. This was done for the two neonatal donors. We determined that 24% of all the 1074 
mutations called had a global VAF higher than 0.01. Since a similar fraction of mutations 1075 
would be missed by NanoSeq, we multiplied the NanoSeq estimated burden by a factor of 1.32, 1076 
i.e. 1/(1-0.24). A similar correction is not possible for the sperm burden estimates, as we lack 1077 



single-cell level information for sperm, but a modest underestimation of the mutation burden 1078 
due to missed embryonic variants is plausible. 1079 
 1080 
Mutation calling in clonal samples sequenced with standard protocols 1081 
 1082 
Mutation calls for HSPC colonies from donor PD43976_59yo were obtained from Lee-Six et 1083 
al. 201821. Mutation calls from standard whole-genome sequencing for the colonic crypts 1084 
processed in Lee-Six et al. 20196 were obtained from Olaffson et al.39. Indel mutation calls for 1085 
a bladder tumour sample (Extended Data Fig 5) were obtained from Lawson et al.34. Indel 1086 
calls for POLE and POLD1 mutants were obtained from Robinson et al.48 (Extended Data Fig 1087 
5).  1088 
 1089 
For the HSC/MPP blood colonies sequenced in the present study, in-house pipelines were used 1090 
to run CaVEMan and Pindel against an unmatched synthetic normal genome 49,50. Another 1091 
bespoke algorithm (cgpVAF) was then used to generate matrices of variant and normal reads 1092 
at all sites that had a detected variant in any sample from a given individual. Up-to-date 1093 
versions of these algorithms are available from the Sanger Institute’s Cancer IT GitHub 1094 
repository (https://github.com/cancerit). 1095 
 1096 
Filtering strategies detailed below were then used to remove germline variants, technical 1097 
artefacts and mutations that had arisen during culture in vitro. 1098 
 1099 

1. A custom filter was used to remove artefacts associated with the ‘low input’ library 1100 
preparation used, including those due to cruciform DNA structures.  1101 

2. A binomial filtering strategy was used to remove variants with aggregated count 1102 
distributions consistent with germline single nucleotide polymorphisms. 1103 

3. A beta-binomial filter was used to remove low-frequency artefacts, i.e. variants present 1104 
at low frequencies across samples in a way not consistent with the sample-to-sample 1105 
variation expected for acquired somatic mutations. 1106 

4. Sites with a mean depth below 8 and over 40 were removed. 1107 
5. Thresholds were used to filter out in vitro variants from the remaining mutations using 1108 

a bespoke script. These were set to require a minimum variant read count of 2 or more 1109 
and a variant allele fraction of 0.2 for autosomes and 0.4 for XY chromosomes. 1110 

6. The final filtering step involved building a phylogenetic tree from the HSC genomes 1111 
derived from each individual. Mutations that did not fit the optimal tree structure were 1112 
also discarded as likely artefacts.  1113 

 1114 
Tree building was performed using MPBoot, which is a maximum parsimony tree 1115 
approximation method51. Variants were genotyped as ‘present’ in a sample if 2 or more variant 1116 
reads supported the variant. Variants were genotyped as ‘absent’ in a sample if 0 variant reads 1117 
were present at a given site and depth at that site was 6 or more. Sites that did not fall into 1118 
either of the above categories were marked as ‘unknown’. Mutations were assigned back to the 1119 
tree using an R package (tree_mut), which uses a maximum likelihood approach and the 1120 
original count data to assign each mutation to a branch in the MPBoot generated tree. 1121 
 1122 
Estimation of mutation burden in standard sequencing data 1123 
 1124 
Using clonal or nearly-clonal samples, we were able to compare NanoSeq to mutation burden 1125 
estimates from standard whole-genome sequencing. This includes libraries prepared by laser 1126 
microdissection and low-input enzymatic fragmentation38 or sonication, followed by standard 1127 



Illumina sequencing and mutation calling using CaVEMan49. The mutation calls described in 1128 
the previous section were further processed to make burden estimates comparable across 1129 
protocols.  1130 
 1131 
To compare NanoSeq burdens to those from standard libraries, we restricted the analysis to 1132 
regions of the genome covered by at least 20 reads in the standard libraries, to minimise the 1133 
impact of low coverage on mutation calling sensitivity. We also excluded the fraction of the 1134 
genome flagged as non-analysed by CaVEMan. Given the thorough filtering strategies applied 1135 
for NanoSeq, we further restricted the analysed genome to include only sites callable in 1136 
NanoSeq. Finally, given that trinucleotide frequencies in the callable genome of standard 1137 
libraries differ from the background genomic frequencies, burden estimates were corrected 1138 
accordingly. The difference in trinucleotide frequencies was mainly due to extensive filtering 1139 
of common SNPs (frequent at CpG) and the partial depletion of trinucleotides overlapping the 1140 
restriction site (TGCA). Remarkably, we found that estimates of mutation burden increased by 1141 
~20% in standard sequencing data when applying these corrections, largely due to reducing the 1142 
impact of low sensitivity in certain genomic regions, either due to low coverage or mapping 1143 
quality problems (Extended Data Fig 5a,b). More details are provided in Supplementary 1144 
Note 7.  1145 
  1146 
Bootstrapped cosine similarity 1147 
 1148 
Cosine similarities are frequently used to compare mutational profiles, although they do not 1149 
take into account the noise introduced by the number of mutations available. Small sample 1150 
sizes can cause large cosine similarity deviations from their original spectrum. If a query profile 1151 
(e.g. NanoSeq result) with n mutations is to be compared to a reference profile, we can estimate 1152 
the impact of small sample sizes by bootstrapping. From the reference profile we obtain 1,000 1153 
random samples with size n, and then compare each of these samples back to the reference 1154 
profile. We can then calculate the cosine similarities between the query and the reference 1155 
profiles and compare it to the 95% interval of cosine similarities observed in the bootstrapped 1156 
samples. 1157 
 1158 
Mutational signature analysis 1159 
 1160 
Mutational signatures of single-base substitutions in their trinucleotide sequence context were 1161 
inferred from sets of somatic mutation counts using the sigfit (v2.0) package for R 52. De novo 1162 
signature extraction was performed for a range of numbers of signatures (N = 2, ..., 8), using 1163 
counts of mutations grouped per tissue type (cord blood, adult blood, granulocytes, colonic 1164 
crypts, smooth muscle or neurons), and sequencing method (NanoSeq or standard sequencing). 1165 
To account for differences in sequence composition across samples, NanoSeq mutation counts 1166 
were corrected as described in a previous section (see Correction of mutation burden and 1167 
trinucleotide substitution profiles). To avoid an excessive influence of tissue types more 1168 
highly represented in our dataset, mutation counts were randomly downsampled to a maximum 1169 
of 2,000 mutations from each tissue type. Samples with evidence of sporadic mutational 1170 
processes, such as APOBEC or colibactin were removed from the dataset. This excluded 1171 
urothelium, a bladder tumour sample and colonic crypts from one donor affected by colibactin 1172 
(PD37449, n = 3). The best-supported number of signatures on the basis of overall goodness-1173 
of-fit, as reported by the ‘extract_signatures’ function in sigfit, was N = 3. The three extracted 1174 
signatures (Fig. 3e) were subsequently fitted to the counts of mutations per sample (using the 1175 
‘fit_signatures’ function in sigfit) to infer the exposure of each signature in each sample. 1176 
 1177 



Mutational signature analysis was also applied to publicly-available single-nuclei mutation 1178 
data from neurons13. Three signatures closely matching those shown in the original publication 1179 
were extracted using the extract_signatures function in sigfit, with parameters nsignatures=3, 1180 
seed=1469 and iter=10000. 1181 
 1182 
Linear regression modelling  1183 
 1184 
Linear regressions were used to estimate the numbers of mutations accumulated per year, to 1185 
test whether mutations associated with a given signature increased with age, or to test the 1186 
effects of disease status or organ of origin on mutation burdens. 1187 
 1188 
In analyses where only one sample per donor was available, we used multiple linear regression. 1189 
For Fig. 3o,p, which show the mutation rate per year across tissues, we used linear regressions 1190 
without an intercept, as all tissues had intercepts close to and not-significantly different from 1191 
zero. 1192 
 1193 
For those cases with multiple samples per donor, including smooth muscle, colonic crypts, 1194 
granulocytes or sperm, we used linear mixed-effects models, using donor as a random effect 1195 
(random slopes). For example, using formulas such as: mutations ~ age + (age - 1|donor). This 1196 
enabled us to account for the relatedness of multiple samples per donor.  1197 
 1198 
To test for the significance of a given fixed effect (such as organ of origin), we used Likelihood 1199 
Ratio Tests using the anova R function, comparing the null model without the fixed effect and 1200 
the alternative model with the fixed effect. Confidence intervals for linear mixed-effects 1201 
models were calculated using parametric bootstraping and 1,000 replicates, as implemented in 1202 
the 'predict' method in bootpredictlme4 R package.  1203 
 1204 
All linear regression and statistical tests were conducted in R using packages: lm, lmer, afex, 1205 
bootpredictlme4, and lmerTest.  1206 
 1207 
 1208 
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Data Availability  1276 
 1277 
Information on data availability for all samples is available in Supplementary Table 1. 1278 
NanoSeq sequencing data has been deposited in EGA under accession number 1279 
EGAD00001006459. Standard sequencing data has been deposited in EGA under accession 1280 
number [pending submission]. For samples publicly available, references to the original 1281 
sources are provided in Supplementary Table 1. Substitution and indel calls for samples 1282 
sequenced with NanoSeq are available in Supplementary Tables 4 and 5. 1283 
 1284 
Code Availability  1285 
 1286 
The bioinformatic pipeline to process NanoSeq sequencing data includes all steps from 1287 
processing sequencing data, mapping, calling mutations and calculating corrected burden 1288 
estimates and substitution profiles. This code is available from 1289 
https://github.com/cancerit/NanoSeq. Pipelines to call indels, do signature extraction and 1290 
signature fitting with SigFit, simulate efficiency of the NanoSeq protocol, and to calculate 1291 
mutation burden in specific chromosomic regions, are available from 1292 
https://github.com/fa8sanger/NanoSeq_Paper_Code. 1293 
 1294 

Acknowledgements 1295 
 1296 
We thank Liz Anderson, Kirsty Roberts, Calli Latimer, Quan Lin, the CGP-lab, Rocio Vicario, 1297 
Frederic Geissmann, Nicos Angelopoulos, German Tischler, Tristram Bellerby, Maria Abascal 1298 
and Krishnaa Chatterjee for assistance in the development of NanoSeq or with this manuscript. 1299 
 1300 
We are grateful to the live donors and the families of the deceased transplant organ donors. 1301 
This research was supported by the Cambridge NIHR BRC Cell Phenotyping Hub. We 1302 
gratefully acknowledge the participation of all NIHR BioResource Centre 1303 
Cambridge volunteers, and thank the NIHR BioResource Centre Cambridge and staff for their 1304 
contribution. We thank the National Institute for Health Research and NHS Blood and 1305 
Transplant. The views expressed are those of the author(s) and not necessarily those of the 1306 
NHS, the NIHR or the Department of Health & Social Care. We gratefully acknowledge the 1307 
Cambridge Blood and Stem Cell Biobank for sample donation and support of this work. We 1308 
are grateful to the Cambridge Brain Bank for sample donation. 1309 
 1310 
Funding: I.M. is funded by Cancer Research UK (C57387/A21777) and the Wellcome Trust. 1311 
P.J.C. is a Wellcome Trust Senior Clinical Fellow. R.R. is a recipient of a CRUK Career 1312 
Development fellowship (C66259/A27114). E.L. is supported by a Wellcome/Royal Society 1313 
Sir Henry Dale Fellowship (Grant number 107630/Z/15/Z), the European Hematology 1314 
Association, BBSRC and by core funding from Wellcome (Grant number 203151/Z/16/Z) and 1315 
MRC to the Wellcome-MRC Cambridge Stem Cell Institute. D.G.K. is supported by a 1316 
Bloodwise Bennett Fellowship (15008), the Bill and Melinda Gates Foundation (INV-002189) 1317 
and an ERC Starting Grant (ERC-2016-STG–715371).  1318 
 1319 
Author Contributions  1320 
 1321 
R.J.O., F.A., and I.M. conceived the project. I.M., P.J.C., R.R., and M.R.S. supervised the 1322 
project. F.A., R.J.O., E.M., and I.M. wrote the manuscript; all authors reviewed and edited the 1323 
manuscript. R.J.O. led the development of the protocol with help from F.A., A.R.J.L., P.E., 1324 



S.V.L. and I.M. R.J.O. and F.A. developed the bioinformatics pipeline with help from R.E.A., 1325 
S.V.L., and D.J. F.A. led the analysis of the data with help from A.R.J.L., I.M., A.B-O., Y.W., 1326 
L.M.R.H., E.J.K., T.H.H.C, M.S.C, and M.G. E.M. performed the HSC/MPP experiments. 1327 
L.M.R.H. and A.J.C.R. performed the cell sorting of neuronal nuclei. A.R.J.L. and A.C. 1328 
performed laser microdissection. E.M., N.F.O., H.E.M., M.D., D.G.K., E.L., K.T.A.M., K.S.P., 1329 
K.A., R.R., H.L.S. and S.O collected and processed samples. E.M., E.L., M.G. and D.G.K 1330 
assisted on the interpretation of blood data. 1331 
 1332 
Competing Interests Declaration 1333 
 1334 
A patent application on NanoSeq is being filed including several authors. 1335 
  1336 



 1337 
 1338 
Extended Data Figure 1 | Substitution imbalances and impact of A-tailing. a-b, Imbalances 1339 
in the distribution of the six complementary substitutions (e.g. G>T vs C>A) across read 1340 
positions in BotSeqS and NanoSeq, respectively. c, Origin of G>T over C>A mutation call 1341 
imbalances in standard sequencing 22. d, Origin of imbalances in Duplex Sequencing / BotSeqS 1342 
as a result of end repair during library preparation. e, Single-strand consensus calls for 1343 
pyrimidine (top) and purine (bottom) substitutions for the standard BotSeqS (left panel) 1344 
protocol and for NanoSeq with standard and modified A-tailing protocols (middle and right 1345 
panels, respectively). For example, C>T changes are shown on the top, while the 1346 
complementary G>A changes are shown on bottom. By using ddBTPs C>A, G>A and T>A 1347 
errors are reduced, lowering the risk of false positive double-strand consensus calls. 1348 
  1349 



 1350 
Extended Data Figure 2 | BotSeqS errors as a function of read end trimming. a, BotSeqS 1351 
estimated burden for the granulocyte sample shown in Fig 1b-d applying different trimmings 1352 
to the 5' ends of reads. Even with extensive trimming we predict at least ~600 artefactual 1353 
mutation calls per diploid genome. b, Substitution imbalances are observed deep into the reads 1354 
and cannot be avoided with read trimming. Imbalances vary from experiment to experiment, 1355 
as a consequence of DNA damage on the DNA source or during library preparation 1356 
(Supplementary Note 1). c, Substitution profiles including the reference profile from single-1357 
cell derived blood colonies and three BotSeqS profiles after trimming of 20, 40 and 60 bp from 1358 
the 5' end of reads (in addition to 15 bp trimming of the 3' end). The text in the figure indicates 1359 
the observed and expected cosine similarities (Methods) cosine similarity to the reference 1360 
profile. C>A and C>G errors in BotSeqS remain after extensive trimming. 1361 
 1362 
  1363 



 1364 
 1365 

Extended Data Figure 3 | Alternative protocols for library preparation. a, Library 1366 
preparation yields for three different kind of protocols run in triplicates (green dots show 1367 
replicates; mean values as black lines). For Mung bean, different concentrations of the enzyme 1368 
(U) were tested. b, Estimated number of mutations per cord blood cell. Poisson 95% confidence 1369 
intervals are shown as lines. The red dotted line shows the number of mutations per cord blood 1370 
cell estimated with the restriction enzyme NanoSeq protocol, with Poisson 95% confidence 1371 
intervals shown as a red shade. In contrast to Fig 1g, we did not apply the correction for missing 1372 
embryonic mutations because here we are comparing three protocols that are equally affected 1373 
by this limitation. c, Substitution profiles for the standard end repair protocol (BotSeqS) and 1374 
for Mung Bean, showing the cosine similarities with the reference profile (Fig 1h). The profile 1375 
for the protocol without any end repair is not shown because the very low library preparation 1376 
yields limited the detection of mutations. 1377 
 1378 
 1379 



 1380 
 1381 
Extended Data Figure 4 | Optimization of duplicate rates, DNA input requirements and 1382 
estimation of human contamination. a, Relationship between sequencing yield, library 1383 
complexity, duplicate rates and efficiency, based on a truncated Poisson model (Methods). 1384 
From left to right: duplicate rate as a function of the sequencing ratio (sequencing reads / DNA 1385 
fragments in the library); efficiency (measured as bases called with duplex coverage/bases 1386 
sequenced) as a function of the duplicate rate; and efficiency as a function of sequencing ratio. 1387 
b, Library yield as fmol per 25 µl as a function of the amount of input DNA in ng. c, Empirical 1388 
relationship between the estimated fmol in library (measured by qPCR) and the number of 1389 
unique molecules in the library estimated with Picard tools (Lander-Waterman equation) for 1390 
our choice of restriction enzyme and fragment size selection (250 - 500 bp). d, Empirical 1391 
relationship between duplicate rates and efficiency of the method, measured as duplex bases 1392 
called / number of bases sequenced (i.e. the number of paired-end reads multiplied by 300). 1393 



The maximum efficiency (~0.04) is lower than the maximum analytical expectation (0.12; 1394 
middle panel in (a) because of the trimming of read ends (barcodes, restriction sites and 8 bps 1395 
from each end) and the strict filters that we apply to consider a site callable. e, VerifyBamId 1396 
contamination estimates for different amounts of simulated contamination from individuals of 1397 
different ancestry. f, Contamination simulation using two NanoSeq samples to contaminate 1398 
each other.  1399 



 1400 
 1401 
Extended Data Figure 5 | Correction of standard (CaVEMan-based) mutation burden 1402 
estimates and validation of NanoSeq indel. a, Comparison of the mutation burden estimates 1403 
in regions of the genome with at least 20x coverage (c) to the trinucleotide-context-corrected 1404 
mutation burdens in the subset of c covered by NanoSeq and passing all NanoSeq filters. b, 1405 
Ratio between the rates shown in panel (a), showing that the corrected burden is approximately 1406 
20% higher than the uncorrected burden. c, Comparison of indel rates between cord blood 1407 



colonies (indels were called with the Pindel algorithm) and granulocytes from neonates 1408 
(NanoSeq pipeline). d, The top two panels show the high similarity between the NanoSeq and 1409 
Pindel indel profiles for a bladder tumour; the bottom two profiles show the indel spectra in 1410 
blood from POLE and a POLD1 germline mutation carriers, very similar to the reported 1411 
profiles in Robinson et al48.  1412 



 1413 
 1414 
Extended Data Figure 6 | Haematopoietic stem and progenitor cells and colon histology. 1415 
a, Gating strategy for the isolation of HSC/MPPs from a representative bone marrow sample. 1416 
Text above plots indicates the population depicted. Text inside the plots indicates the name of 1417 
the gates shown in pink. The CD34+/CD38- population is defined as the bottom 20% CD38- 1418 
as shown. For all initial samples (BM/PB/CB) the index sorted population is the "HSC pool" 1419 
gate. Cell population abundance differed between samples but typically viable cells were 60-1420 
90% of total cells and singlets were 98-99% of viable cells. Live cells were 90-99% of viable 1421 
cells and myeloid cells were 15-50% of live cells. CD34+ cells were typically 1-15% of 1422 
myeloid cells. b and c, Colon histology sections showing microbiopsied areas of colonic 1423 
epithelium and smooth muscle for donors PD34200 and PD37449, respectively. 1424 
  1425 



 1426 
 1427 
Extended Data Figure 7 | Neuron nuclei sorting, comparison to single-cell data and 1428 
accumulation of mutations with age. a, Gating strategy for the isolation of neuronal nuclei 1429 
from frontal cortex. Nuclei were sorted by FACS using an Influx cell sorter (BD Biosciences) 1430 
with a 100-µm nozzle. For each sample an unstained control was used to help determine the 1431 
NeuN+ population. The text above each column indicates the population depicted and the text 1432 
inside the plots indicates the population of the gates highlighted in black. Sorting results varied 1433 
among samples, with 1-60% passing the DAPI gate and, of these, 2-53% passing a conservative 1434 



NeuN+ gate. b, Substitution profiles for all mutations detected in neurons with SNP-phased 1435 
error-corrected single-cell sequencing data in Lodato et al.13 (top) and with NanoSeq (middle). 1436 
In the bottom panel, a signature specific of single-cell sequencing data is shown (scF signature 1437 
from Petjak et al.15). c, Mutational signatures extracted from Lodato et al.13, showing their 1438 
relative contributions in the published dataset. These signatures were obtained using SigFit 1439 
(Methods) on publicly-available mutation calls and are referred to as LDA, LDB and LDC. 1440 
Note the high similarity between the NanoSeq full spectrum for neurons and LDA (cosine 1441 
similarity 0.96), and between scF and LDB (cosine similarity 0.97). d, Predicted contribution 1442 
of LDA, LDB and LDC to each of the neurons sequenced in Lodato et al.13. e, Accumulation 1443 
of mutations attributed to NanoSeq signatures A, B, and C with age in healthy donors and in 1444 
Alzheimer's disease donors. f, Accumulation of mutations attributed to NanoSeq signatures A, 1445 
B, and C in smooth muscle from bladder and colon.  1446 



 1447 
 1448 
Extended Data Figure 8 | Normalised substitution spectra across different genomic 1449 
regions. a, Substitution spectra for neurons, granulocytes, smooth muscle and colonic crypts 1450 
in chromatin states associated to transcription (states E4 and E5 in ENCODE), and inactive 1451 
DNA (E9 and E15). Chromatin states were obtained from ENCODE53, using the following 1452 
epigenomes: E073 (frontal cortex), E030 (granulocytes), E076 (smooth muscle), and E075 1453 
(colonic mucosa). To enable direct comparison of spectra across genomic regions with 1454 
different trinucleotide frequencies, the profiles have been normalised to the genomic 1455 
trinucleotide frequencies (Methods). b, Transcriptional strand asymmetries in neurons, 1456 
granulocytes, smooth muscle and colonic crypts. c, Transcriptional strand asymmetries in 1457 
neurons in quartiles of gene expression. 1458 
 1459 



  1460 
 1461 
Extended Data Figure 9 | Additional substitution and indel spectra. a, NanoSeq mutational 1462 
spectrum for neurons corrected for trinucleotide frequency in the callable genome. Unlike the 1463 
usual representation, which shows unnormalized rates, this representation shows mutation rates 1464 
per available trinucleotide. b. LDA signature from Lodato et al.13 normalised for trinucleotide 1465 
frequency in the genome also reveals high C>T rates at CpG dinucleotides. This observation 1466 
from single-cell data suggests that the high C>T rates at CpG sites in NanoSeq neuron data (a) 1467 
is not caused by contamination of NeuN+ pools with glia or other cells. c, Indel profiles of 1468 
granulocytes (top) and of colonic crypts without the colibactin signature (bottom). d, Indel 1469 
profiles for the 250 most highly expressed genes in PCAWG liver hepatocellular carcinoma 1470 
data31. 1471 
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 1473 
 1474 
Extended Data Figure 10 | Smooth muscle. a, Histology of bladder smooth muscle showing 1475 
two sections from donor PD40842. b, Number of mutations detected with CaVEMan in 1476 
different smooth muscle sections processed with our standard microdissection sequencing 1477 
protocol38. The orange dots show the expected mutation burdens (with 95% confidence 1478 
intervals) for these sections based on the donor age and the regression model shown in Fig. 3j. 1479 
c, Distribution of variant allele frequencies (VAFs) for each of the smooth muscle sections 1480 
using standard whole-genome sequencing. Boxplot notches show the 95% confidence interval 1481 
for the median. 1482 
  1483 



Supplementary Notes 1484 
 1485 
Supplementary Note 1 - Single strand consensus calls 1486 
 1487 
In duplex sequencing protocols, consensus calls from only one of the two strands (single strand 1488 
consensus calls) can be caused by amplification artefacts or by DNA damage54, including 1489 
damage originated in vivo or in vitro, during DNA extraction, storage or library preparation. 1490 
Given the value of measuring in-vivo DNA damage, we explored whether information on DNA 1491 
damage could be extracted from the abundant single strand consensus (SSC) calls. 1492 
 1493 
In our data, SSC calls are dominated by G>T, G>C and C>T substitutions, with almost 1494 
complete asymmetries between the rates of these changes and the complementary substitutions. 1495 
To explore the extent of biological and technical variation in SSC calls, we analysed data from 1496 
three different samples (cord blood, sperm and adult granulocytes) with multiple replicate 1497 
NanoSeq libraries, some of which were made and sequenced at different times. This analysis 1498 
revealed large variation in SSC substitution rates and spectra between technical replicates 1499 
(Supplementary figure 1a). For example, the 6th granulocyte replicate library (shown in 1500 
Supplementary figure 1a as the rightmost red bar) was made and sequenced on a different 1501 
day to the other five, and has a markedly different SSC pattern. The 96-bar substitution spectra 1502 
for two cord blood libraries from the same sample further show how the pattern of SSC calls 1503 
varies between libraries from the same sample (Supplementary figure 1b). 1504 
 1505 
Overall, the large variation in SSC profiles between replicates suggests that the vast majority 1506 
of SSC calls in our data represent technical artefacts, likely resulting from DNA damage 1507 
introduced during library preparation, rather than pre-existing DNA damage in the input DNA. 1508 



 1509 
Supplementary Figure 1. a, Rate of single strand consensus calls in replicates of cord blood, 1510 
adult granulocytes and sperm samples. b, Substitution profiles separated for purines and 1511 
pyrimidine substitutions for two cord blood libraries from the same donor. 1512 
 1513 
 1514 
Supplementary Note 2 - Restriction enzyme choice 1515 
 1516 
We identified 14 commercially-available restriction endonucleases with 4 base-pair 1517 
recognition sites that generated 5′ overhangs or blunt ends and were not impaired by 1518 
overlapping CpG methylation. We computationally digested the human genome (hs37d5) with 1519 
each restriction enzyme and, assuming size selection of fragments between 250 and 500 base 1520 
pairs and 150 bp paired-end reads, calculated the coverage for the whole genome, the coding 1521 
genome and the mitochondrial genome (Supplementary Table 3). The candidates with the 1522 
highest coverage included AluI, CviAII, FatI, and HpyCH4V, of which only AluI and 1523 
HpyCH4V leave blunt ends. All four enzymes have a recognition site with 50% GC content. 1524 
We opted for HpyCH4V given its higher whole-genome and coding coverages, although its 1525 
mitochondrial coverage was lower than that of AluI. 1526 
 1527 
Supplementary Note 3 – Alternative fragmentation: sonication followed by mung bean 1528 
nuclease blunting 1529 
 1530 
Restriction enzymes have several useful features in the context of NanoSeq: (1) they provide 1531 
clean genome fragmentation with sufficiently representative coverage of the genome to enable 1532 



accurate estimation of mutation burden and signatures, (2) they enable library preparation from 1533 
low inputs of DNA, including laser-microdissection of a few hundred cells from histology 1534 
sections (a minimum of 1 ng of input DNA is required for the sample coverages used in this 1535 
study; Extended Data Fig 4), and (3) their partial coverage of the genome reduces the cost of 1536 
sequencing a matched normal sample (to remove germline mutations) by ~70%, by sequencing 1537 
an undiluted NanoSeq library (Methods). 1538 
 1539 
However, incomplete genome representation can be undesirable for other applications, such as 1540 
targeted NanoSeq. We reasoned that sonication followed by exonuclease digestion of 1541 
overhangs, could provide an alternative fragmentation strategy without the errors associated 1542 
with filling 5’ ends in standard end repair. To compare several protocols, we used cord blood 1543 
granulocytes from donor S1 in Fig. 1g (EM_A1_XN3325). Using 50 ng of sonicated DNA per 1544 
condition, we generated libraries in triplicate using: (1) standard end repair (BotSeqS), (2) no 1545 
end-repair (to quantify the frequency of blunt ended fragments generated directly by 1546 
sonication), and (3) three different concentrations of Mung Bean nuclease (0.025U, 0.5U and 1547 
1U per reaction, NEB M0250). 1548 
 1549 
Library yields varied modestly among replicates but greatly among conditions (Extended Data 1550 
Fig 3a). Sonication followed by standard end repair produced library yields around 20-30% of 1551 
those typically obtained with HpyCH4V. Sonication followed by Mung Bean nuclease 1552 
produced comparable yields across the range of exonuclease concentrations tested and around 1553 
2-10% of those obtained with the HpyCH4V restriction enzyme protocol. Sonication followed 1554 
by A-tailing and adapter ligation, without end repair or exonuclease blunting, produced 1555 
libraries with yields ~0.3% of those using restriction enzymes, yielding much less than the 1556 
required 0.3 fmol used for sequencing, and resulting in low callable coverages. 1557 
 1558 
We then compared the mutation burden and mutational spectra across protocols (Extended 1559 
Data Fig 3b). As expected, sonication followed by standard end repair (BotSeqS) yielded a 1560 
high error rate, with around 1,200 errors per diploid genome (~2x10-7 errors/bp) and a 1561 
mutational spectrum dominated by C>A and C>G errors (Extended Data Fig 3c). Sonication 1562 
followed by Mung Bean nuclease or no end repair yielded low mutation burdens, similar to 1563 
those using the restriction enzyme protocol, with error rates estimated to be in the nano scale 1564 
(<10-8 errors/bp). Libraries generated without end repair or Mung Bean nuclease did not 1565 
produce enough library yield to enable a detailed comparison of mutation burdens and spectra. 1566 
The mutational spectra of the Mung Bean nuclease libraries were largely consistent with that 1567 
of cord blood single-cell derived colonies, with a cosine similarity within the expected 95% 1568 
confidence interval (Methods), although the rate of C>A mutations appeared to be slightly 1569 
elevated (Extended Data Fig 3c). 1570 
 1571 
Altogether, sonication followed by Mung Bean nuclease digestion offers an alternative version 1572 
of NanoSeq, with considerably lower library yields but error rates in the nano scale (<10-8 1573 
errors/bp). This protocol opens the door to applications requiring whole-genome coverage and 1574 
to targeted NanoSeq with reliable single-molecule mutation detection. 1575 
 1576 
Supplementary Note 4 - Modified A-tailing 1577 
 1578 
After DNA fragmentation, A-tailing of blunt-ended DNA fragments is commonly used in 1579 
library preparation protocols before ligation of sequencing adapters. This step involves a DNA 1580 
polymerase and dATP, among other reagents. In preliminary experiments (partially digesting 1581 
DNA with both HpyCH4V and AluI) we noticed increased levels of C>A and T>A at 1582 



restriction sites, and the profile of single-strand consensus, typically caused by DNA damage, 1583 
showed an increased amount of G>A, C>A and T>A (Extended Data Fig 1e). To explain this 1584 
pattern we hypothesised a multi-step mechanism involving: nicking of the DNA duplex by 1585 
restriction enzymes (an intermediate step in double-strand cleavage); 3′ to 5′ exonuclease or 1586 
pyrophosphorolysis, during A-tailing, of the dNTP 3′ of the nick; incorporation of dATP 1587 
opposite C, G or A during A-tailing (causing G>A, C>A or T>A, respectively); and subsequent 1588 
sealing of the internal nick during adapter ligation. To block molecules with internal nicks or 1589 
gaps, we replaced dATP with a mixture of dATP and ddBTP (ddCTP, ddGTP, ddTTP) during 1590 
A-tailing. The presence of internal nicks would trigger DNA polymerase extension until the 1591 
incorporation of a ddBTP, making the affected DNA strand unamplifiable. Our results show 1592 
that the incorporation of ddBTPs successfully removed artefacts caused by A-tailing 1593 
(Extended Data Fig 1e). 1594 
 1595 
Supplementary Note 5 - Chimeric read bundles 1596 
 1597 
A potential problem in duplex sequencing approaches is the formation of chimeric read bundles 1598 
(PCR duplicate families), in which a read bundled contains copies of more than one original 1599 
molecule of DNA. This can occur when two original fragments of DNA have identical 1600 
breakpoints and barcodes. In such cases a somatic mutation could be undetected because there 1601 
is not a consensus at that position in the read bundle, which could result in an underestimation 1602 
of the mutation burden. The use of three bp random barcodes in the adaptors at both fragment 1603 
ends allow for 4,096 different combinations. With this variability, chimeric read bundles are 1604 
expected to be rare with the shallow duplex coverages used in this study. 1605 
 1606 
We can study this analytically and empirically for the HpyCH4V protocol. Let ci be the number 1607 
of DNA fragments sampled at a restriction site (i). Since we aim for ~3 Gb (1x) of duplex 1608 
coverage and we cover ~30% of the human genome, the average ci is around 3-4 molecules per 1609 
restriction site. Let pj be the vector of relative frequencies of each of the 4,096 barcodes in a 1610 
library (we could assume a vector with uniform frequencies pj = 1/4,096 or use empirical 1611 
barcode frequencies from a library, which vary modestly). At a given site (i), the probabilities 1612 
that one fragment or more than one fragment are tagged with a given barcode (j) can be 1613 
modelled as Poisson distributed: P(x=1, l=cipj) and P(x>1, l=cipj), respectively. Assuming 1614 
uniform barcode frequencies, the expected fraction of non-chimeric read bundles at a site can 1615 
be calculated as: fj = P(x=1, l=cipj)/P(x≥1, l=cipj). Assuming variable barcode frequencies, the 1616 
fraction of non-chimeric read bundles expected at a site is a weighted average of this ratio 1617 
across barcodes, with the weight of each barcode being proportional to its contribution to 1618 
coverage: w = P(x≥1, l=cipj). If we conservatively assume that somatic mutations cannot be 1619 
called from chimeric reads, f estimates the extent by which the mutation burden (m) may be 1620 
underestimated due to chimeric read bundles: mobserved ~ mtrue f. Using these equations, 1621 
Supplementary Figure 2 shows that, as expected, chimeric bundles are very rare at the 1622 
coverages used in this study, either using uniform or empirically observed barcode frequencies. 1623 
In fact, chimeric bundles are expected to be <5% with whole-genome duplex coverages <100x. 1624 
 1625 
To test for the presence of chimeric bundles empirically, we can study the fraction of read 1626 
bundles that contain both alleles of a heterozygous SNP. We focused on donor PD43976 1627 
(Supplementary table 1), for which multiple colonies are available21. We ran GATK's 1628 
HaplotypeCaller55 on each of the colonies and detected 1.4 million reliable heterozygote SNPs 1629 
in the donor, defined as those called in at least 90% of the samples and showing a VAF between 1630 
0.4 and 0.6. We estimated how many times these heterozygote SNPs passed mapping quality 1631 
filters and were seen in two NanoSeq libraries from this donor, and how many times a 1632 



consensus call was achieved (requiring at least 90% of the reads from each strand to support 1633 
the call). We found that for the two libraries 98.2% and 99.3% of the times when a heterozygote 1634 
SNP position was seen, a consensus call could be obtained. This result indicates that 1635 
chimerism, if present, must be low. To control for background rates of calling, we calculated 1636 
the same numbers for sites surrounding the heterozygote SNP position (-2, -1, +1, +2). For 1637 
surrounding sites the proportions were similar, 98.9% and 99.4%. The ratios between 1638 
heterozygote and surrounding sites call rates were 0.993 (Poisson CI95% 0.991-0.995, P = 1639 
3.8e-14) and 0.999 (Poisson CI95% 0.997-1.001, P = 0.46) for these libraries. Overall, and in 1640 
line with theoretical expectation, this analysis indicates that the frequency of chimeric read 1641 
bundles and the resulting underestimation of mutation burden is <1% in these libraries. 1642 
 1643 

 1644 
 1645 

Supplementary Figure 2. Subestimation of the mutation burden due to chimeric read bundles 1646 
as a function of coverage per restriction site. This figure shows the subestimation factor (f) 1647 
described in the Supplementary Note 5, as a function of coverage per restriction site. The green 1648 
line represents f assuming equal frequency of all barcodes (=1/4,096) and the black line 1649 
represents f using the observed barcode frequency from representative libraries. 1650 
 1651 
Supplementary Note 6 - Human DNA contamination 1652 
 1653 
To reduce the impact of contamination on duplex sequencing libraries we generated an 1654 
extensive SNP mask (Methods). For each NanoSeq library we also estimate the extent of inter-1655 
individual contamination using VerifyBamID246, which we validated using simulations of 1656 
contamination fractions as low as 0.1% (Extended Data Fig 4e,f). 1657 
 1658 
Applying the SNP mask (n=26,111,286) to 1000 Genomes Project data, we estimate that the 1659 
mask leaves between 25,666 and 82,765 SNPs unfiltered across samples, with systematic 1660 
differences across human populations. Since the 1000 Genomes Project mostly used low-1661 
coverage sequencing and it combined information across samples to help call SNPs in each 1662 
sample, the sensitivity to rare SNPs was lower than to common SNPs. This suggests that our 1663 
estimates of unfiltered SNPs per sample after applying the SNP mask could be underestimates. 1664 



To assess this possibility, we represented the number of unfiltered SNPs in 1000 Genomes 1665 
Project samples as a function of their genome coverage and population assignment 1666 
(Supplementary figure 3). Indeed, and contrary to common SNPs, we found a relationship 1667 
between mean depth of coverage and the number of unfiltered alternative alleles 1668 
(Supplementary figure 3). However, the numbers of unfiltered SNPs appear to plateau above 1669 
10x, suggesting that the estimates above are of the right magnitude. 1670 
 1671 
Based on these analyses, we estimate that the rate of SNPs masquerading as somatic mutations 1672 
in a NanoSeq sample with 1% of contamination of European ancestry, shifts from 1.6 x 10-6 to 1673 
4.0 x 10-8, after applying the SNP mask. If the contaminant source was the individual with the 1674 
highest number of unfiltered SNPs (n=107,230, from Luhya ancestry) the false positive rate 1675 
would be 1.7 x 10-7. 1676 
 1677 

 1678 
 1679 
Supplementary Figure 3. Panels a shows the mean coverage depth at 10,000 random SNPs 1680 
picked from the set of SNPs not in the common SNP mask. Panel b shows the same but for 1681 
common SNPs. DP stands for depth of sequencing coverage. EUR stands for European, AMR 1682 
for Ad-mixed American, EAS for East Asian, SAS for South Asian, and AFR for African super 1683 
populations. 1684 
 1685 
 1686 
These analyses confirmed that, depending on the mutation burden of the sample and the 1687 
ancestry of the contaminant, 1% of contamination can still be problematic after application of 1688 
the SNP mask. VerifyBamID is a tool routinely used to estimate human contamination from 1689 
sequencing data. The most recent version46 is ancestry aware and has been tested for 1690 
contamination levels above 1%. Here we performed simulations to evaluate VerifyBamID 1691 
performance at 0.1, 0.25, 0.5, 0.75, 1, 2, and 3% contamination levels. To obtain more stable 1692 
estimates of contamination we increased the number of markers from 100K to 500K, by 1693 
randomly choosing additional SNPs with MAF > 0.05 from the 1000 Genomes Project 1694 
20130502 release. 1695 
 1696 
We performed two types of simulations; one aimed at evaluating the impact of ancestry and 1697 
the other aimed at testing VerifyBamID on NanoSeq data. To evaluate the impact of ancestry, 1698 
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we mixed BAMs from two individuals from the 1000 Genomes Project using the contamination 1699 
fractions specified above. We randomly selected one British individual as the intended sample 1700 
(HG00143 GBR/EUR) and 5 other individuals as contaminants: one British (HG00140), and 1701 
one from each Africa (NA18867 - YRI), America (HG01060 - PUR), Southern Asia (HG03999 1702 
- STU) and Eastern Asia (NA18582 - CHB) continental groups. Our results show that, despite 1703 
some deviations, contamination estimates are reasonably accurate for contamination values > 1704 
0.1% irrespective of ancestry (Extended Data Fig 4e). 1705 
 1706 
Next, we explored how well VerifyBamID works with NanoSeq data. For this experiment we 1707 
chose two NanoSeq libraries, one smooth muscle sample from donor PD40794 and one 1708 
granulocyte sample from donor PD43980. We simulated contamination of each of the samples 1709 
with the other using the contamination levels 0.1, 0.25, 0.5, 0.75, 1, 2, and 3%, as above. 1710 
Results support the ability of VerifyBamId to detect levels of contamination > 0.1% for 1711 
NanoSeq data (Extended Data Fig 4f). 1712 
 1713 
Supplementary Note 7 - Further details on the estimation of mutation burden in standard 1714 
sequencing data 1715 
 1716 
Mutation burden estimation in NanoSeq is unaffected by the clonality of a sample or the depth 1717 
of coverage. In contrast, the somatic mutation calling sensitivity in standard sequencing data 1718 
depends on both clonality and coverage. Except for standard sequencing of smooth muscle (for 1719 
which we did not attempt to correct the mutation burden), all of the samples compared here 1720 
were clonal or nearly clonal, but their sequencing coverage was still variable. Somatic 1721 
mutations occurring at genomic regions with low coverage are more likely to be undetected. 1722 
To estimate the sensitivity of CaVEMan we simulated 10,000 clonal heterozygous mutations 1723 
(VAF~50%) in seven BAM files using bamsurgeon 56 (with parameters "--ignoresnps --insane 1724 
--aligner mem"). Of the 10,000 mutations requested, bamsurgeon successfully simulated 1725 
around 9,000 in each sample. For those mutations successfully simulated we found that in 1726 
regions with at least 20x coverage, very few mutations were missed by CaVEMan (99.83% 1727 
sensitivity across the seven BAM files). After application of the various filters used on 1728 
CaVEMan calls, sensitivity dropped to 96.42%. The filters removing most simulated mutations 1729 
were the panel of normals (VUM; 2.2%), the simple repeats filter (SR; 1.0%) and the 1730 
centromeric repeats filters (CR; 0.2%). Based on this high sensitivity, we decided to restrict all 1731 
comparisons of mutation burden between standard sequencing and NanoSeq in the study to the 1732 
fraction of the genome covered by at least 20 reads in each sample. 1733 
 1734 
Another important consideration to compare the two protocols comes from the fact that the 1735 
NanoSeq coverage is uneven across the genome due both to the use of restriction enzymes and 1736 
the application of stringent filters. With our choices of restriction enzyme (HpyCH4V) and size 1737 
selection (250-500 bps), about 27% of the genome is covered. Since mutation rates are known 1738 
to vary across the genome, to avoid systematic biases we decided to further restrict the 1739 
comparison of standard sequencing data and NanoSeq to regions covered by NanoSeq and 1740 
considered callable. The NanoSeq genome (g) was defined using a sample with high NanoSeq 1741 
coverage (PD43976 / 33796#41; Supplementary Table 1), and including only sites covered 1742 
by at least one read bundle and passing all our filters (g = 783,199,533 bp). 1743 
 1744 
In summary, for the final comparison between CaVEMan and NanoSeq, we focused on the 1745 
fraction of the genome (T) overlapping the NanoSeq genome (g) and having at least 20x 1746 
coverage (c) in each sample, i.e. 𝑇 = 𝑔 ∩ 𝑐. Low-coverage samples with T < 200 Mb were not 1747 
analysed further. 1748 



 1749 
Mutation calls falling in the comparable genome fraction (T) were identified (m) and a mutation 1750 
rate (r) was calculated as 𝑟	 = 	𝑚	/	𝑇, with associated 95% Poisson confidence intervals. Given 1751 
the differences in trinucleotide sequence composition between the whole reference genome and 1752 
the NanoSeq genome, we corrected the observed mutation rates as described in Methods 1753 
(Correction of mutation burden and trinucleotide substitution profiles), resulting in r'. 1754 
Corrected confidence intervals were calculated as 𝐶𝐼′	 = 	𝐶𝐼	 ∗ 	𝑟′/	𝑟. To estimate the total 1755 
number of mutations per cell (M), we multiplied r' (and its associated confidence intervals CI') 1756 
by the size of the callable diploid genome (Dg), taken here as 5,722,652,910 base pairs (and 1757 
half of this for the haploid genome of sperm cells). 1758 
 1759 
We found that the corrected mutation rates (r') on T were consistently ~20% higher than 1760 
estimates based on c (the fraction of the genome with at least 20x coverage; Extended Data 1761 
Fig 4a,b), the latter defined as 𝑟g = 𝑚g ∗ 𝐷i/𝑐, where mc is the number of mutations in c. To 1762 
determine whether the 20% increase is due to uneven NanoSeq coverage or to NanoSeq 1763 
stringent filters, we estimated the corrected rates in T', defined as the fraction of the genome 1764 
covered by NanoSeq but without applying our strict mapping quality filters. The results show 1765 
that, while the rates in T are 20% higher than in c, the rates in T' do not increase considerably 1766 
(Supplementary Figure 4). This indicates that the higher rates obtained with NanoSeq are 1767 
caused by limited calling sensitivity in standard sequencing data in the regions filtered out by 1768 
NanoSeq. That is, traditional mutation burden estimates with standard sequencing technologies 1769 
are likely underestimates due to low sensitivity in certain genomic regions. 1770 

 1771 
Supplementary Figure 4. Mutation rates in the unfiltered NanoSeq genome (with coverage ≥ 1772 
20) compared to mutation rates in the fraction of the genome with at least 20x coverage (left), 1773 
and the ratio of the two (right). By comparing this to Extended Data Fig 5a,b it becomes clear 1774 
that the increase observed in the NanoSeq genome is mainly due to our mapping quality filters. 1775 
 1776 
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 1777 
Supplementary Note 8 - Validation of indel calls 1778 
 1779 
To estimate the indel error rate we compared Pindel calls50 in single-cell derived cord blood 1780 
colonies to our indel calls in NanoSeq cord blood granulocytes. Comparing indel rates is 1781 
particularly difficult given the known problems of specificity and sensitivity associated with 1782 
indel calling. For this comparison we applied the same approach that we used to compare 1783 
CaVEMan and NanoSeq, restricting the analysis to regions with at least 20x coverage and 1784 
falling in the NanoSeq-covered genome. Pindel estimated 6.5 x 10-10 indels / bp (CI95% 4.8 x 1785 
10-10 - 8.7 x 10-10), while NanoSeq estimated 1.8 x 10-9 indels / bp (CI95% 1.2 x 10-9 - 2.6 x 1786 
10-9; Extended Data Fig 5c). Although NanoSeq estimates are higher, and some of this 1787 
difference may be due to higher rates of indels in differentiated cells, we can confidently 1788 
estimate an indel error rate for NanoSeq <3 x 10-9 / bp. 1789 
 1790 
The reliability of our indel calls is further supported by the linear accumulation of indels with 1791 
age observed for granulocytes, smooth muscle and neurons. To further investigate the quality 1792 
of our indel calls we also compared indel profiles for samples with reliable indel calls from 1793 
standard whole-genome sequencing data. These included a bladder tumour, colonic crypts 1794 
(with and without the colibactin signature), and POLE and POLD1 mutants. NanoSeq indel 1795 
profiles matched closely the reported indel profiles for colibactin27, POLE/POLD1 samples48, 1796 
and a previously published bladder tumour sample34 (Extended Data Fig 5d). 1797 
 1798 
Indel profiles for each cell type analysed in this manuscript are shown in Fig 3d,m and 1799 
Extended Data Fig 9c. 1800 
 1801 
Supplementary Note 9. Estimation of the minimum number of divisions required to 1802 
produce granulocytes from HSCs. 1803 
 1804 
Estimates of the population size of human haematopoietic stem cells (HSC) range from 25,000 1805 
to 1.3 million and the human HSC division rate is estimated to be between one per 28 days and 1806 
one per 4 years21,57-59. The relatively small population size and division rates of HSC contrast 1807 
with the staggering production of blood cells throughout life. On the order of 1011 granulocytes 1808 
are estimated to be produced every day60 and on the order of 1.4 x 1014 blood cells are estimated 1809 
to be produced every year considering all mature cell types58. 1810 
 1811 
In mouse and cat, the enormous net amplification during blood cell production is achieved by 1812 
means of between 17 and 19.5 effective cell divisions61,62. Accurate estimates in humans are 1813 
difficult to obtain, however, we can calculate a lower bound for the number of cell divisions 1814 
required based on the size of the stem cell population and the number of differentiated cells 1815 
produced. 1816 
 1817 
Theoretically, the minimum number of divisions required to produce N differentiated cells 1818 
from a single cell is achieved by a perfectly bifurcating tree63, in which a single cell expands 1819 
into N = 2d cells. Hence, the minimum number of cell divisions that must separate a HSC from 1820 
an average differentiated cell can be calculated as 𝑑 = log3 𝑁. If we assume, as an example, 1821 
that the HSC pool in humans is 100,000 cells and that 1011 granulocytes are produced every 1822 
day, then the minimum number of cell divisions with a perfect bifurcating tree would be 𝑑 =1823 
log3(10%%/10~)	, that is, at least 19.9 cell divisions. However, we know that HSC divide 1824 
infrequently (around once per year) and need to self-sustain. To maintain homeostasis, on 1825 
average, the division of a HSC results in a HSC and a progenitor. Because progenitors have to 1826 



produce 1011 granulocytes every day for a year (assuming an average division rate of one 1827 
division per year), we have to consider the total number of granulocyte production during that 1828 
period, making 𝑑	 = log3(3.65	10%j/10~), i.e. d ≥ 28.4 divisions assuming a HSC division 1829 
rate of 1/40 weeks. This is a theoretical lower bound estimate of d, because it assumes an 1830 
optimum bifurcating lineage and because it does not consider the production of other blood 1831 
cell types. Although estimates of the number of HSCs and the HSC division rate in humans 1832 
vary considerably, even the most extreme estimates (1.3 million HSCs dividing every 28 days) 1833 
predict d ≥ 20. 1834 
 1835 
Our linear regression model estimated a difference between the intercepts of granulocytes and 1836 
HSC/MPPs of ~58 mutations, although the difference was not significantly different from 0 1837 
(CI95%: -13.1-121.1, Fig 2b). Based on this estimation of the difference of mutations between 1838 
granulocytes and HSC/MPPs, we can estimate an upper bound of ~2 mutations (58/28) per cell 1839 
division during transient proliferation and differentiation. Given that HSCs accumulate 19.8 1840 
mutations per year and divide on the order of once per year, these estimates suggest that only 1841 
a small minority of mutations in HSCs are likely to represent replication errors. Alternatively, 1842 
to explain the small difference observed in mutation burden between HSC/MPPs and 1843 
granulocytes as a function of replication-associated mutagenesis alone, and taking d ≥ 28.4, 1844 
HSC/MPPs would need to divide >10 times per year or have a mutation rate per division >10 1845 
times higher than that of transient progenitors. 1846 
 1847 
Altogether, if we assume that HSC/MPPs divide infrequently and are at least as protected from 1848 
mutagenesis as transient progenitor cells, the observed mutation burden data suggests that most 1849 
mutations in HSC/MPPs accumulate non-replicatively, as a function of time rather than cell 1850 
division. 1851 
 1852 
 1853 
Supplementary Note 9 - Comparison between smooth muscle and single-cell derived 1854 
colonies of skeletal muscle satellite cells 1855 
 1856 
To our knowledge, our manuscript contains the first description of the mutational landscape 1857 
of smooth muscle. A previous study described the mutation rates and mutational spectrum of 1858 
skeletal muscle satellite cells by expanding single satellite cells into colonies in vitro11. In 1859 
that study, the authors sequenced colonies from young and old donors, as well as colonies 1860 
grown in vitro for different lengths of time, to quantify the effects of in vitro culture.  1861 
 1862 
Owing to differences in mutation calling sensitivity, comparison of mutation burdens 1863 
estimated with different sequencing strategies and coverages is challenging from public 1864 
mutation data, but mutational spectra can be more easily compared. We find that the 1865 
substitution profile of smooth muscle is remarkably similar to that of satellite cells (cosine 1866 
similarities of 0.96 for young and old donors; Supplementary figure 5a). The similarity is, 1867 
however, markedly lower with the long-term cultured colonies (cosine of 0.80; 1868 
Supplementary figure 5a). 1869 
 1870 
Using sigfit we extracted two signatures from the set of four substitution profiles composed 1871 
of NanoSeq smooth muscle, satellite cells from young and old donors, and long-term cultured 1872 
colonies (Supplementary figure 5b). Signature A is very similar to NanoSeq smooth muscle 1873 
(cosine of 0.99), whereas signature B is similar (cosine of 0.84) to signature C in Blokzijl et 1874 
al10, which is associated to mutations introduced during in vitro culture. This signature has a 1875 



greater contribution in satellite cells compared to smooth muscle, and increases in long-term 1876 
cultured colonies (Supplementary figure 5c).  1877 
 1878 
 1879 

 1880 
Supplementary figure 5. a, Substitution profiles of smooth muscle (top left) and satellite 1881 
cells from young and old donors, and in long-term culture11. b, Two extracted signatures 1882 
from satellite cells. c, Estimated exposure of groups of samples to each of the two extracted 1883 
signatures, showing how signature B contribution becomes stronger in long-term culture and 1884 
is practically absent from NanoSeq data. 1885 


