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The derivation of ultimate limits to communication over certain quantum repeater networks have provided

extremely valuable benchmarks for assessing near-term quantum communication protocols. However, these

bounds are usually derived in the limit of ideal devices and leave questions about the performance of practi-

cal implementations unanswered. To address this challenge, we quantify how the presence of loss in repeater

stations affect the maximum attainable rates for quantum communication over linear repeater chains and more

complex quantum networks. Extending the framework of node splitting, we model the loss introduced at the re-

peater stations and then prove the corresponding limits. In the linear chain scenario we show that, by increasing

the number of repeater stations, the maximum rate cannot overcome a quantity which solely depends on the loss

of a single station. We introduce a way of adapting the standard machinery for obtaining bounds to this realistic

scenario. The difference is that whilst ultimate limits for any strategy can be derived given a fixed channel,

when the repeaters introduce additional decoherence, then the effective overall channel is itself a function of

the chosen repeater strategy. Classes of repeater strategies can be analysed using additional modelling and the

subsequent bounds can be interpreted as the optimal rate within that class.

I. INTRODUCTION

Quantum communication is one of the most practically rel-

evant applications of the quantum technologies, offering the

perspective of secure communication based on physical laws

[1–9]. While security can be proven to hold under enormously

generous and general conditions, it can only be guaranteed

for sufficiently low levels of loss. For short distances, this

does not constitute a technological challenge. However, for

large distances, secure quantum communication becomes very

challenging, since all loss has to be attributed to an eaves-

dropper and this prevents achieving arbitrarily high rates of

secure bits. Similar limitations arise for the maximum at-

tainable rates for quantum information (qubits) transmission

entanglement (ebits) distribution over lossy bosonic channels

that conveniently describe optical fibres or free-space links.

More specifically, it has been established that, for any point-

to-point transmission protocol over a lossy bosonic channel

with transmissivity equal to η ∈ (0, 1), allowing the two par-

ties to exploit unlimited two-way classical communications,

the maximum achievable rates for key generation, entangle-

ment distribution, and quantum bit transmissions, are all equal

to the repeaterless PLOB bound − log2(1− η) [10].

This severe limitation of direct point-to-point transmission

is not a road block, however. Intermediate stations, referred

to as quantum repeaters [11], can overcome this limitation

and, in principle, allow communication over arbitrary dis-

tances. Since the appearance of the first quantum repeater

proposal [12], the goal of extending the distance at which two

parties can faithfully share a secret key or entanglement has

stimulated a plethora of repeater-assisted quantum communi-

cation schemes. From the conceptual point of view, a quan-

tum repeater is a scheme in which entanglement is first dis-

tributed to intermediate nodes. Then, the quality is improved

by means of entanglement distillation, transforming a collec-

tion of weakly entangled states into a smaller number of more

highly entangled states. In the final step, one performs se-

quential entanglement swapping, bringing quantum systems

together that have no joint past, to entangle the anticipated

nodes. The difficulty of assessing precise rates of (quantum)

information transmission and specifically of key rates gives

rise to the necessity to identify bounds that are agnostic to the

specific implementation chosen. Only in such a realm, can

ultimate bounds for quantum communication be established.

Along this line of thought, a fundamental result about the rates

at which two end-nodes in a linear repeater chain can transmit

quantum information, distribute entanglement, or generate a

secret key has been established in Ref. [13]. In particular,

when two users, say Alice and Bob, are connected by a line

of N − 1 middle repeater nodes, linked together through N
optical lossy fibres, the quantum/private capacity of the lin-

ear repeater chain, i.e., the ultimate rate for repeater-assisted

quantum or private communication between the two end-users

is given by [13, Eq. (9)]

C(η,N) = − log2(1− N
√
η) , (1)

where η > 0 is the total Alice-to-Bob fibre transmissivity.

This expression is derived by exploiting a combination of

tools that we briefly recall in the appendices.

It is important to stress that, for a fixed total transmissiv-

ity η but large number of repeaters, the end-to-end capacity

C(η,N) diverges as log2N . This feature is immediately con-

nected to the fact that the repeaters are assumed to be ideal,

i.e., lossless. Under a more realistic point of view each re-

peater in the linear repeater chain must be characterised by im-

perfect components which introduce noise and decoherence to

the stored and transmitted quantum states. For instance these

internal losses could be the effect of non-unit detection effi-

ciencies, channel-memory coupling losses, memory loading

and readout efficiencies. Furthermore, detrimental effects can

be introduced by the quantum memories at the nodes while the

quantum systems are stored before the on-demand retrieval.
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Here, we explicitly account for this crucial aspect and we

consequently derive the end-to-end repeater capacity of a

lossy bosonic quantum network where the repeater stations

are also affected by internal loss. Although loss is not the only

source of decoherence, it is often the dominant factor and is an

excellent first approximation for an optical fibre channel. Fur-

thermore, using lossy channels as a model for imperfections

within the repeater nodes will facilitate derivation of exact for-

mulae for the various capacities of interest.

Our derivation is carried out for the various types of rout-

ing (single- and multi-path). Our bound hence captures rather

general classes of repeater schemes and can be seen as an

analog of the repeater-less PLOB in the presence of lossy re-

peater stations. Given a fixed amount of loss for each repeater

node we can immediately evaluate our bounds as a function

of transmission losses. However, in real implementations the

loss in each node is itself typically a function of the transmis-

sion losses. The paradigmatic example is the loss induced by

a quantum memory where the necessary storage time usually

increases with transmission loss.

To exemplify these findings, we show that, considering a

realistic time-dependent model of decoherence for a single re-

peater station, the achievable rates not only beat the bench-

mark of the repeater-less PLOB bound, but they are also not

that far from the upper limit provided by our revised lossy-

repeater capacity. As an example we consider polarisation-

based BB84 key distribution protocol over a single repeater

node using a simple entanglement swapping protocol with Ru-

bidium memories and show it scales as one quarter of the opti-

mal possible rate for such schemes. Finally, recent years have

enjoyed considerable interest in identifying practical schemes

for routing in multi-partite quantum networks [13–19]. Our

results are general enough to accommodate such situations, as

we show.

II. NODE SPLITTING

Let us consider a linear sequence {s0, . . . , sN} ofN−1 re-

peater nodes, where Alice and Bob, the two end stations, are

identified with s0 and sN , respectively. We assume that each

station si in the chain is connected to si+1 through an optical

fibre described by a Gaussian lossy channel [20] Li with trans-

missivity ηi, for i = 0, . . . , N . Thus, the total transmissivity

of the link (e.g., an optical fibre providing the communica-

tion channel) connecting Alice and Bob is η =
∏

i ηi. Each

node si has internal losses that can be quantified by a global

transmissivity τi ∈ [0, 1] obtained by the product of single in-

efficiencies. In this way we can describe the effect of the node

on the incoming quantum systems as another Gaussian lossy

channel, mathematically described as a beam splitter mixing

the input system with an environment in the vacuum

x̂out =
√
τ ix̂in +

√
1− τix̂vac . (2)

We can further distinguish two different contributions in τi: a

transmitting efficiency τ ti , and a receiving efficiency τ ri . The

former is associated for instance with the overall effects of

a source efficiency (e.g. photon creation efficiency), a mem-

ory read-out efficiency and a memory-channel interface effi-

ciency. The latter involves a detector efficiency, a memory

write-in efficiency and channel-memory coupling efficiency

in some fashion.

To account for the internal lossy features in the various

stations, we perform the node splitting depicted in Fig. 1.

We split the generic node si into three “children” nodes ski
(k = 1, 2, 3), which are then linked together through a com-

position of two lossy channels Rt
s2i→s3i

and Rr
s1i→s2i

, with as-

sociated transmissivities τ t,ri . Combining these internal chan-

nels with Li associated to the ith link, we can model the lin-

ear network with noisy quantum repeaters as a sequence of

composite quantum channels. More precisely, we can iden-

tify a building-block channel, so that the linear network can

be described as the collection {Ci}i of the following compos-

ite quantum channels (see Fig. 1)

Ci = Rr
s1i+1

→s2i+1
◦ Li+1 ◦ Rt

s2i→s3i
, (3)

for i = 1, . . . , N − 1, while for the two end-nodes we set

Rr
s10→s20

= Rt
s2N→s3N

= I, where I is the identity channel. To

simplify notation, we rename Rr,t

ski →sk+1

i

= Rr,t
i .

By means of the decomposition in Eq. (3), we are able

to apply the machinery developed in Ref. [13] to our sce-

nario so we can derive a single-letter upper bound on the

secret-key capacity (and therefore on the two-way quantum

capacity) of the lossy-repeater linear chain. By performing

FIG. 1: Node splitting in a repeater chain. a) N − 1 repeater sta-

tions si are linked together to form a linear network (chain) be-

tween s0 (Alice) and sN (Bob). The end-to-end transmissivity is

η = η1η2 · · · ηN , where ηi > 0 is the transmissivity of the single

link described by the quantum lossy channel Li. b) Node splitting

of the linear network. Each node si is split into three children nodes

{s1i , s
2

i , s
3

i } and two links s1i − s2i , s2i − s3i are added. The overall

effect of the internal losses in the i-th node is then described by the

composition Rt

i ◦ R
r

i of two additional quantum lossy channels.

an entanglement cut labelled by i, we disconnect the chain

along the channel Li. In doing so, we create a bipartition

(A,B) of the chain, with A = {s10, s20, s30 . . . , s1i , s2i , s3i } and

B = {s1i+1, s
2
i+1, s

3
i+1 . . . , s

1
N , s

2
N , s

3
N}. This leads us to for-

mulate the following.
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Definition 1 (Lossy repeaters) The state shared by Alice and

Bob at the output of the most general adaptive protocol over

n uses of the repeater chain is given by

ρna,b = Λi

(
σ⊗n
Ci

)
, (4)

where Λi is a trace-preserving local operation with classical

communication (LOCC) while σCi
is the Choi matrix of the

channel Ci, which is defined as σCi
:= (I ⊗ Ci)(Φ).

Here, I is the identity channel and Φ is a maximally-

entangled state. More precisely, the above equation has to

be intended as asymptotic, since for CV systems, the maxi-

mally entangled state is asymptotic and as a consequence the

Choi matrix σCi
is obtained as a limit. In the appendix, we

give details on this argument. We notice that for i = 0 and

for i ≥ 1, the quantum channel Ci is a pure loss channel or

a composition of two pure-loss channels respectively. Thus

we can conclude that for any i ≥ 0, Ci is a distillable chan-

nel, for which the two-way quantum and private capacities are

identical and exactly determined, i.e. [10]

C(Ci) = ER(σCi) = D1(σCi) , (5)

where ER(σCi
) is the relative entropy of entanglement of the

Choi matrix σCi and D1(σCi) is the entanglement that can

be distilled from the Choi matrix with one-way, forward or

backward, classical communication (see the appendix for a

recap about these types of capacities).

By exploiting Theorem 7 in Ref. [13], we conclude that

the two-way quantum/private capacity of the linear chain with

lossy repeaters satisfies

C({Ci}) = min
0≤i≤N

ER(σCi
) = min

0≤i≤N
C(Ci). (6)

Using the PLOB bound and the fact that the transmissivity of

a composition of lossy channels is given by the product of the

individual transmissivities, we can state the following theo-

rem which generalizes the formula for ideal repeaters given in

Ref. [13],

Theorem 1 (Lossy-repeater capacity) The ultimate achiev-

able rate for repeater-assisted quantum/private communica-

tion between the two-end users of a linear network withN−1
lossy quantum repeaters connected by N pure-loss channels

is given by

C({Ci}) = min
i
[− log2(1− τ ti τ

r
i+1ηi+1)] , (7)

i.e., it equals the minimum capacity of the channel Ci describ-

ing the loss of node i, the pure loss channel i+ 1 and the loss

of node i+ 1.

Let us assume that the end-users, Alice and Bob, are at a dis-

tance L apart and connected by an optical fibre whose trans-

missivity η decays exponentially as η = e−αL (typically,

α = 0.2dB/km). If N − 1 lossy repeaters are inserted along

the line, the optimal configuration is represented by equally

spaced nodes at a distance L0 = L/N , so we have ηi = N
√
η

for each i. We can thus recast Eq. (7) as follows

C({Ci}) = − log2(1− τ̃ N
√
η)] , (8)

where we have defined τ̃ := mini≥0 τ
r
i τ

t
i+1. For simplicitly,

assume that all the nodes are built and equipped with the same

components, i.e., τ ri = τ r and τ ti = τ t , for all i ∈ [0, N ]. We

then get

C({Ci}) → Cτ (η,N) = − log2(1− τ N
√
η) , (9)

where τ := τ rτ t. If we now consider a large number of nodes

we obtain the following expansion

Cτ (η,N ≫ 1) ≃ − log2(1− τ) +
τ log2 η

(1− τ)N
. (10)

We can thus see that, by increasing the number of repeaters

between Alice and Bob, i.e., by taking the limit of N →
∞, the lossy-repeater capacity is bounded by the quantity

− log2(1 − τ) that depends solely on the loss within a node.

In other words, even if we are allowed to arbitrarily increase

the number of repeaters on the line, the optimal rate will be

anyway bounded by the inevitable internal loss which act as

ultimate bottleneck in the process.

III. TIME-DEPENDENCE AND REALISTIC REPEATER

PROTOCOLS ON A QUANTUM LINEAR NETWORK

While the above results illuminate the performance of re-

peater networks with imperfect devices, there is a certain ten-

sion between our desire to quantify the ultimate limits to com-

munication whilst also providing formulae that are as relevant

as possible to near term demonstrations. The reason for this

is that the bounds derived above, whilst totally general in the

sense of applying to an optimal two-way LOCC encoding and

decoding strategies, only hold for a given channel. However,

the effective channel induced by the decoherence of realis-

tic repeater nodes is itself, to some extent, determined by the

choice of repeater protocol. For example, the effective loss

experienced by a system stored in a quantum memory is a

function of the ratio between memory coherence time and the

required storage time, but this latter quantity can change de-

pending upon the chosen protocol. In this section, we address

this issue by taking into account the role played by time. In-

corporating these effects is crucial to obtain tighter bounds

that provide more accurate benchmarks for realistic repeater

protocols with imperfect devices. This is also a powerful

example of how our relatively simple model can be used to

meaningfully compare different protocols, as the major differ-

ences between them often boil down to variations in timing.

Ultimately, some of the operations involved in the design

of repeater-assisted quantum communication and entangle-

ment distribution protocols are intrinsically probabilistic. In

memory-based quantum repeater protocols, such fundamental

operations are represented by heralded entanglement genera-

tion (and possibly distillation) between neighbouring nodes

and swapping that transfers such entanglement to nodes at
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increasing distance. Thus, besides the time required for the

transmission of the quantum information carriers and classi-

cal heralding signals, which is limited by the speed of light, a

finite time is also needed while waiting for success of various

operations at the different repeater stations.

As a good first order approximation we can model the

memories as time-dependent lossy channels with transmission

given by (see, e.g., Ref. [21]),

τmem(t) = τ0e
−t/tc . (11)

where τ0 is the maximum memory efficiency and tc is the the

coherence time.

The key task remaining to evaluate these bounds is to cor-

rectly model the expected storage time. Fortunately, this prob-

lem has been well studied in the literature [22, 23]. The situ-

ation can be analysed abstractly by defining the success prob-

ability of operations on one half of the repeater, p. The ex-

pected waiting time will be of the form MT0, where T0 > 0
is the time taken for one attempt and M is the expected num-

ber of attempts. As a first illustration, consider the simplest,

canonical setup of a linear chain with one repeater station and

two segments separated by a total distance, d.

The quantities T0 and p are both influenced by the choice of

repeater protocol. The minimal time unit, T0, depends upon

whether the central station is operating in a node-receives-

photons (NRP) or a node-sends-photons (NSP) configuration

[24]. In the former case, T0 is simply set by R, the clock

speed of either the source or the local processing (e.g. mem-

ory write-in time), whichever is slower. Thus, TNRP
0 = 1/R.

In the NSP case, for sufficiently large distances, T0 will in-

stead be limited by the time taken to transmit quantum states

from the central node the end stations and subsequently re-

ceive a classical signal heralding their successful arrival and

initiating the swap. This corresponds to the time to transmit

twice over one segment such that TNSP
0 = max{1/R, d/c}.

A final subtlety is that in the NSP configuration, even if the

first attempt is successful, a state must still be stored at the

central for the time taken for at least one quantum transmis-

sion and one classical signal heralding success, i.e., a total of

M + 2 time steps.

The probabilistic elements that go into determining p de-

pend upon whether we think of a continuous variable (CV) or

discrete variable (DV) scheme utilising single photon detec-

tion. In a DV scheme entanglement distillation can be avoided

if desired and all that is strictly necessary is to store single

photon until another has arrived that can be used to swap en-

tanglement. Indeed it is this strategy that is currently pursued

in state-of-the-art experiments [25, 26] In this scenario, the

probabilistic element is then simply the detection probability

of a photon across a single link in the repeater chain and

p =
√
ητ t,eff (12)

for a transmission node and an analogous expression for a re-

ceiving node. Here τ t,eff represents the efficiency of all of the

elements in the transmitting nodes except the memory. These

quantities, such as write-in, read-out or or detection efficien-

cies, will all be time independent and can be captured by sin-

gle constant. Note that certain nodes in a chain may not have

memories.

In the CV case, the arrival of quantum information is de-

terministic, and the probabilistic element is the entanglement

distillation operation. Once distillation has been successfully

carried out on either input, that mode is stored until the mode

on the other side as also been distilled and then entanglement

is swapped. Again, whilst some distillation is essential, the

exact amount is a free parameter leading to a trade-off be-

tween the success probability and amount of entanglement in

the final state. There are only a relatively small number of

CV repeater protocols [27–30] with arguably the most mature

being those based upon a so-called noiseless linear amplifier

(NLA) [31, 32]. The NLA acts with a gain g, and the success

probability can be upper bounded by p ≤ 1/g2, although this

bound can be very loose in some circumstances [33]. This is in

principle a free parameter, but a reasonable strategy would be

to adjust the gain to reverse the effects of the expected losses

prior to distillation. To undo a lossy channel of transmission

τ requires a gain of g2 = 1/τ . For these choices, a CV distil-

lation would have success probability upper bounded by (12),

exactly as for a DV scheme.

Putting all of this together, we compute the expected value

of the memory transmission for the NRP and NSP configura-

tions as [22, 23],

τ̄NRP
mem = E

(
τ0e

MT0/tc
)
,

=
p

2− p

(
2

1− e−T
NRP/tc
0 (1− p)

− 1

)
, (13)

τ̄NSP
mem = E

(
τ0e

(M+2)T0/tc
)

=
p

2− p



e−

2TNSP
0
tc

(
(1− p) + eT

NSP
0 /tc

)

eT
NSP
0 /tc − (1− p)


 .

In either the NRP or NSP protocol, the total loss over one

link will include whatever constant detection or coupling ef-

ficiencies are present along with the additional lossy channel

induced by the memory, which will be at either the receiv-

ing or transmitting nodes. This means in either case we could

write the total repeater losses as τ ti τ
r
i+1 = τ t,effi τ r,effi+1 τmem.

Thus we can substitute (13) into (7) and, using parameters

from Ref. [24], evaluate the bounds for some representative

repeater platforms. We present the results for a platform based

on Rubidium memories in Fig. 2. Note that because we are

explicitly considering time in our analysis we are able to cal-

culate rates in terms of bits per second, which is the quantity

that is ultimately important for applications, as opposed to the

more common bits per channel use.

Crucially, we see that our upper bound now has the same

qualitative shape as a real repeater implementation. For short

distances, where the storage times are small relative to the

memory coherence time, the key rate scales as an ideal re-

peater with an offset due to extra losses at the station. How-

ever, for larger distances, the necessary storage time becomes

comparable to the memory coherence time and thus the ef-

fective loss falls off exponentially faster. In this situation, the



5

NSP

NRP

0 200 400 600 800

d (km)
10

-11
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0.1

10
4

K (bits/second)

FIG. 2: Upper bounds to the secret key rate for both NSP and NRP

protocols using Rubidium memories taken from Ref. [24]. Parame-

ters are: total efficiencies (which is what Ref. [24] refers to as Plink)

of (τ eff)2 = 0.7, a coherence time of 100 milliseconds and clock

speed of R = 5×106. The lower and the upper dashed black lines are

respectively the repeaterless PLOB bound [10] and the one-station

repeater-assisted capacity [13].

protocol fails to follow the ideal repeater scaling, regressing

to scale similarly to the repeaterless bound. For certain sys-

tem parameters our upper bounds can even drop below the

repeaterless scaling as the waiting times for the NSP protocol

cause additional losses that destroy any benefit for a repeater

station.

Finally, we can also use our bounds to benchmark specific

protocols carried out with the same system parameters. In

Fig. 3, we plot the ratio of a BB84 key rate using an entan-

glement swapping repeater protocol (see Appendix) to our

lossy-repeater capacity given in Eq. (7). From this we can

conclude that, over lossy repeater networks, standard BB84

and an entanglement swapping repeater is quite close to the

optimal protocol, scaling identically for large distances and

achieving slightly worse than one quarter of the optimal key

rate.

IV. EXTENSION TO GENERAL QUANTUM NETWORKS

Here, we extend the previous analysis from a linear to a

more complex quantum network featuring an arbitrary topol-

ogy, where the two end users aim at sharing entanglement or

secret keys through single or multi-path routing strategies.

A. Preliminaries

A quantum communication network N involving N nodes

that can be interpreted as entities pursuing quantum commu-

nication can be described as an undirected graph G = (V,E),
where V is the set of vertices or nodes (|V | = N ), and E the

set of edges linking the elements in V . The set E is deter-

mined by the underlying network infrastructure, i.e., an edge

100 200 300 400 500 600

d (km)

0.18

0.19

0.20

0.21

0.22

0.23

BB84/C

FIG. 3: Ratio of the secret key rate for an BB84 protocol using Ru-

bidium memories taken from Ref. [24] with the lossy-repeater capac-

ity of Eq. (7). Parameters as per Fig. 2.

(νi, νj) is an element of E if there is a communication chan-

nel connecting the two vertices νi and νj . In a quantum com-

munication scenario the nodes are linked together through a

quantum channel Eνi−νj
. The transmission of quantum in-

formation through the quantum channel can be either forward

νi → νj or backward νj → νi. In what follows, we assign an

orientation to the network so the quantum systems are always

transmitted from sender ν0 to receiver νN . This is a basic for-

malization of what is commonly called a quantum network.

Quantum information and entanglement can be transmit-

ted and distributed along the network through a generic route

R between the two end-users, which is determined by the se-

quence of verticesR = ν0−· · ·−νi−· · ·−νN . In a single net-

work N, the different routes form a set RN = {R1, R2, . . .}.

For each route there is an associated sequence of quantum

channels, those involved in the routing process. As an ex-

ample, in panel a) of Fig. 4, we show a fully-connected

graph of four vertices that represents a diamond network.

The set of all the possible routes from ν0 to ν3 is given by

R⋄ = {R1 = ν0 − ν1 − ν3, R2 = ν0 − ν2 − ν3, R3 =
ν0 − ν1 − ν2 − ν3, R4 = ν0 − ν2 − ν1 − ν3}.

B. Node-splitting in the network

As we have done for the linear network, in order to account

for a loss model for the stations, we proceed by splitting the

nodes νi of the network and by inserting two quantum chan-

nels Eν1
i −ν2

i
and Eν2

i −ν3
i
, connecting the three children nodes

{ν1i , ν2i , ν3i }. By doing so, the original network N, described

by the graph G, is mapped into N
′ whose associated new

graph is given by G′ = (V ′, E′), where |V ′| = 3N . The

generic route R of the ideal repeater network is updated to the

route R′ =
y

ν0 − · · · − y

νi − · · · − y

νN , where we have defined

the node internal route
y

νi:= ν1i −ν2i −ν3i . In panel b) of Fig. 4

we show the node-splitting for the diamond network.

It is important to note that, any edge belonging to two dif-
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FIG. 4: A diamond network N of ideal nodes (a) is mapped into

a network N
′ of lossy nodes (b) by means of splitting. Node νi is

split in three children {ν1

i , ν
2

i , ν
3

i } which are linked by additional

edges (ν1

i , ν
2

i ) and (ν2

i , ν
3

i ) with associated lossy channels E
ν1
i −ν2

i

and E
ν2
i −ν3

i
. The undirected link (ν1, ν2) ∈ E in N is replaced, in

N
′, by two oriented links {(ν3

1 , ν
1
2 ), (ν

3
2 , ν

1
1 )} ∈ E′. Accordingly,

via the node-splitting, the route set R⋄ is mapped into the route set

R
′

⋄.

ferent routes with two opposite orientations, must be replaced

by two distinct edges through node-splitting. More specifi-

cally, in the diamond network scenario of Fig. 4 by observ-

ing the route set R⋄, the link connecting nodes ν1 and ν2
has two opposite orientation in route R3 and route R4. This

means that, after node-splitting N → N
′, the edge (ν1, ν2)

is replaced by two edges (ν31 , ν
1
2) and (ν32 , ν

1
1) with opposite

orientations and the same associated quantum channel, i.e.

Eν3
1−ν1

2
= Eν3

2−ν1
1
. These two links belong to the two dis-

tinct routes R′
3 and R′

4 of the new route set R′
⋄ := {R′

1 =
y

ν0
− y

ν1 − y

ν3, R
′
2 =

y

ν0 − y

ν2 − y

ν3, R
′
3 =

y

ν0 − y

ν1 − y

ν2 − y

ν3
, R′

4 =
y

ν0 − y

ν2 − y

ν1 − y

ν3}.

C. Cuts of the lossy-repeater network

An essential ingredient for our derivation is represented by

the entanglement cut of the quantum network [13]. Given the

two end-nodes of a network of lossy repeaters,
⌢
ν0 and

⌢
νN

(where
⌢
νi:= {ν1i , ν2i , ν3i }), such an entanglement cut C is de-

fined as a bipartition (VA, VB) of the set of nodes of the net-

work such that
⌢
ν0 belongs to VA and

⌢
νN belongs to VB , with

the elements of VA disconnected from the elements of VB .

The entanglement cut induces the definition of the associated

cut set K which is the set of the links disconnected by the

cut C. In Fig. 5, we show two possible entanglement cuts of

the diamond network in the presence of lossy repeater nodes.

While the cut C is always performed over the network link of

the kind (ν3i , ν
1
j ) between two distinct nodes i and j, in the cut

set K, we include also the internal repeater links which have

vertices in common with the link disconnected by C. In other

words, if (ν3i , ν
1
j ) is a network link cut by C, the overall link

(
⌢
νi,

⌢
νj) := (ν2i , ν

2
j ) = (ν2i , ν

3
i )∪ (ν3i , ν

1
j )∪ (ν1j , ν

2
j ) is an ele-

ment of the cut set K, i.e. K = {(⌢νi,
⌢
νj)|,

⌢
νi∈ VA,

⌢
νj∈ VB}.

FIG. 5: Two examples of entanglement cut in a quantum diamond

network of lossy nodes. The set of vertices E′ of the network is

divided into the two bipartitions (VA, VB) and (V ′

A, V
′

B) by the cuts

C and C′ respectively. In the top network, VA = {
⌢

ν0,
⌢

ν1} (purple),

while VB = {
⌢

ν2,
⌢

ν3} (orange). In the bottom network, V ′

A = {
⌢

ν0

,
⌢

ν2} (purple), while V ′

B = {
⌢

ν1,
⌢

ν3} (orange). The induced cut sets

(thick colored arrows) are respectively given by K = {(
⌢

ν0,
⌢

ν2), (
⌢

ν2

,
⌢

ν1), (
⌢

ν1,
⌢

ν3} and K′ = {(
⌢

ν0,
⌢

ν1), (
⌢

ν1,
⌢

ν2), (
⌢

ν2,
⌢

ν3}.

Accordingly, the quantum channel associated to the generic

element of the cut set is given by

Ei,j := Eν1
j−ν2

j
◦ Eν3

i −ν1
j
◦ Eν2

i −ν3
i
, (14)

and we set Eν1
0−ν2

0
= Eν2

N−ν3
N
= I for the two end nodes (see

the dashed links in Fig. 5).

D. Single-path capacity of the lossy-repeater network

Now that we have obtained a formalisation of the entan-

glement cuts for a lossy-repeater network (accounting for the

node splitting), we are able to derive a corresponding formula

for the single-path routing capacity. As per linear networks,

our derivation is based on a straightforward generalisation of

the ideal scenario with fully error-corrected repeaters. We

know from Ref. [13, Th. 6 and 7] that the single-path ca-

pacity of a quantum network N of ideal-repeaters is bounded

as follows

C(N) ≤ min
C

ER(C), (15)

where the right hand side term represents the minimization

over all the possible cuts of the network of the single-path

REEER(C) associated to cutC. The latter quantity is defined

by maximizing the REE over the edges of the cut set K, i.e.,

ER(C) := max
(νi,νj)∈K

ER(ρEi,j
), (16)
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where ρEi,j
is the Choi matrix of the lossy channel associated

to the link (νi, νj) (more technically this state and the associ-

ated REE are implicitly defined via asymptotic limits [10]).

In contrast, a lower bound can be derived by finding the

widest path in the quantum network [13], so we can write

C(N) ≥ C(R⋆) = min
C

C(C) (17)

where R⋆ is the optimal route such that the capacity of a

single route C(R) := minα C(ER
α ) is maximum. Here α

is the index over the route and we are implicitly defining

ER
α := Eνi−νj

, with edge (νi, νj) ∈ R. Similarly, C(C) :=
max(νi,νj)∈K C(Eνi−νj

) is the single-path capacity associated

to the cut. Furthermore, for a network of distillable channels,

Eq. (15) exactly coincides with Eq. (17), and we can write [13]

C(N) = C(R⋆) = min
C

C(C) = min
C

ER(C). (18)

Thanks to the extension of the definition of the entangle-

ment cut to the lossy repeater scenario, we can still rely on the

chain of equalities in Eq. (18). Using the quantum channel de-

fined in Eq. (14), we can therefore define the capacity of the

single route R′ ∈ R
′
N′ in the lossy-repeater network N

′ as

C(R′) := min
(ν2

i ,ν
2
j )∈R′

C(ER′

i,j). (19)

We notice that the links (ν10 , ν
2
0) and (ν2N , ν

3
N ) belong to any

possible existing single-path route of the lossy-repeater net-

work, but since in our model they are both associated to a

noiseless quantum channel, they can be disregarded in the def-

inition of the route capacity.

The main aim of our investigation is the analysis to the fun-

damental example of optical networks, where the link (ν3i , ν
1
j )

connecting different nodes is described by a lossy channel

with transmissivity ηi,j . We again assume that the two dis-

tinct quantum channels associated to the two internal repeater

links (ν1i , ν
2
i ) and (ν2i , ν

3
i ) are represented by two lossy chan-

nels Eν1
i −ν2

i
and Eν2

i −ν3
i

with respective transmissivities ri
and ti. As a consequence, the quantum channel Ei,j , de-

scribing the effect of the transmission over the generic node-

fibre-node link (ν2i , ν
2
j ), is a lossy channel with a transmis-

sivity given by the product of the transmissivities of the in-

volved lossy channels, i.e. Ti,j := ηi,jritj and capacity

C(Ei,j) = − log2(1− Ti,j).
It then follows that the generic routeR′ ∈ R

′
N′ is identified

by a collection of lossy channels with transmissivities {T R′

i,j }.

By defining the transmissivity of route R′ as

T̃ R′

:= min
(ν2

i ,ν
2
j )∈R′

T R′

i,j , (20)

its capacity reads

C(R′) = − log2(1− T̃ R′

). (21)

If we now maximize the expression in Eq. (21) over the route

set R
′
N′ , we obtain the single-path capacity of the lossy-

repeater quantum network

Closs(N
′) := max

R′∈R′

N′

C(R′) = − log2(1− T ), (22)

T := max
R′∈R′

N′

T̃ R′

. (23)

Equivalently, following the last terms of Eq. (18), we can com-

pute the capacity by minimizing, over all the possible cuts C,

either the capacity of an entanglement cut C(C) or the REE of

an entanglement cut ER(C). Thus, we may consider

ER(C) := max
(ν2

i ,ν
2
j )∈K

ER(ρEi,j ) (24)

= max
(ν2

i ,ν
2
j )∈K

[− log2(1− Ti,j)]

= − log2(1− T̃C),

with T̃C = max(ν2
i ,ν

2
j )∈K Ti,j . We then obtain the single-path

capacity of the lossy-repeater network via the minimization

Closs(N
′) = min

C
[− log2(1− T̃C)]. (25)

By specifying Eqs. (22) and (25) to identical repeaters, i.e.

ri = rj = r and ti = tj = t, ∀i, j = 0, . . . , |V |, we get

Closs(N
′) = − log2[(1− v · ηN′)], (26)

where we have defined v := rt and

ηN′ := max
R′∈R′

N′

min
(ν2

i ,ν
2
j )
ηR

′

i,j = min
C

max
(ν2

i ,ν
2
j )∈K

ηi,j . (27)

The expressions above generalize the single-path capacity for-

mulas of Ref. [13] from ideal to lossy repeaters.

E. Multi-path capacity of the lossy-repeater network

A powerful routing strategy in a network is represented by

flooding, where systems are transmitted in parallel so that

each edge is exploited in each network use. Let us consider

a quantum network N
′ obtained, as described in the previous

section, after node splitting N → N
′, with a corresponding

graph G′ = (V ′, E′) where V ′ = {(ν1i , ν2i , ν3i )}i=0,··· ,N .

Once an orientation to the network N
′ has been assigned, a

multi-path flooding protocol can be defined as a collection

of multicasts, each one realizing a point-to-multipoint com-

munication. An orientation to the undirected network N is

assigned by setting Alice (
⌢
ν0) and Bob (

⌢
νN ) respectively as

the source and the sink of the network, and then by assign-

ing a source-sink orientation to each edge of the network.

Namely, for a generic link between the i-th and the j-th, we

always identify ν3i as the source and ν1j as the sink. In this

way a point-to-multipoint communication from node
⌢
νi is de-

fined as a quantum communication between
⌢
νi and its out-

neighborhood Dout
⌢
νi

:= {ν1j ∈ V ′|(ν3i , ν1j ) ∈ E′
D}, with E′

D

the edge-set E′ where each element is now oriented. After
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the internal route
y

ν0 at the sender’s repeater station, the multi-

path protocol starts with node ν30 sending quantum systems to

each repeater station belonging to its neighbourhood.

The converse upper bound for the multi-path capacity C̃(N)
of a quantum network N is given by [13]

C̃(N) ≤ min
C

ẼR(C), (28)

where the minimization is over all the possible cuts of the net-

work and ẼR(C) is the multi-path REE flowing through an

entanglement cut C. This is defined as the total REE of the

cut set K associated to C, namely

ẼR(C) :=
∑

(νi,νj)∈K

ER(ρEi,j
) . (29)

An achievable rate (lower bound) for the multi-path capacity

of the network is computed by applying the max-flow/min-cut

theorem to the network, leading to [13]

C̃(N) ≥ min
C

C̃(C) , (30)

where C(C) is the multi-path capacity of an entanglement cut,

defined by

C̃(C) :=
∑

(νi,νj)∈K

C(Eνi−νj ) . (31)

When the quantum network is connected by distillable

quantum channels [10], the previous upper (28) and lower

bound (30) coincide and the multi-path capacity satisfies the

following chain of equalities

C̃(N) = min
C

C̃(C) = min
C

ẼR(C). (32)

Again we are able to generalize the analytical formulas, by ex-

tending the multi-path capacity for quantum and private com-

munication over a quantum network from ideal to imperfect

lossy nodes. For the fundamental case of an optical network

connected by lossy channels (e.g., fibres), the crucial decom-

position is the one in Eq. (14), where all the channels involved

are lossy channels and therefore distillable.

Combining our decomposition with Eq. (31), we compute

the multi-path capacity of an entanglement cut by summing

up over the capacities of the quantum channels Ei,j associated

with the cut set K. We then have

C̃loss(C) =
∑

(
⌢
νi,

⌢
νj)∈K

C(Ei,j) (33)

=
∑

(
⌢
νi,

⌢
νj)∈K

ER(ρEi.j
)

=
∑

(
⌢
νi,

⌢
νj)∈K

− log2(1− Ti,j)

= − log2(LC)

where we have defined the total losses over a cut set as the

product of the losses over the channels (repeater and link

losses) in the cut set, i.e.

LC :=
∏

(
⌢
νi,

⌢
νj)∈K

(1− Ti,j). (34)

Then the multi-path capacity of the quantum network with

lossy repeaters is given by the minimization over all the pos-

sible entanglement cut of the above expression, i.e.,

C̃loss(N
′) = min

C
C̃loss(C) (35)

= − log2(max
C

LC) . (36)

It is easy to see that multi-path strategy is advantageous with

respect to single-path even in the presence of lossy repeaters.

For this purpose we can consider a split network N
′ with iden-

tical repeaters (i.e. same loss) at each node and where all the

network links (ν3i , ν
1
j ) are identical lossy channels with trans-

missivity η. Then from Eqs. (26) and (36), we get

C̃loss(N
′) = − log2(1− vη)m = mCloss(N

′), (37)

where m is the number of network links of the smallest al-

lowed cut set. For instance, in the diamond network N
′
⋄ of

Fig. 4 panel b), the value of m is equal to 2.

V. CONCLUSION AND OUTLOOK

Our work establishes analytical formulas for the maximum

achievable rate of quantum and private communication be-

tween two end-users of a quantum network where the nodes

are affected by internal loss. In the linear repeater chain sce-

nario, we exploit a classical network technique, known as

node splitting, to model the inevitable internal repeater loss.

In this way, we are able to describe the repeater chain as a

suitable collection of distillable quantum channels, i.e. chan-

nels for which the lower and the upper bounds on the two-way

assisted quantum (and private) capacity coincide.

Given this setting, by employing the powerful methodology

of channel simulation and teleportation stretching, we have

established an exact expression for the lossy-repeater capac-

ity for quantum communication over a network with arbitrary

number of lossy repeaters connected by pure-loss channels.

Interestingly, when the number of repeaters increases, the de-

rived capacity turns out to be a function of the internal loss of

a single node, which then acts as the ultimate upper limit to

the maximum achievable rate for quantum and private com-

munication.

Finally, we have considered the important role played by

time that must be taken into account in any actual implemen-

tation of a quantum repeater chain. In such a realistic set-

ting, we have shown how the performance can indeed over-

come the repeaterless PLOB bound and approach the optimal

single-repeater bound, even in the presence of internal time-

dependent loss, e.g., induced by limited coherence times.

The present study can be seen as a relevant step in an impor-

tant direction and invites further studies in many ways. This

work has put an emphasis on losses, which in most practical
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implementations is indeed the main source of errors. A more

detailed study should accommodate dark counts and further

offset noise as well. On a broader level, the work hopes to

push forward a line of thought aiming at identifying the ul-

timate bounds for practically achievable rates in quantum re-

peater schemes, without going too much into specifics of a

particular implementation. Such considerations, so is reason-

ably to expect, substantially help assessing the potential of

multi-partite long-distance quantum communication.
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Appendix

Appendix A: Two-way quantum capacities and general bounds

The most important point-to-point quantum communica-

tion scenario concerns two remote parties, Alice and Bob,

which are connected by a (memoryless) quantum channel E
without pre-sharing any entanglement. By means of this chan-

nel, the two parties may implement various quantum tasks as

for instance the reliable transmission of qubits, the distilla-

tion of entanglement bits (ebits) and the generation of secret

bits. The most general protocols are based on transmissions

through the quantum channel which are interleaved by local

operations (LO) assisted by unlimited and two-way classical

communication (CC), briefly called adaptive LOCCs. At the

beginning of this protocol, Alice and Bob have two local reg-

isters a and b of quantum systems which are adaptively up-

dated before and after each transmission through E . After

a number n of channel’s uses, Alice and Bob will share the

quantum state ρna,b which depends on the sequence of LOCCs

L = {L1, L2, · · · , Ln}.

The rateRn of this protocol is defined through a target state

φn whose content of information is equal to nRn bits. If the

output state ρna,b is close in the trace norm to φn, i.e. ‖ρna,b −
φn‖ ≤ ǫ for some ǫ →> 0, then the rate of the protocol is

equal to Rn. The generic two-way capacity C(E) is defined

by taking the limit for a large number of channel’s uses n and

by optimizing over all the possible adaptive protocols L, i.e.

C(E) := sup
L

lim
n→∞

Rn . (38)

In order for the quantity C(E) to get an operational mean-

ing, we need to specify the goal of the adaptive protocol im-

plemented by Alice and Bob. Thus, if the target state is a max-

imally entangled state, meaning that the protocol is an entan-

glement distribution protocol, we have that C(E) = D2(E),
where D2(E) is the two-way entanglement distribution ca-

pacity of the channel. Since an ebit can teleport a qubit and

viceversa with a qubit is possible distribute an ebit, D2(E) is

equal to the two-way quantum capacity Q2(E), i.e. the maxi-

mum achievable rate for transmitting quantum information. If

the protocol is a QKD protocol, φn is a private state and the

generic two-way quantum capacity is the secret key capacity

K(E) which is equal to the private capacity P2(E) (unlimited

two-way CCs and one time-pad). Since a maximally entan-

gled state is a specific type of private state, we can write the

following relations between all the different capacities

Q2(E) = D2(E) ≤ P2(E) = K(E) . (39)

As one can see from Eq. (38), the quantity C(E) cannot be

evaluated directly from its definition and the best strategy to

assess it is to resort to suitable lower and upper bounds that are

usually built upon information and entanglement measures.

A general lower bound can be given in terms of the coher-

ent [34, 35] or reverse coherent information [36, 37] which

are, respectively, defined as

IC(E , ρA) = I(A〈B)ρRB
:= S(ρB)− S(ρRB), (40)

IRC(E , ρA) = I(A〉B)ρRB
:= S(ρR)− S(ρRB), (41)

where the quantum channel E takes as an input the quantum

state ρA of system A (see also the related notions of neg-

ative cb-entropy of a channel [38] and pseudo-coherent in-

formation [39]). If R is an auxiliary system and |ψ〉RA the

purification of ρA, then the output of the channel is ρRB =
(I ⊗ E)(|ψ〉〈ψ|RA). In the above expressions, we also have

ρR(B) = TrB(R) ρRB and S(ρ) := −Tr(ρ log2 ρ) is the von

Neumann entropy. When the input state ρA is a maximally-

mixed state, its purification is a maximally-entangled state

ΦRA, so that ρRB becomes the Choi matrix of the channel

σE = (I ⊗ E)(ΦRA). Then we can define the coherent and

reverse coherent information of the quantum channel E re-

spectively as follows [10, Supp. Note 2]

IC(E) := I(A〈B)σE
, (42)

IRC(E) := I(A〉B)σE
. (43)

The quantity IC(E) constitutes an achievable rate for for-

ward one-way entanglement distillation, whereas IRC(E) is

an achievable rate for backward one-way entanglement dis-

tillation. In fact, due to the hashing inequality [40], we can

write

max{IC(E), IRC(E)} ≤ D1(σE) , (44)

where D1(σE) is the entanglement that can be distilled from

the channel’s Choi matrix with the assistance of forward or

backward classical communication.

The general weak converse upper bound to the two-way

quantum capacity C(E) derived in Ref. [10], is built upon

the notion of the relative entropy of entanglement (REE) [41]

suitably extended from quantum states to quantum channels.

Let us recall that the REE of a quantum state ρ is defined as

the minimum relative entropy between ρ and a separable state

σs [41, 42], i.e.,

ER(ρ) := inf
σs∈SEP

S(ρ‖σs) . (45)

We can also introduce the REE of a discrete variable quantum

channel E with associated Choi matrix σE in the following

way

ER(E) := sup
ρ
ER[(I ⊗ E)(ρ)] ≤ ER(σE) . (46)

Then Ref. [10, Th. 1] states that generic two-way capacity of

equation (38) is upper bounded by the REE bound

C(E) ≤ E⋆
R(E) := sup

L

lim
n→∞

ER(ρ
n
a,b)

n
, (47)
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where ρna,b is the output state of a n-use adaptive protocol L.

Note that both the lower bound (44) and the upper bound (47)

hold for an arbitrary quantum channel in arbitrary dimension.

In the subsequent section, we discuss how to extend them to

asymptotic states, providing in this way a formulation for CV

systems, following the asymptotic methodology of Ref. [10].

Appendix B: Asymptotic formulation for bosonic systems

It is important to note that when dealing with continuous

variable systems the maximally entangled state is an asymp-

totic state (energy-unbounded) obtained as the limit Φ :=
limµ Φ

µ, where Φµ is a sequence of two mode squeezed vac-

uum (TMSV) states parametrized by µ which quantifies both

the two-mode squeezing and the mean number n̄ of ther-

mal photons (local energy) in both modes, i.e., µ = n̄ +
1/2 [43, 44]. According to this, the Choi state of a bosonic

channel E (e.g. the pure-loss channel under consideration) is

given by the asymptotic limit

σE := lim
µ
σµ
E , σµ

E := (I ⊗ E)(Φµ) . (48)

Correspondingly the computation of the (reverse) coherent in-

formation of a quantum channel introduced in Eq. (42) and

(43) has to be performed as the following limits

I(A〈B)σE
:= lim

µ→∞
I(A〈B)σµ

E
, (49)

I(A〉B)σE
:= lim

µ→∞
I(A〉B)σµ

E
. (50)

For bosonic Gaussian channels [20], it can be shown that the

functionals I(A〈B)σµ
E

and I(A〉B)σµ
E

are continuous, mono-

tonic and bounded in µ. Therefore, the above limits are fi-

nite and we can continuously extend Eq. (44) to the asymp-

totic Choi matrix of a CV channel, for which we may set

D1(E) := limµ→∞D1(σ
µ
E ).

Let us now consider two sequences of states ρµ1 and ρµ2 con-

verging, respectively, in the trace norm to ρ1 and ρ2, i.e.,

‖ρµi − ρi‖ → 0, for i = 1, 2. By exploiting the lower semi-

continuity of the relative entropy, we can write

S(ρ1‖ρ2) ≤ lim inf
µ→∞

S(ρµ1‖ρµ2 ) . (51)

As a consequence the relative entropy of entanglement of an

asymptotic state ρ = limµ ρ
µ is defined as follows

ER(ρ) := inf
ρµ
s

lim inf
µ→∞

S(ρµ‖ρµs ) , (52)

where ρµs is an arbitrary sequence of separable states satisfy-

ing ‖ρµs − ρs‖
µ→∞−→ 0 for some separable state ρs. A direct

implication of Eq. (52) is that the REE computed over the

quasi-Choi matrix σµ
E of a bosonic channel is defined as

ER(σE) := inf
ρµ
s

lim inf
µ→+∞

S(σµ
E‖ρµs ) (53)

Appendix C: Channel simulation and teleportation stretching

We already mentioned that in order to write Eq. (4), which

is fundamental in simplifying the REE bound of Eq. (47), we

need to rely on two ingredients which are, respectively, known

as channel simulation and teleportation stretching. In this sec-

tion we briefly review these two technical steps with the main

definitions while referring the reader to [10] for more techni-

cal details and a discussion of historical developments.

The notion of quantum channel simulation comes from a

straightforward generalization of quantum teleportation pro-

tocol whose structure involves local operations (LO), Bell de-

tection on Alice’s side and Bob’s unitary correction, plus clas-

sical communication (CC) from Alice to Bob [45]. For a max-

imally entangled resource state Φ, the teleported output per-

fectly correspond to the input. If we perform teleportation

over an arbitrary mixed resource state of systems A and B,

the teleported state on Bob’s side will result in the output of

a certain quantum channel E from Alice to Bob (see Ref. [46,

Sec. V] for the initial insights of this technique, later expanded

by various groups over the years).

More generally, any implementation through an arbitrary

LOCC L and a resource state σ simulates the output of a quan-

tum channel E . Thus, for any E and for any input ρ, we can

express the output as [10]

E(ρ) = L(ρ⊗ σ) . (54)

When dealing with CV systems as in our scenario, the LOCC

simulation involves the limit σ := limµ→∞ σµ of resource

states σµ. Then, for any finite µ, the simulation provides the

approximated channel

Eµ(ρ) = L(ρ⊗ σµ) , (55)

which defines the quantum channel E as the following point-

wise limit

E(ρ) = lim
µ→∞

Eµ(ρ) . (56)

For any given quantum channel, we can always find a suitable

LOCC L and a resource state σ that achieve the simulation in

Eq. (54). A genuine LOCC simulation is established when the

quantum channel satisfies the property of teleportation covari-

ance. If U is the group of teleportation unitaries, a quantum

channel E is teleportation covariant if the following identity

holds for any U ∈ U

E(UρU †) = V E(ρ)V † , (57)

with V a unitary transformation not necessarily belonging to

U . Note that the unitary group U is the Weyl-Heisenberg

group (generalized Pauli operators) for DV systems, while for

CV systems it coincides with the group of displacement op-

erators. An interesting property of a tele-covariant quantum

channel E is that it can be simulated by teleporting the input

state ρ using its Choi matrix σE as the resource for teleporta-

tion, i.e., for a DV channel we write

E(ρ) = T(ρ⊗ σE) (58)
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where T is teleportation [45]. For a CV channel, by recalling

Eq. (56), the above relation is rewritten as

Eµ(ρ) = T(ρ⊗ σµ
E ) , (59)

where now T is the Braunstein-Kimble teleportation [4, 43]

and the asymptotic Choi state σµ
E defines the asymptotic Choi

state for large µ as in Eq. (48). Note that several quantum

channels satisfy the property of teleportation covariance, in-

cluding Pauli and erasure channels in DVs, and bosonic Gaus-

sian channels in CVs.

By making use of channel simulation, we are able to per-

form teleportation stretching and to simplify the adaptive

structure of a protocol for quantum and private communica-

tion. This means that the protocol output ρna,b is reduced into

an n-fold tensor product of resource states σ⊗n up to a TP

LOCC Λ̄. The reduction procedure starts by replacing each

transmission over the channel E with its simulation (T, σ). At

this stage, we can then stretch the resource state σ outside the

adaptive operations, while T is incorporated into the proto-

col LOCCs. After that, all the LOCCs together with the ini-

tial register preparation, are merged into a single final LOCC

Λ̄, which turns out to be TP after averaging over all the pos-

sible local measurement outcomes. At the end we can then

write [10, Lemma 3]

ρna,b = Λ̄(σ⊗n) . (60)

For CV quantum channels, the above equation must be in-

terpreted in an asymptotic fashion in the following manner.

We replace each transmission through E with the channel Eµ

defined in (59) with a finite-energy resource state σµ. If we

assume that the local registers of Alice and Bob have energy

≤ N , i.e., the total input state of each transmission belongs to

a bounded alphabet DN , the channel Eµ simulates E up to an

error given by ǫ(µ,N) := ‖E − Eµ‖⋄N , where

‖E − E ′‖⋄N :=
∑

ρRS∈DN

‖IR ⊗ ES(ρRS)− IR ⊗ E ′
S(ρRS)‖

(61)

is the energy constrained diamond norm. By exploiting the

non-increasing of the trace distance under CPTP maps and the

triangle inequality, it can be proven [10] that the trace distance

between the output ρna,b and the simulated output ρn,µa,b (the

output of an adaptive protocol performed over Eµ) satisfies

‖ρna,b − ρn,µa,b ‖ ≤ nǫ(µ,N) . (62)

We can now substitute ρn,µa,b with its decomposition given by

the teleportation stretching, so that we obtain

‖ρna,b − Λ̄(σµ⊗n)‖ ≤ nǫ(µ,N) , (63)

for any energy constrain N . Then by taking the limit for

µ → ∞ we get the asymptotic version of Eq. (4) (asymptotic

stretching)

lim
µ→∞

‖ρna,b − Λ̄(σµ⊗n)‖ = 0 . (64)

By using the decompositions of Eq. (60) and (64) we can con-

sequently simplify the upper bound in (15). In fact we can

write

ER(ρ
n
a,b) ≤ ER(σ

⊗n) ≤ nER(σ) , (65)

where in the two inequalities the monotonicity of the REE

under TP LOCCs and the sub-additivity of the REE over ten-

sor products are, respectively, exploited. By putting Eq. (65)

into Eq. (15), we can get rid of both the optimization over

all the adaptive protocols and the asymptotic limit so that a

single-letter upper bound to the capacities introduced in (39)

is obtained

C(E) ≤ ER(σ) . (66)

If the channel is teleportation covariant we can then write the

above equation in terms of the Choi matrix σE of the channel,

i.e.,

C(E) ≤ ER(σE) . (67)

See also Ref. [10, Th. 5] and related proofs for more details.

Appendix D: BB84 key rate

Over a pure loss channel there is no dephasing so there

is one bit of distillable key for every successful connection

between the two remote stations. All that is required then

is to calculate the probability of this happening for a single

channel use for a repeater scheme based upon storage and en-

tanglement swapping, but without any distillation. Following

Ref. [24] we can calculate that, for a scheme with a half-link

success probability, p, given by (12) and symmetric transmis-

sion and receiver losses τ t,eff = τ r,eff = τ eff that the BB84

rate is

rBB84 =
1

2

√
ητ eff(2−√

ητ eff)

3− 2
√
ητ eff

τmem. (68)

The rate per time is then given by RrBB84. For a standard po-

larisation based implementation, there are actually two optical

modes available (corresponding to horizontal and vertical po-

larisation) that must be transmitted for each round, so this rate

must be halved to get the rate per transmitted mode, which

gives the factor of 1/2 in the above expression.
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