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a b s t r a c t 

In response to the recent outbreak of the SARS-CoV-2 virus governments have aimed to reduce the virus’s 
spread through, inter alia , non-pharmaceutical intervention. We address the question when such mea- 
sures should be implemented and, once implemented, when to remove them. 

These issues are viewed through a real-options lens and we develop an SIRD-like continuous-time Markov 
chain model to analyze a sequence of options: the option to intervene and introduce measures and, after 
intervention has started, the option to remove these. Measures can be imposed multiple times. 

We implement our model using estimates from empirical studies and, under fairly general assumptions, 
our main conclusions are that: (1) measures should be put in place not long after the first infections 
occur; (2) if the epidemic is discovered when there are many infected individuals already, then it is 
optimal never to introduce measures; (3) once the decision to introduce measures has been taken, these 
should stay in place until the number of susceptible or infected members of the population is close to 
zero; (4) it is never optimal to introduce a tier system to phase-in measures but it is optimal to use a 
tier system to phase-out measures; (5) a more infectious variant may reduce the duration of measures 
being in place; (6) the risk of infections being brought in by travelers should be curbed even when no 
other measures are in place. These results are robust to several variations of our base-case model. 

© 2022 The Authors. Published by Elsevier B.V. 
This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

Non-pharmaceutical interventions can have a significant impact 
on the rate at which a virus spreads during an epidemic (“flat- 
tening the curve”) as has been shown for previous influenza out- 
breaks, (see, e.g., Cowling et al., 2009; Hatchett, Mecher, & Lipsitch, 
20 07; Kamigaki & Oshitani, 20 09; Stern & Markel, 20 09; Wu et al., 
2010 ). 1 These are, therefore, seen as a vital element of govern- 
ment policy ( Ferguson et al., 2005; Leung & Nicoll, 2010 ). Recent 
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jacco.thijssen@york.ac.uk (J.J.J. Thijssen) . 
1 A similar impact has been reported for COVID-19 lockdowns, see, e.g., Talic 

et al. (2021) , the UK government’s report “Analysis of the health, economic and so- 

contributions by, e.g., Acemoglu, Chernozhukov, Werning, & Whin- 
ston (2020) , show that social and economic interventions can have 
a significant impact on public health and can significantly reduce 
economic damage. However, such interventions, ranging from so- 
cial distancing to complete lockdown, come at a significant costs of 
their own ( Anderson, Heesterbeek, Klinkenberg, & Hollingsworth, 
2020; Atkeson, 2020 ). These costs encompass obvious economic 
costs associated with a partial or complete lockdown, but also 
health-related costs linked to, e.g., reduced mental health levels 
in the population, missed diagnoses due to reduced availability of 
health-care workers, etc. In addition, there are one-off sunk costs 
of imposing a lockdown, related to, e.g., individuals’ and institu- 
tions’ adoption of homeworking. According to the Financial Times 
(24 August 2020), office owners can expect millions in extra costs 
to adhere to government guidelines. 2 An additional difficulty for 
policy makers who have to balance the costs and benefits of non- 

cial effects of COVID-19 and the approach to tiering” (No. 2020), and https://www. 
economist.com/graphic-detail/2020/07/04/how-speedy-lockdowns-save-lives . 

2 https://www.ft.com/content/ece1bda0- 8719- 4987- 8428- 0f240748c5bb 
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pharmaceutical intervention, is that the evolution of an epidemic 
is uncertain. Their cost-benefit analysis has to take this uncertainty 
explicitly into account. 

The trade-off between costs and benefits in an uncertain en- 
vironment makes the timing of the introduction and subsequent 
relaxation of non-pharmaceutical interventions a crucial policy de- 
cision. A consequence of the uncertainty over a virus’s evolution is 
that it is not straightforward to determine when measures should 
be implemented and once implemented, when they should be re- 
laxed. If measures are relaxed too early, a second outbreak could 
occur. Interventions that last too long lead to unnecessary eco- 
nomic and (mental) health damage. Our contribution is to develop 
an appropriate model and to apply dynamic programming tech- 
niques to find the optimal intervention policy of a social planner 
with an application to the COVID-19 epidemic. More specifically, 
this paper builds a continuous-time Markov chain (CTMC) of an 
SIRD-like 3 model of non-pharmaceutical interventions (which we 
refer to as “lockdown”) to study the questions of (i) when to enter 
a lockdown and, consequently, (ii) when to exit it, under an uncer- 
tain evolution of the epidemic, by taking into account the social 
(health and non-health) costs of both the epidemic and the lock- 
down. We, therefore, not only contribute to the literature on policy 
making in the context of COVID-19 but our application also relates 
to the long tradition in OR to use CTMCs for modeling operational 
systems. We then calibrate our model using parameter estimates 
from the literature to arrive at the optimal (dynamic) intervention 
strategy. From this base-case scenario we then proceed to study 
the robustness of our policy conclusions, thereby providing a solid 
theoretical basis for policy evaluation by public health officials. 

As pointed out by Tsekrekos & Yannacopoulos (2016) the OR 
community is well equipped to deal with problems where the 
objective is to determine the optimal timing decisions to com- 
mence and/or terminate a process or operations, when the under- 
lying problem is subject to uncertainty. An established wide range 
of studies has shown how optimal stopping problems can be ap- 
plied. 4 For a review and discussion of the real option valuation lit- 
erature in OR we refer to Trigeorgis & Tsekrekos (2018) . 

We consider a model where a social planner can impose a se- 
quence of lockdowns. Our model views the timing issues through 
a real options lens: for each lockdown the social planner has two, 
nested, options, which we value under the assumption that the so- 
cial planner wants to minimize the expected present value of to- 
tal costs related to the virus and the lockdown. Briefly stated, our 
main conclusions are that: 

1. lockdown should be entered not long after the first infections 
occur; 

2. if the epidemic is discovered too late, i.e., when there are too 
many infected individuals already, then it is optimal never to 
introduce a sequence of measures; 

3. once the decision to introduce measures has been taken, these 
should stay in place until the number of susceptible or infected 
members of the population is close to zero; 

3 The acronym SIRD refers to the four groups members of the host population 
can be assigned to at each point in time: susceptible, infectious, recovered, and 
deceased. 

4 This includes applications to, e.g., energy systems ( Bøckman, Fleten, Juliussen, 
Langhammer, & Revdal, 2008; Ernstsen & Boomsma, 2018; Muñoz, Contreras, Caa- 
maño, & Correia, 2011; Steffen & Weber, 2016; Thompson, Davison, & Rasmussen, 
2004; Tseng & Barz, 2002 ), infrastructure ( Thijssen, 2022; Wang, Liu, Zhang, & Li, 
2019 ), climate change adaptation ( Truong & Trück, 2016 ), natural resources and 
commodities ( Devalkar, Anupindi, & Sinha, 2011; Felix & Weber, 2012; Firoozi & 
Merrifield, 2003; Støre, Fleten, Hagspiel, & Nunes, 2018 ), forest plantations ( Kallio, 
Kuula, & Oinonen, 2012 ), adaptive clinical trials ( Thijssen & Bregantini, 2017 ), and 
IT and technology ( d’Halluin, Forsyth, & Vetzal, 2007; Pendharkar, 2010 ). 

4. it is never optimal to introduce a tier system to phase in mea- 
sures but it is optimal to use a tier system when exiting a lock- 
down; 

5. a more infectious variant may not only reduce the probability 
of lockdown being entered so that, before it is imposed, lock- 
down is less desirable as the virus spreads, but could also lead 
to a reduction in lockdown duration; and 

6. lockdown is only optimal when combined with a strict policy 
at the country’s borders that aims to minimize the risk of in- 
fections being brought in by travelers. 

These results are, qualitatively, robust to several variations of 
our base-case model. 

Some of the results are rather counter-intuitive when compared 
to the standard real options literature. The third result confirms 
the usual intuition that when switching between regimes involves 
sunk costs, then it is optimal to delay taking the decision. So, once 
lockdown is entered, one should wait until one is certain enough 
that the benefits of lifting lockdown are sufficiently higher than 
the associated costs (also see, e.g., Keogh-Brown, Wren-Lewis, Ed- 
munds, Beutels, & Smith, 2010; Smith, Keogh-Brown, Barnett, & 

Tait, 2009 ). The first result is less intuitive. One might expect that 
the decision to enter lockdown should only be taken when one is 
sufficiently sure that its benefits outweigh its costs and, therefore, 
that the decision is taken when “enough” members of the pop- 
ulation have been infected. However, our results belie this intu- 
ition in the sense that already after few infections it is optimal to 
go into lockdown. The reason is that the benefits from switching 
arise from the difference in the rate of infection and the expected 
evolution of the number of infected, which is greatest at the start 
of the epidemic (also see, e.g., Farboodi, Jarosch, & Shimer, 2021; 
Shin, 2020 ). This is supported by our finding that when the rate at 
which infections occur from ‘outside’ is higher, the decision maker 
wants a few more infections to occur before going into lockdown is 
optimal. When there is not enough time left for benefits to be real- 
ized, as is the case when a lot of members of the population have 
already been infected and/or recovered, then it is never optimal to 
incur the costs of lockdown, which explains the second result. Even 
when considering constraints on health care capacity, it is unlikely 
that lockdown is optimal when many individuals have had been 
infection. Our result is supported by Nova Scotia’s (Canada) suc- 
cess with its strategy involving early and harsh measures to keep 
infections low in the COVID-19 epidemic (The Globe and Mail, 18 
January 2021). 5 The same intuition feeds into our fifth result. An 
increase in the infection rate has several implications. When the 
virus spreads more quickly, the expected time between infections 
reduces. As a result, the cost of staying in lockdown may no longer 
outweigh its benefits, especially when a higher proportion of the 
population has had the virus. This increases the incentive the come 
out of lockdown earlier when the infection rate is higher. 

COVID literature The OR literature has seen various contributions 
in the context of the recent COVID epidemic. Examples of empir- 
ical studies include the use of predictive analytics tools for fore- 
casting and planning ( Nikolopoulos, Punia, Schäfers, Tsinopoulos, 
& Vasilakis, 2021 ), studying the effectiveness of social media as 
a humanitarian response ( Kumar, Xu, Ghildayal, Chandra, & Yang, 
2021b ), establishing the socio-economic impact of the epidemic 
( Amaratunga et al., 2021 ), how the Chinese government can stim- 
ulate consumption ( Liu, Shen, Li, & Chen, 2021 ), studying the role 
of social learning on closure decisions by firms ( de Vaan, Mum- 
taz, Nagaraj, & Srivastava, 2021 ), providing evidence that countries 
that did not experience SARS in 2003 delayed action ( Ru, Yang, & 

Zou, 2021 ), forcasting moratility rates in the USA ( Taylor & Taylor, 

5 https://www.theglobeandmail.com/opinion/editorials/ 
article- go- early- go- hard- stay- vigilant- how- atlantic- canada- beat- the- virus/ 
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2021 ), addressing the capacity planning decisions of a hemodialy- 
sis clinic in Istanbul ( Bozkir et al., 2021 ), the use of an integrated 
epidemics-testing allocation model to minimize infections ( Abdin 
et al., 2021 ), and evaluating and optimizing social distancing poli- 
cies ( Chen, Pun, & Wong, 2021 ). 

Theoretical work related to health care and infections includes 
studies that, for example, develop a model to estimate and study 
local coronavirus outbreaks ( Chang & Kaplan, 2021 ) or to study the 
spread of infections in an agent-based model ( Ghaderi, 2022 ), use 
matheuristic algorithms for resource planning problems in a home 
health care ( Nikzad, Bashiri, & Abbasi, 2021 ), find facility layouts 
that minimize risk of infections ( Fischetti, Fischetti, & Stoustrup, 
2021 ), apply an efficient large neighbourhood search algorithm to 
a ‘contagious disease testing’ problem ( Wolfinger, Gansterer, Do- 
erner, & Popper, 2021 ), and address vaccine and testing kit alloca- 
tions in a multi-agent sequential decision problem ( Thul & Pow- 
ell, 2021 ). Economic impact is included in work that, for exam- 
ple, uses game theoretical mechanisms to study supply chain net- 
works with labor constraints ( Nagurney, 2021 ), studies pricing dur- 
ing disruptions ( Feng, Rong, Shen, & Snyder, 2020 ), finds out how 

minimize disruptions to customer service level due to infrastruc- 
tural deficiencies ( Sinha, Kumar, & Chandra, 2021 ), and optimizes 
the implementation of measures with a reaction-diffusion process 
to minimize the economic burden ( Rezapour, Baghaian, Naderi, & 

Sarmiento, 2021 ). The social planner is included in the theoreti- 
cal work that, for example, looks at communication strategies by 
governments to induce compliance with measures ( de Véricourt, 
Gurkan, & Wang, 2021 ), establishes how test accuracy and avail- 
ability impact demand and thereby the social outcome by a social 
planner ( Drakopoulos & Randhawa, 2021 ), and reduces social plan- 
ner’s cost through optimal policies of safety stock and capital re- 
serve ( Zhang, Shi, Huang, Hua, & Teunter, 2021 ). 

Other contributions include the study by Silal (2021) , who 
discusses opportunities for OR to contribute to infectious dis- 
ease management and to improve health outcomes (also see Choi, 
2021 ). Tippong, Petrovic, & Akbari (2021) review OR applications in 
emergency medical response coordination in disaster management. 
Our contribution to the OR literature is to look at the optimal tim- 
ing decisions of (non-pharmaceutical) interventions. 

Other recent theoretical work on optimal policy within an epi- 
demiological framework uses optimal control theory , sometimes in- 
corporating economic trade-offs (see, e.g., Caulkins et al., 2021; 
Djidjou-Demasse, Michalakis, Choisy, Sofonea, & Alizon, 2020; Gar- 
riga, Manuelli, & Sanghi, 2020; Kantner & Koprucki, 2020; Pigu- 
illem & Shi, 2020; Toxvaerd, 2020 ). However, only a handful of 
papers incorporate optimal timing, including Alvarez, Argente, & 

Lippi (2020) ; Farboodi et al. (2021) ; Patterson-Lomba (2020) ; Shin 
(2020) ; Zhang & Enns (2020) , and Kruse & Strack (2020) . Their 
findings are generally mixed. For instance, Patterson–Lomba finds 
that the timing strongly depends on the natural reproduction num- 
ber ( R 0 ) and Kruse and Strack find that the social distancing can 
be delayed, whereas some others find that it is optimal to inter- 
vene when the first cases of infectives have been confirmed. The 
study by Federico & Ferrari (2020) is closest to our set-up, because 
they also incorporate uncertainty in an SIR-like model. However, in 
their model only the infection rate is stochastically evolving over 
time whereas in our model all transitions are stochastic. In addi- 
tion, Federico and Ferrari do not consider sunk costs of switching, 
which leads to measures being continuously adjusted in the op- 
timal policy. Therefore they find that immediate lockdown is not 
optimal. Kumar, Choi, Wamba, Gupta, & Tan (2021a) show empir- 
ically that rigid measures are less effective to combat infections 
than moderate long-lasting preventive measures in an SEIR model. 
They argue that harsh measures lead to more economic damage 
and only delay the peak. We allow the social planner to switch be- 
tween rigid and moderate measures and find, indeed, that moder- 

ate measures may be better during the end-phase. However, espe- 
cially when incorporating healthcare constraints, delaying the peak 
might be better despite the economic damage. Other relevant and 
related studies include Jia & Chen (2021) who develop an SEIAR 
model with human uncertainty factors, Bliman, Duprez, Privat, & 

Vauchelet (2021) who look at optimal immunity control with the 
aim to minimize the epidemic final size in an SIR model, and Doyle 
(2021) who predicts the spread of infections in a SEIRD model with 
heterogeneous agents. 

Although some studies have highlighted that any optimal policy 
is highly sensitive to parameterizations (e.g., Manski & Molinari, 
2021 , also see Avery, Bossert, Clark, Ellison, & Ellison, 2020 for a 
discussion), we argue that this is only partly true of our main re- 
sults. When varying the parameters associated with the process, 
our main conclusions hold irrespective of the specific parameter 
values. Although our results are qualitatively the same for a wide 
range of parameter values, we do not want to underestimate the 
importance of accuracy when it comes to estimation of the infec- 
tion rate, mortality rate, and immunity. 

The remainder of this paper is organized as follows. 
Section 2 introduces the mathematical framework. Section 3 solves 
the social planner’s problem for our benchmark model, which is 
analyzed and extended in Section 4 . Section 5 concludes and an 
online appendix contains the proofs of propositions as well as 
further robustness checks. 

2. Model description 

Our model considers the problem of a social planner in the con- 
text of an infectious disease outbreak. The social planner needs 
to decide when to undertake action and temporarily intervene in 
an environment where infections of members of the host popula- 
tion result in a (collateral) social cost. Temporal intervention could 
range from self-isolation to a complete lock-down. In this paper, 
we consider two models: a simplified benchmark model and a 
more realistic extended model. This allows us to identify the im- 
pact of each model characteristic. For our benchmark model, we 
assume that the form of intervention is exogenously given and that 
the costs and benefits (in terms of reduced infection/enhanced re- 
covery) are known. Once temporal intervention has started, the so- 
cial planner has to decide when to stop it. After that second deci- 
sion, the social planner has no further decisions to take. In our ex- 
tended model, we allow the social planner to impose a sequence of 
lockdowns and could opt to phase in and/or phase out measures. 

For each lockdown, the social planner is assumed to hold two 
nested options, which we value under the assumption that she 
wants to minimize the expected present value of total social costs 
related to the virus and the lockdown over the planning horizon, 
which we assume to be infinite here. These costs are assumed to 
include (health and non-health) costs related to the number of 
infected people, the (health and non-health) cost of intervention, 
and the costs of lost lives and lost QALYs 6 due to the disease. 
For simplicity, throughout this paper, we refer to intervention as 
“lockdown”, although, of course, interventions could entail differ- 
ent types of non-pharmaceutical measures. 

The time parameter is continuous and is measured in days. Let 
N ∈ N be the size of the host population. Our model describes a 
continuous-time Markov chain (CTMC) in which at any time t ≥ 0 , 
the N individuals in our population are split into four groups, as 
in a typical SIRD model: I t members are infected , R t members 
are recovered , D t members are deceased, and S t = S(I t , R t , D t ) := 

N − I t − R t − D t members are susceptible . Initially, all individuals 

6 Quality Adjusted Life Years is a commonly-used unit of measurement for the 
benefits of health technologies. 
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Fig. 1. SIRD model with transition rates. 

are susceptible, after which they might move to be infected, af- 
ter which they will either recover or die in finite time (a.s.). 7 Our 
CTMC has state dependent transition rates, in which the interar- 
rival times of events (i.e., infections, recoveries, and deaths) are ex- 
ponentially distributed. In our benchmark model we assume that 
there are only three groups, setting D t = 0 for all t . In that case, 
R t represents both deceased and recovered individuals. Since for 
the benchmark case we do not have group “D”, the model can be 
referred to as an SIR-type of model. 

When the social planner decides to intervene, a lockdown 
starts, which is assumed to decrease the infection rate and/or in- 
crease the recovery rate. We, therefore, initially, define two policy 
modes m = 0 , 1 . At time t = 0 , the system is in m = 0 , where no 
action is undertaken, and the social planner has an option to move 
to mode m = 1 where a lockdown is in place. In our extended 
model we assume that there is an intermediate mode where only 
mild measures are introduced. The social planner, then, has the 
option to either switch to the intermediate mode first before im- 
posing lockdown but could also choose to skip this mode. Her ob- 
jective is to minimize expected costs, which consist of sunk costs , 
associated with switching between modes, and (state-dependent) 
running costs . We assume that all costs are monetized. 

Let N N = { 0 , 1 , . . . , N} . The state space of our CTMC is given by 

E = { (i, r, d) ∈ N 
3 
N | i + r + d ≤ N} . 

Here, i , r, and d denote the number of infected, recovered, and de- 
ceased members of the population, respectively. For (i, r, d) ∈ E, the 
number of susceptible members is given by s = N − i − r − d ≥ 0 . 
That is, the population is closed. 8 We denote by int (E) all points 
(i, r, d) ∈ E such that i + r + d < N and i, r, d > 0 . 

In our CTMC the number of states the Markov chain can transi- 
tion to is at most three: either a susceptible member becomes in- 
fected so that the Markov chain moves from (i, r, d) to (i + 1 , r, d) , 
or an infected member recovers so that the Markov chain moves 
from (i, r, d) to (i − 1 , r + 1 , d) , or an infected member dies, which 
implies a move from (i, r, d) to (i − 1 , r, d + 1) . The first can only 
happen if i + r + d < N and the second and third can only happen 
if i > 0 . This implies that any state (0 , r, d) such that r + d = N is 
always an absorbing state. Fig. 1 summarizes all possible transi- 
tions in our SIRD-like model. 9 

We shall proceed with formulating the full model description 
for our SIR-like benchmark model for which there are only two 

7 Note that recovered individuals do not become susceptible again (in finite time). 
Therefore, we can refer to the group of individuals that are no longer infected as 
“removed”, in line with the literature. 

8 We refer to point 2., on page 11, for a discussion on this assumption. 
9 The figure includes all transition rates, which we will introduce later. 

modes and for which lockdown can only be imposed once. In our 
extended, SIRD-like, model, we reformulate where necessary. In 
addition, for simplicity, we first focus on the simplified case where 
D t = 0 for all t . In that case we can think of the state space as 

E = { (i, r) ∈ N 
2 
N | i + r ≤ N} . 

The interarrival times between state transitions are assumed to be 
exponentially distributed with mode- and state-dependent infec- 
tion and recovery rates λm (i, r) and μm (i, r) , respectively. In order 
to stay close to standard SIR models, we assume for each mode 
m = 0 , 1 , that 

λm (i, r) = βm i 
S(i, r) 

N 
, and 

μm (i, r) = γm i, 

respectively, for some βm , γm ∈ R ++ . Note that the epidemic is over 
when the number of infectives is equal to 0, resulting in the pro- 
cess being absorbed. For our specification, the set of absorbing 
states of the chain is, therefore, given by 

� = { (i, r) ∈ E | i = 0 } . 
In our extended model we consider the possibility of infections oc- 
curring as long as S t > 0 , i.e., even when I t = 0 . This could hap- 
pen, for instance, when infections can take place from neighboring 
countries. In that case, the set of absorbing states is redefined as 
all states such that i = 0 and s = 0 . 

Let X t := (I t , R t ) ∈ E represent the state of the system at any 
time t ≥ 0 , so that X := (X t ) t≥0 = (I t , R t ) t≥0 is our stochastic pro- 
cess. Note that if, at the outset, the process is in a state in �, it 
stays there forever and therefore, lockdown will never be imposed. 
For that reason, we will only consider scenarios where X 0 / ∈ �. 

For m = 0 , 1 , we define the Markov generator Q m = (q m 
xy ) x,y ∈ E 

with, for all x, y ∈ E, y � = x , 

q m 
xy = 

{ 
λm (x 1 , x 2 ) if y − x = (1 , 0) , 
μm (x 1 , x 2 ) if y − x = (−1 , 1) , 
0 otherwise, 

(1) 

and q m 
xx = −

∑ 

y � = x q 
m 
xy . Note that when y − x = (1 , 0) an infection 

occurs and when y − x = (−1 , 1) an infected member recovers. We 
then define the (infinitesimal) transition function for m = 0 , 1 as 

p m 
xy (h ) = 

{

hq m 
xy + o(h ) if y � = x 

1 + hq m 
xx + o(h ) if y = x 

, h > 0 , 

where o(h ) collects all terms for which lim h ↓ 0 
o(h ) 
h 

= 0 . 
Let E be the power set of E. From the Kolmogorov extension 

theorem it follows that there exists a measurable space (�, F ) 

and, for each x ∈ E and m ∈ { 0 , 1 } , a unique probability measure 
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P x such that for all 0 ≤ t 1 < . . . < t k , k ∈ N , and all F 1 , F 2 , . . . , F k ∈ E , 
it holds that 

P m x (F 1 , . . . , F k ) = 
∑ 

y 1 ∈ F 1 

∑ 

y 2 ∈ F 2 

. . . 
∑ 

y k ∈ F k 

p m xy 1 (t 1 ) p 
m 
y 1 y 2 (t 2 − t 1 ) . . . p 

m 
y t k −1 y t k 

(t k − t k −1 ) . 

With each mode m ∈ { 0 , 1 } , state x ∈ E, and probability measure 
P m 
x , we associate the expectation operator E m 

x . Throughout we will 
use the natural filtration F := (F X t ) t≥0 . The set of F -stopping times 
is denoted by M . 

Switching from mode m to mode m ′ , m, m ′ ∈ { 0 , 1 } , m � = m ′ , is 
associated with an immediate and sunk cost K mm ′ ≥ 0 , which rep- 
resent all costs that are incurred once and are associated with en- 
tering or exiting lockdown. Examples of costs of entering include 
a change in bureaucracy, hiring people to work on legislation, lo- 
cal governments’ work on policies, shops to make investments to 
accommodate new rules, home workers needing office chairs at 
home, etc. Exiting lockdown can be associated with costs around, 
e.g., hiring new staff, legislative changes, etc. 10 

For each mode m = 0 , 1 , we define a bounded function c m : 
E → R + , which represents the running health and non-health costs 
related to the number of infected members and, for mode m = 1 , 
additional economic and indirect health costs (e.g., due to missed 
diagnoses of other diseases) as a result of lockdown. Letting χ{ v } 
denote the characteristic function that is equal to 1 if v is true and 
0 otherwise, we take 

c m (i, r) = δE (i, r) i + δL χ{ m =1 } , (2) 

for some epidemic related per-patient cost function δE : E → R + , 
with δE (0 , r) = 0 , and fixed lockdown cost flow δL > 0 . Although 
in our analyses the cost functions are chosen to be linear, our 
methodology can be applied to, e.g., convex specifications of the 
cost functions. 

The social planner is assumed to discount costs at a constant 
rate ρ > 0 . The decision problem is modeled as a nested optimal 
stopping problem: 

V (i, r) = inf τ1 ∈M E m =0 
(i,r) 

{ 
∫ τ1 
0 e −ρt c 0 (I t , R t )d t + e −ρτ1 K 01 

+ inf { τ2 ∈M| τ2 ≥τ1 } E 
m =1 
(I τ1 ,R τ1 ) 

[ 
∫ τ2 
τ1 

e −ρt c 1 (I t , R t )d t + e −ρτ2 K 10 

+ E m =0 
(I τ2 ,R τ2 ) 

(

∫ ∞ 
τ2 

e −ρt c 0 (I t , R t )d t 
)] } 

. 

(3) 

The first, second, and third terms represent the present values of 
the costs incurred before lockdown ( 0 ≤ t < τ1 ), during lockdown 
( τ1 ≤ t < τ2 ), and after lockdown ( t ≥ τ2 ), respectively. 

Finally, we denote the basic reproduction number by R m 
0 , for 

modes m = 0 , 1 . The basic reproduction number represents the av- 
erage number of infectives emerging from the introduction of a 
single infectious member into a completely susceptible population. 
In our model, this is given by 

R 
m 
0 = 

βm 

γm 
. 

Discussion of modeling assumptions 

After having introduced our basic model, we now briefly discuss 
some of our assumptions before analysing the model. 

1. The basic reproduction number, R m 
0 , is observed without er- 

ror. This assumption is reasonable when prevalence of the dis- 
ease can be accurately observed even at low levels ( Mutesa, 
Ndishimye, Butera et al., 2021 ). 

10 It should be noted though that these costs need not necessarily be positive. Also 
see our robustness analysis in Appendix C . 

2. The system is closed, i.e., we assume no births and no non- 
COVID deaths. Births can be interpreted in two ways: either 
they could represent migration into the population or they 
could represent newborns. For the former, the impact of mi- 
gration can be studied separately, as we do in Section 4.5 . The 
latter is not expected to drive any of our results and is, there- 
fore, ignored. 

3. We restrict the social planner’s policy choice to two or three 
modes. While, theoretically, a social planner could consider 
an infinite set of modes, many governments have opted for a 
relatively simple traffic-light system in their responses to the 
COVID-19 pandemic. Hence, our model is reasonably close to 
observed practice. In fact, we show in Section 4.4 that when 
measures are added or taken away from the intermediate mode 
only the speed with which measures are phased out is im- 
pacted, but not the sequencing of the optimal policy. 

4. The social planner can only impose new restrictions once mode 
m = 0 is reached. While this assumptions looks restrictive, we 
assume throughout that switching from the intermediate mode 
to mode m = 0 is costless. Therefore, in principle, mode m = 

0 can be skipped and stricter measures be introduced at any 
time. 

5. The cost of infection is constant over the population. Through- 
out we use the weighted average of the cost per patient when 
in need of (hospital) treatment and the cost when no treatment 
is necessary. In the latter case, costs could be related to, e.g., 
self-isolation. Although this assumption might not be as real- 
istic when I t is small, since the population in our model aims 
to represent a country’s population (in our case the UK), small 
values of I t may still represent a large number of individuals. 11 

6. The cost of being in lockdown is constant over time. This may 
not always be a realistic assumption, especially when measures 
are in place for a long time. Therefore, we relax this assump- 
tion in Appendix C.3 and show that our results do not change 
qualitatively. 

7. Recovered members of the population are assumed to acquire 
immunity and that infection, recovery, and death rates are 
known to the social planner. These are standard assumptions in 
SIR(D) models, which we further discuss in Section 5 where we 
point to avenues for future research to weaken these assump- 
tions. In our model, the recovery rate incorporates the weighted 
sum of the average recovery times of patients with and without 
symptoms, including those receiving hospital treatment (see 
Section 3.2 ). The incubation time can be incorporated in a sim- 
ilar way. 

2.1. Properties of the stochastic process 

We first look at how X behaves as a function of time in our 
benchmark model. Therefore let us first study the change in X t = 

(I t , R t ) . One can easily see that this can be written as 

1 
d t 

E 
m 
x 

[ 

(d I t , d R t ) 
∣

∣

∣
X t 

] 

= 
1 
d t 

E 
m 
x 

[ 

d X t 

∣

∣

∣
X t 

] 

= 
1 
d t 

∑ 

y ∈ E\{ x } 
q m 
xy (y − x )d t 

= (λm (I t , R t ) − μm (I t , R t ) , μm (I t , R t )) , 

for all x ∈ int (E) , m = 0 , 1 , where the last step follows from (1) . 
This gives the intuitive result that the number of infectives is ex- 
pected to go up if, and only if, λm (I t , R t ) > μm (I t , R t ) and the num- 

11 An alternative way of modeling would be to consider δE as two branches where 
a fraction of I t receives hospital treatment. Since we already take into account that 
different members require different treatment (if at all), we do not expect that this 
more complicated version would lead to qualitatively different results. 
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Fig. 2. Example of a lattice for N = 4 , describing all potential paths. All absorbing states in the benchmark model are labeled with an asterisk. For our full model we add 
the additional transitions with the dotted arrows when there is an exogenous source of infections. 

ber of recovered members is always expected to increase. If con- 
trol measures in mode 1 lead to a decrease in the transmission 
rate, i.e., if λ2 (·) < λ1 (·) , then there exists a set of states in E for 
which the number of infections is expected to go down in mode 1, 
whereas it is expected to go up for the same states in mode 0. For 
our SIR-like model, the expected change in X t equals 

1 
d t 

E 
m 
x [d I t | X t ] = βm I t 

S(I t , R t ) 

N 
− γm I t , and 

1 
d t 

E 
m 
x [d R t | X t ] = γm I t , 

so that in expectation we obtain the dynamics of the traditional 
deterministic SIR model. 

One of the convenient features of the SIR model is that the state 
space, E, can equivalently be represented by a simple lattice struc- 
ture; that is, states can be ordered to form a very simple tree de- 
scribing all potential paths. Fig. 2 illustrates this lattice structure 
for the case N = 4 . These lattice structures are useful in determin- 
ing the value functions in all modes and determining the stopping 
sets of our optimal stopping problems. 

The volatility of the process is given by 

1 
d t 

E 
m 
x [(d I 

2 
t , d R 

2 
t )] = 

1 
d t 

∑ 

y ∈ E 

p m 
xy (dt)(y − x ) ⋄ (y − x ) 

= 

∑ 

y ∈ E\{ x } 
q m 
xy (y − x ) ⋄ (y − x ) 

= λm (I t , R t )((1) 2 , 0 2 ) + μm (I t , R t )((−1) 2 , (1) 2 ) 

= (λm (I t , R t ) + μm (I t , R t ) , μm (I t , R t )) , 

where ⋄ denotes the component-wise multiplication of vectors and 
where we use that (E m 

x d I t ) 
2 = (E m 

x d R t ) 
2 = 0 for all m = 0 , 1 . 

Note that when the function λm (·) and/or μm (·) changes, there 
is a direct effect on the speeds with which the process moves 
through the tree. When the volatility increases, costs are incurred 
over a shorter period of time (in expectation). Therefore, an in- 
crease in, e.g., β has two effects. Individuals are infected at a 
higher rate, but at the same time, the volatility of the process is 
also increased. The basic reproduction number is given by R m 

0 = 

βm 
γm 

, for modes m = 0 , 1 . Therefore one can alternatively write 

1 
d t 

E m x [(d I 
2 
t , d R 

2 
t )] = (βm I t 

S(I t , R t ) 

N 
+ γm I t , γm I t ) = γm I t (R m 0 

S(I t , R t ) 

N 
+ 1 , 1) . 

as more commonly done for SIR models. 

3. Model solution 

We solve the optimal stopping problem (3) by working back- 
wards. So, we start with the situation where the social planner has 
come out of lockdown and there are, thus, no options left. We il- 
lustrate our findings with our benchmark model. In Section 4 the 
full model is analyzed. Note that then, the social planner has a new 

option to go into lockdown. 

3.1. Value after lockdown 

For our benchmark model, after lockdown has been entered and 
exited, the social planner has no more decisions to take, i.e., we re- 
main in mode m = 0 perpetually. Recall that X t = (I t , R t ) denotes 
the state of the process at any time t . For a given initial state 
x = (i, r) ∈ E, we denote the total expected discounted costs after 
lockdown (under P 0 x ) by G (x ) . That is, 

G (x ) = E 
m =0 
x 

[ ∫ ∞ 

0 
c 0 (X t ) e 

−ρt d t 
] 

. (4) 

The following proposition shows that G (x ) can be defined recur- 
sively, that is, it can be written as a function of all states the chain 
can transition to when leaving x . 

Proposition 1. Let x ∈ E. Then, G (x ) is recursively defined as 

G (x ) = 
c 0 (x ) 

ρ − q m =0 
xx 

+ 

∑ 

y ∈ E\{ x } 

q m =0 
xy 

ρ − q m =0 
xx 

G (y ) . (5) 

Moreover, for x ∈ �, it holds that 

G (x ) = 
c 0 (x ) 

ρ
. (6) 

Proof. See Appendix A . 
The expression in (5) consists of two terms. The first term re- 

lates to the costs incurred while being in state x . After a transi- 
tion to some state y � = x , the costs after the transition are repre- 
sented by G (y ) . The present value of these costs after the event of 
a transition, for all possible subsequent states, is then given by the 
second term multiplied by q m 

xy from the Markov generator which 
relates to the transition probability. Thus, the second term is the 
expected present value of costs after the next transition. 

Proposition 1 provides the solution to the general problem 

in (4) . Note that since in our formulation, see e.g. (2) , c 0 (x ) = 0 
for all x ∈ �, one could simplify (6) to G (x ) = 0 . 

We observe that it is not guaranteed that the recursive formu- 
lation has a solution. However, due to the nature of the lattice that 
corresponds to our problem, a sufficient condition would be that 
if the process starts in a state that is not in �, i.e., the process is 
not absorbed, then the process will reach a state in � a.s. at some 
future point in time. 

Since the chain is absorbing, it is easy to see that G (x ) can be 
determined for all x by working recursively through the tree. First, 
for x ∈ �, G (x ) = 0 . For x ∈ E\ �, G in (5) can be determined using 
a lattice method, finding G (x ) for all x = (i, r) ∈ E such that i + r = 

N, N − 1 , N − 2 , . . . , 1 . Then, for any x in the interior of the state 
space, i.e. for any x ∈ int (E) , one can check that G (x ) is equal to 
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G (x ) = 
c 0 (x ) 

ρ + μ0 (x ) + λ0 (x ) 
+ 

μ0 (x ) 

ρ + μ0 (x ) + λ0 (x ) 
G (x + (−1 , 1)) 

+ 
λ0 (x ) 

ρ + μ0 (x ) + λ0 (x ) 
G (x + (1 , 0)) . 

3.2. Value in lockdown 

In mode 1, the social planner has lockdown in place. This ends 
when the social planner decides to switch back to mode m = 0 at 
sunk cost K 10 . After this switch, the value function is given by G , 
cf., (4) . 

Therefore, in mode 1, the social planner is faced with the opti- 
mal stopping problem 

F (x ) = inf τ∈M E m =1 
x 

[

e −ρτ ( G (X τ ) + K 10 ) + 
∫ τ
0 c 1 (X t ) e 

−ρt d t 
]

, 

(7) 

where G is defined in (4) . The integral captures the present value 
of costs while being in mode m = 1 , i.e., until lockdown is exited 
at time τ . The present value of costs incurred after τ are given by 
the first term. 

Proposition 2. There exists a unique function ϕ : E → R + such that 

ϕ(x ) = min 

{ 

G (x ) + K 10 
c 1 (x ) 

ρ − q m =1 
xx 

+ 

∑ 

y � = x 

q m =1 
xy 

ρ − q m =1 
xx 

ϕ(y ) 

} 

. (8) 

The function ϕ solves the optimal stopping problem in (7) , i.e., F = ϕ. 

The optimal stopping time is the first exit time of the set C 1 , where 

C 1 = { x ∈ E : ϕ(x ) < G (x ) + K 10 } . 

Proof. See Appendix A . 
Proposition 2 shows that in order to find the value, we need 

to distinguish states where it is decided to switch to mode 0 
and where it is decided to delay exiting lockdown. Thus, prob- 
lem (7) has a solution that allows us to split the state space E into 
a continuation set C 1 ∈ E and a stopping set D 1 = E\ C 1 ∈ E such that 
the social planner decides to stay in mode 1 for all x ∈ C 1 and to 
switch to mode 0 for x ∈ D 1 . 

The first term on the right-hand side in (8) represents the value 
if the social planner decides to switch to mode m = 0 immediately, 
i.e., when x is in the stopping set. The second term is the value 
when x is in the continuation set so that the decision to come out 
of lockdown is “delayed”: it is the sum of the costs while being in 
state x and the expected present value of costs after transition. 

The stopping set, for mode m = 1 , is then given by 

D 1 = E\ C 1 = { x ∈ E : ϕ(x ) = G (x ) + K 10 } . 
Since for all x ∈ � it holds that q m 

xy = 0 for all y ∈ E, F in (8) can 
directly be determined. For x ∈ E\ �, F (x ) is recursively determined 
as a function of the states the chain can transition to when leaving 
x . Equivalent to what we found for G , F can be found using an 
induction method where (8) is solved for all x = (i, r) ∈ E, such that 
i + r = N, N − 1 , N − 2 , . . . , 0 . 

For further reference, the first exit time of a set C ∈ E is defined 
as the stopping time 

τC := inf { t ≥ 0 | X t �∈ C} . 
Notice that, given the set C 1 ∈ E , it follows that F can written as 

F (x ) = 

⎧ 

⎨ 

⎩ 

c 1 (x ) 

ρ − q m =1 
xx 

+ 

∑ 

y ∈ E\{ x } 

q m =1 
xy 

ρ − q m =1 
xx 

F (y ) if x ∈ C 1 , 

G (x ) + K 10 if x ∈ E\ C 1 . 
Illustration 

Table 1 

Model parameters and their baseline values. Our choice of N can be interpreted as 
the size of the grid that we impose on the population. For example, if N = 500 , then 
each change in, say, the number of infected from i to i + 1 represents an increase 
in the infected population equal to 0.2% of the total population. 

Param. Description Value 

β0 Infection rate in mode 0 [days −1 ] 0.3 
β1 Infection rate in mode 1 [days −1 ] 0.15 
γ0 , γ1 Recovery rate [days −1 ] 0.1 
N Size of host population 500 
ρ Discount rate 0.1/365 
K 01 Sunk costs of entering lockdown £2 mln 
K 10 Sunk costs of exiting lockdown 0 
δE cost per patient £4000 per day 
δL per-period cost of lockdown £18,840 per day 

Table 1 summarizes our baseline parameterization. The result- 
ing corresponding basic reproduction numbers are R 0 0 = 3 , R 1 0 = 

1 . 5 for modes 0 and 1, respectively. Starting with mode 0, the 
empirical literature is not unanimous in its estimates for the ba- 
sic reproduction rate R 0 0 . However, as pointed out by, e.g., Liu, 
Gayle, Wilder-Smith, & Rocklöv (2020) , the median and average es- 
timates are roughly 3 for empirical studies on mostly China. Toda 
(2020) estimates R 0 0 to be equal to 2.7 for the UK and 3.7 for the 
USA. An estimate close to 3 is also in line with empirical stud- 
ies by, e.g., Roques, Klein, Papaïx, Sar, & Soubeyrand (2020) ; Salje 
et al. (2020) ; Zhao et al. (2020) , and You et al. (2020) . The value 
of γm is estimated to be around 1 

10 by, e.g., Zhou et al. (2020) , 
i.e. it takes on average 1 

γm 
= 10 days for people to recover. Set- 

ting γm = 
1 
10 is also done by, e.g., Patterson-Lomba (2020) ; Roques 

et al. (2020) , and Toda (2020) . He et al. (2020) find 9.5 days: 2.5 
for being infected without symptoms and 7 days with symptoms. 
Moreover, it was estimated by Salje et al. (2020) that it takes 2.3 
days for patients to recover with mild symptoms and, estimated by 
Di Domenico, Pullano, Sabbatini, Boëlle, & Colizza (2020) , it takes 
17 days for people in ICU. 

For mode 1, we follow, e.g., Garriga et al. (2020) ; Patterson- 
Lomba (2020) , and Kruse & Strack (2020) , in assuming that R 1 0 is 
roughly half of R 0 0 (for some empirical studies see, e.g., You et al., 
2020 ), while assuming that the rate of recovery is not affected by 
the lockdown. 

We assume that all costs are measured in thousands GBP. For 
the epidemic related cost parameter δE we use the study by 
Bethune & Korinek (2020) and assume that the virus imposes a 
cost of $50k for each infective, so that, using the exchange rate 
$1 = £0.8, δE = (0 . 8)(50) μm = 4 . The lockdown related costs can be 
estimated to be £2.4b per day in Britain, 12 which then translates to 
δL = 

2 . 4 b 
10 0 0 ×

N 
63 . 7 m = 

1200 
63 . 7 ≈ 18 . 84 for our population of size N, as- 

suming the British population to be 63.7m. 
We solve (8) employing a lattice method as described above. 

When starting with states in �, it can be easily determined 
whether staying in lockdown perpetually is optimal or whether 
coming out of lockdown is optimal. When assuming D 1 and C 1 to 
be empty at the outset, states in � can either be allocated to D 1 
or C 1 . Next, states that transition to states in � can be studied: 
the value as given by (8) can be determined and these states can 
be assigned to the appropriate set. Recursively, one can continue 
this process until all states have been treated. 

Panel (a) of Fig. 3 illustrates the stopping set for this parameter- 
ization. Throughout this paper, we use orange to represent states 
where it is optimal to come out of (full) lockdown. Generally, the 
stopping set consists of two types of states: states that are in �, 
i.e. all absorbing states, or are close to �, and states (i, r) such that 

12 The Times, April 6, 2020, https://www.thetimes.co.uk/edition/business/ 
consumer- confidence- at- its- lowest- since- the- financial- crisis- p6phf7x3k . 
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Fig. 3. Stopping set (Panel (a)) and value function (Panel (b)) for the optimal stopping problem for switching to mode 0. R 0 0 = 3 , R 1 0 = 1 . 5 , γ0 = γ1 = 0 . 1 , N = 500 , ρ = 

0 . 1 / 365 , K 01 = 20 0 0 , K 10 = 0 , δE = 4 , and δL = 1200 63 . 7 . 

Fig. 4. Expected development of I t for both modes (Panel (a)) when (I 0 , R 0 ) = (200 , 0) and expected instantaneous costs c m (Panel (b)) for the optimal stopping problem for 
switching to mode 0 as functions of time. R 0 0 = 3 , R 1 0 = 1 . 5 , γ0 = γ1 = 0 . 1 , N = 500 , ρ = 0 . 1 / 365 , K 01 = 20 0 0 , K 10 = 0 , δE = 4 , and δL = 1200 63 . 7 . 

i + r is close to N. In the former case, the process is close to ab- 
sorption or is absorbed, which means that lockdown-related costs 
outweigh any benefits of suppressing the epidemic. Therefore, it is 
optimal to lift lockdown. In the latter case, the number of suscep- 
tibles is relatively small. Since staying in mode 1 only keeps the 
infection rate low, staying in mode 1 is costly and, therefore, it is 
optimal to switch and lift lockdown. 

Panel (b) of Fig. 3 shows a cross-section of the value function 
F , as well as the cost function G , for the case where R t = 0 for 
t = 0 . Other cross-sections of the functions F and G , qualitatively, 
look the same. Panel (b) illustrates that the value function F (X ) in 
the continuation set exhibits lower total costs than G (X ) + K 10 , i.e. 
if it were to stop. To understand this, consider the total expected 
accumulated discounted costs if the social planner decides ex-ante 
to always stay in mode 1. In that case, the lockdown related costs 
are incurred even when the number of infectives is low, but ex- 
hibits lower expected costs per unit of time when the number of 
infectives is high relative to being in mode 0. The curve F takes 
advantage of lower expected cost per unit of time when the num- 
ber of infectives is high, with the prospect of not incurring lock- 
down related cost when the number of infectives is low. Compar- 
ing G (X ) + K 10 to F (X ) illustrates that the option to switch has led 
to a lower present value of expected total costs in the continuation 
set. In the stopping set, F (X ) = G (X ) + K 10 . 

Fig. 4 illustrates the development of the disease as a function of 
time. We illustrate two cases, one where there are already a high 
number of infectives and one at the start of the epidemic. Panel (a) 
relates to the situation depicted in Fig. 3 (b), and shows the ex- 
pected number of infectives when starting in state (i, r) = (200 , 0) 

for modes 0 and 1, respectively. The total number of infectives 
and the resulting (health and economic) related costs are lower 
in mode 1 but, in addition, lockdown costs are incurred. Irrespec- 
tively, there is a steep incline of infectives in mode 0 at t = 0 
(a “second wave”), which results in it being optimal for the so- 
cial planner to delay the moment of exiting lockdown. Therefore 
the optimal total costs are lower when remaining in mode 1 for a 
(short) period of time and then switching to mode 0. 

Panel (b) depicts the incurred cost per unit of time after lock- 
down (black) and when starting while in lockdown (dotted), when 
considering the expected path of (I t , R t ) , i.e. c m (E m 

X 0 
(X t )) , m = 0 , 1 , 

with X 0 = (I 0 , R 0 ) = (1 , 0) . Note that the dashed line represents the 
expected point in time when switching to mode 0 is optimal. For 
the dotted curve, i.e. when starting in mode 1, notice that at t = 0 
the curve exceeds the solid curve representing costs incurred when 
starting in mode 0. Even though in both cases (I t , R t ) = (1 , 0) , in 
mode 1 additional lockdown-related costs are incurred which are 
independent of the number of infectives. Clearly, the costs peak 
earlier for mode 0, reflected by the solid curve, and at the same 
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Fig. 5. Stopping set (Panel (a)) and value functions (Panel (b)) for the optimal stopping problem for switching to mode 1. Orange: switching from mode 1 to mode 0, blue: 
switching from mode 0 to 1, gray: states from which reaching the blue area is possible. R 0 0 = 3 , R 1 0 = 1 . 5 , γ0 = γ1 = 0 . 1 , N = 500 , ρ = 0 . 1 / 365 , K 01 = 20 0 0 , K 10 = 0 , δE = 4 , 
and δL = 1200 63 . 7 . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

time the expected costs for all t < 68 are higher than the costs in- 
curred when in mode 1. This also illustrates that lockdown is lifted 
only when the number of infectives is well past its peak to prevent 
a (severe) second wave. 

3.3. Value before lockdown 

In mode 0, before lockdown has started, the social planner is 
faced with the optimal stopping problem 

V (x ) = inf 
τ∈M 

E 
m =0 
x 

[

e −ρτ ( F (X τ ) + K 01 ) + 

∫ τ

0 
c 0 (X t ) e 

−ρt d t 

]

, (9) 

where F is defined in (7) . The integral captures the present value 
of costs while being in mode m = 0 , i.e., until lockdown is imposed 
at time τ . The present value of costs incurred after τ are given by 
the first term. 

The following proposition shows that also for the stopping 
problem in (9) the solution splits the state space into a stopping 
set and a continuation set. 

Proposition 3. There exists a unique function ψ : E → R + such that 

ψ (x ) = min 

{ 

F (x ) + K 01 
c 0 (x ) 

ρ − q m =0 
xx 

+ 

∑ 

y � = x 

q m =0 
xy 

ρ − q m =0 
xx 

ψ (y ) 

} 

. (10) 

The function ψ solves the optimal stopping problem (9) , i.e., V = ψ . 

The optimal stopping time is the first exit time of the set C 0 , where 

C 0 = { x ∈ E : ψ (x ) < F (x ) + K 01 } . 

Proof. See Appendix A . 
Similar to Proposition 2 , Eq. (10) contains two terms: the first 

term giving the value when going into lockdown immediately and 
the second term representing the present value of costs when x is 
in the continuation set so that lockdown is delayed. 

The stopping set, for mode m = 0 , is then given by 

D 0 = E\ C 0 = { x ∈ E : ψ (x ) = F (x ) + K 01 } . 
It is easy to see that (10) can be determined using an induction 
method as described for G and F . 

Illustration We illustrate Proposition 3 for the parameterization 
of Section 3.2 . Fig. 5 illustrates the stopping sets for both stopping 

problems: the blue and orange areas represent all states for which 
it is optimal to switch from mode 0 to mode 1 and vice versa, 
respectively. The gray area is the set of all states for which there is 
a positive probability that the blue area can be reached. So, when 
the process is in a state in the white area, then it will never be 
optimal to enter lockdown. Going back to Fig. 4 (b), the difference 
between the two curves illustrates that instantaneous costs, when 
not in lockdown, increase more rapidly for small values of t . As 
such, an expected positive gain from switching to mode 1 vanishes 
if the social planner waits too long, demonstrating that switching 
in early stages of the process (when I t and R t are both “small”) 
is optimal and that switching is not optimal in later stages of the 
process. 

The value functions V and F as well as the total costs function 
G are depicted in Fig. 5 (b). The dash-dotted curve represents the 
value in mode 0, V , at time t = 0 . Note that the solid curve repre- 
senting the graph of the function G , i.e., the value in mode 0 after 
the second switch, also represents the graph of the value function 
V if it is optimal to stay in mode 0 from time t = 0 onward, i.e., 
when lockdown is never implemented. 13 

We can now observe the following for the two options. The 
continuous pasting principle is visible for the option to switch to 
mode 0 from mode 1: the dotted curve and the solid curve have 
approximately the same ascend around the boundary of the stop- 
ping set. For the first switching option, instantaneous switching is 
optimal when I 0 is small, as Panel (a) illustrated. Therefore, V (I 0 , 0) 

coincides with F (I 0 , 0) + K 01 for sufficiently small I 0 , the latter rep- 
resented by the upper dotted curve in Panel (b). Then, instanta- 
neous switching is optimal as long as the value to permanently 
stay in mode 0 exceeds F + K 01 . Indeed, V coincides with G for high 
values of I 0 where switching to mode 1 is not optimal. 

Nevertheless, for I 0 (very) close to zero, there is a positive value 
of waiting: it is optimal for the social planner to delay switching 
until D 0 is reached. For these values there is a positive probability 
that at the next transition, or in a small number of transitions, the 
process hits an absorbing state and in that case, the disease will 
not be able to spread further so that lockdown is redundant. Since 

13 Note that, in contrast to Fig. 3 , here, the solid line represents the costs of never 
going into lockdown. Thus, when comparing to Fig. 3 , K 10 is not incurred for the 
scenario in Fig. 5 . 
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Fig. 6. Value functions and total cost functions with R 0 = 265 for the optimal stopping problem for switching to mode 1 as functions of time. R 0 0 = 3 , R 1 0 = 1 . 5 , γ0 = γ1 = 0 . 1 , 
N = 500 , ρ = 0 . 1 / 365 , K 01 = 20 0 0 , K 10 = 0 , δE = 4 , and δL = 1200 63 . 7 . 

lockdown is associated with a fixed switching cost, the expected 
total cost involved with entering lockdown is not outweighed by 
the expected gain. This is illustrated by Fig. 6 . Panel (a) shows for 
the same parameterization as before that, for I 0 < 3 and R 0 = 265 , 
waiting is optimal. The graphs of the resulting functions V , F , and 
G are shown in Panel (b). 

4. Optimal policy 

In this section we first study the social planner’s optimal stop- 
ping strategy in our SIR-like base-case model further. Then, we ex- 
pand our benchmark model in the following ways. 

1. We first extend the number of classes individuals can be in. In 
addition to agents being infected (I), recovered (R), and suscep- 
tible (S), we allow for events where individuals are deceased 
(D). This model is the equivalent of a standard SIRD model. 

2. Next, we relax the assumption that lockdown can only be im- 
posed once. 

3. Additional modes are introduced, allowing the social planner to 
phase lockdown in and/or out. 

4. The policy regarding open borders is studied. Infections can oc- 
cur even when I t = 0 . 

5. Restrictions imposed by health care capacity are taken into ac- 
count. 

Finally, we execute an extension where we study the stopping 
sets in a scenario where the lockdown related costs are increasing 
over time. The analysis is concluded by a short summary of the 
comparative statics; the full analysis can be found in Appendix C . 

4.1. SIR 

Recall that the transition rates are given by 

λm (I t , R t ) = βm I t 
S(I t , R t ) 

N 

= R 
m 
0 γm I t 

N − I t − R t 

N 
, 

μm (I t , R t ) = γm I t , 

for modes m = 0 , 1 , where R m 
0 = 

βm 
γm 

. In this section, we parame- 
terize the dynamics by R m 

0 and μm , for modes m = 0 , 1 . Recall that 

the process has the following properties 

1 
d t 

E 
m 
x 

[ 

(d I t , d R t ) 
∣

∣

∣
X t 

] 

= γm I t 

(

R 
m 
0 
S(I t , R t ) 

N 
− 1 , 1 

)

, (11) 

1 
d t 

E 
m 
x 

[ 

(d I 2 t , d R 
2 
t ) 

∣

∣

∣
X t 

] 

= γm I t 

(

R 
m 
0 
S(I t , R t ) 

N 
+ 1 , 1 

)

. (12) 

For the illustrations we use the same parameterization as before. 
Fig. 7 depicts the expected evolution of the number of infected, 

susceptible, and removed individuals as a function of time t . For 
panels (a) and (b), the brown region represents the total num- 
ber of active cases of infectives at each moment in time. The 
blue area depicts the number of susceptible individuals and the 
red area, then, are all remaining individuals that are labeled as 
removed/recovered. At time t = 0 , 490 individuals are susceptible 
and at time t = 80 , in mode 0, a very large share of the host pop- 
ulation has been infected and subsequently recovered. This is dif- 
ferent for mode 1 where a significant share of the host population 
has not been infected. This would apply if at time t = 0 , the so- 
cial planner had decided to immediately switch to mode 1. Notice 
that the curve of infectives in mode 1 is flatter than the curve in 
mode 0. Panel (c) juxtaposes the expected number of infectives at 
each point in time for modes 0 and 1. 

Fig. 8 illustrates the stopping sets. In both panels the blue area 
is the set of all states where it is optimal to switch from mode 0 to 
mode 1. The orange area represents all states where it is optimal 
to switch back to mode 0 from mode 1. The panels also feature 
stream plots for the system 

˙ I = R 
m 
0 γm I(N − I − R ) − γm I, 

˙ R = γm I. 

This system represents the expected evolution of I t and R t for 
modes m = 0 , 1 for any point in the grid that represents the state 
at time t = 0 . The black affine curve represents all points (i, r) such 
that the expected change in the number of infectives is 0 in the 
next instance of time, i.e., ˙ I = 0 . Panels (a) and (b) show the stream 

plot for modes 0 and 1, respectively. The plot shows that, in expec- 
tation, the maximum number of infectives at any time t is lower 
for mode 1, i.e. sup t E m =1 

x I t ≤ sup t E m =0 
x I t . From the blue area in the 

figure, two implications for the optimal decision to impose lock- 
down jump out. First, in mode 0, it is optimal to undertake action 
as soon as the first infectives have been confirmed. The stopping 
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Fig. 7. Expected number of infected (brown), susceptible (blue), and recovered/removed (red) individuals for mode 0 (Panel (a)) and mode 1 (Panel (b)). Panel (c) shows 
the number of infectives in expectation together. Here, (I 0 , R 0 ) = (10 , 0) . R 0 0 = 3 , R 1 0 = 1 . 5 , γ0 = γ1 = 0 . 1 , and N = 500 . (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 

Fig. 8. Stopping sets for switching between mode 0 and 1 (blue) and for switching between mode 1 back to mode 0 (orange). Figures include a vector/stream plot which 
indicate the direction of I t and R t in expectation. Orange: switching from mode 1 to mode 0, blue: switching from mode 0 to 1, gray: states from which reaching the 
blue area is possible. R 0 0 = 3 , R 1 0 = 1 . 5 , γ0 = γ1 = 0 . 1 , N = 500 , ρ = 0 . 1 / 365 , K 01 = 20 0 0 , K 10 = 0 , δE = 4 , and δL = 1200 63 . 7 . (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 

set in mode 0, the blue area, covers the combinations of infectives 
and recovered individuals close to the origin of the plot, which in- 
dicates that switching is optimal during the early stages of a po- 
tential epidemic. Second, if the social planner waits too long or 
when the disease is discovered late, the process may start outside 
the blue and gray areas, implying that it will a.s. never be opti- 
mal to switch to mode 1. This could happen, for instance, due to a 
lack of testing in the early stages. If the epidemic gets discovered 
when the state is in the gray area, then it might be optimal to im- 
pose a lockdown in the future, but not immediately. So, the social 
planner should act swiftly if the disease is detected early on. If the 
process leaves the blue area, before switching has taken place, the 
expected gain from switching is not enough to compensate for the 
total expected lockdown costs and the sunk cost of entering lock- 
down. 

4.2. SIRD 

In our SIR-like model it is assumed that all infected individu- 
als will recover. In order to study the impact of infection fatality 
rates on the optimal switching times, the model can be extended, 
as described in Section 2 , to include an additional class of indi- 
viduals: deceased (D). For our continuous-time Markov chain, X t = 

(I t , R t , D t ) represents the state of the system at each time t ≥ 0 
such that X t ∈ E with E = { (i, r, d) ∈ N 3 

N | i + r + d ≤ N} , where D t 

is the number of deceased individuals. Denote by θm (I t , R t , D t ) = 

φm 
1 −φm 

γm I t the mortality rate, where φm denotes the death rate, i.e., 

the fraction of member that dies due to an infection (also see, e.g., 
Bastos & Cajueiro, 2020 ). Then, the Markov generator is defined as 
Q m = (q m 

xy ) x,y ∈ E with, for m = 0 , 1 , 

q m 
xy = 

⎧ 

⎪ 
⎨ 

⎪ 
⎩ 

λm (x 1 , x 2 , x 3 ) if y − x = (1 , 0 , 0) , 
μm (x 1 , x 2 , x 3 ) if y − x = (−1 , 1 , 0) , 
θm (x 1 , x 2 , x 3 ) if y − x = (−1 , 0 , 1) , 
0 otherwise. 

We will use an estimate of 2% for the death rate. 14 The esti- 
mated average number of years lost per deceased individual is es- 
timated to be 16 ( Pifarré i Arolas et al., 2021 ) and for the quality- 
adjusted life-year (QALY), we assume that the cost per QALY is 
equal to £6.8k. 15 Thus, per time unit the cost per individual in D is 
δD = (16)(6 . 8) ρ in each mode. Note that this model can be solved 

14 We base ourselves on the data presented on https://coronavirus.data.gov.uk/ 
where one can check that the death rate is highly volatile and varies between 
roughly 0.4% and 3.5%. 
15 To estimate the cost per QALY, we refer to a report presented by the UK’s De- 

partment of Health and Social Care (DHSC) and Office for National Statistics (ONS), 
published on 9 September 2021, “Direct and Indirect health impacts of COVID-19 
in England”. The cost per QALY differs per region and we have chosen to use York- 
shire’s estimate, which is below London’s but above estimates for some other re- 
gions (e.g., North East). We will argue that a deviation from this estimate does not 
qualitatively change our results. 
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Fig. 9. Stopping sets for SIRD model. Orange: switching from mode 1 to mode 0, blue: switching from mode 0 to 1. R 0 0 = 3 , R 1 0 = 1 . 5 , γm = 0 . 1 , N = 500 , ρ = 0 . 1 / 365 , 
K 01 = 20 0 0 , K 10 = 0 , δE = 4 , δL = 1200 63 . 7 , and δD = 10 . 88 365 . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 
article.) 

recursively as well, using the same lattice method as described in 
Section 3.2 . 

Results What we find is that if in our SIR-like model a state (i, r) 
is in a stopping set, then any state (i, r ′ , d ′ ) ∈ E such that r ′ + d ′ = r

is in the equivalent stopping set for the SIRD model. Intuitively, 
since the cost associated with any deceased individual is sunk, fur- 
ther actions taken by the social planner cannot change outcomes 
that happened in the past. Rather, the social planner will need to 
take into account the cost of future deaths. Note that this result 
does not depend on our parameterization. In the SIRD-like model 
the total costs are higher compared to the SIR-like model because, 
in addition to the lockdown related costs and the epidemic re- 
lated per-patient costs, we add that, on average 2% of the transi- 
tion out of I are associated with a positive shock of (16)(6.8)k to 
the present value of total costs. Since the costs are higher, we find 
that the blue area has slightly increased and the orange area has 
slightly shrunk, as illustrated by Fig. 9 a. Fig. 9 b then shows the im- 
pact of the mortality rate. Setting the rate as high as 5% allows us 
to more clearly observe the impact. In line with what we saw for 
Panel (a), a higher mortality rate leads to an expansion of the blue 
set, especially for states where R t + D t is small. In addition, we ob- 
serve a slight change in the orange area in a way that the social 
planner delays coming out of lockdown, predominantly for states 
where R t + D t is small. 

An alternative way to model the cost associated with D is by 
incurring a one-off cost at each transition, i.e., when an individual 
moves from I to D, a cost of (16)(6.8)k is incurred. This way of 
modeling would result in the same (qualitative) result. 

For what follows, we continue by illustrating the stopping sets 
in a way as done in Fig. 9 , i.e., by adding up all individuals in R 
and D. 

In a similar way other models can also be studied using our 
set-up, by extending the number of classes of individuals. This in- 
cludes for instance, the SEIR model (see, e.g., Atkeson, 2020; Wang 
et al., 2020 ) where susceptible individuals become exposed before 
infected. 

4.3. A sequence of lockdowns 

Since costs associated with lockdown can be high, it might be 
optimal for the social planner to impose a sequence of shorter 
lockdowns, rather than imposing one long one. This means the so- 
cial planner has the option to alternate between modes. In terms 

of our value function, for any lockdown k = 1 , . . . , K, 16 we can de- 
note V k , F k , and G k as the value functions equivalent to (9), (7) , and 
(4) , respectively. Then, G k coincides with V k +1 and thus has em- 
bedded the option to go back into lockdown. This applies to any 
k < K, i.e., for k = K, G k is the value as defined in (4) . We assume 
that the switching costs associated with the first time lockdown 
is imposed is not smaller than the costs assumed for the bench- 
mark model. These costs include, e.g., investments undertaken by 
companies to provide a safe environment such as the provision of 
sneeze guards or, e.g., the purchase of equipment and software to 
be able to work from home. However, for subsequent lockdowns 
these investment do not need to be undertaken again and as such 
the switching costs for later lockdowns are assumed to be a frac- 
tion of the K 01 . 

Results We start by assuming that the switching costs are equal 
1% of K 01 . Fig. 10 shows the stopping set for our parameterization. 
Panel (a) shows that the stopping set for the first lockdown is not 
qualitatively different from what we have found before. The re- 
sult that when the epidemic is discovered too late (i.e., when the 
number of infected individuals is sufficiently high), intervention is 
no longer optimal is also present here. Since the first lockdown is 
concerned with substantial switching costs, the intuition as found 
for the SIR-like model applies here as well: the time period dur- 
ing which there are gains from interventions is too short to weigh 
against the costs. In addition, we find again that it is optimal to go 
into lockdown immediately when the first infections occur. 

Panels (b) and (c) illustrate that, when switching costs are very 
low, subsequent lockdowns are always immediately imposed un- 
less we have reached a state that lies in the stopping set for com- 
ing out of lockdown. In other words, lockdown ends when the 
number of infections or the number of susceptible individuals is 
low, as before, but is imposed again when infections are rising. 
Surprisingly, the orange area in Panel (a) is not substantially larger 
than the orange area in the SIR model. This means that, despite 
our initial intuition, it is not optimal to come out of lockdown tem- 
porarily: the increase in the infection rate and thereby the increase 
in infections is not outweighed by a recess of control measures. 
The only noticeable difference is for states where I t is close to 0. 
Then, for R t + D t > 290 we see that the orange area is somewhat 
thicker which indicates that the option for subsequent lockdowns 

16 For illustration purposes we assume that the social planner can only impose 
K ≥ 2 lockdowns. However, this may not be an unrealistic assumption when people 
are more reluctant to obey restrictions as more lockdowns are imposed. 
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Fig. 10. Stopping sets when the social planner can alternate between modes K times with switching costs 0 . 01 K 01 for imposing subsequent lockdowns. Orange: switching 
from mode 1 to mode 0, blue: switching from mode 0 to 1. R 0 0 = 3 , R 1 0 = 1 . 5 , γm = 0 . 1 , φm = 2% , N = 500 , ρ = 0 . 1 / 365 , K 01 = 20 0 0 , K 10 = 0 , δE = 4 , δL = 1200 63 . 7 , and δD = 10 . 88 365 . 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 11. Stopping sets when the social planner can alternate between modes K times with switching costs 0 . 5 K 01 for imposing subsequent lockdowns. Orange: switching 
from mode 1 to mode 0, blue: switching from mode 0 to 1. R 0 0 = 3 , R 1 0 = 1 . 5 , γm = 0 . 1 , φm = 2% , N = 500 , ρ = 0 . 1 / 365 , K 01 = 20 0 0 , K 10 = 0 , δE = 4 , δL = 1200 63 . 7 , and δD = 10 . 88 365 . 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

makes that the social planner comes out of lockdown sooner. Intu- 
itively, these are the states where the increase in infection rate is 
least “harmful”. The same applies to subsequent lockdowns. 

Fig. 11 illustrates the same figures but when switching costs for 
later lockdowns are 50% of K 01 and confirms what we found before. 
Although the blue area has shrunk for lockdowns k ≥ 2 , the social 
planner does not change its strategy for the first lockdown. 

In what follows, we analyze the stopping sets for the first lock- 
down as long as subsequent lockdowns are not qualitatively differ- 
ent from what we have discussed above. 

4.4. Phased lockdown 

So far, we have only considered two states: state m = 0 where 
no intervention takes place and state m = 1 where a lockdown is 
imposed. Our set-up allows for extensions where more modes can 
be considered. Thereto an intermediate mode is introduced. In this 
mode only mild measures are in place, such as social distancing. 
These come with a running cost that is lower than those of a full 
lockdown and higher than in mode m = 0 . Costs for the interme- 
diate mode can be associated with, e.g., shops and restaurants al- 
lowing a lower number of consumers and investments made to be 
able to adhere to these measures. 

We redefine and relabel the modes in the following way. In 
mode m = 0 there is no intervention, in mode m = 1 mild mea- 
sures are in place, and mode m = 2 represents a full lockdown. In 
other words, what was previously called mode 1 is now mode 2. 
Correspondingly, we can distinguish lockdown related costs δm 

L for 
modes m = 1 and m = 2 . Our parameterization for illustration pur- 
poses for modes m = 0 and m = 2 is the same as before, i.e. R 0 0 = 

3 , R 2 0 = 1 . 5 , and γ0 = γ2 = 0 . 1 . For mode 1, we consider two cases: 
R 1 0 = 2 and R 1 0 = 2 . 25 , with γ1 = 0 . 1 . For mode m = 2 , lockdown 

related costs are equal to 1200 
63 . 7 , as before, and for mode m = 1 

we consider three cases: δ1 
L = 

1 
3 δ

2 
L , 

1 
2 δ

2 
L , and 

2 
3 δ

2 
L . Finally, switch- 

ing costs are K 01 = K 02 = 20 0 0 and K 12 = K 21 = K 10 = K 20 = 0 . As- 
suming K 12 = 0 allows us to consider scenarios where the social 
planner decides to never stay in mode 2 with a positive period of 
time and to therefore decide to switch to mode m = 0 from m = 1 , 
thereby essentially skipping mode m = 2 . Later we will study what 
happens if K 12 > 0 . We will again use blue to denote states where 
it is optimal to leave mode 0 and, for consistency, we use orange 
for states where it is optimal to leave the mode with the highest 
R 0 , in this case mode 2. We introduce brown as the colour related 
to coming out of our, new, intermediate mode. 

Fig. 12 illustrates the stopping sets for R 1 0 = 2 and δ1 L = 
1 
2 δ

2 
L . 

Panel (a) illustrates the sets for the scenario with only 2 modes 
as in the previous section. Panel (b) illustrates the stopping sets 
for the scenario with 3 modes. The brown area contains all states 
of the stopping set where it is optimal to switch from the inter- 
mediate mode to mode 0, and the orange area contains states that 
are part of the stopping set for switching from a full lockdown to 
social distancing. Although not visible, states of the brown set are 
also states of the stopping set for switching from full lockdown to 
social distancing: if (I 0 , R 0 ) is in the brown area, then it is optimal 
to switch from mode 2 immediately to mode 0. The orange set in 
Panel (a) contains fewer states than the orange (plus brown) region 
in Panel (b), but more than the brown region itself. 

The blue area consists of all points where it is optimal to switch 
from mode 0 to mode 1. Panel (c) distinguishes the sets for switch- 
ing to mode 1 (blue) from mode 0 and to mode 2 (blue and light 
blue) from mode 1. This panel illustrates that all states for which 
it is optimal to introduce social distancing form a subset of area 
where switching to a full lockdown is optimal. Therefore, the only 
optimal policy is to implement a full lockdown. Numerical analysis 
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Fig. 12. Stopping sets with three modes with R 1 0 = 2 and δ1 
L = 1 2 δ

2 
L . Brown: switching from mode 1 to mode 0, orange: from mode 2 to mode 1, blue: from mode 0 to 1 and 

1 to 2 (light). R 0 0 = 3 , R 2 0 = 1 . 5 , γm = 0 . 1 , φm = 2% , N = 500 , ρ = 0 . 1 / 365 , K 01 = K 02 = 20 0 0 and K · = 0 otherwise, δE = 4 , δ2 
L = 1200 63 . 7 , and δD = 10 . 88 365 . (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 13. Stopping sets with three modes with different R 1 0 and δ
1 
L . Brown: switching from mode 1 to mode 0, orange: from mode 2 to mode 1, blue: from mode 0 to 1. 

R 0 0 = 3 , R 2 0 = 1 . 5 , γm = 0 . 1 , φm = 2% , N = 500 , ρ = 0 . 1 / 365 , K 01 = K 02 = 20 0 0 and K · = 0 otherwise, δE = 4 , δ2 
L = 1200 63 . 7 , and δD = 10 . 88 365 . (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 14. Effect of K 12 on stopping sets. Blue: switching from mode 0 to 1, light blue: from mode 1 to 2 (light). R 0 0 = 3 , R 2 0 = 2 , R 2 0 = 1 . 5 , γm = 0 . 1 , φm = 2% , N = 500 , 
ρ = 0 . 1 / 365 , K 01 = K 02 = 20 0 0 and K · = 0 otherwise, δE = 4 , δ2 

L = 1200 63 . 7 , δ
1 
L = δ2 

L / 2 , and δD = 10 . 88 365 . (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 

shows that this result holds for a wide range of a parameter values. 
Further, notice that there are two light blue areas in Panel (c). The 
set close to the line i + r = N denotes all points such that, when 
currently in mode 1, it is optimal to switch to mode 0 without 
spending a positive amount of time in mode 2, since these states 
are also part of the orange and brown area. 

Fig. 13 illustrates what happens when changing δ1 
L and R 1 0 . In 

all panels, the blue area is not qualitatively different, which does 
not come as a surprise since no time is spent in mode 1 after leav- 
ing mode 0. Panels (a) and (b) show the stopping sets for R 1 0 = 2 
with δ1 L = 

2 
3 δ

2 
L > 

1 
2 δ

2 
L and δ

1 
L = 

1 
3 δ

2 
L < 

1 
2 δ

2 
L , respectively. When stay- 

ing in mode 1 is more expensive, it is no longer optimal to switch 
to mode 1 before switching to mode 0, when currently in mode 2. 
The opposite applies when the lockdown related cost is smaller so 
that the region where the social planner switches from mode 1 to 
mode 0 shrinks, and the region where the social planner switches 
from mode 2 to mode 1 expands. For the cases where R 1 0 = 2 . 25 , it 
is also less attractive to spend a positive amount of time in mode 
1, as illustrated by Panel (c) and Panel (d). 

Finally, Fig. 14 illustrates the effect of K 12 , assuming that the so- 
cial planner always switches to mode 2 before lifting control mea- 

sures. As switching to mode 2 becomes more expensive, the set of 
states where it is optimal to switch shrinks, in line with the in- 
tuition for our main model. However, the light blue area has not 
shrunk considerably, which means that once switched to mode 1, 
from mode 0, it remains optimal to immediately switch to mode 2 
for almost all states. 

4.5. Open border policies 

This section studies the effect of a strict border policy on lock- 
down timing decisions. Thus far it has been assumed that no new 

infections can occur when states are reached where I t = 0 . We con- 
tinue to make this assumption when in mode m = 2 , but not when 
in mode m = 0 . For mode m = 1 the social planner can choose 
whether or not to restrict entry at the border. Note that no infec- 
tions occurring when I t = 0 is not only equivalent to a closed bor- 
der policy but could also include, e.g., the requirement of individ- 
uals entering the country to quarantine in a hotel. In mode m = 1 , 
the social planner could opt to ask individuals to self-isolate so 
that the infection rate is somewhere between the infections rates 
of modes 0 and 2. 
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Fig. 15. Stopping sets with different border policies. Brown: switching from mode 1 to mode 0, orange: from mode 2 to mode 1, blue: from mode 0 to 2. R 0 0 = 3 , R 1 0 = 2 , 
R 2 0 = 1 . 5 , γm = 0 . 1 , φm = 2% , N = 500 , ρ = 0 . 1 / 365 , K 01 = K 02 = 20 0 0 and K · = 0 otherwise, δE = 4 , δ2 

L = 1200 63 . 7 , δ
1 
L = δ2 

L / 2 , and δD = 10 . 88 365 . (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.) 

We model this extension using the infection rate 

λm (i, r) = βm (i + ̃  i m ) 
S(i, r) 

N 
, 

where ˜ i 2 = 0 and 0 ≤ ˜ i 1 ≤ ˜ i 0 are constants. 17 

Results Fig. 15 illustrates how the stopping sets have changed 
when ˜ i 1 = ̃  i 2 = 0 . Panels (a) and (b) illustrate the case where ˜ i 0 = 

0 . 02 , while Panels (c) and (d) depict the case ˜ i 0 = 0 . 04 . We first 
note that the blue area for the first lockdown has significantly 
shrunk, relative to a situation where ˜ i 0 = 0 . Our numerical explo- 
ration reveals that for any lockdown to ever be potentially opti- 
mal, ˜ i 0 should not be larger than 0.05, i.e., for any larger risks it is 
never optimal to impose restrictions. Intuitively, any increase in the 
infection rate leads to an increase in costs: it takes longer, on av- 
erage, to bring the number of infectious individuals down and, in 
addition, more infections occur. This leads to our conclusion that 
because open borders heavily reduce the effectiveness from lock- 
down, any gains from lockdown cannot weigh against the (sunk) 
cost involved with imposing restrictions. 

The blue areas in Panels (b) and (d) are very similar, i.e., the 
main impact of a change in the infection rate from abroad has an 
impact on strategy for the first lockdown only. Thirdly, the orange 
area has slightly expanded for the states where I t is close to zero. 
Recall that the orange area is the set of states for which it is op- 
timal to leave the mode with the highest infection rate, in this 
case mode m = 2 . Because the increase in the infection rate has 
the largest impact on these states in particular, the net gain from 

staying in mode m = 2 is smaller when ˜ i 0 > 0 and the social plan- 
ner prefers to switch to mode m = 1 . Note that the brown area, the 
area where it is optimal to come out m = 1 , has barely expanded 
so that it remains optimal to keep measures in place. 

It is essential to notice, though, that although there exists a 
small brown region near the origin, it is unlikely that these states 
are reached. Because I t + R t + D t cannot decrease over time, 18 

whenever the blue area is reached, for the process to reach this 
brown region subsequently we would require: a much higher than 
expected number of infections before the blue region is reached 
and a much higher than expected number of recoveries after lock- 
down is imposed while in the mean time close to nil infections 
occur. 

Fourthly, we find that there are states where it is optimal, once 
switched to mode 1, to never switch to mode 2. These are states 
where the blue area overlaps with the orange area. In these states, 
the social planner switched immediately from mode 0 to mode 1, 

17 In this extension, in order to be able to focus on the impact of ˜ i m , additional 
effects that stem from costs associated with restrictions at the border are not taken 
into account. 
18 Note that this effectively means that, when the process is in a given state, the 

process can only either move to the east (when a new infection occurs) or north- 
west (when a recovery or death occurs). 

in order to switch back to mode 0 in the future. For these states 
the epidemic has evolved too much for a full lockdown to be ben- 
eficial. 

Finally, Fig. 16 illustrates that a positive value for ˜ i 1 does not 
qualitatively change the social planner’s decision and that an in- 
crease has no significant impact on whether or not lockdown is 
optimal for positive ˜ i 0 . This is not surprising in light of earlier fig- 
ures where we showed that “phasing in” lockdowns by entering 
mode 1 before moving to mode 2 are not optimal. 

4.6. Health-care imposed capacity constraints 

Next we study the effect of constraints on healthcare capacity, 
by generalizing δE in the following way: 

δE (I t , R t ) = 

{

4 if I t < 150 , 
8 if I t ≥ 150 . 

(13) 

Here, 150 is the assumed threshold that represents a limitation of 
the health care system. It represents the fact that (health-related) 
costs go up once the health system has reached capacity. We need 
to keep in mind that only a fraction of infectious individuals need 
hospital treatment and therefore the number 150 should be inter- 
preted as the equivalent number of total infections such that the 
fraction of infectious individuals that requires hospital treatment 
is equal to the imposed “critical care capacity”. 19 Fig. 17 shows the 
results of adapting the baseline parameterization. This figure illus- 
trates that the stopping set in mode 0 now includes states where 
either the number of infectives is above 150 or where the risk is 
sufficiently large to reach states where the number of infectives is 
above 150. As illustrated in Panel (a), states in the extended re- 
gion with I t < 150 are those where it is expected that the process 
will reach states where I t ≥ 150 when remaining in mode 0. This 
explains the shape of the border of the stopping set where there 
seems to be an “inaction” region. 

However, note that when taking into account the stream plots 
in Fig. 8 , we can see that the expected path, when starting around 
(0,0), does not go through any of the ‘newly added’ states. Thus, 
the extended area includes states where the decision maker wishes 
to bring down the number of infections rapidly when, against the 
odds, a spike of infections has occurred. 

Also notice that the orange region has shrunk, especially for 
all states where I t > 150 : the social planner delays the moment to 
switch back to mode 0, so that the expected amount of time spent 
in states for which I t > 150 is minimized. 

An alternative way to model hospital constraints is as follows. 
Governments may wish to avoid to have a number of infectious in- 
dividuals that is near to the constraint. Therefore, δE could be mod- 

19 In November 2021, in the UK, around 2% of people who tested positive were 
admitted into hospital. Source: https://coronavirus.data.gov.uk/ 
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Fig. 16. Stopping sets with different border policies. Brown: switching from mode 1 to mode 0, orange: from mode 2 to mode 1, blue: from mode 0 to 2. R 0 0 = 3 , R 1 0 = 2 , 
R 2 0 = 1 . 5 , γm = 0 . 1 , φm = 2% , N = 500 , ρ = 0 . 1 / 365 , K 01 = K 02 = 20 0 0 and K · = 0 otherwise, δE = 4 , δ2 

L = 1200 63 . 7 , δ
1 
L = δ2 

L / 2 , and δD = 10 . 88 365 . (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 17. There is a limit on hospitals admissions that leads to an equivalent of a limit of 150 on infections (see (13) ). Brown: switching from mode 1 to mode 0, orange: from 

mode 2 to mode 1, blue: from mode 0 to 2. R 0 0 = 3 , R 1 0 = 2 , R 2 0 = 1 . 5 , γm = 0 . 1 , ̃  i 0 = 0 . 02 , ̃  i 1 = ̃  i 2 = 0 , φm = 2% , N = 500 , ρ = 0 . 1 / 365 , K 01 = K 02 = 20 0 0 and K · = 0 otherwise, 
δ2 
L = 1200 63 . 7 , δ

1 
L = δ2 

L / 2 , and δD = 10 . 88 365 . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

eled as an increasing function of I t when I t gets close to the con- 
straint imposed by the critical care capacity. Appendix B.1 shows 
that, in that case, the figures look qualitatively the same. 

4.7. Extension: time-dependent cost structures 

In this section, we relax our assumption that lockdown related 
costs are constant over time. One could argue that the length of 
lockdown has an impact on the associated lockdown related costs 
and the willingness of individuals to comply. Especially for busi- 
ness, a lockdown lasting for a longer period of time will have 
a long lasting impact and comes with more economic damage 
per unit of time than a lockdown imposed for a shorter period 
of time. Here, we look at our SIRD-like model as presented in 
Section 4.2 with ˜ i 0 > 0 , but without health-care constraints. We 
consider the following cost structures, 

c m (i, r) = δE (i, r) i + δL (1 + 0 . 07 
√ 
t )(1 − χ{ m =0 } ) , 

c m (i, r) = δE (i, r) i + δL (1 + 0 . 01 t)(1 − χ{ m =0 } ) , and 

c m (i, r) = δE (i, r) i + δL (1 + 0 . 0 0 015 t 2 )(1 − χ{ m =0 } ) . 

In this section we analyse the second case with a linear relation- 
ship; the convex and concave cases can be found in Appendix B.2 , 
where we conclude that the results are qualitatively the same. We 
start by assuming that the infection rate ˜ i 0 is low, to clearly iden- 
tify the direct impact of the cost structure. We assume that ˜ i 0 = 

0 . 002 and ˜ i 1 = 0 . To see the impact of an increase in costs, con- 
sider that when lockdown lasts, e.g., 80 days, then 0 . 01(80) = 0 . 8 , 
so that the daily costs increase by £15,072 for the linear specifica- 
tion. This is equivalent to, by the end of lockdown, £2b per day for 
a population of 67.22m in the UK. 

Fig. 18 illustrates the stopping sets for the linear case. The or- 
ange area in Fig. 18 a illustrates the stopping set for coming out 
of lockdown when t = τC 0 , i.e., the moment when the social plan- 
ner decides to impose restrictions. Fig. 18 b and c illustrate that the 
orange area grows larger as time goes by, i.e., the social planner 
comes out of lockdown earlier when costs are higher. However, de- 
spite the daily equivalent increase of £760m for (b) and £1.5b for 
(c), the increase does not significantly change the shape of the or- 
ange area. The blue area corresponds, as before, to the decision of 
going into lockdown, which does not depend on time and it there- 
fore remains constant. Interestingly, there has appeared an “inac- 
tion” for states where both I t and R t + D t are small but positive. For 
these states going into lockdown might mean that lockdown lasts 
too long meaning that the social planner incurs large costs, instead 
the social planner waits until I t has sufficiently grown to limit the 
length of lockdown. However, when I t is very close to 0, it is op- 
timal to keep I t low and impose lockdown. Since for these states, 
as the stream plots in Fig. 8 in Section 4.1 illustrated, lockdown 
may be in place for a short period of time, the increase in costs 
per unit of time does not impact the inclusion of these states in 
the stopping set. Hence, we see that the social planner comes out 
of lockdown slightly earlier and may delay lockdown only when it 
is discovered too late. Fig. 19 illustrates what happens when ˜ i 0 is 
increased. Then the inaction region grows but the impact on the 
orange sets is negligible. 

4.8. Comparative statics 

Appendix C covers an extensive comparative statics analysis for 
our parameters. Here we briefly summarize the results. 
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Fig. 18. Stopping sets when lockdown related costs are increasing over time with ˜ i 0 = 0 . 002 . Orange: switching from mode 1 to mode 0, blue: switching from mode 0 
to 1. R 0 0 = 3 , R 1 0 = 2 , R 2 0 = 1 . 5 , γm = 0 . 1 , ˜ i 0 = 0 . 002 , ˜ i 1 = ̃  i 2 = 0 , φm = 2% , N = 500 , ρ = 0 . 1 / 365 , K 01 = K 02 = 20 0 0 and K · = 0 otherwise, δE = 4 , δ2 

L = 1200 63 . 7 , δ
1 
L = δ2 

L / 2 , and 
δD = 10 . 88 365 . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 19. Stopping sets when lockdown related costs are increasing over time with ˜ i 0 = 0 . 004 . Orange: switching from mode 1 to mode 0, blue: switching from mode 0 
to 1. R 0 0 = 3 , R 1 0 = 2 , R 2 0 = 1 . 5 , γm = 0 . 1 , ˜ i 0 = 0 . 004 , ˜ i 1 = ̃  i 2 = 0 , φm = 2% , N = 500 , ρ = 0 . 1 / 365 , K 01 = K 02 = 20 0 0 and K · = 0 otherwise, δE = 4 , δ2 

L = 1200 63 . 7 , δ
1 
L = δ2 

L / 2 , and 
δD = 10 . 88 365 . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

First we look at an increase in the infection rate, which may 
result from, e.g., a mutation, and find that the blue area shrinks. 
This happens, because when the virus is more infectious, the ex- 
pected interarrival times are shorter thereby reducing the length 
of a potential lockdown but also making lockdown less effective. 
The social planner therefore also comes out of lockdown earlier. 
We find the (intuitively clear) opposite effect when measures are 
more effective so that R 2 0 < 1 . 

Next we consider how the recovery rate γm impacts the social 
planner’s strategy. There are mixed effects on the stopping sets 
when increasing γm , where one effect generally dominates: the 
blue area shrinks when the recovery rate goes up. In addition, the 
social planner expands the orange area. 

Finally, Appendix C.3 illustrates that increasing δE , δL , or K 01 has 
a similar impact: the blue area shrinks. The orange area expands 
for the first two cases. 

In all cases we find that the figures look qualitatively the same 
and we therefore conclude that our results are robust against 
(moderate) changes in parameter values. 

5. Concluding remarks and future research 

Motivated by the recent COVID-19 outbreak, we have developed 
a continuous-time Markov chain to study the optimal timing of in- 
terventions in an SIRD-inspired epidemiological model of the evo- 
lution of a disease. A social planner has to decide when to en- 
ter “lockdown” and, subsequently, when to lift it. Although, tra- 
ditionally, epidemiology models are assuming a deterministic evo- 
lution of the disease, there is still uncertainty about how the dis- 
ease spreads, especially when the number of infected individuals is 

low. In such a scenario the disease could die out before the disease 
spreads. Nonetheless, surprisingly, we find that it is optimal to en- 
ter lockdown in the very early stages of the disease. Moreover, it is 
found that it is never optimal to introduce a lockdown when the 
prevalence of the disease is too high, i.e. a lockdown is optimally 
started only at low prevalence of the disease. In addition, despite 
high economic cost, it is optimal for the social planner to wait with 
exiting the lockdown until either the fraction of susceptible mem- 
bers of the population or infected members of the population is 
close to zero. This holds, even when the lockdown-related costs 
are increasing over time. 

If there is a capacity constraint on the health system, which is 
modeled by a jump in the per-infective cost once the number of 
infectives exceeds a given threshold, then the region where never 
entering lockdown is optimal shrinks. In addition, lockdown should 
be kept in place for longer. 

When we allow for a phased introduction and exiting of lock- 
down (e.g., when using a 3-tier traffic-light system), it is found 
that, while a phased exiting strategy is optimal, a phased intro- 
duction is not. Our analysis also shows that lockdowns are only 
optimal when entry into the country is restricted. 

Our model has several limitations that present avenues for fu- 
ture research. First, we assume that the number of infected indi- 
viduals is known. In reality this only holds by approximation, even 
when testing is done frequently and on a large scale. This pro- 
vides scope for research on models where decisions and policies 
are made based on imperfect information. Since we find that im- 
mediate action is optimal when the first cases of infected individ- 
uals have been detected, we expect that such an extension does 
not lead to qualitatively different optimal policies. Nevertheless, it 
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stresses the importance of testing, especially since we find that if 
the epidemic is detected too late, then intervention is no longer 
optimal. 

Other potential extensions of our work include considering a 
heterogeneous host population, by extending the SIRD framework 
to include more classes of individuals (as discussed to some extent 
in Section 4.2 ). An interesting, but technically substantially more 
demanding, extension for future research would be to allow recov- 
ered agents to become susceptible again. Although herd immunity 
might be more cost effective than an infinite loop of lockdown 
measures, such a model would include the expectation that over 
time the virus becomes less dangerous and as such we expect that 
the decision to come out of lockdown is not qualitatively differ- 
ent. In addition, the result that lockdown is not optimal when the 
virus is discovered too late, might still hold. Having said that, it 
seems that many governments, at least in many EU countries, cur- 
rently seem to be willing to impose restrictions every winter for 
the foreseeable future, which is in line with how we have mod- 
eled the problem of the social planner. 20 

Appendix A. Proofs 

Proof of Proposition 1 . For any measurable function f : E → 

R , x ∈ E and m = 0 , 1 it holds that, 

E 
m 
x [d f (X t )] = 

∑ 

y ∈ E 

( f (y ) − f (X t )) P 
m 
x ({ X t+d t 

= y }| X t ) = 

∑ 

y � = X t 

q m 
X t y 

f (y )d t + q m 
X t X t 

f (X t )d t. 

Here we have used the fact that q m 
xx = −

∑ 

y � = x q 
m 
xy . Hence, it follows 

that the Bellman equation 

ρG (x ) = lim 
d t↓ 0 

1 
d t 

E 
m =0 
x [d G (x )] + c 0 (x ) , 

can be written as 

ρG (x ) = 

∑ 

y � = x 

q m =0 
xy G (y ) + q m =0 

xx G (x ) + c 0 (x ) . 

Rewriting leads to (5) . �

Proof of Proposition 2 . We first assume that ϕ solves (7) . Let 
τC denote the first exit time of any set C ∈ E . Note that (8) can be 
written as 

min { G (x ) + K 10 − ϕ (x ) , L 
m =1 
x ϕ (x ) + c 1 (x ) } = 0 , x ∈ E, 

where L m 
x denotes the generator of X = (X t ) t≥0 for mode m , m = 

0 , 1 . Since it holds that 

E m x ϕ(X d t ) = 
∑ 

y ∈ E 

ϕ(y ) P m x ({ X d t = y } ) = 
∑ 

y � = x 

q m xy ϕ(y )d t + ϕ(x )(1 + q m xx d t) , 

it follows that 

L m x ϕ(x ) = lim 
d t↓ 0 

E m x ϕ(X d t ) − ϕ(x ) 

d t 
− ρϕ(x ) = 

∑ 

y ∈ E\{ x } 
q m xy ϕ(y ) + (q m xx − ρ) ϕ(x ) , 

for all x ∈ E. Then, 

L 
m =1 
x ϕ(x ) ≥ −c 1 (x ) , x ∈ E, and 

L 
m =1 
x ϕ(x ) = −c 1 (x ) , x ∈ C 1 . 

Fix T > 0 . From Dynkin’s formula it follows that 

20 A model inspired by SIS frameworks where transitions are modeled through a 
CTMC as well, similar to our work, is studied by Huberts & Thijssen (2021) who 
consider the investment problem of a monopolist in a market with network exter- 
nalities. The underlying state process becomes mean reverting, which is in line with 
our intuition for the extension that is discussed here. 

E m =1 
x 

[

e −ρ(τC 1 ∧ T ) ϕ(X τC 1 ∧ T ) 
]

= ϕ(x ) + E m =1 
x 

[

∫ τC 1 ∧ T 

0 
e −ρt L m =1 

x ϕ(X t )d t 

]

= ϕ(x ) − E m =1 
x 

[

∫ τC 1 ∧ T 

0 
e −ρt c 1 (X t )d t 

]

. 

Since 

E 
m =1 
x 

[

e −ρ(τC 1 ∧ T ) ϕ(X τC 1 ∧ T ) 
]

= E 
m =1 
x 

[

e −ρ(τC 1 ) 
(

G (X τC 1 ) + K 10 
)

, τC 1 < T 
]

+ E 
m =1 
x 

[

e −ρ(T ) ϕ(X T ) , τC 1 > T 
]

→ E 
m =1 
x 

[

e −ρ(τC 1 ) 
(

G (X τC 1 ) + K 10 
)]

, as T → ∞ , 

we find that 

ϕ(x ) = E 
m =1 
x 

[

∫ τC 1 

0 
e −ρt c 1 (X t )d t + e −ρ(τC 1 ) 

(

G (X τC 1 ) + K 10 
)

]

. 

Now take any stopping time τ ∈ M and fix T ≥ 0 . Then 

E m =1 
x 

[

∫ τ∧ T 

0 
e −ρt c 1 (X t )d t + e −ρ(τ∧ T ) ( G (X τ ) + K 10 ) 

]

≥ −E m =1 
x 

[

∫ τ∧ T 

0 
e −ρt L m =1 

x ϕ(X t )d t 

]

+ E m =1 
x 

[

e −ρ(τ∧ T ) ( G (X τ∧ T ) + K 10 ) 
]

= ϕ(x ) − E m =1 
x 

[

e −ρ(τ ) ϕ(X τ ) 
]

+ E m =1 
x 

[

e −ρ(τ ) ( G (X τ ) + K 10 ) 
]

≥ ϕ(x ) . 

Since T was chosen arbitrarily, the inequality also holds as T → ∞ . 
Therefore, ϕ = F and τC 1 is the optimal stopping time. 

Existence and uniqueness follow from the fact that F is the so- 
lution to the fixed point problem 

F = Ŵ(F ) , 

where 

Ŵ(F ) = min 

{ 

G (x ) + K 10 , 
c 1 (x ) 

ρ − q m =1 
xx 

+ 

∑ 

y � = x 

q m =1 
xy 

ρ − q m =1 
xx 

F 

} 

. 

Note that the function F can be thought of as a vector in R n , where 
n = | E| . It is easy to check that Ŵ satisfies Blackwell’s conditions, 
so that Ŵ is a contraction mapping ( Stokey & Lucas, 1989 , Theo- 
rem 3.3). Existence and uniqueness of F then follow from the Ba- 
nach fixed point theorem ( Stokey & Lucas, 1989 , Theorem 3.2). 

As a final note, since for all x ∈ � it holds that q m 
xy = 0 for all 

y ∈ E, ϕ(x ) is determined unambiguously. For x ∈ E\ �, ϕ(x ) is re- 
cursively determined as a function of the states the chain can tran- 
sition to when leaving x . Hence, by induction, we establish that ϕ
is unambiguously determined in (8) for all x ∈ E. �

Proof of Proposition 3 . The proof is analogous to the proof of 
Proposition 2 . �

Appendix B. Further analysis 

In this Appendix, we provide some additional figures for 
Sections 4.6 and 4.7 . 

B1. Critical care capacity constraints 

Here we investigate how the stopping sets are impacted when 
the epidemic related costs are increasing in I t when I t gets close 
to the threshold of 150, rather than the cliff-edge from Section 4.6 , 
i.e., when 

δE (I t , R t ) = 

{ 
4 if I t < 100 , 
4(1 + (I t − 100) / 50) if 100 ≤ I t < 150 , 
8 if I t ≥ 150 . 

(14) 

Fig. 20 illustrates the corresponding stopping sets and we find 
that these look qualitatively the same. The most noticeable differ- 
ence is for states such that I t ∈ (100 , 150) since for these states the 
costs are higher compared to (13) . 
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Fig. 20. Stopping sets when the per-patient costs are given by (14) . Brown: switching from mode 1 to mode 0, orange: from mode 2 to mode 1, blue: from mode 0 to 2. 
R 0 0 = 3 , R 1 0 = 2 , R 2 0 = 1 . 5 , γm = 0 . 1 , ˜ i 0 = 0 . 02 , ˜ i 1 = ̃  i 2 = 0 , φm = 2% , N = 500 , ρ = 0 . 1 / 365 , K 01 = K 02 = 20 0 0 and K · = 0 otherwise, δ2 

L = 1200 63 . 7 , δ
1 
L = δ2 

L / 2 , and δD = 10 . 88 365 . (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 21. Stopping sets when the increase in lockdown related costs is δL 0 . 0 0 015 t 2 . 

B2. Time-dependent cost structures 

Figs. 21 and 22 illustrate the stopping sets equivalent to those 
in Figs. 18 and 19 . These figures illustrate that when lockdown 
costs are convex in t or concave in t , the resulting stopping sets 
are qualitatively the same. 

Appendix C. Robustness 

C1. Infection rate 

Here we investigate how the optimal policy is affected by the 
discovery of a more infectious mutant virus, as well as the effect 
of a lower infection rate due to, e.g., effective measures. 

A higher infection rate βm , m = 0 , 1 , 2 , has two effects on the 
social planner’s problem. First, infections occur more often, relative 
to a case with a low infection rate. This means that states with a 
high number of infectives are reached with a higher probability, 
leading to a bigger need for lockdown. Second, a higher infection 

rate reduces the expected interarrival times, so that the process 
moves through more states during the same time interval. Espe- 
cially for the part of the state space with a high number of in- 
fectives, the cost of staying in lockdown may no longer outweigh 
the benefits of staying in lockdown. It becomes more interesting 
for the social planner to phase out restrictions for a larger set of 
states, with the potential consequence that less time is spent in 
lockdown. It is therefore, a priori , not clear what the net result will 
be on the (expected) switching times. 

To illustrate these conflicting incentives, we compare our base- 
line parameterization to a case where R 2 0 = 5 . In line with the lit- 
erature we again assume that R 0 0 = R 2 0 / 2 and we set R 1 0 = 3 . 5 . Al- 
though we appreciate that R 1 0 = 5 is high, this choice allows for 
the net effects on the stopping sets to be more distinguishable. 

Fig. 23 illustrates the stopping sets for this parameterization. 
For the first lockdown, the blue region has shrunk indicating that 
only when still very few people have been infected switching to 
mode m = 2 is optimal. Discovering the epidemic too late and 
thereby never imposing lockdown, is more likely when the so- 
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Fig. 22. Stopping sets when the increase in lockdown related costs is δL 0 . 07 
√ 
t . Orange: switching from mode 1 to mode 0, blue: switching from mode 0 to 1. R 0 0 = 3 , 

R 1 0 = 2 , R 2 0 = 1 . 5 , γm = 0 . 1 , ˜ i 0 = 0 . 002 , ˜ i 1 = ̃  i 2 = 0 , φm = 2% , N = 500 , ρ = 0 . 1 / 365 , K 01 = K 02 = 20 0 0 and K · = 0 otherwise, δE = 4 , δ2 
L = 1200 63 . 7 , δ

1 
L = δ2 

L / 2 , and δD = 10 . 88 365 . (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 23. Stopping sets for lower infection rates. Here, R m 0 = 5 for m = 0 , R 1 0 = 3 . 5 , and R 2 0 = 2 . 5 . Brown: switching from mode 1 to mode 0, orange: from mode 2 to mode 1, 
blue: from mode 0 to 2. R 0 0 = 5 , R 1 0 = 3 . 5 , R 2 0 = 2 . 5 , γm = 0 . 1 , ̃  i 0 = 0 . 002 , ̃  i 1 = ̃  i 2 = 0 , φm = 2% , N = 500 , ρ = 0 . 1 / 365 , K 01 = K 02 = 20 0 0 and K · = 0 otherwise, δE = 4 , δ2 

L = 1200 63 . 7 , 
δ1 
L = δ2 

L / 2 , and δD = 10 . 88 365 . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 24. Stopping sets for lower infection rates. Here, R m 0 = 0 . 9 for m = 2 , R 1 0 = 1 . 2 , and R 0 0 = 1 . 8 . Brown: switching from mode 1 to mode 0, orange: from mode 2 to mode 
1, blue: from mode 0 to 2. R 0 0 = 1 . 8 , R 1 0 = 1 . 2 , R 2 0 = 0 . 9 , γm = 0 . 1 , ˜ i 0 = 0 . 002 , ˜ i 1 = ̃  i 2 = 0 , φm = 2% , N = 500 , ρ = 0 . 1 / 365 , K 01 = K 02 = 20 0 0 and K · = 0 otherwise, δE = 4 , 
δ2 
L = 1200 63 . 7 , δ

1 
L = δ2 

L / 2 , and δD = 10 . 88 365 . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 25. Expected number of infected (brown), susceptible (blue), and recovered (red) individuals for mode 0 (Panel (a)) and mode 1 (Panel (b)). Panel (c) juxtaposes the 
expected number of infectives in both modes. Here, (I 0 , R 0 ) = (10 , 0) . R 0 0 = 3 , R 1 0 = 1 . 5 , γ0 = γ1 = 0 . 3 , N = 500 , and ρ = 0 . 1 / 365 . (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 26. Stopping sets with vector/stream plots. Here, γm has been multiplied by 3 to increase the volatility of the process. Orange: switching from mode 1 to mode 0, blue: 
switching from mode 0 to 1. R 0 0 = 3 , R 1 0 = 1 . 5 , γ0 = γ1 = 0 . 3 , N = 500 , ρ = 0 . 1 / 365 , K 01 = 1500 , K 10 = 0 , δE = 4 , and δL = 1200 63 . 7 . (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 

Fig. 27. Stopping sets with stream plots with a different parametrization for K 01 (Panel (a)) and δL (Panel (b)). Stream plot for expected paths in mode 1. Orange: switching 
from mode 1 to mode 0, blue: switching from mode 0 to 1. R 0 0 = 3 , R 1 0 = 1 . 5 , γ0 = γ1 = 0 . 1 , N = 500 , ρ = 0 . 1 / 365 , K 10 = 0 , and δE = 4 . (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.) 

cial planner is not proactive enough in detecting the virus. At the 
same time, the orange and brown areas have expanded. Although 
not visible, the brown area now entirely intersects with the orange 
area, which means that phasing out lockdown is no longer optimal. 
In short, lockdown is only optimal very early on in the epidemic 
and one comes out of lockdown entirely. 

For subsequent lockdowns, we also find that phasing out lock- 
down is not optimal. Note that in the blue area an “inaction” re- 
gion appears again as we found before in Section 4.7 . The intuition 
is the same as before: for states where I t is close to zero, a lock- 

down of a short length can be imposed. However, when I t is suffi- 
ciently positive and R t is small, a small delay is optimal. This, thus, 
occurs even when costs are not increasing over time. 

These illustrations confirm that, especially when considering 
situations where a state with a high number of infectives is 
reached, there may be a higher probability of lockdown duration 
being shorter in a scenario with a higher infection rate. The fact 
that this probability can increase underlines the importance of in- 
corporating the stochastic nature of the development of the dis- 
ease, i.e., effects as these cannot be observed in deterministic spec- 
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Fig. 28. Stopping sets with stream plots. Here, δL = 20 . Orange: switching from mode 1 to mode 0, blue: switching from mode 0 to 1. R 0 0 = 3 , R 1 0 = 1 . 5 , γ0 = γ1 = 0 . 1 , 
N = 500 , ρ = 0 . 1 / 365 , K 01 = 2000 , K 10 = 0 , and δL = 1200 63 . 7 . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 
article.) 

ifications. The most interesting result is the shrinkage of the blue 
area, so that it becomes even more important to discover the epi- 
demic early. 

Fig. 24 illustrates the opposite case. Effective policies during the 
epidemic, such as social distancing across all states, may lead to a 
situation where the R 0 is effectively below 1. Therefore, we now 

look at a case where R m =2 
0 = 0 . 9 . The blue area has now expanded 

and the orange area has shrunk, which is in line with the intuition 
above. Also, in the blue area for the first lockdown the inaction 
region appears again. 

C2. Recovery rate 

In this section we provide an illustration of the effect of the 
recovery rate γm . Since (E m 

x d I t ) 
2 = 0 for all m = 0 , 1 , we obtain 

Var (d I t ) = E (d I t ) 2 − 0 = [ λm (I t , R t ) + μm (I t , R t ) ] d t 

= γm I t 

(

R 
m 
0 
S(I t , R t ) 

N 
+ 1 

)

d t. 

Similarly, Var (d R t ) = E m 
x (d R t ) 

2 − 0 = μm (I t , R t )d t = γm I t d t. This 
means that increasing γm while keeping R m 

0 fixed leads the 
process to move quicker. 

For our illustration we multiply all γm by a factor of 3 and re- 
duce the sunk cost of entering lockdown to K 01 = 1500 . The latter 
change is needed because otherwise the stopping set would (al- 
most) disappear and it would never be optimal to enter lockdown. 
To further illustrate the analysis in the main text, Fig. 25 repro- 
duces Fig. 7 with the increased transition rates and illustrates that 
the shapes of the curves have remained qualitatively the same, but 
the time scale has changed. Also note that the share of host popu- 
lation that remains susceptible throughout has not (significantly) 
changed. This confirms that, at least in expectation, the process 
moves faster for higher γm without significantly changing the ex- 
post numbers of infectives and susceptibles. 

An increase in γm has three consequences. First, an increase in 
the infection rate increases, in expectation, the number of infec- 
tives per period of time. Second, for any future point in time the 
standard deviation of susceptibles, infectives, and recovered goes 
up. These two reasons make the stopping set expand. On the other 
hand, the period over which costs are incurred is shorter, which 
should make switching to mode 1 less attractive as the invest- 
ment required to realize a lockdown and consequently the eco- 
nomic damage might not be outweighed by the gain from “flatten- 
ing the curve”. Flattening the curve has two cost advantages. On 
the one hand the peak of infectives is reached later, which leads 

to a lower present value in absolute terms. At the same time, the 
number of total infectives is (in expectation) lower as well, which 
directly reduces cost. 

Fig. 26 shows that both effects are present but that they af- 
fect different parts of the stopping sets. First, the stopping set for 
mode 0 has considerably shrunk. The period over which costs are 
incurred is shorter, so that lockdown is optimal for a smaller range 
of states. 

At the same time, the stopping set in mode 1 has expanded. 
Despite the increase in volatility, the speed with which the num- 
ber of infectives goes to zero is sufficient to make it optimal to 
lift lockdown in a larger set of states. In addition, the period over 
which costs are incurred is shorter which makes switching more 
attractive. 

C3. Lockdown-related costs 

We now illustrate the sensitivity of the stopping sets to changes 
in parameter values associated with incurred costs, starting with 
the sunk cost of entering lockdown, K 01 , which is illustrated by 
Fig. 27 (a). Entering lockdown is optimal when the gain from flat- 
tening the curve outweighs the additional costs involved with en- 
tering lockdown. When K 01 increases, the benefits might no longer 
outweigh the costs for certain states and, therefore, the stopping 
set in mode 0 shrinks. Since K 01 has no effect on the value in 
mode 1, the stopping set in mode 1, i.e., the orange area, is not 
affected. 

Fig. 27 (b) illustrates what happens when δL is increased. Since 
these costs are only incurred while being in mode 1, there are 
fewer cases where switching to mode 1 is optimal and more cases 
where switching from mode 1 back to mode 0 is optimal. 

Fig. 28 illustrates the effect of changes in (epidemic related) 
per-patient cost δE (i, r) , incurred in all modes. Here, δE is one-third 
lower than in the baseline parameterization. When the value of δE 
is lower for all states, the gain of lockdown is lower and, there- 
fore, there is less of a necessity for the social planner to switch to 
mode 1. This leads to the stopping set in mode 0 shrinking as illus- 
trated in Panel (a). When δE increases, the opposite applies. Panel 
(b) illustrates what happens to the stopping set if a lower cost per 
infective is combined with a jump at I t = 150 similar to (13) . 
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