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Abstract—We present a work-in-progress method for the
synthesis of continuous-time Markov decision process (CTMDP)
policies—an important problem not handled by current proba-
bilistic model checkers. The policies synthesised by this method
correspond to configurations of software systems or software con-
trollers of cyber-physical systems (CPS) that satisfy predefined
nonfunctional constraints and are Pareto-optimal with respect to
a set of optimisation objectives. We illustrate the effectiveness
of our method by using it to synthesise optimal configurations
for a client-server system, and optimal controllers for a driver-
attention management CPS.

Index Terms—continuous-time Markov decision process, prob-
abilistic model checking, Pareto-optimal policy

I. INTRODUCTION

Markov decision processes (MDPs) have long been used

to support the synthesis of software and cyber-physical sys-

tem configurations and discrete-event controllers that satisfy

predefined dependability, performance and other nonfunctional

requirements [1]–[3]. However, for many systems of practical

importance, time appears explicitly in their nonfunctional

requirements, and therefore using MDPs for their modelling

and synthesis is not possible. For these systems, the modelling

of the timing aspects is essential, and this can only be achieved

through using continuous-time models.

Continuous-time Markov decision processes (CTMDPs) [4],

[5] provide a powerful paradigm for modelling and syn-

thesising stochastic systems in different field ranging from

queuing systems [6], autonomous applications [7], power

management [8] and inventory systems [9]. CTMDPs represent

an extension of continuous-time Markov chains (CTMCs) that

also permits the modelling of nondeterminism, where this non-

determinism can be managed by a policy [10]. Nevertheless,

existing probabilistic model checkers such as PRISM [11] and

Storm [12] do not support CTMDPs.

Our paper addresses this limitation of current tools by

introducing a work-in-progress method for the synthesis of

CTMDP policies. This method supports the synthesis of

optimal configurations for software systems, and of software

controllers for cyber-physical systems (CPS) whose timing

properties and nondeterminism need to be taken into account.

Our new method operates by encoding the CTMDP used in

the synthesis as a parametric CTMC, so that the synthesis of

policies for the original CTMDP is equivalent to synthesising

the values for the parameters of this CTMC. As such, the

parameteric CTMC can be employed to synthesise the required

CTMDP policies either (i) manually, by using a probabilistic

model checker; or (ii) in a fully automated way, by using the

EvoChecker probabilistic model synthesis tool [13].

We carried out a preliminary evaluation of our new method

by applying it to the synthesis of: (i) Pareto-optimal con-

figurations for a queue whose requests are handled by a

server with dual operating mode, and (ii) a software controller

for a realistic human-in-the-loop self-adaptive system. The

latter system comes from the autonomous driving domain,

and was adopted from the existing work within the ‘Safety of

Shared Control in Autonomous Driving’ (SafeSCAD) project

at www.york.ac.uk/assuring-autonomy/projects/safe-scad.

II. BACKGROUND

Similar to MDPs, each state of a continuous-time Markov

decision processes has one or several associated actions such

that the outgoing transitions from that state and their rates

depend on the action selected in that state. We use the

following formal definition adapted from [4], [5], [14].

Definition 1. A CTMDP with countable number of states and

actions is a four-tuple M “ pS, s0, A,Rq, where:

‚ S is a countable set of states;

‚ s0 P S represents the initial state;

‚ A is a finite set of actions;

‚ R : S ˆ A ˆ S Ñ Rě0 is a transition rate function such

that, for any states si, sj P S and any action a P A,

Rpsi, a, sjq specifies the rate of transition from state si
to state sj when action a is selected in state si.

We have Rpsi, a, sjq “ 0 when sj “ si, and
ř

sjPS Rpsi, a, sjq “ 0 if action a is not available in state si.

Finally, for any action a P A available in state si, the proba-

bility that the CTMDP leaves state si within t ą 0 time units

when action a is selected is given by 1 ´ e
´t¨

ř

skPS Rpsi,a,skq
,

and the probability that this transition is to state sj is given

by Rpsi, a, sjq{
ř

skPS Rpsi, a, skq.

To enable the analysis of additional properties, the states

and transitions of a CTMDP can be annotated with rewards.

Definition 2. A reward structure over a CTMDP with state

set S is a pair of real-valued functions rX “ pr1, r2q, where

r1 : S Ñ Rě0 is a state reward function that determines the



rate r1psq at which the reward is acquired while the Markov

model remains in state s; and r2 : S ˆ A ˆ S Ñ Rě0 is a

transition reward function that describes the reward r2psi, sjq
obtained each time a transition occurs from state si to state

sj following the selection of action a P A in state si.

The choice of which action from A to take in every state

s P S of the CTMDP is assumed to be nondeterministic, and

reasoning about the behaviour of CTMDPs involves the use

of policies. A policy resolves the nondeterministic choices of

an CTMDP by choosing the action taken in every state. In

this paper, we consider deterministic memoryless policies, i.e.,

policies for which the same action is chosen each time when

a CTMDP state is reached. We use the term “policy” to refer

to this class of CTMDP policies in the rest of the paper.

Definition 3. A (deterministic memoryless) policy of an CT-

MDP is a function σ : S Ñ A that maps each CTMPD state

s P S to an action from A that is available in state s.

Note that each such policy σ maps the CTMDP over which

it is defined to a standard continuous-time Markov chain

Mσ “ pS, s0,Rq with same state set S and initial state s0 as

the original CTMDP, and with transition rate matrix R defined

by Rpsi, sjq “ Rpsi, σpsiq, sjq for any states si, sj P S.

Finally, we use continuous stochastic logic (CSL) aug-

mented with rewards [15] to express the requirements (includ-

ing constraints and optimisation objectives) for the CTMDP

policies to synthesise. Particularly relevant to our paper, these

include reward-based requirements such as ‘R
dropped
“?

rCďT s ď
MaxDropped ’ (to express the requirement that not more

than MaxDropped requests are dropped by a server within

T time units) and ‘minimise R
length
“?

rI“T s’ (to express the

requirement that the instantaneous length of a server queue at

time T should be minimised).

III. CTMDP POLICY SYNTHESIS METHOD

Our method for (deterministic memoryless) CTMDP pol-

icy synthesis comprises two steps. The input for the first

step is a K-action CTMDP M “ pS, s0, A,Rq with

A “ ta0, a1, . . . , aK´1u. Using the notation Isi “ tk P
t0, 1, . . . ,K ´ 1u |

ř

sjPS Rpsi, ak, sj ‰ 0u to denote the

set of indices of the actions available in state si P S, this step

builds a parametric CTMC (pCTMC) M 1 “ pS, s0,Rq whose

transition rate between states si P S and sj P S is given by

Rpsi, sjq “
ÿ

kPIsi

equalpxsi , kqRpsi, a, sjq, (1)

where xsi P Isi is a parameter, and equalpa, bq “ 1 if a “ b

and zero otherwise. Fixing the value of each parameter xsi

for the pCTMC M 1 reduces it to a (non-parametric) CTMC

identical to the CTMC obtained for the policy of the original

CTMDP that selects action axsi
for each state si P S.

In the second step of our method, we search the parameter

space
Ś

siPS Isi of the pCTMC from step 1 for combinations

of parameter values txsiusiPS that reduce the parameteric

CTMC to a non-parametric CTMC which satisfies a set

of CSL-encoded requirements of interest. Two options are

available for performing this search. First, the pCTMC can be

encoded in the modelling language of the probabilistic model

checking PRISM [11] for a manual analysis of the different

combinations of parameter values using this model checker.

This option is suitable when only a small number of such com-

binations are possible. Alternatively, the parametric CTMC can

be encoded in the extended PRISM modelling language used

by the probabilistic model synthesis tool EvoChecker [13], and

the multiobjective genetic algorithm search engine provided

by this tool can be used to perform an automated search for

parameter value combinations that satisfy the requirements.

This option can handle very large search spaces. We illustrate

the use of both options in the next section.

IV. PRELIMINARY EVALUATION

To evaluate the effectiveness of the CTMDP policy synthesis

approach in producing Pareto-optimal solutions for complex

combinations of requirements,1 we applied it within two

case studies. The first case study is based on the simple

queueing system from our running example. The second case

study involves the synthesis of a controller for managing the

attentiveness of drivers of vehicles with Level 3 automated

driving systems. We present these cases studies next.

A. CTMDP policy synthesis for a queueing system

For this case study, we used the new method for the

synthesis of CTMDP policies corresponding to the synthesis

of optimal configurations for a simple queue. As shown in

Figure 1, this queue consists of a single server that offers

services incoming requests. This system has a state space

q “ t0, 1, . . . , Nu where q denotes the number of requests

that are waiting for service or being served, and N ą 0 is

the maximum number of requests that the queue can process.

Each request arrives at a µ ą 0 rate. Assume the server has

two states: ready ps “ 0q when the server is free and ready to

process a request from the queue, or busy ps “ 1q when the

server has just serviced a request and needs to perform a clean-

up operation before servicing to another request. Each request

can be processed by the server with one of two service rates:

λF ą 0 for fast mode or λ ą 0 for standard mode. When

the server is busy, the arriving requests join the queue and

wait until the server becomes available. If the queue is full,

the arriving request is dropped from the queue. Finally, we

assume that the cost of serving a request using the standard

and fast mode of operation is c1 ą 0 and c2 ą c1, respectively.

Given this queue, we suppose that the mode of operation

(i.e., standard or fast) used by its server for each queue size q P
t1, 2, . . . , Nu needs to be determined such that the following

constraints and optimisation objectives are satisfied:

1) the number of requests dropped within a period of time of

length T should not exceed a given bound MaxDropped ;

1i.e., sets of requirements comprising multiple constraints and multiple
optimisation objectives
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Fig 1. CTMDP model of a queue of size N ą 0 with request arrival rate µ, and a server that can process each request using one of two modes of
operation: a “standard” mode with service rate λ and a “fast” mode with service rate λF ą λ; the server needs to perform a clean-up operation (with rate
γ) after each serviced request. Note how two actions (corresponding to the blue and red state transitions) are available in each state when the queue contains

q ą 0 requests, and the server is ready to process a request (i.e., s “ 0).

2) the total cost for serving requests over a period of time of

length T should not exceed a given bound MaxCost ;

3) the expected queue length at time T should be minimised;

4) the total costs for serving requests over a period of time

of length T should be minimised,

where T ą 0 is a predefined period of time. These constraints

and optimisation criteria can be formalised using rewards-

extended CSL as follows:

1) R
dropped
“?

rCďT s ď MaxDropped ;

2) Rcost
“?

rCďT s ď MaxCost ;

3) minimise R
length
“?

rI“T s;

4) minimise Rcost
“?

rCďT s.

Our evaluation considered a version of the queueing system

with N “ 6, µ “ 1.6, λ “ 1.8, λF “ 4, γ “ 20, c1 “ 1 and

c2 “ 5. The pCTMC model induced by the CTMDP queueing

system for these parameter values is shown in Figure 2.

To find the Pareto-optimal policies that satisfy the objectives

and constraints mentioned earlier, we manually ran PRISM

experiments covering all possible policies for the CTMDP, i.e.,

all combinations of px1, x2, . . . , x6q P t0, 1u6. The size of this

search space is 26 since we have six parameters with two types

of service rates (fast or standard). The Pareto front associated

with the set of Pareto-optimal policies for the queuing system

is shown in Figure 3.

B. CTMDP policy synthesis for driver attentiveness manage-

ment controller

For the second case study, we applied our method to a

CPS for managing the attentiveness of a driver in Level 3

autonomous driving vehicles. This CPS is adopted from our

previous work [16] and manages the driver’s attentiveness

by using a Monitoring-Analysis-Planning-Execution (MAPE)

control loop, that involves four steps:

‚ The monitoring step employs a number of sensors that are

mounted on the car and the driver (as a wearable device)

to gather data about them.

‚ The analysis step receives the data from the previous

step, analyses them, forecasts the driver’s reactions, and

measures the quality of the driver’s response.

‚ The planning step selects the speed of the car and the alerts

to be activated by means of a discrete-event controller

ctmc 

const int N = 6; 
const double mu = 1.6; 

const double lambda = 1.8; 

const double lambda_fast = 4; 

const double gamma = 20; 

module queue 

  q : [0..N] init 0; 

  [request]  q<N -> mu:(q'=q+1); 
  [dropped]  q=N -> mu:(q'=q); 

  [serve]    q>0 -> 1:(q'=q-1); 

endmodule 

const int x1; 

const int x2; 

const int x3; 

const int x4; 

const int x5; 
const int x6; 

module server 

  s : [0..1] init 0; 

  [serve]    s=0 & q=1 & x1=0 -> lambda:(s'=1); 

  [serve]    s=0 & q=1 & x1=1 -> lambda_fast:(s'=1); 

  [serve]    s=0 & q=2 & x2=0 -> lambda:(s'=1); 

  [serve]    s=0 & q=2 & x2=1 -> lambda_fast:(s'=1); 
  [serve]    s=0 & q=3 & x3=0 -> lambda:(s'=1); 

  [serve]    s=0 & q=3 & x3=1 -> lambda_fast:(s'=1); 

  [serve]    s=0 & q=4 & x4=0 -> lambda:(s'=1); 

  [serve]    s=0 & q=4 & x4=1 -> lambda_fast:(s'=1); 
  [serve]    s=0 & q=5 & x5=0 -> lambda:(s'=1); 

  [serve]    s=0 & q=5 & x5=1 -> lambda_fast:(s'=1); 

  [serve]    s=0 & q=6 & x6=0 -> lambda:(s'=1); 

  [serve]    s=0 & q=6 & x6=1 -> lambda_fast:(s'=1); 

  [prepare]  s=1 -> gamma:(s'=0); 
endmodule 

rewards "dropped" 

  [dropped] true : 1; 
endrewards 

rewards "length" 

  true : q; 

endrewards 

rewards "cost" 

  [serve] q=1 : (x1=0)?1:5; 

  [serve] q=2 : (x2=0)?1:5; 
  [serve] q=3 : (x3=0)?1:5; 

  [serve] q=4 : (x4=0)?1:5; 

  [serve] q=5 : (x5=0)?1:5; 

  [serve] q=6 : (x6=0)?1:5; 

endrewards 

N: queue size 
mu: request arrival rate 

lambda: standard mode service rate 

lambda_fast: fast mode service rate

gamma: the clean-up operation rate. 

This module models the queue, which 

is full when q=N. 

pCTMC parameters. Each 

parameter xi could have one 
of two values: 0 or 1. 

This module models the server. 

It has two rates of transition 

from s=0 to s=1: 

– fast (when xi=1)
– standard (when xi=0).

the 'dropped' reward assigns a reward of 1 to transitions 

that model a request being dropped (i.e., when q=N). 

"cost" reward assigning a reward of 1 for requests 
server in standard mode and a reward of 5 for 
requests served in fast mode

'length' reward measuring the queue size 

Fig 2. The PRISM-encoded parametric CTMC model for the queuing system

engaged when the driver’s attentiveness changes or the

driver takes to long to respond to previous alerts.

‚ The execution step performs the controller’s actions from

the previous step, e.g., it reduces the car speed when the

driver is inattentive, or it operates the planned alerts via

visual, acoustic and/or haptic actuators.

The self-adaptive system is modeled as a CTMDP and

converted to a parametric CTMC by using our method. The

3



Fig 3. Pareto front the queuing system (results obtained running PRISM for
9.53 seconds on a MacBook Pro computer with 2.5 GHz Dual-Core Intel

Core i5 processor and 8 GB of memory)

parametric CTMC is then employed to synthesise the con-

troller component in the planning MAPE step. Due to space

constraints, we cannot provide these models in the paper; the

interested reader can find them in our previous work [16].

The purpose of the controller synthesis is to achieve optimal

trade-offs among three measures: nuisance, progress and risk.

We want to produce Pareto-optimal policies for the cumulative

reward properties described below:

1) minimising the driver nuisance (due to alerts) over a

four-hour journey: minimise Rnuisance
“?

rCď4s;
2) maximising the progress with the trip over a four-hour

journey: maximise R
progress
“?

rCď4s;
3) minimising the overall risk incurred over a four-hour

journey: minimise Rrisk
“?

rCď4s.

The controller decision space comprises 8
16 combinations of

actions due to the 16 options of controller configurations with

8 values in which represents the alerts and the car’s speed

level when the driver is not fully attentive. To synthesise a

Pareto-optimal set of controllers for this system, we utilised

the search-based software engineering tool EvoChecker [13].

The resulting Pareto front is shown in Figure 4.

V. RELATED WORK

Many studies have been carried out to synthesise multi-

objective optimisation policies for MDPs [1]–[3], and CT-

MDP policies for simple optimisation requirements [17], [18].

However, none of these projects consider obtaining policies

for combinations of multiple constraints and multi-objectives

requirements for CTMDPs. Finally, our previous work in [16]

uses a parametric CTMC to synthesise parameter values for

the controller from the second case study in Section IV, but

does not provide a generally applicable method for CTMDP

policy synthesis like we do in this paper.

VI. CONCLUSION

We presented a work-in-progress CTMDP policy synthesis

method that allows the generation of Pareto-optimal con-

figurations and controllers for software systems and CPS,

Fig 4. Pareto front for the Safe-SCAD controllers (results obtained running
EvoChecker for 18.43 seconds on a Mac mini computer with 3.2 GHz

6-Core Intel Core i7 processor and 32 GB of memory)

respectively. Our preliminary evaluation in two case studies

show that the methods can handle synthesis problems from

different application domains. In future work, we plan to assess

the quality of the Pareto-optimal solutions, fully automate the

application of the new method, and evaluate our method in a

broader range of case studies and scenarios.
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