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Abstract—Training of speech enhancement systems often does
not incorporate knowledge of human perception and thus can
lead to unnatural sounding results. Incorporating psychoacous-
tically motivated speech perception metrics as part of model
training via a predictor network has recently gained interest.
However, the performance of such predictors is limited by the
distribution of metric scores that appear in the training data.
In this work, we propose MetricGAN+/- (an extension of Metric-
GAN+, one such metric-motivated system) which introduces an
additional network - a “de-generator” to improve the robustness
of the prediction network (and by extension of the generator) by
ensuring observation of a wider range of metric scores in training.
Experimental results on the VoiceBank-DEMAND dataset show
relative improvement in PESQ score of 3.8% (3.05 vs. 3.22 PESQ
score), as well as better generalisation to unseen noise and speech
signals.

Index Terms—speech enhancement, noise reduction, speech
quality metrics, neural networks, GAN, metric prediction

I. INTRODUCTION

Speech enhancement (SE) has been an active research topic

for decades now, given its myriad applications in human-to-

human (h2h) communication in video or voice calls as well as

in human-to-machine (h2m) communication in home, industry

and mobile device assistant products [1], [2]. Use of neural

network (NN) systems to perform speech enhancement has

shown great success in recent years [3]–[7]. Training of NNs

for speech enhancement requires selection of an objective

function appropriate for the task. Direct comparison between

‘clean’ audio and the output of a neural network given an

artificially corrupted version of that audio has been found to

be only weakly correlated with objective measures (metrics)

of intelligibility, quality and performance for both forms of

speech communication [8]–[10]. A recent publication [11]

proposed a loss function that corresponds to one of these

psychoacoustically motivated metrics. However, such objective

functions must be carefully designed as many objective mea-

sures contain calculations that are non-differentiable. Several

systems circumvent this limitation via use of an additional

model that mimics the behaviour of the metric [12]–[14], with

this network being used as a surrogate of the metric used as

an objective function in training of the speech enhancement

model. The baseline system that this work builds upon is one

such system, MetricGAN+ [15] (itself an extension of previous

This work was supported by the Centre for Doctoral Training in Speech and
Language Technologies (SLT) and their Applications funded by UK Research
and Innovation [grant number EP/S023062/1]. This work was also funded in
part by TOSHIBA Cambridge Research Laboratory.

work MetricGAN [16]). Two popular objective measures the

Perceptual Evaluation of Speech Quality (PESQ) [17] and the

Short-Time Objective Intelligibility (STOI) [18] for speech

quality and intelligibility respectively are used. Both measures

account for human perception and are often highly correlated

with Mean Option Score (MOS) of human evaluators [8],

[11], [19]. The computation of STOI is relatively simple,

and a version of it suitable for use as an objective function

is detailed in [11]. Calculation of PESQ is more complex,

and thus cannot be formulated in a differentiable way to

be used as objective functions. To handle this problem, a

secondary ”discriminator” network is introduced that, given

a representation of the reference and the degraded signal,

predicts the metric score corresponding to those two signals.

Such a metric prediction network is sometimes referred to as

a QualityNet [12]. The output of this discriminator network is

then used to train the speech enhancement (generator) network.

The two networks are trained in a Generative Adversarial

Network (GAN) style strategy. In this work we introduce a

further network, a ’de-generator’ which attempts to produce

outputs with a set lower metric score, aiming to improve the

ability of the discriminator to predict the metric on a more

complete range of metric scores.

The remainder of this paper is structured as follows: Section II

presents the baseline system, its model structure and training

setup. The proposed extension is introduced in Section III,

followed by a comparison to the baseline in Section IV and a

brief conclusion in Section V.

II. BASELINE SYSTEM - METRICGAN+

The MetricGAN+ framework [15] consists of two networks:

a speech enhancement model G, which aims to remove the

undesired signal parts, i.e the noise v[n] from a noisy signal

x[n] = s[n] + v[n] (1)

to produce an estimate of a clean signal s[n], denoted in the

following by ŝ[n] and a metric discriminator (more correctly

an evaluator) D, which predicts the possibly psychoacousti-

cally motivated performance metrics(s) providing a target to

optimise the signal enhancement.

1) Input Features: Features are calculated from different

time domain signals denoted here by p[n] and which is a

placeholder for the signals x[n], s[n], ŝ[n] for the time index n

which we will omit in the following. First a spectral magnitude

Pk,ℓ for frequency k and frame ℓ is calculated of the time
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STFT log(|P|+ 1)

Feature Computation (FC)

|P|
Pf

p[n]x[n]

s[n]
ŝ[n]

∠P

Fig. 1. Illustration of feature computation (FC), p[n] can be any signal
x[n], ŝ[n], s[n]

domain audio signal p using the Short Time Fourier Transform

(STFT), followed by transformation to the feature space by

adding 1 to and taking the logarithm of each element to give

the feature representation Pf as shown in Fig. 1. The phase

of the spectral bins ∠pk,ℓ will be used later to resythesize the

time domain signal using the Overlap-Add (OLA) method.

2) Generator Network for Signal Enhancement: Fig. 2

shows the training of G. The dotted blue arrows and pro-

cesses show the objective function and loss calculation back-

propagated to the model. In order to obtain the enhanced signal

ŝ from the noisy features Xf in the generator G’s training and

inference, the transform is reversed by subtracting 1 from each

element and taking the exponential of each element in the

feature representation. The output of G is a time-frequency

MSE

G

|X|

Xf

∠X

exp(Xf − 1)

s
1

·

Sf

D

FC

FCRe-Synth
(OLA)

ŝ Ŝf

D(Ŝf ,Sf )
MG

Clamp

(ξ = 0.5)

Fig. 2. Training and inference of MetricGAN+ Generator.

(T-F) mask matrix MG , which is then multiplied with the

noisy magnitude spectogram |X| to result in the enhanced

signal matrix |Ŝ|. The enhanced time domain audio signal ŝ[n]
is calculated using OLA resythesis. Note that each element

in MG is ‘clamped’ in order to reduce residual musical

tones caused by the mask, i.e. it is limited to element wise

values ξ ≤ MG ≤ 1. The objective function of the speech

enhancement network G is dependent entirely on the metric

score of its output ŝ (in its feature space representation Ŝf )

as predicted by discriminator D

LG,MG+ = E[(D(Ŝf ,Sf )− 1)2] (2)

where 1 represents a ‘perfect’ score in the normalised metric

Q′(·).
3) Discriminator Network for Metric Prediction: The dis-

criminator D is trained to reproduce the normalised target

metric Q′(·) minimising the distance from its output and the

‘true’ normalised metric score used as its objective function,

as visualised in Fig. 3. Arrows and processes marked blue

denote those which occur only during training. The loss of

the discriminator comprises three mean squared error (MSE)

terms depending on the clean reference signal s, or Sf , the

degraded noisy signal x, or Xf , and the enhanced signal ŝ, or

Ŝf . More specifically, its objective function is given as:

LD,MG+ = E[(D(Sf ,Sf )− 1)2 +(D(Ŝf ,Sf )−Q′(ŝ, s))2+

(D(Xf ,Sf )−Q′(x, s))2] (3)

Metric

FC

FC

D

px

s
ŝ

Q(p, s)

Pf

Sf

Normalization

D(Pf ,Sf )

Q′(p, s)

MSE

Fig. 3. Training and inference of MetricGAN+ Discriminator.

The 1 in the first term of (3) represents the fact that

Q′(s, s) = 1. In the second term, the scores of signals

enhanced by G, ŝ are considered and compared to the ground

truth score for the enhanced signal. In the final term, the scores

of noisy signals x are considered and compared to the true

score for the noisy signal. Note that in the case of the metrics

investigated in this work the input to the function that defines

the metric are the time domain signals x, ŝ and s, but this

may not always be the case.

4) MetricGAN+ Training: Each epoch of training consists

of four steps, the first three representing the training of D and

the final step the training of G. At the start of each epoch,

I audio segments are randomly picked out from the training

set. Firstly D is trained as given in (3) on these I random

audio segments. The audio segments are time domain signals

of varying length. Then, in the second step, D is trained using a

’replay buffer’ where saved enhanced outputs of the generator

G from past epochs are used to train D. The size of this

replay buffer is decided by a ‘history_portion’ H hyper-

parameter, which corresponds to the replay buffer growing by

a set percentage of the audio segments observed each epoch.

This is done to prevent D from ‘forgetting’ too much about

the behaviour of Q′(·) on previously enhanced speech.

Then the first step is repeated with D again being trained

using the t random samples. Finally, G is trained also using

these t samples as in (2). During training of D, G is ‘frozen’

and its parameters are not updated; the opposite is true during

G’s training. Note that samples are added to the replay buffer

during the first step of D’s training, meaning that 20% of the

‘current’ epoch data are always present in the replay buffer.

As D is trained before G, the ŝ in (3) actually represents the

output of the previous epoch’s G.

5) Discriminator Model Structure: The discriminator D’s

structure is a Convolutional Neural Network (CNN) with four

2D convolutional layers with 15 filters of a kernel size of

(5, 5). To account for the variable length of input data, a

global 2-D average pooling layer is placed immediately after

the input, fixing the feature representation at 15 dimensions.

After the convolutional layers, a mean is taken over the 2nd

and 3rd dimensions, and this representation is fed into three

sequential linear layers, with 50, 10 and 1 output neurons,

respectively. The first two of these layers have a LeakyReLU

activation while the final layer has no activation.

The generator G’s network structure consists of a Bidi-

rectional Long Short-Term Memory (BLSTM) [20] with two

LSTM layers with 200 neurons each. This is followed by two



fully connected layers, the first with 300 output neurons and a

LeakyReLU [21] activation and the second 257 output neurons

with a ’Learnable’ Sigmoid activation function. This Learnable

Sigmoid is given as:

ylearnable−sigmoid =
β

1 + e−αx
(4)

where β is a hyper-parameter (default to 1.2) and α is a

learnable parameter. In the original work the authors found

that allowing β to be learnable did not increase performance.

III. PROPOSED SYSTEM - METRICGAN+/-

A. MetricGAN+/- Framework

The framework proposed in this work, MetricGAN+/-, ex-

pands on MetricGAN+ in one major way - we introduce an

additional network, a ‘de-generator’ N which, given an input

signal x, will attempt to output a signal with a non-perfect

score of metric Q′. The key idea of this extension is to allow

D to observe a wider range of metrics scores outside of those

present in the training data. The output audio of N ’s mask

MN applied to noisy magnitude spectogram |X| is defined as

y and its feature space representation as Yf . An extra term is

appended to the objective function of D that accounts for the

prediction of the Q′ scores of these ‘de-enhanced’ signals:

LD,MG+/− = E[(D(Sf ,Sf )−1)2+(D(Ŝf ,Sf )−Q′(ŝ, s))2

+ (D(Xf ,Sf )−Q′(x, s))2 + (D(Yf ,Sf )−Q′(y, s))2]
(5)

where y represents the output of the de-generator network on

the noisy signal x. The objective function of N is given as

LN ,MG+/− = E[(D(Yf ,Sf )− w)2], for 0 < w < 1, (6)

where w is a hyper-parameter corresponding to the value of

Q′ we train N to output signals with. The objective function

of G is the same as for MetricGAN+, as given in (2). The

training of N is the same as the training of G depicted in

Fig. 2 except that G is replaced by N , ŝ, Ŝf by y, Yf and

the 1 in the MSE by w. This means that the training of N is

influenced entirely by its performance as assessed by D, in the

same manner as G. We use an identical network structure to

G for N - We leave to future work to change this structure, as

well as related hyper-parameters such as the clamp threshold.

The training of MetricGAN+/- is similar to that that of

MetricGAN+ given above with slight differences. Firstly D
is trained using (5); as a result the replay buffer now contains

both enhanced and de-enhanced data, effectively doubling its

size. After D’s training, N is trained using (6). Then G is

trained as usual.

IV. EXPERIMENTS

A. Dataset

The dataset used in the following experiments is VoiceBank-

DEMAND [22]. This is a popular and commonly used dataset

for single channel speech enhancement. Its training set consists

of 11572 clean s[n] and noisy x[n] speech audio file pairs,

mixed at 4 Signal to Noise Ratios (SNRs) 0, 5, 10, 15 dB.

Eight noise files are sourced from the DEMAND [23] noise

dataset - a cafeteria, a car interior, a kitchen, a meeting, a

metro station, a restaurant, a train station and heavy traffic,

and two others a babble noise and a speech-shaped noise. The

utterances in the set vary in length from around 10 seconds to

1. The training set contains speech from 28 different speakers

(14 male, 14 female), English or Scottish accents. The testset

containing 824 utterances is mixed at SNRs of 2.5, 7.5, 12.5
and 17.5 dB, with five different noises which do not appear in

the training set from the DEMAND corpus (bus, cafe, office,

public square and living room) and contains speech from two

(one male, one female) speakers who do not appear in the

training set.

In order to better assess the system’s ability to generalise

to unseen noise types and recording scenarios as well as real

recordings, we also assess performance of the models trained

on VoiceBank-DEMAND training set on the test set of the

CHiME3 [3] challenge dataset. This test set consists of 1320
real and 1320 simulated noisy clean/speech pairs. For the

real recordings the clean ‘reference’ is a close-talk headset

microphone which may also capture some of the background

noise from the recording environment. There are 6 channels

of noisy recordings; we select the 5th channel as input to

the single channel systems as it has the most direct energy

to the speaker and is the one used in the baseline system of

the CHiME3 challenge. The recording environments of the

real data and background noise of the simulated are a bus, a

cafe, a pedestrian area and a street junction. The simulated

data is not mixed at any fixed SNR, instead an ideal mixing

SNR is calculated from analysis of the clean reference and the

background recording.

B. Experiment Setup

The aim of the following experiments is to compare the

performance of the baseline system MetricGAN+ which is

available as part of the SpeechBrain [24] toolkit with our

extension, MetricGAN+/-. The Adam optimiser [25] with a

learning rate of 0.0005 is used. The STFT is used with a DFT

length of LDFT =512, a window length of 512 (32 ms) at

sampling frequency of fs = 16 kHz and a hop (overlap) length

256 (16 ms), resulting in a 50% overlap between frames. The

minimum value in the time frequency masks MG and MN is

set to ξ = 0.05.

We experiment with both PESQ and STOI as objective Q

and different values of w. The values of w are selected such

that they correspond to sparely populated values of Q′ in

the dataset. We also performed one experiment (denoted by

* in Table I) where the value of β in N ’s Learnable Sigmoid

activation as given in (4) to also learned (in addition to α).

Additionally, we experiment with reducing the size of the

replay buffer training step for D, via modifying H . In order to

ensure that our performance gain does not come entirely from

the larger H in MetricGAN+/-, we report also the baseline

MetricGAN+ performance with H set to 0.4.



C. Experiment Results

Table I shows the performance of MetricGAN+/- relative

to the MetricGAN+ baseline and the unprocessed noisy audio

on the VoiceBank-DEMAND testset. We also compare perfor-

mance with a second baseline system SEGAN [26], a state-

of-the-art speech enhancement system. For more comparison

baseline performances the interested reader is referred to

Table 3 in [15], which shows that MetricGAN+ with a PESQ

objective outperforms all systems listed terms of PESQ score.

We assess this performance using PESQ and STOI and also

using the Composite [27] Measure, where Csig, Cbak and Covl

are intrusive measures of speech signal quality, background

noise reduction quality, and overall quality respectively.

TABLE I
PERFORMANCE OF METRICGAN+ (MG+) AND METRICGAN+/- (MG+/-)

ON VOICEBANK-DEMAND TEST SET FOR OBJECTIVE PESQ (P) OR

STOI (S), * DENOTES THE SIMULATION WHERE β IS MADE LEARNABLE

Model Name Obj. w H P S Csig Cbak Covl

Noisy - - - 1.97 92 3.35 2.44 2.63

MG+ (P) [15] P - 0.2 3.05 93 4.03 2.87 3.52
MG+ (S) S - 0.2 2.42 93.4 3.56 2.58 2.97
SEGAN [26] - - - 2.42 92.5 3.61 2.61 3.01

MG+ P - 0.4 3.17 92.3 4.05 2.91 3.59
MG+/- P 1.0 0.2 3.20 93.0 4.08 2.94 3.62
MG+/- P 0.50 0.2 3.22 91.3 4.05 2.94 3.62
MG+/- P 0.45 0.2 3.21 91.9 4.09 2.95 3.64
MG+/-* P 0.45 0.2 3.17 93.0 4.16 2.93 3.65
MG+/- P 0.45 0.1 3.13 92.1 4.05 2.91 3.58
MG+/- P 0.30 0.2 3.04 93.0 4.07 2.88 3.55
MG+/- S 0.45 0.1 2.13 93.2 3.04 2.42 2.56
MG+/- S 0.30 0.2 2.31 93.3 3.19 2.49 2.72

The first four rows in Table I present the results the un-

enhanced noisy data and of different baselines. The results for

the baseline MetricGAN+ models shown here are obtained

using the implementation in SpeechBrain [24]. Further simu-

lations are conducted for various values of hyperparameter w

used in the training of N . Table I shows a clear improvement

in PESQ score for PESQ objective MetricGAN+/- models over

the baseline MetricGAN+ (3.05 vs 3.22 PESQ), and also ver-

sus the PESQ value reported in [15] of 3.15. We also observe

increase in the composite measure scores. Interestingly, there

is an improvement even when w = 1, which is the case where

N and G have the same objective, and thus N also learns to

enhance. We hypothesise that this is due to slight variations

in the outputs of N and G during training, as well as the

increased replay buffer size compared to the baseline. Highest

performance in terms of PESQ score is obtained with a w value

set to 0.5, which means that N attempts to produce signals

with a PESQ score of 3. We speculate that this performance

increase is due to there being few clean/noisy pairs in the

training set with a PESQ score around this value.

By making the β parameter in N ’s activation function learn-

able, we observe a slight improvement against the baseline,

as well as increased Csig and Covl scores versus all other

simulations. We find also that increasing H in the baseline

MetricGAN+ from 0.2 to 0.4 such that its size is comparable

to MetricGAN+/-’s does slightly improve PESQ score. This

is contrary to the findings in [15] where they report no

improvement for values larger than 0.2. Larger values of H

will drastically increase the training time requirement of the

system. We speculate that a better understanding of what D
leans from the replay buffer training and better curation of its

contents is the key to further performance gains, as well as

reduced training time required.

D. Spectogram Analysis

Fig. 4 shows the spectrograms of the clean reference |S|,
noisy input |X|, generator output mask MG and this mask ap-

plied |Ŝ| for baseline MetricGAN+, MetricGAN+/- (w = 0.45)

PESQ objective models. The mask in Fig. 4 (e) attempts

to remove low frequency signal content while boosting the

area corresponding to the frequency curve of the fundamental

speech frequencies. Futhermore, the baseline MetricGAN+

PESQ model in Fig. 4 (c, d) attenuates the signal in the

initial non speech region, while the MetricGAN+/- model in

Fig. 4 (e, f) suppresses less energy around 400 Hz over the

whole utterance. This artefact can already be observed in the

(e) (f) (MG+/-) Ŝf(MG+/-) MG

Sf
(a) (b)

Xf

(c) (MG+) MG
(d) (MG+) Ŝf

Fig. 4. Spectograms of: (a) clean reference features Sf , (b) noisy features

Xf , (c) Mask MG and (d) enhanced output Ŝf for MetricGAN+ baseline

PESQ objective model, (e) Mask MG and (f) enhanced output Ŝf for
MetricGAN+/- PESQ objective model. Source audio file is p232_014.wav
of VoiceBank-DEMAND testset.

baseline MetricGAN+ but is more prominent for the proposed

method, which could explains the relatively low Cbak score

for this method. We hypothesise that this is a results of D
not learning to properly penalise errors in this region, perhaps

due to the additional influence of N ’s outputs on it’s training.



Further experimentation is required to fully understand this

artefact.

E. Generalisation To Unseen Data

TABLE II
PERFORMANCE ON REAL COMPONENT OF CHIME3 TEST SET

Model Type PESQ STOI Csig Cbak Covl

Noisy 1.37 44.0 2.96 1.42 2.09

MG+ PESQ 1.54 45.8 2.67 2.09 2.00
MG+ STOI 1.24 44.7 2.45 1.84 1.76

MG+/- PESQ 1.76 44.3 2.86 2.03 2.20

MG+/- STOI 1.22 45.3 2.31 1.81 1.67

TABLE III
PERFORMANCE ON SIMULATED COMPONENT OF CHIME3 TEST SET

Model Type PESQ STOI Csig Cbak Covl

Noisy 1.27 87.0 2.61 1.39 1.88

MG+ PESQ 2.14 87.4 3.05 2.31 2.53
MG+ STOI 1.52 88.9 2.75 2.07 2.08

MG+/- PESQ 2.38 86.1 3.17 2.41 2.70
MG+/- STOI 1.47 88.5 2.62 2.02 1.99

Tables II and III shows the performance of the baseline Met-

ricGAN+ and the best performing proposed MetricGAN+/-

systems on this test set. We observe an increased performance

in terms of PESQ, Csig, Cbak and Covl between PESQ

objective MetricGAN+/- and the baseline, as well as a slight

improvement in STOI score for STOI objective MetricGAN+/-

. This suggests that D’s access to the de-generated signals pro-

duced by N allows G in MetricGAN+/- systems to generalise

better to unseen environments.

V. CONCLUSION

In this work, we present an extension to the MetricGAN+

baseline framework, which improves its performance in terms

of PESQ score and related measures, as well as improving

its generalisation to unseen data. We find that training the

discriminator network on a wider range of metric scores and

with a larger replay buffer achieves greater performance that

the baseline system.
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