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Abstract

CD68+ tumor-associated macrophages (TAMs) are pro-tumorigenic, pro-angiogenic and

are associated with decreased survival rates in patients with cancer, including breast can-

cer. Non-specific models of macrophage ablation reduce the number of TAMs and limit the

development of mammary tumors. However, the lack of specificity and side effects associ-

ated with these models compromise their reliability. We hypothesized that specific and con-

trolled macrophage depletion would provide precise data on the effects of reducing TAM

numbers on tumor development. In this study, the MacLow mouse model of doxycycline-

inducible and selective CD68+ macrophage depletion was crossed with the murine mam-

mary tumor virus (MMTV)-Polyoma virus middle T antigen (PyMT) mouse model of sponta-

neous ductal breast adenocarcinoma to generate the PyMT-MacLow line. In doxycycline-

treated PyMT-MacLow mice, macrophage numbers were decreased in areas surrounding

tumors by 43%. Reducing the number of macrophages by this level delayed tumor progres-

sion, generated less proliferative tumors, decreased the vascularization of carcinomas and

down-regulated the expression of many pro-angiogenic genes. These results demonstrate

that depleting CD68+ macrophages in an inducible and selective manner delays the devel-

opment of mammary tumors and that the PyMT-MacLow model is a useful and unique tool

for studying the role of TAMs in breast cancer.

Introduction

Macrophages are extremely versatile cells found in every tissue of the body, whose functions

are often required for organism development, maintenance of tissue homeostasis and immu-

nity [1]. Macrophages are also important in cancer biology, where they are referred to as

tumor-associated macrophages (TAMs). In the majority of human cancers, high numbers of
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TAMs or enrichment of TAM-associated gene signatures are correlated with poor prognosis

[2, 3]. TAMs can influence tumor progression both negatively and positively by secreting cyto-

toxic factors or stimulating cancer cell proliferation, angiogenesis, immunosuppression, inva-

sion and metastasis to distant organs [2–4]. Moreover, several experimental studies have now

shown that the efficacy of anti-cancer therapies is largely determined by macrophage function

[3, 5, 6]. In light of these data, TAM inhibitors–such as those that interfere with CSF1R signal-

ling [7]–are currently being tested in combination with chemotherapy, radiotherapy, angio-

genesis inhibitors and/or T cell checkpoint inhibitors in clinical trials. The outcome of most of

these trials have yet to be reported [8].

To establish the importance and varied roles of TAMs in regulating tumor progression and

metastasis, many targeting approaches have been investigated in various mouse models of can-

cer. Seminal studies showed that ablating macrophages genetically by deleting the colony-stim-

ulating factor 1 gene, Csf1, in a transgenic mouse model of breast adenocarcinoma delays

tumor development and the angiogenic switch to prevent metastasis [9, 10]. The use of other

strategies, such as administration of an attenuated strain of the bacteria Shigella flexneri [11], a

DNA minigene vaccine [12], siRNAs and liposome encapsulated chlodronate [13], cause

tumor regression and/or reduced angiogenesis in murine tumor models. However, these

approaches all have their limitations: namely, poor efficiency, lack of specificity, duration of

macrophage depletion and the induction of detrimental side effects such as substantial toxicity

and reduced immunity.

Previously, we generated a novel mouse model, called MacLow, for the doxycycline-induc-

ible depletion of CD68+ macrophages in vivo [14]. Administering doxycycline either by intra-

peritoneal injection or in the animals’ chow results in a depletion of up to 50% of the tissue

resident macrophages in the liver, spleen and bone. Importantly, the inducibility of this model

circumvents the negative effects of macrophage depletion on embryonic and reproductive

organ development. Peritoneal macrophages taken from doxycycline treated animals are also

functionally impaired as demonstrated by their reduced ability to mount a cytokine response

to LPS stimulation [14]. In the current study, we utilize this model to determine the effects of

CD68+ macrophage depletion on tumor development in the murine mammary tumor virus

polyoma middle T antigen (PyMT) transgenic mouse model of spontaneous breast ductal ade-

nocarcinoma [15]. The PyMT mouse model has clearly definable stages of disease that corre-

late with similar stages in human breast cancer [16]. We crossed MMTV-PyMT mice with

MacLow mice to generate PyMT-MacLow mice. Treating PyMT-MacLow animals with doxy-

cycline induced depletion of tissue resident macrophages in the liver by ~40%, as previously

published [14]. Moreover, TAMs surrounding tumors were reduced by ~43%. The decrease in

TAMs was associated with a delay in tumor progression, a lower proliferative index and

reduced microvessel density. Thus, the PyMT-MacLow model represents a new, inducible tool

to study the role of TAMs in tumor progression, metastasis and anti-cancer therapy response.

Materials and methods

Animal maintenance and treatment

All experiments were conducted in accordance with the United Kingdom Animals (Scientific

Procedures) Act 1986, with local ethical approval from the University of Sheffield Animal Wel-

fare and Ethical Review Panel under the authority of a UK Home Office Project Licence (PPL

40/3125). Mice were treated with doxycycline at 3 weeks of age for 7 weeks by allocating 10g of

food containing 625mg/kg of doxycycline (Harlan Laboratories Inc, Madison, USA) to each

mouse. The chow containing doxycycline was replaced with fresh food every other day to

ensure that the activity of the doxycycline was not compromised by prolonged exposure to
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light and heat. Water was provided ad libitum (S1 ARRIVE Checklist). Animals were checked

daily and all efforts were made to minimise animal suffering. Animals were euthanised by cer-

vical dislocation when primary tumor burden reached 12.5 mm mean diameter or when the

tumor restrained animal agility. No other adverse effects were observed during the study and

no animals died before meeting this humane endpoint.

Generation of the inducible macrophage depletion model of breast

cancer (PyMT-MacLow)

The inducible macrophage depletion line, MacLow, generated as described previously [14],

contains two transgenes (CD68 and tetDTA) and is on an FVB/n background. Female

MacLow animals were crossed with male MMTV-PyMT animals [15] on an FVB/n back-

ground (kind gift from Professor Nicola Brown, University of Sheffield) to generate triple

transgenic (PyMT-MacLow) animals that were heterozygous for all three transgenes. Female

PyMT-MacLow animals were used in future studies alongside female littermates that were het-

erozygous for the MMTV-PyMT and tetDTA (designated as PyMT) or the CD68 and tetDTA

transgenes (designated as MacLow) as controls. Animals were genotyped by a PCR which

amplified regions in the CD68 and tetDTA transgenes as previously described [14] and a 556

bp region of the PyMT transgene using primer pair 50-GGAAGCAAGTACTTCACAAGGG-30

and 50- GGAAAGTCACTAGGAGCAGGG-30. A control PCR was also performed which ampli-

fied 324 bp product using primer pair 50-CTAGGCCACAGAATTGAAAGATCT-30 and 50-
GTAGGTGGAAATTCTAGCATCATCC-30. Reactions were heated to 94˚C for an initial 5 min

and then amplified by denaturing at 94˚C for 30 sec, annealing at 55˚C for 30 sec and extend-

ing at 72˚C for 1 min, for a total of 35 cycles. Products were visualised by agarose gel electro-

phoresis. The following controls were used: age and sex matched PyMT-MacLow animals fed

with normal chow; MacLow and PyMT littermate animals (see above) fed normal chow and

doxycycline containing chow. 5–7 animals of each genotype were randomly assigned to each

treatment group and were analysed blinded to treatment group and genotype.

Flow cytometry

Tumors were collected from four 10-week-old MMTV-PyMT mice (kind gift from Karen

Blyth, CRUK Beatson Institute) and disassociated with collagenase A and DNAse as previously

described [17]. Single cell suspensions were stained with anti-CD45-PE-Cy7 (1:100), anti-

CD11b-FITC (1:400), anti-F4/80-PerCP (1:200) and anti-CSF1R-PE (1:200). Cells were fixed

and permeabilized using the Cytofix/Cytoperm™ kit (BD Biosciences) and followed by intracel-

lular staining wtih anti-CD68-APC (1:200). All antibodies were purchased from eBioscience.

This experiment was performed using a BD Fortessa flow cytometer using Diva software. Data

analyses were performed using FlowJo Software version 9.9.4.

PCR array

Using an RNeasy kit (Qiagen) total RNA was isolated from 30 mg pieces of mammary fat pad

containing tumours obtained from three control and three doxycycline treated PyMT-Ma-

cLow animals. Samples of RNA were subjected to an on column DNAse digestion according

to manufacturers instructions and an additional DNAse treatment was performed post elution

using RQ1 DNase (Promega). cDNA was synthesised using Superscript III reverse transcrip-

tase (ThermoFisher Scientific, Paisley, UK) and oligoDT primers following the manufacturers

instructions. The three samples of cDNA were pooled for control and doxycycline treated

groups to give an overall concentration of 70ng/μl. Gene expression levels were analysed by

hybridising 9.24μg of pooled cDNA, mixed with SYBR green mastermix (Qiagen) to two
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Mouse Angiogenesis RT2 (Qiagen) plates (control and treated) under the following conditions:

10 minutes at 95˚C, followed by 40 cycles of 15 seconds at 95˚C and 1 minute at 60˚C. The

microarray was conducted in an Applied Biosystems 7900 thermocycler and the data gener-

ated in SDS 2.3 that collected and interpreted the data, the baseline and threshold values were

set to automatic. Genes exhibiting a three-fold or greater change were considered biologically

relevant.

Histology and immunohistochemistry

The entire mammary fat pad and a sample of liver was excised from all animals at the end of

the treatment period. Tissue was fixed in 10% formalin and paraffin embedded. 5 μm sections

from each formalin-fixed paraffin-embedded tissue were stained with haematoxylin and eosin

(H&E). Antigen retrieval specific to each antibody was performed as follows: by incubation

with trypsin (anti-F4/80); by heating in 0.05% tween in Tris-EDTA buffer (anti-Ki67) or by

incubation in antigen retrieval buffer (Dako, anti-CD31) [18]. Blocking was performed with

rabbit or goat serum and slides were incubated with the primary antibody for one hour at

room temperature [anti-F4/80 Clone C1:A3-1 (abcam, Cambridge, UK) 1:50 dilution, anti-

Ki67 (abcam) 1:1000 dilution] or overnight at 4˚C [anti-CD31 (Dianova GmbH, Hamburg,

Germany) 1:200 dilution] [18]. Sections were incubated with secondary antibodies raised to

the appropriate species using the Vectastain ABC kit (Vector Laboratories Ltd, Peterborough,

UK) followed by DAB chromogenic detection.

Analysis and quantification

The number of macrophages in the liver was determined by counting F4/80 positive cells in

five randomly selected fields of view for each tissue section using a 20x objective.

Mammary sections labelled for F4/80 were scanned with an Aperio ScanScope Model CS

slide scanner (Aperio Inc Vista CA USA). Five randomly selected x 20 images were captured

from the perimeter of each tumor in Aperio ImageScope v11.1.2.760 software. The average

number of F4/80 positive macrophages per field of view for each tumor was determined by

counting manually. The amount of Ki67 labelling (termed positivity) was quantified from the

intensity of labelling in individual tumors using the positive pixel algorithm in Aperio Image-

Scope software. In this algorithm, the number of pixels generated from the Ki67 staining was

normalized to the total number of pixels generated from the haematoxylin counter stain.

CD31 staining was quantified using a chalkley grid graticule and a 20x objective (Leica

DMI4000, Germany). The grid was placed over five randomly selected fields of view within

each site of early or late carcinoma and aligned so that the maximum number of the 25 dots

were superimposed over the CD31 staining [19]. The sum value of the scores generated for

each tumor was termed the Cumulative Chalkey Score (CCS) as a measure of microvessel den-

sity (MVD).

Statistics

All data analysis was carried out in IBM SPSS Statistics for Windows (Version 22.0) or Graph-

pad Prism (Version 7.0b). The mean number of F4/80 positive liver macrophages per section

(the dependent variable) was analysed by univariate analysis taking into account treatment

group and diet (fixed factors) and animal ID (random factor) with Tukey post hoc tests to

identify any differences between treatment groups. In analyzing data from sections of mam-

mary fat pad and tumor we were consistent with previous studies using the PyMT model by

including data from individual tumors rather than individual mice [18, 20, 21]. Data were

divided into four treatment groups based on the combination of genotype and diet (PyMT
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control diet, PyMT doxy diet, PyMT-MacLow control diet, and PyMT-MacLow doxy diet). To

avoid falsely significant results we carried out a nested analysis consistent with previous tumor

based studies [22–25] taking into account which mouse each tumor was from and which treat-

ment groups each mouse belonged to. This analysis was carried out for the grouped data of all

the tumors from each treatment group and repeated with data divided according to tumor

grade. Results are presented in graphs as single data points representing the data from each

tumor. Error bars represent ± standard deviation. A Chi-square test was carried out to com-

pare the percentage of tumors at the hyperplasia or higher grade.

Results

CD68+ and F4/80+ macrophages are analogous populations in PyMT

tumors

F4/80 is the most commonly used marker to identify TAMs in mouse tissue. To understand

the extent of overlap between F4/80- and CD68-expressing macrophages in MMTV-PyMT

tumors, we performed flow cytometry on dissociated tumor tissue. After gating on CD45+

immune cells, we plotted CD11b versus F4/80 and gated on CD11b+F4/80+ TAMs. We

found that nearly 100% of CD11b+F4/80+ TAMs express CD68 (Fig 1). Some CD11b+F4/

80—cells, which include monocytes, neutrophils and other myeloid cells, expressed lower lev-

els of CD68 and these cells are likely newly recruited monocytes differentiating into TAMs.

Not surprisingly, a small proportion of CD11b—F4/80—also expressed CD68 (Fig 1), as a

proportion of CD11b—CD11c+CD103+ dendritic cells are known to express CD68 in various

tissues [26, 27]. These data indicate that F4/80 is a marker of CD68+ TAMs in MMTV-PyMT

mice.

Doxycycline treatment decreases macrophage numbers in

PyMT-MacLow mice

We crossed the MMTV-PyMT mammary tumor model [15] with MacLow mice [14] to gener-

ate PyMT-MacLow mice. To determine whether doxycycline treatment had the same effect on

macrophage numbers in distant organs of tumor-bearing PyMT-MacLow as was previously

observed in the tumor-free MacLow mouse model [14], sections of liver from treated and

untreated MacLow, tumor-bearing PyMT and tumor-bearing PyMT-MacLow mice were

immunohistochemically labelled for F4/80. Doxycycline treatment reduced the number of

macrophages in the liver by 48% in MacLow animals and 41% in tumor-bearing PyMT-Ma-

cLow animals when compared to untreated mice (S1 Fig). The level of macrophage depletion

observed in the liver following doxycycline treatment of tumor-bearing PyMT-MacLow and

tumor-free MacLow animals was consistent with our previous findings where 6 weeks of doxy-

cycline treatment resulted in ~50% reduction in the number of macrophages in samples of

liver, spleen and bone [14]. As expected, the number of macrophages in tumor-bearing PyMT

animals was not affected by doxycycline (S1 Fig).

To address the main aim of this study, we assessed the number of macrophages in tumors

from PyMT and PyMT-MacLow mice treated with and without doxycycline. F4/80+ TAMs

were quantified in intratumoral and peritumoral areas (Fig 2A). Following doxycycline treat-

ment, there was no change in the mean number of intratumoral macrophages in either tumor-

bearing PyMT or PyMT-MacLow animals (Fig 2B). However, peritumoral macrophages were

significantly reduced by 43% after doxycycline treatment of tumor-bearing PyMT-MacLow

mice (Fig 2B). These data indicate that doxycycline-induced depletion of CD68-expressing

cells largely affects peritumoral macrophages.
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Tumor progression is delayed in macrophage-deficient PyMT-MacLow

animals

We then examined the rate of tumor formation in PyMT-MacLow mice. Tumor latency and

multiplicity was unchanged between untreated PyMT and PyMT-MacLow mice (data not

shown). Tumor latency and multiplicity was also equal between untreated and doxycycline-

Fig 1. CD68+ and F4/80+ macrophages are analogous populations in PyMT tumors. Tumors from PyMT mice were enzymatically

digested and made into a single cell suspension. Cells were stained with antibodies against the surface markers CD45, CD11b and F4/80.

Cells were then fixed, permeabilized and stained with anti-CD68. Fluorescence was measured by flow cytometry and the data was

analyzed using Flowjo software. Dot plots shown were generated from CD45+ cells. CD68 expression was determined after gating on

tumor-associated macrophages (CD45+CD11b+F4/80+), CD11b+F4/80—cells and CD11b—F4/80—cells. Representative dot plots are

shown from one of four mice analysed.

https://doi.org/10.1371/journal.pone.0188591.g001
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treated PyMT-MacLow mice (data not shown). Next, we investigated how the depletion of mac-

rophages influenced tumor stage in PyMT-MacLow mice. The PyMT mammary tumor model

follows a stepwise progression of disease: from hyperplasia to late carcinoma [15]. At 10 weeks

of age, both PyMT and PyMT-MacLow mice had multiple tumors of different grades, consistent

with the phenotype of the model (S1 Table and Fig 2C). The percentage of animals that had

tumors of Adenoma/MIN or a higher stage was calculated for each genotype and treatment

group (Fig 2C). A striking difference between macrophage-deficient animals (doxycycline-

treated PyMT-MacLow mice) and control animals was the observation that far fewer PyMT-

Maclow animals treated with doxycycline (4/7, 57%) had carcinomas than either control PyMT-

Maclow (7/7, 100%) or treated PyMT animals (4/5, 80%). In fact 3 out of 7 doxycycline treated

animals did not possess any tumors higher than the hyperplasia stage (S1 Table) whereas doxy-

cycline treatment of PyMT mice did not significantly affect the staging of tumors (Fig 2C and

S1 Table) where only 1/5 animals did not possess any tumours above the hyperplasia stage.

Thus, depletion of peri-tumoral TAMs correlates with a delay in tumor progression.

The proliferative capacity of tumors is reduced in macrophage deficient

animals

To gain insight into how macrophages promote cancer progression, tumor sections were

labelled for the proliferation marker Ki67 (Fig 3A). Surprisingly, Ki67 positivity in PyMT

tumors was increased by doxycycline treatment (Fig 3B), suggesting that doxycycline posi-

tively affects cancer cell proliferation or Ki67 expression. When comparing untreated and

doxycycline-treated PyMT-MacLow mice, Ki67 positivity was markedly reduced in TAM-defi-

cient tumors (Fig 3B). These data demonstrate that TAMs positively regulate the proliferative

capacity of PyMT tumors.

Angiogenesis is impaired in carcinomas from macrophage-deficient

PyMT-MacLow mice

Macrophages regulate the angiogenic switch in PyMT tumors [10]. To determine whether

depletion of CD68+ TAMs influenced angiogenesis, tumor sections from untreated and doxy-

cycline-treated PyMT-MacLow mice were immunohistochemically labelled using antibodies

to the endothelial cell marker CD31 (Fig 4A). This analysis revealed that microvessel density is

decreased in TAM-deficient tumors and tumors lacking TAMs displayed a 36% reduction in

CD31+ blood vessels when compared with TAM-proficient tumors (Fig 4B). We then used an

angiogenesis-focused, PCR-based array to investigate expression of angiogenesis-associated

genes. We observed a decrease in several pro-angiogenic genes, including, but not limited to

Timp2, Fgf2, Tek (which encodes the angiopoietin receptor, TIE2), Il6, Egf, Igf1 and Fgfr3 (Fig

Fig 2. Doxycycline reduces the number of macrophages surrounding mammary tumors in PyMT-MacLow

mice. (A) Sections of mammary tissue were labelled for F4/80 (DAB brown cells) and counterstained with

haematoxylin; a representative image at the early carcinoma stage of tumor development is shown for each genotype

and treatment. (B) Images captured from slides scanned on an Aperio slide scanner were used to quantify the number

of macrophages within (intratumoral) and on the perimeter of mammary tumors (peritumoral). The data was then

grouped according to genotype and treatment group and the mean value +/- SD shown. Each individual data point

represent the mean values for an individual tumor. Tumor samples were obtained from the following numbers of

animals per treatment group the number of tumors analysed is indicated in brackets: PyMT UT = 5(27), PyMT

Doxy = 5(33), PyMT-MacLow UT = 7(31), PyMT-MacLow Doxy = 7(39). Significance is from the SPSS nested analysis

comparing data from doxycycline treated versus control animals for each tumor and genotype. NS = not significant,

**P<0.01. Scalebar = 100 μm. (C) The percentage of animals that had any tumors of hyperplasia and/or Adenoma/

mammary intraepithelial neoplasia stages (Adenoma/MIN) was calculated for each genotype and treatment group. A

Chi-square test was used to calculate statistical significance.

https://doi.org/10.1371/journal.pone.0188591.g002
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4C). These data demonstrate that deficiency of CD68+ TAMs negatively affects angiogenesis in

PyMT-MacLow tumors.

Discussion

The fields of cancer biology and immunology lack sophisticated genetic models that allow the

inducible and selective deletion of macrophages to study the role of these cells in tumor

Fig 3. The proliferative capacity of Adenoma/MIN tumors is reduced in macrophage deficient mice. Mammary

sections were labelled with an anti-Ki67 antibody as a marker of proliferation and counterstained with haematoxylin. (A)

Images were captured from slides scanned on an Aperio slide scanner and split according to tumor grade, a representative

image of an Adeno/MIN tumor (A/M) is shown for each genotype and treatment group. (B) The amount of Ki67 labelling in

individual tumor areas (cells stained dark brown with DAB) was quantified and expressed as positivity using the Aperio

positive pixel algorithm. Each data point on the graph represents the mean positivity for an individual tumor and the

number of animals these tumors were taken from is shown below the x axis on each graph. The mean value ± SD was

plotted and a nested analysis carried out in SPSS to compare data from doxycycline treated versus control animals from

each tumor grade and genotype. ***P<0.001. Scalebar = 100 μm.

https://doi.org/10.1371/journal.pone.0188591.g003
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progression, metastasis and anti-cancer therapy treatment. As such, we generated the PyMT-

MacLow model. Here, we show using the PyMT-MacLow model that depleting CD68+ macro-

phages in a controlled, specific and timely manner negatively affects the development of mam-

mary ductal adenocarcinoma. Our model enabled the depletion of macrophages without

compromising other aspects of tissue homeostasis and stands in contrast to the Csf1op/Csf1op

mouse where the total lack of macrophages causes impaired mammary gland development

[28], growth retardation, infertility and impaired pancreatic development [29, 30]. Due to

these confounding phenotypes, the aspects of ill-health associated with the Csf1op/Csf1op

mouse and other mouse models of macrophage ablation are not ideal for studying disease pro-

cesses. The MacLow and PyMT-MacLow models overcome many of these limitations [14].

Consistent with the previously published pro-tumorigenic role of TAMs in the MMTV-

PyMT model [9, 10], doxycycline-induced macrophage depletion reduced the proliferative

capacity and angiogenic potential of PyMT tumors. Previous studies from various labs have

shown that TAMs stimulate the angiogenic switch in PyMT tumors, which allows tumors to

transition to malignancy [9, 10]. Subsets of TAMs, particularly those that express TIE2, are

potent effectors of angiogenesis [31, 32], as demonstrated by specific deletion of the TIE2-ex-

pressing TAM population [31] or knockdown of Tek/Tie2 mRNA in TAMs [33]. TIE2-expres-

sing TAMs produce FGF2 that can activate endothelial cells [31, 32]. In line with these data,

we found that Fgf2 and Tek/Tie2 mRNA are decreased in macrophage-deficient PyMT-Ma-

cLow tumors. This observation supports the use of the PyMT-MacLow model for angiogenesis

research.

TAMs not only influence endothelial cells in the MMTV-PyMT model, but cancer cells as

well. The crosstalk between TAMs and cancer cells is required for invasion and metastasis,

whereby cancer cells provide CSF1 for TAMs, and in turn TAMs produce EGF that feeds back

on cancer cells to stimulate their movement [34, 35]. In addition to CSF1, IL-4 from CD4+ T

cells is necessary to activate TAMs to produce EGF and without CD4+ T cells, TAMs are

unable to induce cancer cell migration and metastasis [36]. As further evidence that the

PyMT-MacLow model accords well with this mechanism, we found that Egf mRNA levels are

reduced in macrophage-deficient mice. Intravital imaging has shown that cancer cell intrava-

sation into the circulation occurs at the invasive front of tumors where macrophages are highly

abundant [37]. Thus, the PyMT-MacLow model may be particularly important for invasion

and metastasis studies, as peri-tumoral macrophages are preferentially depleted in this model.

Moreover, questions regarding the functional differences between peri-tumoral and intra-

tumoral macrophages can be answered with the PyMT-MacLow model by depleting peri-

tumoral populations while leaving intra-tumoral populations intact. The PyMT-MacLow will

be also useful to further investigate TAM-cytotoxic T cell interactions at tumor margins,

where the two cell types co-localize in PyMT tumors [38, 39].

Fig 4. Loss of CD68+ macrophages negatively affects angiogenesis in PyMT mice. Mammary sections

were labelled with rabbit anti-mouse antibodies against CD31 (DAB brown) a marker of angiogenesis and

counterstained with haematoxylin. (A) Images were captured from slides scanned on an Aperio slide scanner

and a representative image of an early carcinoma is shown for both treatment groups. (B) Microvessel density

(MVD) was expressed as cumulative chalkley score (CCS). Each point on the graph represents the CCS for

individual early and late carcinomas obtained from the following numbers of animals: PyMT UT = 2(6), PyMT

Doxy = 4(12), PyMT-MacLow UT = 3(11), PyMT-MacLow Doxy = 3(9), numbers in brackets correspond to the

total number of carcinomas analysed for each group, the number of animals is also displayed on the graph

below the axis. (C) Three samples of cDNA from mammary fat pads containing tumors were pooled for control

and doxycycline treated PyMT-MacLow animals. Gene expression levels in the pooled cDNA samples were

determined by hybridisation to two Mouse Angiogenesis RT2 (Qiagen) plates (control and treated). Data was

generated and interpreted in SDS 2.3 and any genes exhibiting a three-fold or greater change in the treated

versus control group were considered biologically relevant and are shown on the graph. Scalebar = 100 μm. For

part B nested analysis of the data was carried out in SPSS, **P<0.01.

https://doi.org/10.1371/journal.pone.0188591.g004
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Conclusions

In the current study, we established the PyMT-MacLow model as novel tool to study the role

of macrophages during breast cancer progression. The inducible and specific depletion of

CD68+ cells offers flexibility to investigate the role of TAMs at different stages of tumor devel-

opment, growth, metastasis and during anti-cancer therapy treatment. The PyMT-MacLow

model is devoid of the side effects observed in previous depletion and knockout models. Hav-

ing reproduced many phenotypes from previously published reports, the PyMT-MacLow will

be a valuable asset to the macrophage and cancer biology communities.
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