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Physics-informed machine learning for

Structural Health Monitoring

E. J. Cross, S. J. Gibson, M. R. Jones, D. J. Pitchforth, S. Zhang and T.J. Rogers

Abstract The use of machine learning in Structural Health Monitoring is becoming

more common, as many of the inherent tasks (such as regression and classification)

in developing condition-based assessment fall naturally into its remit. This chapter

introduces the concept of physics-informed machine learning, where one adapts

ML algorithms to account for the physical insight an engineer will often have of

the structure they are attempting to model or assess. The chapter will demonstrate

how grey-box models, that combine simple physics-based models with data-driven

ones, can improve predictive capability in an SHM setting. A particular strength

of the approach demonstrated here is the capacity of the models to generalise, with

enhanced predictive capability in different regimes. This is a key issue when life-time

assessment is a requirement, or when monitoring data do not span the operational

conditions a structure will undergo.

The chapter will provide an overview of physics-informed ML, introducing a number

of new approaches for grey-box modelling in a Bayesian setting. The main ML tool

discussed will be Gaussian process regression, we will demonstrate how physical

assumptions/models can be incorporated through constraints, through the mean

function and kernel design, and finally in a state-space setting. A range of SHM

applications will be demonstrated, from loads monitoring tasks for off-shore and

aerospace structures, through to performance monitoring for long-span bridges.

Key words: Physics-informed machine learning, grey-box modelling, Gaussian-

process regression.
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1 Introduction

As performance and monitoring data from our structures become more abundant, it

is natural for researchers to turn to methods from the machine learning community

to help with analysis and construction of diagnostic/prognostic algorithms. Indeed,

within the SHM research field, use of neural networks, support vector machines and

Gaussian processes for regression and classification problems has become common

place [1]. These methods bring the opportunity to learn complex relationships di-

rectly from data, without a requirement of in-depth knowledge of the system. As an

example from the authors’ own work, in [2] we employed a Gaussian process (GP)

regression to predict strain on a landing gear from measured accelerations across

the aircraft. Use of a suitably trained GP circumvents the need to build complex

physics-based models of the gear for fatigue life calculations. This kind of model is

often referred to as a ‘black-box’ model to reflect the fact the data drives the structure

of the model rather than knowledge of the physics at work.

At the other end of the spectrum the term ‘white-box’ model can be used to

describe a model purely constructed from knowledge of physics, (e.g differential

equations and finite element models). Physics-based modelling and updating were

common early themes in the structural health monitoring research field [3]. However,

for large or critical engineering structures that operate in (often extreme) dynamic

environments, such as wind turbines, aircraft, gas turbines, etc, predictive modelling

from a white-box perspective presents particularly difficult challenges. Loading is

often unknown and unmeasured, and dynamic behaviour during operation needs to

be fully captured by a computational model, but is sensitive to small changes in

(or disturbances to) the structure. Validation and updating of large complex models

bring their own challenges and remain active research areas [4–7].

Due to the availability of monitoring data, the inherent challenges of the physics-

based approach and the promise of machine learning methods, it is fair to say that

the data-driven approach to SHM has become dominant in the research field. A

significant issue with the use of any machine learning method in an engineering

application, however, is the availability of suitable data with which to train the

algorithm. As the model learns from the data, it is only able to accurately predict

behaviour present in the data on which it was trained. As an example, Figure 1

shows a black-box model trained to predict the bending strain on an aircraft wing

during different manoeuvrers to inform an in-service fatigue assessment. This data

set comprises of 84 flights, five of which are used for model training. The trained

model is able to generalise well with a very low prediction error for the majority of

the flights - Figure 1a shows a typical strain prediction for a flight not included in

the training set (normalised mean-squared error1 (nMSE)= 0.29% across the whole

flight). However, for the flight shown in Figure 1b, the model is unable to predict the

strain as accurately (nMSE 4.20% across the whole flight) - this flight was atypical in

1

nMSE =
100

𝑛𝜎2
𝑦

∑︁

(𝑦𝑖 − 𝑓𝑖)2 (1)

where 𝑦𝑖 and 𝑓𝑖 are the measurements and predictions respectively, 𝑖 = 1 . . . 𝑛.
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terms of operating conditions - it was a low altitude sortie over ground, characterised

by the turbulent response one can see in the figure. These conditions are different

from those included in the training set and the model is unable to generalise and

predict the strain as well in this case.

(a) Prediction for normal flight conditions (b) Prediction for low altitude flight

Fig. 1: Example of difficulty predicting behaviour outside of normal operation con-

ditions - strain prediction on an aircraft wing during manoeuvres - see [8, 9] for more

details.

In general, but especially because of the inherent flexibility in many of the machine

learning models commonly used, extrapolation should not be attempted in this

setting. For an SHM application, this will generally mean that training data are

required from all possible operating conditions that the structure will see. For many

applications this is currently infeasible, although as data collection becomes more

commonplace, the situation will improve somewhat. Where a supervised approach

is needed, this problem is exacerbated by the general lack of access to data from

structures in a damaged state which remains a large barrier to effective diagnosis and

prognosis [10].

Currently a programme of work by the authors is pursuing a physics-informed

machine learning approach to attempt to address some of these issues in a structural

dynamics setting. The aim is to bring together the flexibility and power of state-

of-the-art machine learning techniques with more structured and insightful physics-

based models derived from domain expertise. This reflects a natural wish that any

inferences over our structures will be informed by both our engineering knowledge

and relevant monitoring data available.

The potential means of combining physics-based models and data-driven algo-

rithms are many, ranging from employing ML methods for parameter estimation

[11, 12], to using them as surrogates or emulators [13–15]. Of interest here are

methods where the explanatory power of a model is shared between physics-based

and data-driven components. We will often refer to these approaches as ‘grey-box’

models (a combination of white and black-box components), but the term ‘hybrid

modelling’ is equally applicable. The philosophy followed in our work is to embed
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fundamental physical insight into a machine learning algorithm. In doing so, our

aim is that the role of the machine learner is one of augmenting the explanatory

power of the model rather than being employed to correct any potential error or bias

in the physical foundation. This chapter will explore this idea in a Bayesian setting,

introducing a number of different approaches and demonstrating their usefulness in

an SHM setting.

2 Grey-box models, overview and literature

Fig. 2: Some modelling ap-

proaches on the white-black

spectrum.

The term ‘grey-box model’ is perhaps most fa-

miliar to those from a control engineering back-

ground. Sohlberg [16, 17] provides a useful re-

view and overview of grey-box models in this

context2. Figure 2 attempts to capture and sum-

marise some of the currently available modelling

approaches relevant for challenges in structural

health monitoring on the white to black spec-

trum. Note that the “degree of greyness" of the

models in the middle region will change accord-

ing to implementation and application.

At the whiter end of the spectrum are mod-

elling approaches where data are used for param-

eter estimation or model form selection, (with

the buoyant field of equation discovery fitting

in here, see [18, 19]). See also [20]. Residual

models are those that use a data-driven approach

to account for the observed difference between

a physics-based model and measurements, with

general form

𝑦 = 𝑓 (𝑥)
︸︷︷︸

𝑊ℎ𝑖𝑡𝑒−𝑏𝑜𝑥

+ 𝛿(𝑥) + 𝜀
︸   ︷︷   ︸

𝐵𝑙𝑎𝑐𝑘−𝑏𝑜𝑥

(2)

where 𝑓 (𝑥) is the output of the physical model, 𝛿(𝑥) is the model discrepancy and

𝜀 is the process noise (see for example [21–24]). The discrepancy term is often

used to correct a misspecified physical model, giving rise to the term ‘bias correc-

tion’. Residual based approaches have proven effective across a range of SHM tasks

including damage detection [25] and modal identification [26]. Here we are inter-

ested in residual modelling in the context of compensation for un-captured/missing

behaviours in the physics-based model (discussed further in Section 3).

2 The use of grey-box models within the control community is undergoing somewhat of a revival

there and a good snap-shot of this can be gained by looking at the contributions to the most recent

Nonlinear System Identification Benchmarks Workshop (http://www.nonlinearbenchmark.org)
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The term hybrid architectures reflects the wider possibilities for combinations of

white and black models (which could include the summation form of (2)). Section

5 will demonstrate one such example of combining data-driven and physics based

models in a state-space setting.

The remainder of the spectrum contains models with structures that are data-

driven/black-box in nature. Sohlberg [16]) describes semi-physical modelling as

when features are subject to a nonlinear transformation before being used as inputs

to a black-box model, we also refer to this as input augmentation, see [8, 27, 28]

for more examples. We place these examples under the heading of manipulation of

black-box inputs.

Section 4 of this chapter will discuss constraints for machine learning algorithms

- these are methods that allow one to constrain the predictions of a machine learner

so that they comply with physical assumptions. Excellent examples for Gaussian

process regression are [29–31] and will be discussed in greater detail later.

The final grouping of grey-box approaches mentioned here are physics-guided

black-box learners. These are methods that use physical insight to attempt to improve

model optimisation and include the construction of physics-guided loss functions

and the use of physics-guided initialisation. These will not be discussed further in

this chapter but see e.g. [32–35] for more details.

2.0.1 Grey-box models for SHM

The remainder of the chapter will showcase some of the work of the authors on

developing physics-informed machine learning approaches for SHM tasks. The de-

velopments here fall in the domain of residual and hybrid models (Sections 3 and

5), and constrained machine learners (Section 4). In order to provide an overview,

a variety of methods and results are presented, however, the implementation details

given here are necessarily very brief and we refer readers to the referenced papers

and our webpage3 for specific details and more in-depth analysis. Reflecting the

philosophy discussed in the introduction section, the approaches presented generally

incorporate simple physics-based models or assumptions and rely on the machine

learner for enhanced explanatory power and flexibility (i.e. we are operating towards

the blacker end of the scale).

The machine learning approach used in the work shown here will be Gaussian

process (GP) regression throughout. GPs have been shown to be a powerful tool

for regression tasks [36] and are becoming common in SHM applications (see for

example [2, 37–40]). Their use here and throughout the work of the authors is due

to their (semi)non-parametric nature, their ability to function with a small number

of training points, and most importantly, the Bayesian framework within which they

naturally work. The Gaussian process formulation provides a predictive distribution

rather than a single prediction point, allowing confidence intervals to be calculated

and uncertainty to be propagated forward into any following analysis (see [9] for

3 https://drg-greybox.github.io/
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example). As the use of GPs is now quite common, their fundamental formulation

will not be introduced here, but the mathematical machinery required is briefly

summarised in the Appendix - we refer unfamiliar readers to [36].

In the first examples shown here, the use of priors in the Bayesian framework

is exploited as an appropriate and intuitive means of incorporating physical insight

into a machine learning algorithm. In later sections we consider the construction of

constraints for GPs and, separately, their incorporation into a state-space formulation

(this latter example relies more heavily on physics-based machinery than the other

examples).

3 Be more Bayes

A Bayesian philosophy is one that employs evidence from data to update prior beliefs

or assumptions, and has been widely adopted across disciplines, including SHM.

However, most commonly, uninformative priors are utilised that do not reflect the

knowledge that we have as engineers of the systems we are interested in modelling.

The formulation of a Gaussian process regression requires the selection of a

mean and covariance function which form the prior process. The process is then

conditioned with training data to provide a posterior mean and covariance as the

model prediction. In the standard approach, no prior knowledge is assumed; a zero

mean function is selected alongside a generic covariance function such as a squared-

exponential or one from the Matérn class which provide a flexible process to fit to

most data.

In this section we will first employ simple physical models as prior mean functions

to a GP and show how they may improve the extrapolative capability of the model.

This simple means of incorporating prior knowledge is equivalent to using a GP

with a zero mean prior to model the difference between the measured data and the

physical model prediction, and hence can be classed as a residual approach (see

Section 2). At the end of this section, we will show how some knowledge of a system

may be used to derive useful covariance functions in a regression setting.

3.1 Prior mean functions - residual modelling

3.1.1 Performance monitoring of a cable-stayed bridge

The Tamar bridge is a cable-supported suspension bridge connecting Saltash and

Plymouth in the South West of England which has been monitored by the Vibration

Engineering Section at the University of Exeter [41]. The interest here is in the

development of a model to predict bridge deck deflections that can be used as a

performance indicator (see [42, 43]). The variation in deck deflections are driven

by a number of factors, including fluctuating temperature and loading from traffic
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(which are included as inputs to the model). Figure 3a shows the regression target

considered in this example, which is a longitudinal deflection. The monitoring period

shown is from September (Autumn) to January (Winter). In this figure one can see

short term fluctuations (daily) and a longer term trend which is seasonal and driven

by the increased hogging of the bridge deck as the ambient temperature decreases

into the winter months. To mimic the situation where only a limited period of

monitoring data is available for the establishment of an SHM algorithm, data from

the initial month of the monitoring period is used to establish a GP regression model

for deflection prediction (see [44] for more details).

A GP prediction, using the standard approach of a zero mean prior, is shown in 3b.

Here one can see exactly the behaviour that is expected; the model is able to predict

the deck deflections well in and around the training period, but is unable to predict

the deflections in colder periods towards the end of the time series. The confidence

intervals widen to reflect that the inputs to the model towards the end of the period

are different from those in the training set - this demonstrates the usefulness of the

GP approach, as one knows to place less trust in the predictions from this period.

To formulate a grey-box model for this scenario, a physics-informed prior mean

function is adopted that encodes the expected linear expansion behaviour of stay-

cables with temperature [45]. Figure 3c shows the GP prediction with a linear

prior mean function, where one can see a significant enhancement of predictive

capability across the monitoring period. Where temperatures are at their lowest, the

model predictions fall back on the prior mean function allowing some extrapolative

capability. The prediction error is significantly smaller for the grey-box model in

this case; the ‘black-box’ nMSE is 68.65, whereas the GP with the physics-informed

mean function has an nMSE of 7.33.

3.1.2 Residual modelling for wave loading prediction

In this example, we follow a similar approach of adopting a physics-informed mean

function, this time with a dynamic Gaussian process formulation, a GP-NARX [46],

to enhance predictive capability for a wave loading assessment. The monitoring or

prediction of the loads a structure experiences in service is an important ingredient

for health assessment, particularly where one wishes to infer e.g. fatigue damage

accrued.

The implementation of residual modelling is most effective where the assumptions

and limitations of the white-box model are well understood. As a widely used method

for wave loading prediction, Morison’s Equation [47] is employed here as a physics-

informed mean function. This empirical law is known to simplify the behaviour of

wave loading, not accounting for effects such as vortex shedding or other complex

behaviours [48] and will typically have residual errors in the region of 20%[49].

Here we consider the addition of a data-based GP-NARX to a simplified version

of Morison’s Equation in an attempt to account for these missing phenomena. The

model used is:
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0 500 1000 1500 2000 2500

(a) (b)

(c)

Fig. 3: Model for bridge deck deflections; (a) shows the training and test datasets for

the GPs, (b) is a GP predicion with a zero mean function prior and (c) shows the

prediction when a simple physics-informed mean function is incorporated. See [44]

for more details.

𝑦𝑡 = 𝐶
′
𝑑𝑈𝑡 |𝑈𝑡 | + 𝐶 ′

𝑚
¤𝑈𝑡

︸                ︷︷                ︸

𝑀𝑜𝑟𝑖𝑠𝑜𝑛′𝑠 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛

+ 𝑓 ( [𝑢𝑡 , 𝑢𝑡−1, ..., 𝑢𝑡−𝑙𝑢 , 𝑦𝑡−1, 𝑦𝑡−2, ..., 𝑦𝑡−𝑙𝑦 ]) + 𝜀
︸                                                            ︷︷                                                            ︸

𝐺𝑃−𝑁 𝐴𝑅𝑋

(3)

where 𝑦𝑡 is the wave force, 𝐶 ′
𝑑

is the drag coefficient, 𝐶 ′
𝑚 is the inertia coefficient,

𝑈 is the wave velocity, ¤𝑈 is the wave acceleration, 𝑢𝑡:𝑡−𝑙𝑢 are lagged exogeneous

inputs and 𝑦𝑡−1:𝑡−𝑙𝑢 are the lagged wave force, see [50] for more details (this paper

also shows an example of an input augmentation model, where Morison’s equation

is used as an additional input to the GP-NARX).

The Christchurch bay dataset is used here as an example to demonstrate the

approach [51]. To explore the generalisation capability with and without the physics-

informed mean, different training sets for the GP-NARX are considered with increas-

ing levels of coverage of the input space. A comparison of model errors (nMSE)

with different training datasets is shown in Figure 4. The coverage level is indicated
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as a percentage of the behaviour observed in the testing set that is also encountered

in the training set [50].

As in the Tamar Bridge example, the model structure offers a significant improve-

ment in extrapolation, where testing conditions are different from those in training

dataset. Following this approach allows predictions to be informed by the prior mean

in the absence of evidence from data. Clearly the prior specification is very important

in this case and a misspecified prior could do more harm than good. Once again we

advocate the use of simple and well founded physics-based models in an attempt to

avoid this issue.

Fig. 4: A comparison of wave loading prediction model NMSEs vs test set coverage.

Increasing coverage of the test set by the training and validation sets results in an

increased level of model interpolation. See [50] for more details.

3.2 Physics-derived covariance functions

As discussed above, in a standard approach to GP regression, a generic covariance

function such as a squared-exponential or one from the Matérn class is selected

as a prior. In the posterior GP, the mean is a weighted sum of observations in the

training set (see appendix), with the weightings provided by the covariance function

and associated matrix. These commonly used functions encode that the covariance

between points with similar inputs will be high and this allows the model to be

data-driven in nature.

In the case where one has some knowledge of a process of interest, it is possible

to derive a covariance function that reflects this. As an example, in [52], a composite

covariance function is designed to reflect the characteristics of the guided waves

being modelled.
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For some stochastic processes, the (auto)covariance can be directly derived from

the equation of motion of a system. An example relevant for vibration-based SHM

is the single degree of freedom (SDOF) oscillator

𝑚 ¥𝑦(𝑡) + 𝑐 ¤𝑦(𝑡) + 𝑘𝑦(𝑡) = 𝐹 (𝑡) (4)

with mass, damping and stiffness parameters,𝑚, 𝑐, 𝑘 respectively driven by a forcing

process 𝐹 (𝑡). In the case where the forcing is Gaussian white noise, the response 𝑌

is a Gaussian process with (auto)covariance

𝜙𝑌 (𝜏) = E[𝑌 (𝑡1)𝑌 (𝑡2)] =
𝜎2

4𝑚2𝜁𝜔𝑛
3
𝑒−𝜁 𝜔𝑛 |𝜏 | (cos(𝜔𝑑𝜏) +

𝜁𝜔𝑛

𝜔𝑑

sin(𝜔𝑑 |𝜏 |)) (5)

where standard notation has been used; 𝜔𝑛 =

√︁

𝑘/𝑚, the natural frequency, 𝜁 =

𝑐/2
√
𝑘𝑚, the damping ratio, 𝜔𝑑 = 𝜔𝑛

√︁

1 − 𝜁2, the damped natural frequency. See

[53] and also [54, 55].

This covariance function can be readily used in the regression context and provides

a useful prior process for oscillatory systems with a response dominated by a single

frequency. This form of covariance function can be described as expressive [56] and

proves useful even when the equation of motion of the system of interest differs from

an SDOF linear assumption.

Fig. 5: A comparison of a GP regression using derived and squared-exponential

covariance function. See [53] for more details.

Figure 5 shows an example of a GP regression for a system with a cubic nonlin-

earity. Here the linear prior provides an appropriate structure for the regression and

is flexible enough to incorporate the nonlinearity in the response. This is a simulated

example with the GP training data shown with crosses in the figure (every 8th point)

- here the nMSE is 8.09. For comparison, a GP with a squared-exponential (SE) co-
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variance function is established with the same training data. The SE process smooths

through the data as expected (nMSE=66.7), whereas the derived covariance provides

structure through the prior, resulting in good prediction during interpolation. The

hyperparameters in the SDOF covariance function are physically interpretable, we

are, therefore, able to guide their optimisation by providing the likely ranges for the

system of interest. Here the benefit of being able to prescribe the likely frequency

content of the system within the prior is clear and provides much advantage over the

black-box approach - see [53] for more details.

4 Constrained Gaussian processes

In scenarios where one lacks significant knowledge of the governing equations and

solutions, grey-box methods that tend towards the black end of the spectrum can be

particularly useful. An example of such approaches are constrained machine learners,

which, very generally, aim to embed physical constraints into the learning procedure

such that predictions made by the black-box model then adhere to these constraints.

Fig. 6: Test structure schematic

with sensor locations, recreated

from [61].

In the context of Gaussian process regression,

there are a number of ways of constraining pre-

dictions, the simplest of which is to include data

from boundaries within the model training. Other

methods rely on applying constraints to the co-

variance function in a multiple output setting (see

e.g. [29–31] and [57] where we employ deriva-

tive boundaries for beam deflection predictions).

Here we show an example of building known

boundaries (geometry) into a GP regression via a

sparse approximation of the covariance function.

The approximation method relies on an eigende-

composition of the Laplace operator of a fixed

domain [58]:

𝑘 (x, x′) ≈
𝑚∑︁

𝑖

𝑆(
√︁

𝜆𝑖)𝜙𝑖 (x)𝜙𝑖 (x′), (6)

with 𝜙𝑖 and 𝜆𝑖 the eigenfunctions and values, and

𝑆 the spectral density of the covariance function.

If one chooses the fixed domain to reflect the ge-

ometry of the problem of interest, then inference

with this model is appropriately bounded (see

[59, 60] for more details).

As an example here we employ constraints

for a crack localisation problem via measurement of Acoustic Emission (AE). The

localisation approach taken is to use artificial source excitations and an interpolating
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GP to provide a map of the differences in times of arrival (Δ𝑇) of AE sources to

fixed sensor pairings across the surface of the structure [61, 62]. Once constructed,

the map can be used to assess the most likely location of any new AE sources. The

bounded GP approximation allows one to build in the geometry of the structure

under consideration.

To investigate the predictive capability of the constrained GP, a case study using a

plate with a number of holes in is adopted. The holes, as shown in Figure 6, provide

complexity to the modelling challenge, introducing several complex phenomena such

as wave mode conversion and signal reflection. Depending on the location of the

source and sensor, the holes may also shield a direct propagation path to the receiver

[61], adding further complication.

Neumann boundaries are imposed here around each hole and at the edge of

the plate. To compare the performance of the standard and bounded GPs, differing

amounts/coverage of artificial source excitations were used for model training. The

initial characterisation of a structure via artificial source excitation can be expensive

and time consuming, for structures in operation it may also be infeasible to access all

areas/components. To mimic the scenario where it is not possible to collect artificial

source excitations across a whole structure, here we restrict the training grid to

excitation points in the middle of the plate. Figure 7 compares the performance of

the standard and bounded GPs with training sets of varying grid densities. For each

training set, the prediction error (nMSE) on the test set is averaged across every

sensor pair (there are 8 sensors).

Fig. 7: Comparison between models errors for standard and bounded GPs for AE

source localisation study. The nMSE is averaged across all sensor pair models for

each training set considered.



Physics-informed machine learning for Structural Health Monitoring 13

From Figure 7 one can see that as the training set size reduces, the constrained

GP consistently outperforms the standard full GP. This is particularly encouraging

as the bounded GP remains a sparse approximation. As is consistent with our earlier

observations, the inbuilt physical insight aids inference where training data are fewer.

Figure 8 shows the difference in prediction error across the plate for the standard

and bounded GPs for the 20mm spacing training case and a single sensor pairing.

In this case, the squared error of the full GP is subtracted from the squared error of

the constrained GP, i.e. positive values indicate a larger error in the full GP, whilst a

negative value expresses a larger error in the constrained GP.

Fig. 8: Mapping of the difference between the full GP squared error and the con-

strained GP squared error across the test set for sensor pair 4-8.

The figure highlights the locations on the plate where the constrained GP more

accurately predicts the true Δ𝑇 values. As expected, the locations at which this effect

is most prominent are those that move further away from the training points, and

particularly towards the extremities of the domain. At these locations, it is clear that

the additional physical insight provided by the constrained GP is able to enhance the

predictive performance in comparison to the pure black-box model.
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5 Gaussian processes in a state-space approach

One of the canonical forms for dynamic models, in structural mechanical systems

and beyond, is the state-space representation of the behaviour of interest.

In the context of this work, the state space model (SSM) is considered to be a

probabilistic object defined by two key probability densities; a transition density

𝑝 (x𝑡+1 | x𝑡 , u𝑡 ) and observation density 𝑝 (y𝑡 | x𝑡 , u𝑡 ). The transition density relates

the hidden states at a given time x𝑡+1 to their previous possible values4, x0:𝑡 and pre-

vious external inputs to the system, e.g. forcing, u0:𝑡 . The observation model relates

available measurements y𝑡 to the hidden states x𝑡 , which may also be dependent on

the external inputs at that time u𝑡 .

The state space formulation can be used to properly account for measurement

noise (filtering and smoothing), and is commonly used for parameter estimation (the

well-known Kalman filter is a closed form solution for linear and Gaussian systems).

Use of the state-space models as a grey-box formulation in this setting is common

within the control community [63, 64].

Here, we are interested in the case where we only have partial knowledge of a

system - this could take the form of missing or incorrect physics in the equations

of motion, or could be a lack of access to key measurements such as the force a

system undergoes. In Section 3 we considered a GP-NARX formulation for wave

loading prediction, with the ultimate aim of informing a fatigue assessment. The

state-space formulation shown here offers an alternative means for load estimation

which simultaneously provides parameter and state estimation in a Bayesian setting.

Joint input-state and input-state-parameter problems have seen growing interest

in recent years, see, for example [65–69]. The approach shown here is one that

considers a representation of a Gaussian process within a state space formulation

to model the unknown forcing (following [70, 71]). This is achieved by deriving

the transfer function of a Matérn kernel (via its spectral density), which provides a

flexible model component to account for the unmeasured behaviour. Inference over

the state space model is via Markov Chain Monte Carlo to provide distributions for

parameter and hyperparameter estimations.

Figure 9 shows an example of force recovery for a simulated multi-degree of

freedom system excited by a forcing time history from the Christchurch bay example

discussed in Section 3. Here one can see that the force has been accurately inferred,

the nMSE in this case is 1.15. For more details and analysis see [40].

The inference problem becomes significantly more challenging for nonlinear sys-

tems, and even more so if our knowledge of that nonlinearity is incomplete. Recently

[72] has attempted this extension for the input-state estimation case for a known non-

linearity. The difficulty in inference is met there by employing a methodology based

on Sequential Monte Carlo, specifically Particle Gibbs with Ancestor Sampling, to

allow recovery of the states and the hyperparameters of the GP.

4 The notation subscript 𝑎 : 𝑏 is used to denote values in that range inclusively, e.g. x0:𝑡 is the value

of the states x at all times from 𝑡 = 0 to 𝑡 = 𝑡 .
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Fig. 9: Force estimation for MDOF simulation under Christchurch bay loading time

history[40]

In the face of an unknown nonlinearity this framework may also be employed,

where the GP may be used to account for missing behaviours from the assumed

equations of motion. In [73], it is shown how this approach can be applied to a

Duffing oscillator to learn the unknown cubic component of the model in a Bayesian

manner without requiring prior knowledge of the nonlinear function. There are two

particular advantages to this approach, the first is that it allows nonlinear system

identification with a linear model, the Kalman filter and RTS smoother, which has

significant computational advantages and arguably makes “fully Bayesian” inference

industrially feasible. The second benefit is that it allows a user to apply very weak

prior knowledge about the nonlinearity; in the language of grey-box models, there is

a strong white box component (the second order linear system) but the form of the

nonlinearity is the very flexible nonparametric GP. Contrast this approach with the

purely black-box alternative of the GP-SSM, see [74], which suffers from significant

nonindentifiability and computational challenges.

6 Conclusions

This chapter has introduced and demonstrated physics-informed machine learning

methods suitable for SHM problems and inference in structural dynamics more

generally. The methods allow the embedding of one’s physical insight of a structure

or system into a data-driven assessment. The resulting models have proven to be

particularly useful in situations where training data are not available across the

operational envelope - a common occurrence in structural monitoring campaigns.
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The Bayesian approach adopted in Section 3 allows predictions to fall back on a

prior physical model in the absence of evidence from data. This pragmatic approach

proved useful in the examples shown here but does rely on trusting the physical

model in extrapolation. The ability to constrain the Gaussian process prior to known

boundary conditions shown in Section 4 requires less physical insight and gives

both an improved modelling performance, as well as providing the guarantee that

predictions made adhere to known underlying physical laws of the system under

consideration. At the whiter end of the spectrum, the state-space examples discussed

in Section 5 provide a principled means of inference over structures with unknown

forcing or nonlinearites. Some examples of where the presented methodology may

be of benefit could include better understanding of fatigue damage accrual and

parameter identification for e.g. novelty/damage detection.

As well as providing an enhanced predictive capability, the models introduced

here have the benefit of being more readily interpretable than their purely black-box

counterparts. In the past, a barrier to the uptake of SHM technology has been the lack

of trust owners and operators have in so-called black-box models. Perhaps naturally,

there is a hesitancy to adopt algorithms not derived from physics-based models, but

this may also be due, in part, to their misuse in the past. We hope that this will be

ameliorated by more interpretable models which also have the benefit of being more

easily optimised (Section 3 shows an example where the hyperparameters in the GP

regression take on physical meaning).

Physics-informed machine learning is rapidly becoming a popular research field

in its own right, with many promising results and avenues for investigation. This

review paper [35] currently on arXiv has 300 references largely populated by papers

from the last two years. It is likely that many of the emerging methods will prove

useful in SHM. The work here has focussed on a Gaussian process framework,

clearly the use of neural networks provide an alternative grey-box route, as these

are also commonly used in our field. We look forward to seeing how these may be

adopted for SHM tasks.
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7 Gaussian Process Regression

Here we follow the notation used in [36]; 𝑘 (x𝑝 , x𝑞) defines a covariance matrix 𝐾𝑝𝑞 ,

with elements evaluated at the points x𝑝 and x𝑞 , where xi may be multivariate.

Assuming a zero-mean function, the joint Gaussian distribution between mea-

surements/observations y with inputs 𝑋 and unknown/testing targets y∗ with inputs

𝑋∗ is [

y

y∗

]

∼ N
(

0,

[

𝐾 (𝑋, 𝑋) + 𝜎2
𝑛 𝐼 𝐾 (𝑋, 𝑋∗)

𝐾 (𝑋∗, 𝑋) 𝐾 (𝑋∗, 𝑋∗)

] )

(7)

The distribution of the testing targets y∗ conditioned on the training data (which is

what we use for prediction) is also Gaussian:

y∗ |𝑋∗, 𝑋, y ∼ N(𝐾 (𝑋∗, 𝑋) (𝐾 (𝑋, 𝑋) + 𝜎2
𝑛 𝐼)−1y,

𝐾 (𝑋∗, 𝑋∗) − 𝐾 (𝑋∗, 𝑋) (𝐾 (𝑋, 𝑋) + 𝜎2
𝑛 𝐼)−1𝐾 (𝑋, 𝑋∗))

(8)

See [36] for the derivation. The mean and covariance here are that of the posterior

Gaussian process. In this work covariance function hyperparameters are sought by

maximising the marginal likelihood of the predictions

log 𝑝(y|𝑋, θ) = −1

2
y𝑇 𝐾−1y − 1

2
log |𝐾 | − 𝑛

2
log 2𝜋 (9)

via a particle swarm optimisation5 [75].
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