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Abstract

We study the stability of one-dimensional solitons propagating in an anisotropic medium. We derived
the Kadomtsev-Petviashvili equation for nonlinear waves propagating in an anisotropic medium. By a
proper variable substitution this equation reduces either to the KPI or to the KPII equation. In the
former case solitons are unstable with respect to the normal modes of transverse perturbations, and in
the latter they are stable. We only consider the case when the solitons are unstable. We formulated the
linear stability problem. Using the Laplace—Fourier transform, we found the solution describing the
evolution of an initial perturbation. Then, using Briggs’ method we studied the absolute and
convective instabilities. We found that a soliton is convectively unstable unless it propagates at an
angle smaller then critical with respect to a critical direction defined by the condition that the group
velocity is parallel to the phase velocity. The critical angle is proportional to the ratio of the dispersion
length to the soliton width, which is a small parameter. The coefficient of proportionality is expressed
in terms of the phase speed and its second derivative with respect to the angle between the propagation
direction and the critical direction. As an example we consider the stability of solitons propagating in
Hall plasmas.

1. Introduction

More than a century ago Korteweg and de Vries derived their KdV equation to describe nonlinear waves on the
water surface [1]. They also obtained the most famous solution to this equation, the soliton. Then this equation
was practically forgotten for more then sixty decades before it gloriously resurrected in early sixties of the last
century when it turned out that it describes various types of wave modes in plasmas. The interest of researchers
in this equation was further boosted when it became the first nonlinear equation that can be completely
integrated using the inverse scattering transform [2—4].

Kadomtsev and Petviashvili formulated the problem of stability of the KdV solitons with respect to
transverse perturbations. To solve this problem they derived the Kadomtsev-Petviashvili (KP) equation [5].
Then they used the regular perturbation method to study the soliton stability with respect to very long transverse
normal modes. They obtained a very simple result: solitons are stable if they propagate in a medium with the
negative dispersion, in which case the Kadomtsev-Petviashvili equation is called the KPII equation, and unstable
if they propagate in a medium with positive dispersion, in which case the Kadomtsev-Petviashvili equation is
called the KPI equation [5, 6]. This result was then confirmed in [7-9], where it was also shown that in case of the
KPI eugation only normal modes with the wavelengths above a threshold value are unstable, while those with the
wavelengths below the threshold value are neutrally stable. Recently it was proved in [10] that the KdV solitons

© 2022 The Author(s). Published by IOP Publishing Ltd
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are stable with respect to nonlinear transverse perturbations in the case when they are described by the KPII
equation.

However, the conclusion that the soliton stability is described by the KPI equation when the dispersion is
positive, and by the KPII equation when the dispersion is negative, is only valid when solitons propagate in an
isotropic medium where the propagation speed is the same in all directions. The problem of stability of solitons
propagating in an anisotropic medium was addressed by Ostrovskii and Shrira [11]. They used the nonlinear
geometrical optics to study the soliton evolution with time. In particular, they showed that a soliton propagating
in an anisotropic medium is stable unless it propagates at a small angle with respect to a critical direction, which
is the direction where the propagation speed takes extremal value. Recently Ruderman [12] derived the KP
equation for nonlinear waves propagating in a Hall plasma. In this plasma the wave dispersion is related to the
account of the Hall current in the induction equation. The plasma is anisotropic because of the presence of the
equilibrium magnetic field. The critical directions are those that are parallel and perpendicular to the magnetic
field. There are two wave modes that can propagate in this plasma, fast and slow magnetosonic waves. The fast
waves are characterised by the positive dispersion, and slow by the negative dispersion. It was shown that fast
solitons are unstable with respect to the normal modes no matter what is the propagation direction. Slow
solitons are unstable if the angle between the propagation direction and the equilibrium magnetic field is smaller
than a critical value, and stable otherwise.

The results obtained by Ruderman [12] contradict to those obtained by Ostrovskii and Shrira [11]. To
reconcile the results Ruderman made a conjecture that, in fact, the result obtained by Ostrovskii and Shrira
concerns the stability with respect to bounded perturbations rather than the normal modes. In that case we must
distinct between the absolute and convective instabilities. In accordance with the conjecture suggested by
Ruderman the result obtained in [11] should be formulated as follows:

If a soliton propagating in an anisotropic medium is unstable with respect to normal modes, then the
instability is always convective unless the soliton propagates at a small angle with respect to a critical direction.

In this article we aim to prove the conjecture suggested in [12]. The article is organised as follows: In the next
section we derive the general KP equation for nonlinear waves propagating in an anisotropic medium. In
Section 3 we formulate the linear stability problem and introduce the Laplace—Fourier transform to obtain its
solution. In Section 4 we obtain the solution to the linear stability problem. In Section 5 we study the absolute
and convective instability of a soliton with respect to transverse perturbations. In Section 6 we apply the general
results to the soliton stability propagating in Hall plasmas. Section 7 contains the summary of the results and our
conclusions.

2. Kadomtsev-Petviashvili equation in an anisotropic medium

We consider two-dimensional waves propagating in ahomogeneous anisotropic medium. In the linear
approximation the dispersion relation for these waves is w = w(g, r), where g = k,(1 + kf / kDY r=n-k,
k= (k,, k,), n = (cos @, sin @), and «vis a free parameter. Now we introduce the scaled quantities k, = ¢ k,and
k, = ¢%k,. Thenwe obtain
£2
q= ek + 53i + O(e%), r = ckycosa + €%k, sina. (1)
X

Next we assume that w(0, 0) = 0 and use the expansion

Ow Ow 1@ 24 0w

w(@rN=—q+ —r—+ — r
@O=5.1" % 1o T gt
WP, 1, 10
2 0r? 6 9q° 75 8q28rq
3 3
1 Pw lawr3+m’ @

— r —_——
2 Oqor? 1 6 or’

where all derivatives are calculated at ¢ = r = 0. We assume that we use the reference frame where the
unperturbed medium is at rest. In this case the wave properties must be invariant with respect to the
substitution — k — k. In accordance with this we impose the condition that w changes the sign when k changes
the sign. This condition implies that w(—q, —r) = —w(g, r). It follows from this condition and equation (2) that

Po _ 0 _ Pu _
dq*  0q0r  Or?
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Then, substituting equation (1) in equation (2) we obtain

w=-ck, w + a—wcosoz + ezl;ya—wsina
0 or

0q r
=2
| 0w Ky 1-3(10%w OPw
el —— + =k, | ——— + cosa
dq 2k, 2 "\30q° 0q°0r
w 1 PPw
+ cos? + —cosPa——- || + O(e?). 4
dq0r* 3 or? )} . ©
Now, returning to non-scaled quantities we obtain the approximate dispersion equation
kew = ki + Bk + Thek, + Ak}, (5)
where
c:a—w—i—a—wcosa, Tza—wsina, A:la—w
0q r or 2 0q
ﬂ — l@ + l COS (v 830..)
60q> 2 q*0r
1 w 1 0w
+ —cos? + —cos® a—. 6
2 dqor* 6 or? ©

We recall that all derivatives are calculated at g = r = 0. Itis not difficult to see that Y is the y-component of the
wave group velocity. Substituting /0t for — iw, 0 /0x for ik,, 0/ Jy for ik, and assuming quadratic nonlinearity
we obtain that the Kadomtsev-Petviashvili equation has the form

0 ( Ou ou Ou Ou A*u 0%u
= e T+ Nu— 4 f— | = —A—. 7
Ox ( ot Ox dy Ox b ox? ) Oy? @
Now we use the variable substitution
T:Ly UZM) X:X(x_(:t)r
to 6
3xo?
Y=(y—Tt |=—, 8
6% ) oA )
where y = —1 / /o8 and t, is an arbitrary positive constant with the dimension of time. As a result we reduce
equation (7) to
0 (U oUu QU o*U
—| —= + 6U— + + 30— =0, 9
0X ( oT ox  ox3? ) oY? ®

where 0 = sgn(yA) = sgn(BA). This is the KPI equation when o> = —1 corresponding to solitons unstable
with respect to transverse perturbations, while this is the KPII equation when * = 1 corresponding to solitons
stable with respect to transverse perturbations.

3. Formulation of the linear stability problem and introducing the Laplace-Fourier
transform

The concept of absolute and convective instabilities was first introduced in plasma physics [ 13, 14], and then in
hydrodynamics (see e.g. Drazin and Reid [15]). An instability is absolute if perturbations grow at any fixed spatial
position, while it is convective if perturbations grow, however they are so quickly swapped out of any finite
spatial domain that eventually they decay at any fixed spatial position. Obviously, the distinction between the
absolute and convective instabilities depends on a reference frame. An instability can be absolute in one
reference frame and convective in another (see figure 1). Equation (5) is derived under the assumption that the
unperturbed state is static, that is the unperturbed velocity is zero. In accordance with this equation (7) can be
used to study the soliton stability in the reference frame where the medium is at rest far from the soliton. In
contract, equation (9) describes the soliton in the reference frame moving with the velocity cin the x-direction
and Y in the y-direction with respect to the reference frame where the medium is at rest far from the soliton.
Below we study the convective and absolute soliton stability in the latter reference frame and then explain how to
translate this study to any other reference frame.

3
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NZSYAN

Figure 1. Temporary evolution of localised disturbance. In the upper panel the disturbance amplitude tends to infinity at any fixed
spatial position as t — oo . In the lower panel the disturbance amplitude also tends to infinity as t — oo . However, simultaneously it
moves out of any finite spatial domain so fast that the perturbation amplitude tends to zero as t — oo . The upper panel illustrates the
absolute instability, and the lower the convective instability. The distinction between the absolute and convective instability is frame
dependent. In the lower panel the instability is absolute in the reference frame x'z’ moving together with the wave packet.

Studying absolute and convective instabilities is based on the solution to the initial value problem. We
consider a solution to equation (9) describing a soliton. It reads

202

U=0i&) = cosh2(v€)’

E=X— 4. (10)

where v > 0is a free parameter. Below we only consider the case where the soliton is unstable with respect to
transverse perturbations. In this case equation (9) is the KPI equation and 0> = —1. Now we substitute

U = U, + vin equation (9) and linearise the obtained equation with respect to v. In addition we make the
variable substitution £ = X — 41°T. As a result we obtain

3 2
ﬁﬂ,4yz@+6w+ﬂ ,3ﬁ:0. (11)
o0&\ 0T 0¢ 0¢ & oY?
Then we consider the initial value problem for this equation defined by
TER, GV R, [ Pdedy < oo,
R
v=vy(§ Y)at T=0, (12)

and assume that the derivatives of v(&, T, Y) that are present in equation (12) exist. To solve the initial value
problem for equation (12) we use the Fourier transform with respectto Y,

far= [T ey,
_L < 2 iKY
f0 = [ faoera, (13)
and the Laplace transform with respect to T,
f(Q):foc F(T)e T ar,
0
1 is+oo .
T)=— Q)e T 4Q, 14
fn=o— [ Fe (14)

where ¢is a real number such that the Bromwich integration contour,
B={Q|QecC, J) =g}, (15)
lies above all singularities of function f (£2). In equation (15) J indicate the imaginary part of a quantity. We also

denote the Fourier-Laplace transform of function f(T, Y) as f (2, K). Applying the Fourier-Laplace transform
to equation (11) yields
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d N dv d(Uyv) d*v . dvy
—| - — 2= + 6 + — | + 3K = —. 16
df( 11947 v i i d§3) V (16)

4. Solution to the initial-value problem

It follows from the result obtained in Appendix A that the complementary function of equation (16) is

d 4
17com = - Ch(é-)) (17)
a2 O
where Cjare arbitrary constants,
. KZ F'Jj 2
hi(§) =e ﬁ[llu%? - (tanh(l/f) + 5) ], (18)

and Ky,...,k4 are the four roots of the algebraic equation
k* — 40%k% + iQk + 3K2 = 0. (19)

Using equations (18) and (19) we can study the soliton stability with respect to normal modes. We temporarily
drop the subscript j. An eigenvalue €2 corresponding to a normal mode is determined by equation (16) with

79 = 0 and the condition ¥ — 0as || — co . When $(k) > 0, where R indicates the real part of a quantity, we
have h(§) — 0as £ — oo . The condition that h(§) — 0 as £ — — oo is satisfied when

(1 - %)2 = %2;2, R(k) < 2v. (20)
Eliminating K from equations (19) and (20) yields
i =4rQv — K)(k — V). @21
It follows from equation (20) that
K? — 2uk + |[K| =0, or k?— 2uk — |K| = 0. (22)

The condition D(x) > 01is satisfied by both roots of the first equation when |K| < 1, and both of them satisfy
the condition R(x) < 2v.Only the positive root of the second equation satisfies this condition. However, it is
straightforward to see that this positive root is real and larger than 2. Hence, the second equation must be
rejected. Now, using the first equation in equation (22) we obtain

I.Ql’z = i4|K|ﬂV2 - |K| (23)

The value of k corresponding to €2; defined by this equation with the plus sign is given by the larger root of the
left quadratic equation in equation (22), and the value of x corresponding to €2, defined by equation (23) with
the minus sign is given by the smaller root of the same quadratic equation.

A normal mode is unstable when €2 < 0, which corresponds to €2,. Hence, we conclude that there is the
unstable normal mode with the increment

I = —iQ, = 4[K|Jv? — K| 24)

when |K]| < . This result was previously obtained in [7] and [8]. The increment takes its maximum equal to
gl/3 3 at|K| = éuz. Since the instability growth rate is bounded the stability problem is well-posed. The two
values of 2 determined by equation (23) with | K| < 17 constitute the point spectrum of the eigenvalues problem
defined by equation (16) with the zero right-hand side and the condition that the solution is square integrable on
the real axis.

Next we consider the case where R(x) < 0. In this case h(§) — 0 when £ — — oo . The condition that &
(&) — 0as £ — oo is satisfied when

&\ K?
1+ — | =——, R(k) > 2. 25

( v ) 41%K? () (23)
The analysis similar to that carried out in the case where 2R(k) > 0 shows that 2 = 2, is defined by the same
equation (23), while the corresponding values of  are defined by the equation

K* + 2vk + |K| = 0. (26)

Again the value of k corresponding to 2 defined by equation (23) with the plus sign is given by the larger root of
this equation, and the value of  corresponding to {2 defined by equation (23) with the minus sign is given by the
smaller root of this equation.
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Now we use the method of variation of arbitrary constants to obtain the solution to equation (16) tending to
zero as || — oo . In accordance with this method we look for the solution in the from given by equation (17),
however with C; being functions of . Then, substituting this expression in equation (16) and imposing standard
conditions on the derivatives of Cj(£) we obtain the system of four linear algebraic equations determining these
derivatives,

4 dC; 4 dC; dh;
hi©) =o, e i Ay § (27a)

; d¢ § d¢ de

4 dC. d?*h; 4 dC. d’h;
Z _J_ZJ -0, Z _1_31 = Do, (27b)

o de dg o dg de

where the prime denotes the derivative with respect to . Using Cramer’s rule we obtain that the solution to the
system of equations (27) is given by

: Do W

=) =L, (28)
dg Wo

where

h hy hy hy
Wy W, Wi W,
WO = h/l1 h//2 h”3 h"4 > (29a)
h ///1 h ///2 h ///3 h ///4

hz h3 h4 hl hS h4

VVl == h/z ]’l/3 h/4 5 W2 = I’lll I’l/3 ]’1/4 5 (2917)
h”Z ],l//3 h//4 h/l1 h/l3 ],l//4
h1 h2 h4 hl h2 hS

VVs == ]’lll ]’llz h/4 5 ‘/V4 = ]’lll ]’llz h/3 . (29C)
h//1 h//2 h//4 h//1 h//2 h//3

W, is the Wronskian of equation (16). Hence, W/ (€) is equal to W () times the coefficient at the third
derivative in equation (16) [16]. However, this coefficient is zero, so that W/((§) = 0 and
Wo(&) = const = W, (0). The determinant W is calculated in Appendix B. Itis given by

A

Wo=—+ [ @& — & (30)
Iv°K? 1<j<I<4 !
where
% 2
A=K — |2 42|, (31)
16
We aim to obtain the solution to equation (16) that tends to zero as |¢| — oo . In accordance with this we take
Ci(©)
Ci(§) = —=, 32a
i (©) W (32a)

e
e m@ Wi R > o,
Ci(&) = - (320)

(—1)it! j; T BE)Wi(E)de, Rk < O.

When studying the absolute and convective instabilities we can always assume that the perturbation has a finite
support, that is vo(§) = 0 for |£| > &. Then itis obvious that C{(§) — 0 as |{| — oo . The solution to equation (16)
decaying at infinity is given by

1 v

j=—2
Wo dé

4
U(E) = hi(©)Ci(©). (33)
=1
The case where JR(x;) = 0 for one value of jis special. Let us assume that there is a purely imaginary root of
equation (19), iT, where T is real. Then it follows from equation (19) that

Q=713+ 42 + 3K>r7L (34)
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Itis easily shown that the range of function 2(7) is
Qe (*OO) *QO] U [901 00)7 (35)

where

0 = %(zyza, + 31K16,), (36a)

1 2 2
oi:\/ 4v* 4+ 9K :|:2V. (36b)

3
When k; = iT we have h;(§) behaving as e for large |¢| implying that Q is in the continuum spectrum of the
operator defined by equation (16) with the zero right-hand side and the condition that the solution is square
integrable on the real axis. Hence, the continuous spectrum is defined by equation (35). When considering v asa
function of 2 we make the cuts along the two intervals constituting the continuous spectrum.
We have W, = 0 when ;= & for some jand [, that is when equation (19) has a double root when {2 = €2,.
There are four values of €2;. These values of €2; with the corresponding double roots «; are given by

0, = i%(3|K|O_ — ), kg = 46, 37)

or by
Oy = £Q0, kg = Lib_. (38)

When there is one double root of equation (19) it is easy to find two other roots and show that they are different
and none of them coincides with the double root.

Now we take Q = Q; + ¢, where () is given by equation (37) and €* can be either positive or negative.
Without loss of generality we can denote the roots that tend to 1, as x; and k,. It is easy to show using
equation (19) that k; = k3 + O(¢)and k; = k3 + O(¢). It follows from equation (18) that k() and h,(€) are
analytic functions of k; and k,, respectively, with the only pole at zero. Then it follows that
hi(&) = hg(§) + O(e)and hy(§) = hy(€) + O(e), where hy(€) is equal to h(€) with k = k. Using this result
we obtain that

Wi=W;+ O(e), W, =W;+ Oe),
W5 =0(e), W= O(e), (39)

where W, is obtained by substituting h4(&) for h,(£) in the expression for Wj. It follows from these results that the
numerator in equation (32) is of the order of €. Since Wy ~ k, — k1 = O(¢) it follows that there is a finite limit
of v as € — 0. Hence the singularity of ¥ considered as a function of Q2 at 2 = Q;is removable.

We do not consider the double roots defied by equation (38) because they correspond to the values of €2 that
are on the cuts. Hence, all the singularities of v on the (2-plane with cuts are related to zeros of A.

We now change the notation and write $(§ ; K, Q) to show explicitly that the solution to equation (16)
depends on K and §2. We now prove that @({ ; K, ©2) = 0when Qis given by

i, = +4|K|v? + |K]. (40)

Substituting v given by equation (33) in equation (16) we obtain

A i(Ud\If) v

—iQ— — P — + 4+ 5= 4 3K2T = Wo(Q) P 41
idf e i Odf i (D)7 (41)
Since D(K, Q21) = 0 and [17(5; K, ) — 0as|{| — oo it follows from equation (41) that r\Ij(f; K, Q4)isan
eigenfunction unless W(&; K, €21) = 0. However, we have proved that {2, are not eigenvalues, which implies
that U(¢; K, Q) = 0.
Noticing that

A= —((iQ)z — VK% — |K|K2)

16
‘)2
(G ey ki), (42)
16
and summarising the results obtained in this section we obtain that
g YEK D) 43)
D(K, )
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where
QZ
DK, ) = — + K*(v? — |K]), (44)
. —1
U(E K, Q) = 91/8[(2[% ~ K22+ |1<|)]
X (H1<j<1<4 (K:l K])) ldf (45)

In accordance with the results obtained in this section, for any £ function W(&; K, ) is a regular function of 2 on
the complex 2-plane with the cuts along the intervals (— 0o ,—$2] and [§24, 00 ). Hence, v is a meromorphic
function in the complex €2-plane with the cuts. It has exactly two singularities that coincide with the zeros of
function D(K, 2). Their positions are given by equation (23). Both of these singularities are simple poles. When
|K| > 17 these poles are on the real axis. It is straightforward to see that |2, ,| < £y meaning that the poles are
always on the complex §2-plane with the cuts.

Now we can calculate v(T, &, Y) using the inverse Laplace and Fourier transforms:

1 is+00 o0 \I;(g’ K, Q) Xy ot
, T,Y) = — — - KYJK e ™ dQ. 46
V& T mhﬂw[wamﬁ)xe ‘ o

When studying the absolute and convective instabilities we consider ¥ as a function of two complex variables, {2
and K. To do this we make the extension of this function from the real K-axis to the complex K-plane. However,
we cannot do this using the expression for v(T, &, Y) given by equation (43) because of the presence of |K] in this
expression. Ruderman et al [17] and Ruderman [18] encountered a similar problem when studying the absolute
and convective instabilities of a tangential discontinuity in an incompressible fluid viscous at one side of the
discontinuity and ideal at the other side. Hence, to overcome the problem related to the presence of |K] in the
expression for the dispersion function D we closely follow the analysis by Ruderman et al. We transform
equation (46) in such a way that the integration with respect to K is only over the positive real axis. Using
equation (44) we obtain

D(K, Q) = D(-K, —-0), (47)

where the bar indicates the complex conjugate. The roots of equation (19) are functions of {2 and K. It is easy to
verify that the roots of this equation satisfy

ki(K, Q) = kj(—K, =), (43)

where j = 1,...,4. Using this result we obtain from equation (18)

hi(& K, ) = hij(& —K, Q). (49)

Now it follows that
Wi(EK, ) = W& —K, —0), j=0,..4, (50)

and, consequently,
GG K D =Ci& —K, -0, j=1...4 (51)

Continuing this analysis we eventually arrive at
V(& K, Q) =W —K, =), (52)

Now we split the inner integral in two: one from — oo to 0, and the other from 0 to oo , so thit noww&, T, Y)is
equal to the sum of two integrals. Next we make the variable substitution K — —K, {2 — —(2in the first integral
and use equations (47) and (51). This yields

f““ f° YE KD vy | miorgq
i [J-x D&, Q)

oo [fo (& —K, =) —iKYdK] T 40)

is+00 D(-K, —Q)
is+00 00 . X .

:.]1S f M e KYdK | e 2T 4. (53)
iG—00 0 D(K, Q)
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(b) ‘Ki

Qim| 1(
Q, o

Figure 2. (a) Movement of {2 down to (2,,. (b) The trajectories of colliding K-roots of the dispersion equation D(K, Q) = 0when
moves down to €2, (thin curves), the deformed integration contour in the complex K-plane (thick curve), and pinching of this contour
by two K-roots are shown.

Using this result we transform equation (46) to

1 i¢+00 .
V(& T, Y) = —R f B, Y Q)eTdQ, (54)
27‘[’2 ic—o0
where
© P& K, Q)
o, v = [ 28200 v 55
& Y; Q) fo AT (55)

Since now the integration with respect to K is along the positive real axis we have |K| = Kin equation (44) and
thus D(K, 2) is a holomorphic function of K.

5. Studying absolute and convective instabilities

To study the absolute and convective instability we use the method developed by Briggs [13] (see also Bers [14]
and Brevdo [19]). However, similar to the analysis in [17] and [18], the function W(&, (2) is given by the integral
from 0 to oo and not from — co to 0o asin [13]. Hence, we use the modification of Briggs’ method introduced
in[17].

Below we study the absolute and convective instabilities in various reference frames. We consider a reference
frame moving with the velocity V inthe y-direction with respect to the reference frame where equation (9) is
valid. This reference frame, in turn, moves in the y-direction with the velocity T with respect to the reference
frame where the medium is at rest far from the soliton. In the moving reference frame the frequency 2 is
Doppler-shifted by VK and, as a result, we have to substitute 2 + VK for €2 in all expressions containing {2,

where
v [ X (56)
A

D(K, Q) = DK, Q + VK) (57)

In particular we have to substitute

for D(K, () in equation (55). For any K function D (K, ) isameromorphic function on the 2-complex plane
with the cuts along the intervals (— 00 ,—y + VK], and [§2y + VK, 00 ), and with two poles at 2, , + VK.

Since the maximum growth rate of the instability does not exceed gu3\/§ = T, it follows that D (K, Q)isa
holomorphic function in the half-plane J(€2) > I,. Hence, it is enough to take ¢ > I',,, in equation (54). It is also
obvious that D (K, ) considered as a cubic polynomial with respect to K cannot have a real root when
J(Q) > I}, and, consequently, the integrand in equation (55) is non-singular. Now in accordance with Briggs’
method [13] we starts to move the integration contour in equation (54). We do it point by point (see figure 2a)
reducing the imaginary part of (2 while keeping constant its real part. As soon as J(€2) = I}, while
J(Q) = —KV wehave D’ (K, Q) =0atK = %1/2, and the integrand in equation (55) is singular. However this

problem can be easily solved. We deform the integration contour in equation(55) in such a way that K = %1/2 is
not on the new contour. The only conditions that we need to observe are that the left end of the contour remains
attached to the origin of the K-complex plane and the contour approaches the real K-axis at infinity. We keep
deforming the contour to make the integrand in equation (55) non-singular every time when a root of cubic
equation D (K, €2) = 0 hits the contour. We emphasise that the shape of the deformed contour depends on the
real part of €. In principle, it is even possible that, for some values of {2 we do not need to deform the K-contour
atall. Using the above procedure we obtain the analytical continuation of (¢, Y; §2) below theline J(Q2) = I},.. It

9
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is stated in the standard Brigg’ method [13] method that we need to make the analytical continuation of ®(¢,

Y; Q) slightly below the real axis to have perturbations decaying with time. However, in fact, it is enough to have
the analytical continuation to the upper half of the complex (2-plane and continuous up to the real axis. Really, if
we can take ¢ = 0 in equation (54) then simple integration by parts shows that (€, T, Y) — 0 as T — oo atleast as
fastas 1/T. This implies that the instability is convective.

The singularity in the integrand in equation (55) cannot be removed when the contour is pinched by two K-
roots that come from two different sides of the contour (see figure 2b). We call a collision of two roots on the
deformed contour that causes its pinching a pinching collision. If a pinching collision occurs when {2 = €2, then
D(&,Y; 2) has abranch-point singularity of the form (2 — Qp)*l/ 2[13, 14, 19]. We denote the double root that
appears as a result of collision of the two K-roots as K. The dominant term of the contribution to the
asymptotics of the expression for (&, T, Y) at fixed £ and Y, and T — oo coming from this singularity has the
form

A(& Ky, Q)T V2 exp(iK, Y — i, T), (58)
where the factor A(§; K, §2,) is independent of T'and Y. Hence, the instability is absolute when J(£2,) > 0.

A necessary condition for a pinching collision of two K-roots to occur is that, at the collision point (K}, £2,,),
the dispersion function D (K, §2) hasa double rootin K, that is

~ oD
D(K,, ©,) = 0, a—K(Kp, Q,) = 0. (59)

Using equation (44) and (57) we obtain from equation (59) the following system of equations:
(Q 4+ VK)? + 16K*(v* — K) = 0, (60a)

V(Q + VK) + 8K(2v? — 3K) = 0. (60b)

The solution to this system of equations is straightforward. It reads

4802 + V2 + VI V2 — 482

72

Ky = (61a)

1
Q,p =—[—V (14412 + V?
pE 216 ( )

+ (4812 — V)V — 4812]. (61b)

We see that 2, are real when |V| > 4v+/3. In this case pinching does not occur for any value of €2 in the upper
Q-plane, and the instability is convective. Hence, | V| > 4p+/3 isa sufficient condition for the instability to be
convective.

Wealso can conclude that | V| < 4v+/3 is a necessary condition for the instability to be absolute. We have
J(£2p+) > 0and the possible pinching occurs in the upper {2-plane. However, this condition is not sufficient. It
is also necessary to verify that the two colliding K-roots come from different sides of the integration contour in
the K-complex plane. Ruderman et al. [17] showed that this condition reduces to the following: We take
Q= R(Qp4) + is, whereisslightly larger that I',,,, and then start to reduce the imaginary part of {2 until
2 =), 1. When the imaginary part of {2 decreases the two K-roots that collide when €2 = €2, move in the
complex K-plane. Then the colliding roots pinch the K-integration contour if and only if the union of their
trajectories crosses the positive part of the real K-axis odd number of times. It is shown in Appendix C that the
colliding roots are always pinching if | V| < 4u+/3. Therefore, the instability is absolute when | V| < 4v+/3.

The most interesting are the stability properties in the reference frame where the medium is at rest far from
the soliton. In this reference frame nonlinear waves are described by equation (7). To obtain this reference frame
we have to take VV = — Y. Hence, using equation (56), we obtain that in this reference frame the instability is
absoluteif | Y| < 4v./ A/ xty and convective otherwise. Now we connect the condition for the absolute
instability with the direction of soliton propagation. We define a critical direction of wave propagation as a
direction at which the group velocity is parallel to the phase velocity. We choose one of the critical directions and
introduce the angle ¢ between this direction and the wave vector k. Defining the unit vector in the direction of
the wave vector, k = k/k, we obtain that the phase velocity is given by V,, = ¢ (©)k. The wave frequency is
w = c(p)k. Introducing the unit vector in the critical direction, €, we obtain k cos ¢ = € - k. Differentiating this
relation yields

kcos p — kg—i sinp = €. (62)

10
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Using this identity we obtain for the group velocity

ow

V, = — = c(pk + d(p)ki, 63
K (¥) (ke (63)
where the prime indicates the derivative and
f = Keosp =& (64)
sin ¢

Itis easy to see that k; isa unit vectorand k - k; = 0. The condition that the direction the angle o is measured
from s critical is written as V,, || k. It follows from equation (63) that this condition reduces to ¢’(0) = 0.

Now we introduce Cartesian coordinates x, y with the angle between the x-axis and the critical direction
equal to . Then we consider a wave propagating at a small angle ¢ with respect to the x-axis. We obtain

ke =kcosop =~ k( 1— %(ﬁz) and k, = ksin ¢ ~ k¢. The angle between the critical direction and the wave

vector is ¢ + ¢. Using these relations and k ~ k, ( 1+ %q’)z) we write the dispersion equation as

w=clp + Bk~ Dk + (D) + %C”(so)cbzk

K2
~ c(ky + c'(@ky + [c(p) + c”(ga)]j. (65)

The assumption that |k,| < |k, is equivalent to |¢| < 1. Comparing equation (65) with equation (5) with the

second term on the right-hand side describing the wave dispersion dropped we obtain T = ¢’(¢) and

A= %[c (¢) + ¢"(¢)]. Hence, the condition for the absolute instability can be rewritten

as|c'(@)| < 4v A/ xt.

The KP equation was derived under the assumption that the perturbation amplitude is small and the
characteristic spatial scale of perturbations is much larger than the dispersion length. The dispersion length is
defined by the condition that the second term on the right-hand side of equation (5) describing the wave
dispersion is of the order of the first term. Hence, we can define thislength as £ = /|5|/c.

Now, using equation (8) we rewrite equation (10) as

2
2= 200 . (66)
cosh®(vy [x — (c + 4v2/xto)t])
Then 2(vx)? can be considered as the soliton amplitude and its width can be defined as
1 1
=—=—Ynlfl. (67)
vxl v

Equation (7) was derived under the assumption that the characteristic spatial scale of perturbations in the x-
direction is much larger than the dispersion length. This condition can be written as £ < L. Using equation (67)
we reduce the condition for the absolute instability to

2
()] < Tf«/ZdC + . (68)

In this equation not only c and its derivatives can depend on ¢ but also . We will see this in the example
considered in the next section. Below we assume that the ratio /L is independent of . It follows from
equation (68) that |c’(¢) /c(¢)| < 1. Since ¢’(0) = 0 this condition is equivalent to || < 1. This result shows
that the conjecture made in [12] and formulated in the Introduction is correct. We make a viable assumption
that c(¢) = ¢(0) and () ~ ¢"(0) and recoll that /L is assumed to be independent of . Then the criterion of
absolute instability given by equation (68) can be rewritten in the approximate form as

2¢
|Q0| < © = mﬂZClC + C”l N (69)

where cand ¢’ are now calculated at ¢ = 0. We can see that ¢, is inversely proportional to the soliton width, or,
what is the same, it is proportional to the square root of the soliton amplitude. When the inequality equation (69)
is not satisfied the soliton is only convectively unstable.

6. Example: Soliton stability in Hall plasmas

In [12] the KP equation was derived for nonlinear waves propagating in a Hall plasma. In such a plasma two
kinds of nonlinear waves can propagate: fast and slow magnetosonic. One critical direction for both kinds of
magnetosonic waves is along the equilibrium magnetic field. For fast magnetosonic waves there is the second
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critical direction. It is perpendicular to the equilibrium magnetic field. We measure the angle ¢ from the
direction of the equilibrium magnetic field. Below we consider a two-dimensional problem where all the
variables depend on the coordinates x and y with the x-axis in the direction of the wave propagation and the y
axis in the plane defined by the x-axis and the equilibrium magnetic field. The KP equation was derived in [12]
for the perturbation of the y-component of the magnetic field. The coefficients of this equation are given by

2= %(Cf + Vit \/(Csz + V)2 — 4c2 V35 cos? ), (70a)

2y/2 2
cZVi cos
Ty =— gAzwz, (70D)
2c4[2¢i — (¢ + V)l

c+V? sin 2 -V
Ni = £ATTY (3—k(y—%l);%———§ , (700)
2Bo[2ci — (¢f + V)] i — ¢

2V (2 — ci)cos?

— , (704d)
A T Viwos o — @ VD)
202 2 2172 2,2 2 2
ci(ecl+Vy) —c¢iVi+ Yi(cl + Vi — 6¢
poo VD -GV 4 Vi ) 700)
2c4[2¢t = (¢ + VI
The sound speed ¢, Alfvén speed V4, and dispersion length ¢ are defined by
2= po Do M 1)
Po HoPo efloPo Va

where 7y is the adiabatic index, p, po, and By are the equilibrium plasma pressure and density, and the magnetic
field, m;is the ion mass, e the elementary charge, and 11 the magnetic permeability of free space. We note that in
equation (7) Nis dimensionless, while in equation (70¢) its dimension is ¢/ B. This difference is related to the fact
that in equation (7) the variable u has the dimension of velocity, while in [12] the KP equation was derived for the
magnetic field perturbation.

Itis shown in [12] that the KP equation for fast magnetosonic waves reduces to the KPI equations by the
corresponding variable substitution. This implies that fast solitons are unstable with respect to normal modes of
transverse perturbations. Using equation (70a) we obtain from equation (69) that solitons propagating at angles
with respect to the equilibrium magnetic field satisfying the inequality | | > ¢, are only convectively unstable,

where
2¢¢
%“ZM%Mﬁ_éL (72)

m

and ¢y = max(c;, V4)and ¢,;, = min(c,, V). We note that we cannot claim that a soliton propagating at an
angle ¢ with respect to the equilibrium magnetic field satisfying the inequality |p| < ¢, is absolutely unstable.
The reason is that solitons propagating at very small angles with respect to the equilibrium magnetic field are not
described by the KdV equation. It is immediately follows from the fact that 3, — 0as ¢ — 0 when ¢, > V,, and
B4 — oo when ¢, < V4. In fact, they are described by the Derivative Nonlinear Schr 6 dinger equation (DNLS)
equation (e.g. [20-22]). The multidimensional generalisation of this equation was derived in [23, 24]. This
multidimensional DNLS equation was used in [24] to study the soliton stability with respect to normal modes of
transverse perturbations.

In fact, the condition || > ¢, does not guaranty that the soliton is only convectively unstable. Since the
direction orthogonal to the equilibrium magnetic field is critical the soliton can be absolutely unstable if it
propagates at a small angle with respect to this direction. To obtain the condition for convective instability for a
soliton propagating quasi-perpendicular with respect to the equilibrium magnetic field we introduce
@ = m/2 — . Then we obtain that the instability is convective when |p| > &, where

L 28(c+ VYD)
‘ L V3

V2t + 2VE+ VD). (73)

Hence, the soliton is only convectively unstable if | | > ¢, and ’ g — ’ > . Again, we cannot claim thata
soliton propagating at an angle » with respect to the equilibrium magnetic field satisfying the inequality

|@| < @ isabsolutely unstable. It can be immediately seen from the fact that 3, — 0as ¢ — g Solitons
propagating quasiperpendicular with respect to the equilibrium magnetic field are still described by the KdV
equation. However, for proper description of these solitons one must add the term taking the electron
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inertial into account in the induction equation. The account of electron inertia is important when
% — | < m,/m;, where m;is the electron mass.

Now we proceed to slow magnetosonic waves. It is shown in [ 12] that the variable substitution reduces the
KP equation for slow magnetosonic waves to the KPI equation when || < ¢, and to KPII equation when
|| < @o. The angle o, decreases from 7/6 to 0 as ¢,/ V4 increases from 0 to 1, and then increases from 0 to /6 as
¢;/ V4 further increases from 1 to infinity. Hence, slow solitons are unstable with respect to normal modes of
transverse perturbations when they propagate at small angles with respect to the equilibrium magnetic field
unless ¢,/ V4 is very close to 1. The soliton is convectively unstable when || < ¢, and ¢ is not very close to %,

where

2€¢,,
e =T V2IVi =€l (74)

™

Again we cannot claim that a soliton is absolutely unstable when || > ¢,_; the reason is the same as in the case
of fast solitons.

7.Summary

In this article we studied the stability of one-dimensional solitons propagating in an anisotropic medium with
respect to transverse perturbations. We derived the general form of the Kadomtsev-Petviashvili (KP) equation
for nonlinear waves propagating in anisotropic media. By a proper variable substitution this equation reduces
either to the KPI or to the KPII equation. It is well known that a one-dimensional soliton solution to the KPI
equation is unstable with respect to normal modes of transverse perturbations, while a one-dimensional soliton
solution to the KPII equation is stable with respect to these perturbations.

We only considered the case when the KP equation reduces to the KPI equation. We studied the absolute and
convective instabilities of solitons. For this we solved the initial value problem for the linear stability using the
Laplace—Fourier transform. Then we used Briggs’ method. We showed that so-called critical directions of
propagation play an important role in the soliton stability. A critical direction is defined by the condition that the
group velocity equals to the phase velocity when the wave propagates in this direction. We proved that a one-
dimensional soliton is only convectively unstable unless it propagates at an angle smaller than the critical with
respect to a critical direction. The critical angle is proportional to a small parameter equal to the ratio of the
dispersion length to the soliton width. The coefficient of proportionality is expressed in terms of the phase speed
and its second derivative with respect to the propagation angle.

As an example we considered the stability of solitons propagating in a Hall plasma. In such a plasma two
kinds of solitons can propagate: fast and slow. There are two critical directions for fast solitons, one along the
equilibrium magnetic field and the other perpendicular to this field. For slow solitons there is only one critical
direction along the equilibrium magnetic field. We expressed the coefficient of proportionality in the expression
for critical angles in terms of the sound and Alfvén speed.
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Appendix A. Complementary function of equation (16)

In this section we obtain the complementary function of equation (16), that is the general solution to the
homogeneous counterpart of this equation. We put
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d
v = —[e & . Al
y 5[ g ()] (AL)
Substituting this expression in equation (16) with the right-hand side equal to zero yields
d'g d’g d*q
—= — 4k—= + (6Uy — 412 + 6K%)—=
der Mg O Vae

+ 6@ — 125Uy — 4K® — iQ + 8%k 4
¢ dg

—|—(iQI€ — 42K? — 6fidd—(? + 6K2U,

+k* + 3K»)g = 0. (A2)

Next we make the variable substitution s = tanh(2/€). As a result we transform equation (A2) to
3

d’g

vi1 — 52)4@ — 421 — s2’Bus + k) —=
ds* ds?

+6v%(1 — s2)2(4v3s* + dvks + /@2)%
+v(1 — sH[24075(s* — 1) — 12uk*s — 8v%k
—4K3 — iQ]Z—‘j + [12026(1 — s2)(k + 2vs)
+iQk — 42k + Kk* + 3K?g = 0. (A3)
Now we look for the solution to this equation in the form
g(s) =a + bs — s?, (A4)

where a and b are the constants to be determined. Substituting this expression in equation (A3) we should obtain
the sixth order polynomial. However the coefficient at s° is identically zero, so that we obtain the fifth order
polynomial. In order that g(s) given by equation (A4) be a solution to equation (A3) all the coefficients of this
polynomial must be zero. The conditions that the coefficients at s° and s* are zeros coincide. Hence, we obtain
that g, b, and x must satisfy five equations,

vb = —k, (A5a)

iQ = 28v%k — 4K® — 12av%k + 24b13, (A5Db)
QWb — k) + 400%k% — 12av*k% 4 320%kb

+4vrih — k* — 3K? =0, (A5¢)

iQQv + kb) + 813k (3a — 4) — 241 + 8vk?

+b(k* — 4v%k% + 3K?) = 0, (A5d)
iQ(ka — vb) — 120%k% — 4vbr (V2 + K?)

+a(k* + 8v2%k% 4+ 3K?) = 0. (A5e)

Using equations (A5a) and (A5b) to eliminate b and €2 from equations (A5¢)—(A5e) we obtain that all these three
equations reduce to

4av’k® + k* — K2 = 0. (A6)

Now it follows from equations (A5a), (A5b), and (A6) that « satisfies the equation

Kk* — 402k + iQk + 3K?2 =0, (A7)
while a and b are given by
K? — gt K
a=———, b=——. A8
4v%K? v (A8)

Now it follows from equations (A1) and (A4) that the function

V= dig{e“5 [a + btanh(¥€) — tanh?(¥€)]}. (A9)

is a solution to equation (16) with the right-hand side equal to zero when « satisfies equation (A7), and aand b
are given by equation (A8).
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Appendix B. Calculation of W,

In this section we calculate the determinant W, given by equation (29a). We write h(§) = e © fg(s), where
s = tanh(v¢), g(s) = a + bs — 5%, and a and b are given by equation (A8). We temporarily drop the subscript .

Then we obtain
% = e“£(1/(1 - 52)% — Hg), (Bla)
2 2
N _ el o - 52)2d_g
de? ds?
—2v(1 — s?)(vs + ,%)Z—g + nzg), (B1b)
s
3 3
M — eiﬂg 1/3(1 — 52)3d_g
de? ds?
d’g
— 3021 — s2)?*Qus + R)F + (1 — s?)(6v3%?
s

+ 6uUks + 3K% — ZVZ)Z—f — n3g). (Blc)

Substituting g(s) = a + bs — s” in these equations and using the relation vb = —k we reduce these equations to
dh

% = e "2us3 + 2652 — Qv — v IkD)s — k(a + D], (B2a)
Lk = e "[—6v2%* — 6Uks® + (8v2 — 3Kk2)s?
age?
+ v k(602 — KH)s — 202 + K*(a + 2)], (B2b)
% = e "€[241%° 4 241%ks* — 4w (1002 — 3K%)s°

+ 4r(k* — 8v%)s? + (1613 — 12vk?
+ v Ys + 8k — K3(a + 3)]. (B2c)
Taking £ = 0 and s = 0 we obtain

2
h = a, %:—n(a—i—l), Z—;zl:nz(a—f—Z)—Zl/z,

@
de’
These expressions are valid for h,...,h, and for their derivatives. Using equations (A7) and (A8) we obtain

iQk3 K2 iQk

R
1203K?% — Q2
+ W = Qi(K),
K> 4k i
302 3 122
iQk
aw?

= 8%k — K3(a + 3). (B3)

—k(a+1) =

= QZ(K’))
KX(a+2) — 202 =K+

K2
+ 7 - 21/2 = Q3(K’))

iQk?

42

8vk — K3 (a + 3) = —2kK® —

2

—1—(81/2 — %)/{ = Qu(k). (B4)
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Using equations (B3) and (B4) we obtain

Qi(k) Qi) Qi(k3) Qi(k4)
_ Qa(k) Q2(k2) Qa(k3) Qz(ky)
M= Qutm) Qo) Qsls) Qulra) | (55

Qu(k1) Qua(k2) Qu(ks) Qa(ka)
Now we add the last row multiplied by i€2(7202K %)~ to the first row, and the last row multiplied by 1/617 to the
second row. This yields

Ri(k1)) Ri(k2) Ri(k3) Ri(kg)
Ry(k1)) Ry(kz) Ra(k3) Ry(ksg)

W, = , B6
"= Q) Qs Qslrs) Qs (B6)
Qu(k1) Qu(k2) Qu(kz) Qu(kg)
where
K2 0?2 iOk 1 92
Ri(x) 3u2(96u21<2 - 1) R O
Ry(x) = 71’9/-@2 B K%k n iQ . (B7)

We now consider W, as a function of k4. Q4(x) is a cubic polynomial, while R, (k), Ry(x), and Qs(k) are quadratic
polynomials. Consequently Wo(r.4) is a cubic polynomial with respect to x4. Wy(x4) = 0 when either k4, = k1, or
K4 = Ky, OT K4 = K3 because in this case two columns in the determinant Wy are identical. This implies that
Ky, and k3 are the roots of cubic polynomial Wy(k.,). Then Wy(r4) is equal to (kg — K1)(Kq — K2)(Kq — K3) times
the coefficient at 3, which is equal to the coefficient at Q,(r,) in the expansion of W(r,) with respect to the last
column times (—2). As a result we obtain

Wo = —2(k4 — m) (54 — ) (5g — r3) W, (B8)
where
_ Ri(k) Ri(k2) Ri(k3)
Wo=| Ru(k1) Ra(ka) Rp(ks) | . (B9)
Qs(k) Qs(k2) Qs(k3)
We add the last row multiplied by (1/ 307)(1 — Q%/9617K?) to the first row, and the last row multiplied by
i€2/241" to the second row. This yields
. Si(k1)  Si(k2)  Si(ks3)
Wo = | Sa(k) Sa(k2) Sa(k3) |» (B10)
Qs(k) Qs(k2) Qs(k3)

where
. 2 2 2 2
Sl(ﬁ):lQH 5 _ Q 1 K__L_Q_,
7204 16v2K? 3 3vt  48v%K? 2880
K 02 iQK?
So(k) = — | k24 = |+ . B11
() 61/4( 161/2) 2415 (B11)

We now consider VAVB as a function of k3. Q3(k) is a quadratic polynomial, while S;(x) and S,(k) are linear
functions of k. Consequently Wo(ks)isa quadratic polynomial with respect to xs. Wp(1:3) = 0 when either

K3 = K] OF K3 = K, because in this case two columns in the determinant WO areidentical. This implies that x; and
K, are the roots of quadratic polynomial D(k3). Then D(k3) is equal to (k3 — k;)(k3 — k) times the coefficient at
#2, which is equal to the coefficient at Qs(3) in the expansion of WB (k3) with respect to the last column. As a
result we obtain

Wo = (k3 — r) (13 — ko) W, (B12)
where
o Si(k1)  Si(k2)
= . B
" S2(k) Sa(k2) (B13)
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We easily obtain
_ 2 2
= m m (2 apa) g, (B14)
1818K? 16

Using equations (B8), (B12), and (B14) we eventually arrive at

1 6 ( o 2 2)2 I1

Wy = K —|— 4+ v K X (k) — Iij). (B15)
98K ? 16 Lo i<

Appendix C. Proving that colliding K-roots are pinching

In this section we prove that colliding roots are always pinching. We consider |V| < 41+/3 and write

V = 403 sin ), (CI)

where ¢ € (— 7/2,7/2). Then we obtain

2
K, = ”?(2 + 2sin?e) + isin21), (C2a)
3
0, = 8”;5 [—sint)(3 + sin1p) + i cos® 1. (C2b)
Next we write
Q=0, + Sid3 9, K=K, + 202, (C3)
9 3

where ¥ varies from 0 to 3+/3 (82%) ![¢ — J(p)]withe > T, = §V3 3. This corresponds to varying J(£2)
from J(£2,) to ¢while keeping R(Q2) = R(€2,). Substituting equation (C3) in equation (60a), taking into
account that €2, and K, satisfy the system of equations (60), and using equation (C2) yields
2X + 3X costp(cost) + 2isine)) — 6iAY sin
+ 9% + 209[cos (1 + 2sin?2p) — 2isin’yp] = 0. (C4)

Using the variable substitution A = z — z;, where
z0 = % cos(cos + 2isin)), (C5)

we reduce the cubic equation (C4) to the depressed form
22+ pz+g=0. (C6)

The coefficients of this equation are given by

p= ZC052¢(4 — 5cos?9) — 2isin2y) — 3id sinp, (C7)

q= icosﬂp[cos (13 cos?yp — 12)
+ 2isin (7 cos?yp — 4)] + ¥[cos>
+ ésinw(7 cos? 1) — 4)] + %192. (C8)

We notice that K,,, zo, p, and g are functions of 1. We have the following relations: K,(—1) = K, (¥),
zo(—) = zo(W), p(—1) = p(¥) and q(—) = q(1)). It follows from these relations and equation (C6) that
z(—1) = z(1) and, consequently, A\(—1) = A(¢}). Let us now assume that the colliding roots are pinching for
) = 1. Then it follows from that the trajectories of colliding roots for 1) = —1) are symmetric to those for
1) = 9 and, consequently, the roots are pinching for ¢» = —1). This observation enables us to carry out the
analysis only for ¢ > 0.

Below the two roots of equation (C6) corresponding to the two colliding K-roots of the dispersion
equation (60a) will be called the colliding z-roots. We denote them as z; and z,. The third root of equation (C6) is
z3. When K = K, we have A = 0 and, consequently, z = z,. Then it follows that z; = z, = zywhen ¥ = 0, and, in
accordance with equation (C5), the trajectories of the colliding z-roots defined by equations z = z;(+}) and
z = z,(1) start in the upper part of the complex z-plane. Since z, + z, + z; = 0 it follows that z; = — 2z, when
¥ = 0, and the trajectory of the third root defined by equations z = z;(:) starts in the lower part of the complex z-
plane.

17



I0P Publishing

Phys. Scr. 97 (2022) 075206 M S Ruderman et al
K. 0.57
i
0 T > 1 T T > T
0.5 1 1.3 2 2.5

K

4
—0.54

R /

Figure 3. The thick line shows the deformed integration contour. The thin lines with arrows show the trajectories of K-roots in the
complex K-plane. The scale in the axes is arbitrary.

Let us now assume that the trajectory of one of the K-roots crosses the real axis in the complex K-plane when
¥ = 9. This implies that J(K (¢.)) = 0.Itis straightforward to check that for the corresponding z-root
J(z(¥.)) = 0. Weintroduce the notation z, = z(1J,). Substituting z, for zand ¥, for ¥ in equation (C6), separating
the real an imaginary parts of the obtained equation, and using equations (C7) and (C8) we obtain the system of
two equations,

42> + 3z, cos?1h(4 — 5c0s21p) + 2092 + 419, cos®
+cos* (13 cos?yp — 12) = 0, (C9)
(cos® i) + 9.)(6z. — 7cos?1p + 4) = 0. (C10)
Since ¥, > 0 it follows from equation (C10) that

z, = %(7cosz¢ — 4). (C11)

The corresponding K-root crosses the real axis at K, + %yz (z — zp) = %yz (8 + cos?v)) > 0, thatisitcrosses
the positive part of the real axis. Substituting equation (C11) in equation (C9) yields

sin (4 + 5cos?¥)?

92 + 20 cos? 1) — 0. C12
Y 108 (C12)
The positive root to this equation is
2 2.2
9, = \/cos61/) 4 Sy 1+o§ COS Y _ o3y, (C13)

Introducing ¢ = 21/3\/3 ¢ we obtain that 9 € [0, ¢ — cos’ 1], where now ¢ is any quantity larger than 1. Itis not
difficult to show that 1J, < 1 — cos®%. This implies that . € (0, ¢ — cos® ).
Differentiating equation (C6) with respect to ¢ we can calculate dz/d. Substituting z = z.and ¢ = ¥, in the

obtained formula and taking its imaginary part yields

di(z) —27sin1(cos® ¢ + 1.)? (C14)

A9 sin*(3 + sin1))? + 81sin?p(cos ) + U )

Wesee that dJ(z) /d < 0. This resultimplies that a root trajectory can cross the real axis only moving from the
upper to the lower complex z-plane. Hence, only the trajectories of colliding roots can cross the real axis, and
only once. If we assume that both trajectories cross the real axis, then, for some value of 9 they will be in the lower
part of the complex z-plane. As a result, we would obtain J(z; + z, + z3) < 0, which contradicts to the
condition z; + z, + z3 = 0. Hence, we conclude that only one trajectory of the two colliding roots can cross the

18



I0P Publishing

Phys. Scr. 97 (2022) 075206 M S Ruderman et al

real axis. On the other hand, one trajectory must cross the real axis because equation (C6) has a real root when

9 = 9. Therefore, the trajectory of one of the colliding roots crosses the real axis and the trajectory of the other
colliding root does not cross it. We see that the union trajectories of two colliding z-roots crosses the real axis just
once, that is the odd number of times, and the same is true for the trajectories of the two K-colliding roots. In
addition, the crossing occurs at the positive real axis. This implies that the colliding K-roots are pinching.

The analytical study presented in this section was supported by the direct numerical solution of the
dispersion equation. The numerical results confirmed that the trajectory of one colliding roots crosses the
positive real axis once, while the trajectory of the second root does not cross it. The picture of root trajectories
and pinched integration contour are shown in figure 3 for ¢ = 45°. The picture is similar for other values of ¢
with the only difference that the double root is in the lower complex K-plane when ¢ < 0.
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