
This is a repository copy of Mixed Criticality on Multi-cores Accounting for Resource Stress
and Resource Sensitivity.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/188036/

Version: Accepted Version

Proceedings Paper:
Davis, Robert Ian orcid.org/0000-0002-5772-0928 and Bate, Iain orcid.org/0000-0003-
2415-8219 (2022) Mixed Criticality on Multi-cores Accounting for Resource Stress and
Resource Sensitivity. In: Abdeddaïm, Yasmina, Cucu-Grosjean, Liliana, Nelissen, Geoffrey
and Pautet, Laurent, (eds.) RTNS 2022 - Proceedings of the 30th International Conference
on Real-Time Networks and Systems. 30th International Conference on Real-Time
Networks and Systems, RTNS 2022, 07-08 Jun 2022 ACM International Conference
Proceeding Series . ACM , FRA , pp. 103-115.

https://doi.org/10.1145/3534879.3534883

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Mixed Criticality on Multi-cores Accounting for Resource Stress
and Resource Sensitivity

Robert I. Davis
rob.davis@york.ac.uk

Department of Computer Science, University of York

York, UK

Iain Bate
iain.bate@york.ac.uk

Department of Computer Science, University of York

York, UK

ABSTRACT

The most significant trend in real-time systems design in recent

years has been the adoption of multi-core processors and the

accompanying integration of functionality with different criticality

levels onto the same hardware platform. This paper integrates

mixed criticality aspects and assurances within a multi-core

system model. It bounds cross-core contention and interference by

considering the impact on task execution times due to the stress

on shared hardware resources caused by co-runners, and each

task’s sensitivity to that resource stress. Schedulability analysis is

derived for four mixed criticality scheduling schemes based on

partitioned fixed priority preemptive scheduling. Each scheme

provides robust timing guarantees for high criticality tasks,

ensuring that their timing constraints cannot be jeopardized by the

behavior or misbehavior of low criticality tasks.

CCS CONCEPTS

· Computer systems organization → Real-time systems;

Real-time systems; · Software and its engineering →

Real-time schedulability; Real-time schedulability.

KEYWORDS

real-time, multi-core, mixed criticality, fixed priority, schedulability

analysis, cross-core contention, interference

ACM Reference Format:

Robert I. Davis and Iain Bate. 2022. Mixed Criticality on Multi-cores

Accounting for Resource Stress and Resource Sensitivity. In Proceedings of

the 30th International Conference on Real-Time Networks and Systems (RTNS

’22), June 7ś8, 2022, Paris, France. ACM, New York, NY, USA, 13 pages.

https://doi.org/10.1145/3534879.3534883

1 INTRODUCTION

The most significant trend in real-time systems design in recent

years has been the migration from using single-core to multi-core

processors [1, 2] and the accompanying integration of

functionality of different criticality levels onto the same hardware

platform, i.e. the advent of mixed criticality systems [65].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

RTNS ’22, June 7ś8, 2022, Paris, France

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9650-9/22/06. . . $15.00
https://doi.org/10.1145/3534879.3534883

In mixed criticality systems, the main challenge is to provide

appropriate levels of assurance, such as timing guarantees, to

software tasks that have different levels of criticality. Crucially,

this needs to be done without having to treat all of the tasks as

having the highest level of criticality, with the attendant increase

in verification costs and reduction in usable system capacity that

would entail. In multi-core systems, the main challenge is to bound

and correctly account for the effects of cross-core contention over

shared hardware resources, due to tasks running on different cores,

and the impact that has on task response times and consequently

on system schedulability.

In this paper, we consider mixed criticality multi-core systems

with two criticality levels. More specifically, HI - and LO-criticality

tasks running on a multi-core processor that are subject to cross-

core contention and interference over shared hardware resources.

In this context, HI -criticality tasks must be afforded robust timing

guarantees, such that their timing constraints cannot be jeopardized

by the behavior or misbehavior of LO-criticality tasks running on

either the same or different cores. Following Vestal’s model [65], LO-

criticality tasks have a single low assurance estimate of their stand-

alone Worst-Case Execution Time (WCET), whereas HI -criticality

tasks have two such estimates; one low assurance estimate and

a larger high assurance estimate that may, for example, include

provision for error handling code that is not expected to execute

during normal operation [50].

Multi-core processors typically share hardware resources, such

as the interconnect and the memory hierarchy, between cores.

Unfortunately, a consequence of these hardware design decisions

is that the execution time of a task running on one core can be

impacted by co-running tasks on other cores contending with it

for access to shared hardware resources. This increase in execution

time is referred to as interference.

Work on micro-benchmarks [36, 44, 56, 60, 61] has sort to

characterize the maximum amount of interference that a task can

be subject to, assuming a given multi-core hardware configuration.

Further research on the Multi-core Resource Stress and Sensitivity

(MRSS) task model [30, 31] takes this idea a step further, aiming to

bound the total amount of interference that can occur from two

different perspectives by employing additional task parameters:

(1) The Resource Sensitivity of a task characterizes the

maximum increase in its execution time that can occur due

to contention over a specific resource emanating from any

possible co-runner.

(2) The Resource Stress of a task characterizes the maximum

increase in the execution time of any possible co-runner due

to contention over a resource emanating from the task.

1

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

RTNS ’22, June 7–8, 2022, Paris, France R. I. Davis and I. Bate

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

The resource sensitivity and resource stress parameters of a task

characterize, in a simple but useful way, the impact on that task’s

execution time of contention over the resource and the behavior

of the arbitration policy in controlling access to it. See [30, 31] for

a discussion of how the resource sensitivity and resource stress

parameters can be obtained.

By combining measures of resource stress and resource

sensitivity, analysis of the MRSS task model can more accurately

bound the amount of interference that can actually occur. The

MRSS task model retains the advantages of the two-step approach

that is traditionally employed on single-core systems, providing a

separation of concerns between timing analysis and schedulability

analysis, and has been validated via a proof-of-concept case study

on multi-core hardware [30, 31].

This paper builds on the MRSS task model and its schedulability

analysis for partitioned fixed priority preemptive scheduling on

multi-core systems. The main contribution of this work is the

integration of mixed criticality and multi-core in the form of the

MRSS task model, along with the derivation of schedulability

analysis for four mixed criticality scheduling schemes.

The remainder of the paper is organized as follows: Section 2

discusses related work. Section 3 introduces the system model,

terminology, and notation used. Section 4 presents schedulability

analysis for the four mixed criticality schemes studied, with a

systematic evaluation of their performance given in Section 5.

Finally, Section 6 concludes with a summary.

2 RELATED WORK

In this section, we outline prior work on: (i) mixed criticality fixed

priority scheduling schemes for single-core processors, since those

schemes form the basis for partitioned multi-core systems; (ii)

mixed criticality systems on multi-cores that seeks to enforce

limits on the amount of cross-core contention and interference

that can occur; and (iii) single criticality multi-core systems that

integrate interference effects into schedulability analysis.

Since Vestal’s seminal paper [65] in 2007, mixed criticality

systems have become a hot topic of real-time systems research,

see [20, 21] for a survey and a more recent review. Many of these

papers focus on scheduling schemes that are based on fixed

priorities, most notably Static Mixed Criticality (SMC) [11] and

Adaptive Mixed Criticality (AMC) [12]. AMC is considered the

most effective fixed priority scheme [43] for single cores, and has

been extended to account for many additional aspects including:

preemption thresholds [68, 69], multiple criticality levels [37],

criticality-specific task periods [13], changes in priority [10],

communications [18], deferred preemption [19], a fast return to

LO-criticality behavior [15, 16], weakly-hard timing

constraints [38], probabilistic task models [54], design

optimization [71], context switch costs [28], robustness and

resilience [23], implementation overheads [51], and

semi-clairvoyant timing behavior [22, 70]. An exact analysis for

AMC has also been developed for periodic task sets with

offsets [6, 58]. Finally, a modified AMCR runtime protocol [17] has

been developed that delays the onset of degraded behaviour where

LO-criticality jobs are dropped.

The first work to discuss mixed criticality within the context of

multi-core systems was by Anderson et al. [4, 55], with later work

in this area addressing overheads [26, 42], showing the advantages

of using different partitioning and isolation techniques at different

criticality levels [47], and reconciling issues of data sharing [25]

and simultaneous multithreading [9].

In the context of multi-core systems, much of the prior work

on mixed criticality has sort to limit the amount of interference

that can occur. To achieve this, criticality-based partitioning is

typically assumed, with HI -criticality tasks allocated on one core,

and LO-criticality tasks to other cores. Here, one way of limiting

interference is to monitor the execution time of each HI -criticality

task and to abort co-running LO-criticality tasks when no more

interference can be tolerated [48]. A more subtle approach is to

throttle the resource access bandwidth available to theLO-criticality

cores, temporarily suspending execution on those cores whenever

the maximum permitted number of accesses in a given period has

been reached [67].

Research into the timing analysis and schedulability analysis

of multi-core systems has also become a hot topic of real-time

systems research over the past 15 years, see [53] for a survey. Of

specific interest here is the integration of interference effects into

schedulability analysis.

Early work in this area [63] used arrival curves to model the

memory bus accesses of each task, and how delays due to

contention impact task response times. Subsequently, more

detailed analysis [39, 49, 59, 64] divided each task into a sequence

of blocks and used information about the number of accesses

within each block to provide more refined results. Further

work [57] proposed using a WCET-matrix and WCET-sensitivity

values to characterize the variation in task execution times for

different numbers of contending cores. A later more detailed

analysis [5] considered different execution times dependent on

specific co-runners, but suffered from significant scalability issues.

An alternative approach [27] used request functions to model the

maximum number of resource accesses from each task in a given

time interval, and integrated this request function into response

time analysis. Further work [46, 66] along this line provided detailed

analysis of the contention caused by memory accesses, accounting

for variations in latencies due to different memory states.

Subsequently, the Multi-core Response Time Analysis (MRTA)

framework [3, 29] was introduced, aimed at combining the demands

that tasks place on difference types of shared resources with the

resource supply provided by those resources, and integrating the

resulting explicit interference directly into response time analysis.

This framework was later built upon to analyze bus arbitration

policies on a many-core processor [62]. Further, the symmetry

between processing and resource access has been leveraged to

derive a suspension-based schedulability analysis [24], with similar

performance to MRTA.

3 SYSTEM MODEL

In this paper, we assume a mixed criticality multi-core system with

m homogeneous cores that executes tasks under various scheduling

schemes, based on partitioned fixed priority preemptive scheduling.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Mixed Criticality on Multi-cores Accounting for Resource Stress and Resource Sensitivity RTNS ’22, June 7–8, 2022, Paris, France

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

With partitioning, tasks are assigned to a specific core and do not

migrate from one core to another.

The mixed criticality system is assumed to have two criticality

levels: HI and LO . Each task τi is characterised by its criticality

level Li , which is either HI or LO . Each LO-criticality task τj has a

single estimateCj (LO) of itsWCETwhen executing stand-alone. By

contrast, each HI -criticality task τk has two estimates Ck (LO) and

Ck (HI) of its WCET when executing stand-alone, where Ck (HI) ≥

Ck (LO). (Note for ease of presentation of the analysis in Section 4,

we assume thatCj (HI) = Cj (LO) for LO-criticality tasks). Each task

τi has a minimum inter-arrival time or period Ti between releases

of its jobs, and a constrained relative deadline Di , where Di ≤ Ti .

Each task τi is assumed to have a priority that is unique across

all cores, with hp(i) used to denote the set of tasks with higher

priority than task τi . The priorities of tasks are unrelated to their

criticality levels. The notation Γx is used to denote the set of tasks

that execute on the same core, with index x , as the task of interest

τi . Similarly, Γy is used to denote the set of tasks that execute on a

different core with index y.

The tasks are assumed to be independent, but may access a set

of shared hardware resources r ∈ H , thus causing interference on

the execution of tasks on other cores via cross-core contention.

Further aspects of the model are based on the concept of resource

sensitive contenders and resource stressing contenders [30, 31].

A resource stressing contender maximizes the stress on a resource

r by repeatedly making accesses to it that cause the most contention.

Running a resource stressing contender in parallel with a task

creates the maximum increase in execution time for the task due to

contention over resource r emanating from any single co-runner.

A resource sensitive contender for a resource r suffers the

maximum possible interference by repeatedly making accesses to

the resource that suffer the most contention. Running a resource

sensitive contender in parallel with a task creates the maximum

increase in execution time for any single co-running contender

due to contention over resource r emanating from the task.

Each task τi is characterised by its resource sensitivity X r
i and

its resource stress Y ri for each shared hardware resource r ∈ H .

X r
i captures the maximum increase in execution time of task τi

(fromCi toCi +X
r
i) when it is executed in parallel with a resource

stressing contender for resource r . Thus X r
i models how much task

τi behaves like a resource sensitive contender. Similarly,Y ri captures

the increase in execution time of a resource sensitive contender

for resource r , when it is executed in parallel with task τi . Hence

Y ri models how much task τi behaves like a resource stressing

contender. With this model, the execution time of a task τi running

on one core, subject to interference via shared hardware resource

r from a single task τk running in parallel on one other core, is

increased by at most min(X r
i ,Y

r
k
) i.e. from Ci to Ci +min(X r

i ,Y
r
k
).

Assuming the worst-case stress on resource r emanating from any

arbitrary tasks onm − 1 other cores, the execution time of task τi
is increased from Ci to at most Ci + (m − 1)X r

i . Finally, the multi-

core system is assumed to be symmetrical, and so the cross-core

contention between two tasks over a resource does not depend on

the two specific cores on which those tasks run.

We do not assume dual values1 for resource sensitivity X r
i and

resource stress Y ri based on criticality. For a LO-criticality task,

these values reflect its LO-criticality execution behavior, but cannot

impact the guarantees afforded to HI -criticality tasks under the

analysis described in this paper. For a HI -criticality task the values

reflect its worst-case i.e. HI -criticality execution behavior.

The Real-Time Operating System (RTOS) is required to provide

standard per task execution time monitoring and budget

enforcement facilities. The RTOS is assumed to abort any job of a

task τi that does not complete within its execution time budget

Bi (Li). This budget is set to Ci (Li) +
∑

r ∈H (m − 1)X r
i , where H is

the set of shared hardware resources, m is the number of cores,

and Li is the criticality level of the task. The budget Bi (Li) thus

accounts for the WCET of the task when faced with the worst-case

stress on every resource r , from any arbitrary tasks on all of the

other m − 1 cores. Assuming that the parameters Ci (Li) and X r
i

represent sound upper bounds, then budget enforcement will only

occur if the task itself executes erroneously. (Note, no enforcement

is assumed on the number of accesses that can be made to shared

hardware resources).

The schedulability tests introduced in this paper are named

using the following convention: CpSched-m-X-MCS, where C

indicates a contention-based test for p partitioned scheduling,

using the basic scheduling policy Sched, which is FPPS. The test

is form cores, makes use of information X , which is either D or R

meaning the deadlines or the response times of the tasks on other

cores, or fc meaning fully composable, i.e. the test does not rely on

any information about the tasks running on the other cores, or no

meaning no effects of contention are included. Finally, MCS is the

mixed criticality scheme employed, which is either NMC, SMC,

AMC, or AMCR, as described in Section 4. This naming

convention builds on that introduced in [30, 31] for schedulability

tests compatible with the MRSS task model.

4 SCHEDULING SCHEMES AND ANALYSES

In this section, we derive schedulability analysis for partitioned

fixed priority preemptive scheduling of mixed criticality systems

on multi-cores, under four different mixed criticality scheduling

schemes, in each case accounting for cross-core contention and

interference, according to the MRSS task model.

Most scheduling schemes for mixed criticality systems identify

two distinct modes of behavior. A normal or LO-criticality mode,

which comprises the expected behavior of the system, and an

abnormal or HI -criticality mode, which is expected to be rarely if

ever entered as a consequence of the runtime behavior of

HI -criticality tasks.

There are disparate views within the real-time systems

community as to the timing requirements for mixed criticality

systems [20], while most works assume that LO-criticality tasks do

not have to meet their deadlines in abnormal mode, and can

potentially be dropped, others [34, 35] argue that this represents a

disconnect with respect to industry practice and standards. The

argument against missing deadlines and job dropping is that

1In this first paper combining mixed criticality and the MRSS model, we choose not to
use dual values so as to simplify the overall model and analyses. Models and analyses
for mode specific resource sensitivity and resource stress are left for future work).

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

RTNS ’22, June 7–8, 2022, Paris, France R. I. Davis and I. Bate

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

criticality is not synonymous with importance, and thus the

functionality of LO-criticality tasks cannot simply be discarded. In

this section, we derive analyses for different schemes that reflect

these different viewpoints. Four schemes are considered:

1. No Mixed Criticality (NMC): Assumes that jobs of all tasks

are required to meet their deadlines in both normal and

abnormal modes. Under NMC no runtime mode change

operations are required. NMC provides a baseline for

systems where missing deadlines or dropping jobs is not

acceptable even for LO-criticality tasks.

2. Static Mixed Criticality (SMC) [11]: Assumes that jobs of

LO-criticality tasks continue to execute and to be released

in abnormal mode, but are not required to meet their

deadlines in that mode. Under SMC no runtime mode

change operations are required.

3. Adaptive Mixed Criticality (AMC) [12]: Assumes that no new

jobs of LO-criticality tasks are released in abnormal mode,

and that any previously released jobs of LO-criticality tasks

are not required to meet their deadlines in that mode. With

AMC, the RTOS is responsible for runtime mode change

operations, and for ensuring that LO-criticality tasks do not

release new jobs in abnormal mode.

4. Adaptive Mixed Criticality with modified runtime protocol

(AMCR) [17]: AMCR is similar to AMC, but uses a modified

runtime protocol that delays the time at which LO-criticality

tasks stop releasing new jobs in abnormal mode, see Section

4.4 for details.

In this paper, we assume that each core is considered separately

and independently in terms of the runtime mode change

operations performed by the RTOS; however, in contrast the

timing requirements placed upon the tasks are defined by the

overall system behavior, with different levels of timing assurance

required for HI - and LO-criticality tasks as follows:

R1 LO-criticality tasks require assurance that they will meet their

timing constraints (deadlines) under normal system behavior,

i.e. under the condition that all tasks on all cores comply

with their LO-criticality execution time Ci (LO), resource

sensitivity X r
i , and resource stress Y ri parameters.

R2 HI -criticality tasks require more robust assurance that they

will meet their timing constraints at all times (irrespective

of the behavior or misbehavior of other tasks) i.e. subject

only to the condition that they comply with their own HI -

criticality execution timeCi (HI) and resource sensitivity X r
i

parameters.

4.1 No Mixed Criticality (NMC)

In this section, we build upon the schedulability analysis for the

MRSS task model given in [30, 31], making use of the

context-dependent schedulability tests for LO-criticality tasks, and

the fully composable context-independent schedulability test for

HI -criticality tasks, see Sections 3.1 and 3.3 of [30] respectively.

Adding cross-core interference considering each resource r ∈ H

to the standard response time analysis [8, 45] for fixed priority

preemptive scheduling, we can compute the worst-case response

time for mixed criticality tasks under the NMC scheme as follows:

Ri (Li) = Ci (Li) +
∑

j ∈Γx∧j ∈hp(i)

⌈

Ri (Li)

Tj

⌉

Cj (Lj)

+

∑

r ∈H

I ri (Ri (Li)) (1)

where I ri (Ri (Li)) is an upper bound on the interference that may

occur within the response time of task τi , via shared hardware

resource r , due to tasks executing on the other cores.

The interference term I ri (Ri (Li)) depends on: (i) the total

resource sensitivity for resource r , denoted by Sri (Ri (Li), x), for the

tasks executing on the same core x as task τi within its response

time Ri (Li); and (ii) the total resource stress on resource r , denoted

by Eri (Ri (Li),y), that can be produced by tasks executing on each

of the other cores y within an interval of length Ri (Li).

I ri (Ri (Li)) =
∑

∀y,x

min(Eri (Ri (Li),y), S
r
i (Ri (Li), x)) (2)

This is the case, since the maximum interference due to contention

from each core y cannot exceed the total resource stress

Eri (Ri (Li),y) from that core within an interval of length Ri (Li).

The total resource sensitivity Sri (Ri (Li), x) is computed based on

the jobs that may execute on the same core x within the worst-case

response time of task τi , thus we have
2:

Sri (Ri (Li), x) = X r
i +

∑

j ∈Γx∧j ∈hp(i)

⌈

Ri (Li)

Tj

⌉

X r
j (3)

The total resource stress Eri (Ri (Li),y) due to tasks that execute

on another core y in the interval Ri (Li) can be upper bounded in

three different ways.

When analysing a HI -criticality task τi , the total resource stress

Eri (Ri (Li),y) is assumed to be infinite, and hence the

schedulability test for that task becomes context-independent and

fully composable, since the computed response time is unaffected

by any changes to the parameters of the tasks that execute on the

other cores. In other words, when (4) is used, (1), (2), and (3)

become dependent only on the set of tasks executing on the same

core as τi .

Eri (Ri (Li),y) = ∞ (4)

When analysing a LO-criticality task τi , the total resource stress

Eri (Ri (Li),y) can be upper bounded in two ways, making use of

either the deadlines or the response times of the contending tasks

that execute on the other cores:

Eri (Ri (Li),y) =
∑

j ∈Γy

⌈

Ri (Li) + D j

Tj

⌉

Y rj (5)

Eri (Ri (Li),y) =
∑

j ∈Γy

⌈

Ri (Li) + Rj (Lj)

Tj

⌉

Y rj (6)

Here, the upper bound on the worst case does not correspond to

synchronous release of the contending tasks at the start of the

interval Ri (Li), but rather to a scenario where the first job of a

contending task executes as late as possible within its own period

2Note, for systems where memory accesses issued by a preempted lower priority task
on the same core may be still pending after a context switch, then the analysis needs
to also include such additional accesses.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Mixed Criticality on Multi-cores Accounting for Resource Stress and Resource Sensitivity RTNS ’22, June 7–8, 2022, Paris, France

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

(i.e. assumed in (5) to be just before its deadline, and assumed in (6)

to be just before its response time) and then further jobs of that

task execute as early as possible in their subsequent periods.

Further, for the purposes of ensuring a correct upper bound,

resource stress from each contending job is assumed to be able to

occur instantaneously. This leads to a sound, but potentially

somewhat pessimistic upper bound Eri (Ri (Li),y). However, to

provide a tighter bound would require highly detailed information

about the timing of resource accesses within each task. Note that

tasks of any priority can cause contention when executing on the

other cores.

Bounding the total resource stress Eri (Ri (Li),y) via (5) or (6)

results in a context-dependent schedulability test for LO-criticality

task τi , since schedulability of the task is dependent on the

parameters of the contending tasks that execute on the other cores.

Using (6), the response times of the LO-criticality tasks on the

same and different cores become interdependent; however,

schedulability can still be determined via fixed point iteration. In

this case, an outer iteration starts with Rj (Lj) = Cj (Lj) for every

task τj in the system, and repeatedly computes the response times

for all tasks on all cores. This is done using the Rj (Lj) values in the

right hand side of (6) from the previous round, until all response

times either converge, in other words are unchanged from the

previous round, or one of them exceeds the associated deadline.

The correctness of the context-dependent schedulability test [30,

31], embodied in (1), (2), (3) and either (4) or (5), is sufficient to

ensure compliance with the timing assurance requirement R1 for

LO-criticality tasks. In fact the test provides a stronger guarantee,

ensuring that LO-criticality tasks are schedulable provided that all

HI -criticality tasks comply with their HI -criticality stand-alone

execution timesCi (HI), rather than their LO-criticality stand-alone

execution times Ci (LO) as required by R1. However, all tasks must

still comply with their resource sensitivity X r
i , and resource stress

Y ri parameters for the guarantee to hold.

We now show that the requirement R2 for robust timing

assurance of HI -criticality tasks is also met. Each HI -criticality

task τi is analysed using the fully composable context-independent

schedulability test, comprising (1), (2), (3), and (4). This test

effectively assumes that the contribution to the response time of

task τi from each job of another task τk that executes on the same

core is bounded by Bk (Lk) = Ck (Lk) +
∑

r ∈H (m − 1)X r
k
, (see

Section 3 for details of how Bk (Lk) is defined and why this is a

valid bound). If a job of task τk has not completed after executing

for a time Bk (Lk) due to internal overrun of its own code, or extra

interference resulting from a higher than expected level of

resource sensitivity, then the RTOS will prevent the job of task τk
from continuing to execute. Hence the RTOS prevents other tasks

that execute on the same core within the response time of

HI -criticality task τi from compromising its timing constraints.

Since the fully composable schedulability test considers the

maximum possible interference of
∑

r ∈H (m − 1)X r
i occurring

during the execution of task τi , then provided that the stand-alone

execution time Ci (HI) and the resource sensitivity parameters

(X r
i) of task τi have been correctly upper bounded, then the task

will complete its execution within its budget, irrespective of the

level of resource stress emanating from potentially misbehaving

tasks on other cores. Hence, task τi has robust assurance that it

will meet its deadline, assuming of course that it has been deemed

schedulable by the test.

Three NMC schedulability tests are evaluated in Section 5:

• CpFPPS-m-fc-NMC: Uses the context-independent test,

comprising (1), (2), (3), and (4), for all tasks.

• CpFPPS-m-D-NMC: Uses the context-independent test,

comprising (1), (2), (3), and (4), for HI -criticality tasks, and

the deadline based context-dependent test, comprising (1),

(2), (3), and (5), for LO-criticality tasks.

• CpFPPS-m-R-NMC: Uses the context-independent test,

comprising (1), (2), (3), and (4), for HI -criticality tasks, and

the response time based context-dependent test, comprising

(1), (2), (3), and (6), for LO-criticality tasks, and also to

compute Rj (Lj) for HI -criticality tasks, used as an

intermediate value in (6).

4.2 Static Mixed Criticality (SMC)

In this section, we extend the analysis presented in section 4.1

to cater for the Static Mixed Criticality (SMC) scheme [11]. The

only difference in the schedulability analysis for SMC compared

to NMC is that with SMC, LO-criticality tasks are only required

(as per R1) to be schedulable when all tasks comply with their LO-

criticality stand-alone execution time parameters. As a consequence,

the response time analysis is modified as follows. Equation (1) is

replaced by (7), the only change being the replacement of Cj (Lj)

by Cj (min(Li , Lj)).

Ri (Li) = Ci (Li) +
∑

j ∈Γx∧j ∈hp(i)

⌈

Ri (Li)

Tj

⌉

Cj (min(Li , Lj))

+

∑

r ∈H

I ri (Ri (Li)) (7)

Similarly, equation (6) is replaced by (8), the only change being the

replacement of Rj (Lj) by Rj (min(Li , Lj)).

Eri (Ri (Li),y) =
∑

j ∈Γy

⌈

Ri (Li) + Rj (min(Li , Lj)

Tj

⌉

Y rj (8)

The analysis for SMC thus comprises: (i) a fully composable

context-independent test for HI -criticality tasks, defined by (7),

(2), (3), and (4), which is effectively the same as that for NMC; (ii)

a deadline based context-dependent test for LO-criticality tasks,

defined by (7), (2), (3), and (5); and (iii) a response time based context-

dependent test for LO-criticality tasks, defined by (7), (2), (3), and

(8). Note, the latter test requires that the value of Rj (LO) is similarly

computed for each HI -criticality task, for use as an intermediate

value in (8).

Three SMC schedulability tests are evaluated in Section 5:

• CpFPPS-m-fc-SMC: Uses the context-independent test,

comprising (7), (2), (3), and (4), for all tasks.

• CpFPPS-m-D-SMC: Uses the context-independent test,

comprising (7), (2), (3), and (4), for HI -criticality tasks, and

the deadline based context-dependent test, comprising (7),

(2), (3), and (5), for LO-criticality tasks.

• CpFPPS-m-R-SMC: Uses the context-independent test,

comprising (7), (2), (3), and (4), for HI -criticality tasks, and

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

RTNS ’22, June 7–8, 2022, Paris, France R. I. Davis and I. Bate

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

the response time based context-dependent test, comprising

(7), (2), (3), and (8), for LO-criticality tasks, and to compute

the LO-criticality response times for HI -criticality tasks,

used as an intermediate value in (8).

4.3 Original Adaptive Mixed Criticality (AMC)

In this section, we extend the analysis presented in section 4.2 to

cater for the original Adaptive Mixed Criticality (AMC)

scheme [12]. The only difference in the schedulability analysis for

AMC compared to SMC is that with AMC, LO-criticality tasks no

longer release new jobs in abnormal mode. The analysis of

LO-criticality response times, Ri (LO), for both HI - and

LO-criticality tasks is therefore the same as for SMC. The response

time Ri (HI) for a HI -criticality task τi is derived as follows, using

context-independent analysis:

Ri (HI) = Ci (HI) +
∑

r ∈H

(m − 1)X r
i +

∑

j ∈Γx∧j ∈hpH(i)

⌈

Ri (HI)

Tj

⌉

(

Cj (HI) +
∑

r ∈H

(m − 1)X r
j

)

+

∑

k ∈Γx∧k ∈hpL(i)

⌈

R∗i (LO)

Tj

⌉

(

Ck (LO) +
∑

r ∈H

(m − 1)X r
k

)

(9)

where hpH(i) is the set of HI -criticality tasks with priorities higher

than that of task τi , and similarly hpL(i) is the set of LO-criticality

tasks with priorities higher than that of task τi . Further, R
∗
i (LO)

is the context independent LO-criticality response time of task τi
given by:

R∗i (LO) = Ci (LO) +
∑

r ∈H

(m − 1)X r
i +

∑

k ∈Γx∧k ∈hp(i)

⌈

R∗i (LO)

Tj

⌉

(

Ck (LO) +
∑

r ∈H

(m − 1)X r
k

)

(10)

Here, (9) and (10) represent the standard analysis equations for the

AMC-rtb schedulability test [12] adapted to use inflated execution

time budgets, e.g.Cj (HI)+
∑

r ∈H (m−1)X r
j andCk (LO)+

∑

r ∈H (m−

1)X r
k
, in place of the original execution time budgets Cj (HI) and

Ck (LO).

Previous work on AMC [12] assumes that abnormal mode is

entered when some job of a HI -criticality task τk executes for

Ck (LO) without completing. However, this criterion is not enough

when cross-core contention and interference is considered, rather

an inflated execution time budget ofCk (LO)+
∑

r ∈H (m−1)X r
k
must

be used instead. Given that both LO- andHI -criticality tasks may be

subject to cross-core contention and interference,R∗i (LO) represents

the longest possible time interval from the release of a job of task τi
until either: (i) the job has completed, or (ii) abnormalmode has been

entered. Hence, the interval in (9) during which LO-criticality jobs

need to be considered is limited to R∗i (LO), rather than Ri (LO). Use

of the intermediate value,R∗i (LO), is necessary to ensure compliance

with requirement R2 for robust timing assurance of HI -criticality

tasks, including when the behavior of other tasks is such that they

do not comply with their resource sensitivity and resource stress

parameters.

Three AMC schedulability tests are evaluated in Section 5:

• CpFPPS-m-fc-AMC: Uses the context-independent test,

comprising (9) and (10), for HI -criticality tasks, and the

context-independent test, comprising (7), (2), (3), and (4), for

LO-criticality tasks.

• CpFPPS-m-D-AMC: Uses the context-independent test,

comprising (9) and (10), for HI -criticality tasks, and the

deadline based context-dependent test, comprising (7), (2),

(3), and (5), for LO-criticality tasks.

• CpFPPS-m-R-AMC: Uses the context-independent test,

comprising (9) and (10), for HI -criticality tasks, and the

response time based context-dependent test, comprising (7),

(2), (3), and (8), for LO-criticality tasks, and to compute the

LO-criticality response times for HI -criticality tasks, used

as an intermediate value in (8).

Since the AMC scheme for partitioned multi-core systems

implements independent transitions from normal to abnormal

mode on each core, it is interesting to consider how the resource

sensitivity and resource stress parameters of tasks impact the

mode change behavior. A mode change takes place when a job of a

HI -criticality task exceeds its LO-criticality budget

Bk (LO) = Ck (LO) +
∑

r ∈H (m − 1)X r
k
. This can only happen if the

task’s stand-alone execution exceeds Ck (LO), since the additional

budget terms account for the impact of the worst-case resource

stress on all resources from any arbitrary tasks on the otherm − 1

cores. In practice, if at runtime the resource stress is below the

worst case assumed, then the HI -criticality task’s stand-alone

execution could exceed Ck (LO), effectively taking up the slack,

without triggering a mode change. This would not however impact

the schedulability of any other tasks. The resource sensitivity

values, X r
k
, for a HI -criticality task affect its own budget and hence

indirectly affect when it may cause a mode change. By contrast,

using resource stress values, Y rj , enables less pessimistic

schedulability analysis for LO-criticality tasks, however, these

values do not impact the timing guarantees afforded to

HI -criticality tasks.

4.4 Modified Adaptive Mixed Criticality
(AMCR)

In this section, we adapt the analysis presented in section 4.3 to

cater for the modified AMC scheme introduced by Bate et al. in [17].

The AMCR family of schemes differ from the original AMC scheme

in terms of the criterion used to trigger a change to degraded mode

duringwhich jobs of LO-criticality tasks are no longer released. Two

different AMCR schemes were presented in [17], here we consider

the simpler scheme that returns to normal mode on an idle instant.

In the context of this work, i.e. partitioned scheduling on a

multi-core system with cross-core interference modelled via

resource sensitivity and resource stress, the AMCR scheme

operates as follows. AMCR requires that the RTOS transitions a

core to degraded mode whenever a job of a HI -criticality task τi
running on that core reaches, without completing its execution, an

elapsed time equal to its LO-criticality response time Ri (LO), as

measured from the start of the priority level-i busy period during

which it was released. The RTOS transitions the core back to

normal mode on an idle instant for that core. (The efficient

implementation of this scheme is discussed in [17]).

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Mixed Criticality on Multi-cores Accounting for Resource Stress and Resource Sensitivity RTNS ’22, June 7–8, 2022, Paris, France

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Given how the LO-criticality response time Ri (LO) of each

HI -criticality task τi is derived and calculated, it follows that

under AMCR, while all tasks on all cores exhibit normal behavior

(i.e comply with their LO-criticality execution time Cj (LO),

resource sensitivity X r
j , and resource stress Y rj parameters), no job

of a HI -criticality task can cause a transition to degraded mode.

Hence AMCR can ensure that LO-criticality tasks meet their

timing assurance requirement R1 (see Section 1) using the same

analysis as the standard AMC scheme.

The following analysis for AMCR meets the more robust timing

assurance required for HI -criticality tasks.

Ri (HI) = Ci (HI) +
∑

r ∈H

(m − 1)X r
i +

∑

j ∈Γx∧j ∈hpH(i)

⌈

Ri (HI)

Tj

⌉

(

Cj (HI) +
∑

r ∈H

(m − 1)X r
j

)

+

∑

k ∈Γx∧k ∈hpL(i)

⌈

Ri (LO)

Tj

⌉

(

Ck (LO) +
∑

r ∈H

(m − 1)X r
k

)

(11)

Observe that the only difference between the analysis for

HI -criticality tasks under the original AMC scheme, given by (9),

and that for AMCR, given by (11), is that R∗i (LO), given by (10), is

replaced by Ri (LO), given by (7). Further, Ri (LO) may be

computed using context-dependent analysis, improving the

precision of the schedulability test.

Under AMCR, once an elapsed time of Ri (LO) has passed since

the start of the priority level-i busy period in which a job of

HI -criticality task τi was released and the job has not completed,

then the RTOS ensures that degraded mode is entered. This

prevents any further releases of higher priority LO-criticality tasks

on that core, until after τi completes. Whatever caused Ri (LO) to

be exceeded, for example a job of a higher priority HI -criticality

task τj on the same core exceeding its LO-criticality budget

Bj (LO) = Cj (LO) +
∑

r ∈H (m − 1)X r
j or a LO-criticality task on

another core misbehaving and causing more resource stress than

expected, does not matter as far as the analysis is concerned. This

is the case because (11) accounts for the maximum number of job

releases of each LO-criticality task τk up to Ri (LO) at their

LO-criticality budget Bk (LO) = Ck (LO) +
∑

r ∈H (m − 1)X r
k
, and

the maximum number of job releases of each HI -criticality task τj
up to Ri (HI) at their HI -criticality budget

Bj (HI) = Cj (HI) +
∑

r ∈H (m − 1)X r
j , hence the robust timing

guarantee R2 (see Section 1) required by HI -criticality task τi
holds.

Three AMCR schedulability tests are evaluated in Section 5:

• CpFPPS-m-fc-AMCR: Uses the context-independent test,

comprising (11) for HI -criticality tasks, and the

context-independent test, comprising (7), (2), (3), and (4), for

LO-criticality tasks and to provide the LO-criticality

response times used in (11). Note, this is effectively the

same schedulability test as the fully-composable test for the

original AMC scheme.

• CpFPPS-m-D-AMCR: Uses the context-dependent test,

comprising (11), for HI -criticality tasks, and the deadline

based context-dependent test, comprising (7), (2), (3), and

(5), for LO-criticality tasks and to provide the LO-criticality

response times used in (11).

• CpFPPS-m-R-AMCR: Uses the context-dependent test,

comprising (11), for HI -criticality tasks, and the response

time based context-dependent test, comprising (7), (2), (3),

and (8), for LO-criticality tasks, and to compute the

LO-criticality response times used in (8) and in (11).

We note that although the value of Ri (LO) used in (11) can be

computed via context-dependent analysis (as in the -D and -R

tests above), this does not mean that the schedulability guarantees

afforded to HI -criticality tasks by (11) are dependent on the

behavior of other tasks. The subtlety is that under AMCR, the

RTOS enforces the transition to degraded mode at Ri (LO)

irrespective of the behavior or misbehavior of the other tasks,

hence ensuring that the robust timing requirement R2 (see Section

1) required by HI -criticality tasks holds.

4.5 Dominance Relations

A schedulability test S is said to dominate another test Z , for a

given task model and scheduling algorithm, if every task set that is

deemed schedulable according to test Z is also deemed schedulable

by test S , and there exists some task sets that are schedulable

according to test S , but not according to test Z .

Comparing the definitions of Eri (Ri (Li),y) given by (5), (6), and

(8), it is evident that each of the CpFPPS-m-R-MCS tests deems

schedulable all task sets that are schedulable according to the

corresponding CpFPPS-m-D-MCS test. This is the case, since in

any schedulable system, the response time of a task is no greater

than its deadline (Rj (Lj) ≤ D j), and hence the Eri (Ri (Li),y) term

for the former tests, given by (6) or (8), is less than or equal to the

equivalent term, given by (5), for the latter tests. Further, it is easy

to see that there exists task sets that are schedulable according to

the former tests, but not according to the corresponding latter tests

due to a larger contention contribution emanating from the larger

Eri (Ri (Li),y) term. Hence, each CpFPPS-m-R-MCS test

dominates the corresponding CpFPPS-m-D-MCS test. Similarly,

comparing the definitions of Eri (Ri (Li),y) given by (5) and (4) it is

evident that each of the CpFPPS-m-D-MCS tests dominates the

corresponding CpFPPS-m-fc-MCS test.

Since dominance is transitive, we have: CpFPPS-m-R-MCS →

CpFPPS-m-D-MCS → CpFPPS-m-fc-MCS, where S → Z

indicates that test S dominates test Z , and MCS is NMC, SMC,

AMC, or AMCR.

Comparing the response time equations (1), (7), (9) and (11), it

is also evident that:CpFPPS-m-X-AMCR→CpFPPS-m-X-AMC

→ CpFPPS-m-X-SMC → CpFPPS-m-X-NMC, where X is fc, D,

or R.

4.6 Complexity

The standard response time analysis [8, 45] for partitioned fixed

priority preemptive scheduling, not considering cross-core

contention, has pseudo-polynomial complexity: O(mn2Dmax) [31],

wherem is the number of cores, n is the number of tasks on each

core, and Dmax is the longest deadline of any task. The

schedulability tests presented in this paper for mixed criticality

systems under the MRSS task model inherit their complexity from

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

RTNS ’22, June 7–8, 2022, Paris, France R. I. Davis and I. Bate

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

the schedulability tests for single criticality systems under the

same model [30, 31]. Hence, the -fc, -D, and -R tests have

complexity of O(m |H |n2Dmax), O(m2 |H |n2Dmax), and

O(m3 |H |n3Dmax) respectively, where |H | is the number of

resources. This represents an increase in complexity of |H |,m |H |,

and m2 |H |n over the equivalent tests that do not consider

cross-core contention.

Given the high performance of the standard response time tests

for fixed priority preemptive scheduling [32], in practice, all of the

tests presented in this paper scale well to realistic system sizes. As

a consequence, utilizing the highest performing -R tests is often

preferable, unless a fully composable -fc test is deemed necessary

due to design and development requirements. However, as shown

in [30, 31], the -D tests are compatible with Audsley’s Optimal

Priority Assignment algorithm [7], whereas the -R tests are not.

Thus, in some cases it may be advantageous to trade off using the

technically inferior -D tests in order reap the performance benefits

of optimal priority assignment.

5 EVALUATION

In this section, we present an empirical evaluation of the

schedulability tests introduced in Section 4 for mixed-criticality

task sets executing on a multi-core system, assuming a single

hardware resource shared between all cores. (Note, multiple shared

hardware resources resulting in the same total interference would

have the same impact on schedulability, due to the summation over

resources in (1)). Experiments were performed for 2 and 4 cores3.

5.1 Task Set Parameter Generation

The task set parameters used in the experiments follow the

approach taken for the MRSS task model [30, 31] and for mixed

criticality systems [41], with the Dirichlet-Rescale (DRS)

algorithm [41] (open source Python software [40]) used to provide

an unbiased distribution of utilization values that sum to the target

utilization required subject to a set of individual constraints. The

values selected for task resource sensitivity and task resource

stress are grounded in the results obtained from the

proof-of-concept case study detailed in [30, 31].

• The number of tasks per core was fixed, default n = 10. The

number of HI -criticality tasks n(HI) was set to n ·CP where

CP is the Criticality Proportion (default CP = 0.2), with the

remaining tasks of LO-criticality.

• Task utilizations were generated using the DRS algorithm.

First, HI -criticality utilization valuesUi (HI) were generated

for the n(HI) HI -criticality tasks, such that the total

HI -criticality utilization of those tasks summed to

U (HI) = CP · CF · U , where CF is the Criticality Factor

(default CF = 2.0) characterizing the multiplier between

LO-criticality and HI -criticality utilization, and U is the

overall target utilization required. Second, LO-criticality

utilization valuesUi (LO) were generated for all of the tasks,

such that the total LO-criticality utilization of all tasks

summed to U (LO) = U . For LO-criticality tasks, each

3The analysis scales to more than 4 cores; however, we limited consideration to this
range, since 4 cores represents a typical cluster size beyond which sharing hardware
resources can become a significant performance bottleneck.

Ui (LO) value was constrained to be in the range [0.0, 1.0],

while for HI -criticality tasks, each Uj (LO) value was

constrained to be in the range [0.0,Uj (HI)].

• Task periods Ti were generated according to a log-uniform

distribution [33] with a factor of 100 difference between the

minimum and maximum possible period. This represents a

spread of task periods from 10ms to 1 second, as found in

many real-time applications.

• Task deadlines Di were set equal to their periods Ti .

• The stand-alone LO-criticality execution times all tasks

were given by Ci (LO) = Ui (LO) · Ti , and the stand-alone

HI -criticality execution times of HI -criticality tasks by

Cj (HI) = Uj (HI) ·Tj .

• Task resource sensitivity values X r
i were determined as

follows. The DRS algorithm was used to generate task

resource sensitivity utilization values V r
i , such that the total

resource sensitivity utilization was given by the Sensitivity

Factor SF (default SF = 0.25) times the target utilization

(i.e.
∑

∀i ∈Γx V
r
i = U · SF), and each individual task resource

sensitivity utilization was upper bounded by the

corresponding task LO-criticality utilization,

i.e. V r
i ≤ Ui (LO). Each task resource sensitivity value was

then given by X r
i = V

r
i ·Ti .

• Task resource stress values Y ri were set to a fixed proportion

of the corresponding resource sensitivity value Y ri = X r
i ·RF ,

where RF is the Stress Factor (default RF = 0.5).

5.2 Experiments

The experiments considered systems with 2 or 4 cores, with a

different task set, generated according to the same parameters,

assigned to each core. The per core target utilizationU , shown on

the x-axis of the graphs, was varied from 0.025 to 0.975. For each

utilization value examined, 1000 task sets were generated for each

core considered (100 in the case of experiments using the weighted

schedulability measure [14]). In the experiments, a system was

deemed schedulable if and only if the different task sets assigned to

each of its cores were schedulable, i.e. if all of the tasks in the system

were schedulable. The experiments investigated the performance

of schedulability tests for the following schemes:

• Upper Bound High and Low (UBHL) [12]: This test checks

if all of the tasks are schedulable in normal mode and if all

of the HI -criticality tasks are schedulable in abnormal mode

ignoring the LO-criticality tasks. This equates to the test for

a hypothetical clairvoyant scheme discussed in [22]. (Black

lines on the graphs).

• Modified Adaptive Mixed Criticality (AMCR) [17]: See

section 4.4. (Red lines on the graphs).

• Original Adaptive Mixed Criticality (AMC) [12]: See section

4.3. (Blue lines on the graphs).

• Static Mixed Criticality (SMC) [11]: See section 4.2. (Green

lines on the graphs).

• No Mixed Criticality (NMC): See section 4.1. (Orange lines

on the graphs).

In each case, four variants of the tests were considered, the first

three corresponding to the context-independent -fc (dotted lines)

and context-dependent -D (dashed lines) and -R (solid lines)

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Mixed Criticality on Multi-cores Accounting for Resource Stress and Resource Sensitivity RTNS ’22, June 7–8, 2022, Paris, France

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

methods of accounting for cross-core contention and interference,

and the fourth, for comparison purposes only, assuming no such

interference -no (thin dot-dash lines).

Deadline Monotonic Priority Ordering [52] was used to assign

priorities, since the context-dependent -R tests are not compatible

with Audsley’s Optimal Priority Assignment algorithm [7], as

shown in [30, 31].

5.3 Results

The figures illustrating the results are best viewed in color.

In the first experiment, we compared the performance of the

various schedulability tests using the default parameters given in

Section 5.1. The Success Ratio, i.e. the percentage of systems

generated that were deemed schedulable, is shown for each of the

tests in Figure 1 for 2 cores, and in Figure 4 for 4 cores. The

relative performance of the various tests follows the dominance

relations discussed in Section 4.5. Observe, that for equivalent

tests, overall schedulability is reduced in the case of 4 cores

compared to 2 cores. This is due to the increased cross-core

contention and interference with more cores. Note, even when no

cross-core contention is considered (i.e. the thin dot-dash lines)

then schedulability is still reduced with 4 cores. This is because the

task sets on two extra cores must also be schedulable for the

overall system to be deemed schedulable.

Considering the four mixed criticality schemes, AMCR and AMC

substantially outperform both SMC and NMC, with SMC providing

only a small improvement over NMC. The reason for this is that

the robust timing guarantee R2 required by HI -criticality tasks

means that the schedulability of those tasks in abnormal mode is

the predominant factor in overall system schedulability. AMCR and

AMC enhance the schedulability of HI -criticality tasks in abnormal

mode by suspending releases of LO-criticality jobs, hence providing

a performance gain compared to both SMC and NMC, which both

continue to release jobs of LO-criticality tasks, impinging on HI -

criticality task schedulability. The small improvement that SMC

brings over NMC derives from the fact that LO-criticality tasks do

not have to be schedulable in abnormal mode.

In the second set of experiments, we used the weighted

schedulability measure [14] to assess schedulability test

performance while varying an additional parameter. In these

experiments, the other parameters were set to the default values

given in Section 5.1. In all of the weighted schedulability

experiments the relative performance of the different tests follows

the pattern illustrated in the first experiment, as dictated by the

dominance relationships.

The results of varying the Sensitivity Factor SF , from 0.05 to

0.95 in steps of 0.05, are shown in Figure 2. Recall that the

Sensitivity Factor determines the ratio of the total resource

sensitivity utilization to the total LO-criticality task utilization. As

expected, increasing the Sensitivity Factor, and hence the amount

of interference that tasks can be subject to due to cross-core

contention, results in a rapid decline in the weighted

schedulability measure for all of the tests that take cross-core

contention into account.

The results of varying the Stress Factor RF , from 0 to 1.8 in

steps of 0.1, are shown in Figure 5. Recall that the Stress Factor

determines the ratio of the resource stress for each task to its

resource sensitivity. Here, interference effective saturates once the

Stress Factor reaches 1.0. By then, the total resource stress Eri (t,y),

given by (5) or (6), emanating from each additional core tends to

exceed the total resource sensitivity Sri (t, x), given by (3). Hence,

the context-dependent -R and -D tests reduce to exactly the same

performance as the context-independent -fc test.

Observe that in Figure 2, the -R, -D, and -fc tests have very

similar performance when combined with SMC or NMC. The

reason for this is that since LO-criticality jobs continue to be

released in abnormal mode, overall schedulability depends

predominantly on the schedulability of the HI -criticality tasks in

that mode, hence the form of analysis used for LO-criticality tasks

has little bearing on the overall results. This is not the case with

AMC, AMCR, or the UBHL bound, where modest gains are

apparent when using the -R or -D tests for all tasks in normal

mode. The same behavior is evident in Figure 5, however, in that

case as the resource Stress Factor is reduced, the impact of

contention on LO-criticality tasks decreases, and the performance

advantage obtained using the context-dependent -R and -D tests

increases.

In Figure 5, when the resource Stress Factor is zero, the UBHL

bound combined with the context-dependent -R and -D tests

provides almost the same performance as the no contention case

(-no). This is because the HI -criticality tasks considered alone are

easily schedulable in abnormal mode, and hence system

schedulability according to the UBHL bound is predominantly

influenced by schedulability in normal mode. This is not the case

with AMC, since although LO-criticality tasks are prevented from

releasing further jobs in abnormal mode, job releases prior to that

point still impinge upon HI -criticality task schedulability in

abnormal mode. AMCR shows a significant advantage over AMC

when the resource Stress Factor is small. This is because the

difference between Ri (LO) used in (11) and R∗i (LO) used in (10) is

amplified in this case, resulting in fewer jobs of LO-criticality tasks

impinging upon HI -criticality task schedulability under AMCR.

The results of varying the Criticality Proportion CP , from 0.0 to

1.0 in steps of 0.1, are shown in Figure 3.With noHI -criticality tasks,

UBHL, AMCR, AMC, SMC, and NMC all reduce to the same (-no,

-R, -D, or -fc) schedulability test and hence the same performance.

At the other extreme, when there are only HI -criticality tasks and

since these tasks require the robust timing guarantees afforded by

a context-independent test, the set of -R, -D, and -fc tests for each

scheme all reduce to the same performance. Additionally, since

there are only HI -criticality tasks, all of the schemes reduce to

exactly the same schedulability test, and so all of the lines for tests

where cross-core contention is considered meet at a single point.

In Figure 3, the performance of the SMC and NMC tests

improves as a final HI -criticality task is added and there are no

longer any LO-criticality tasks present. This stems from the way in

which HI - and LO-criticality utilization values are generated. The

total HI -criticality utilization of the HI -criticality tasks is precisely

controlled by the task set generation process, as is the total

LO-criticality utilization over all of the tasks. However, the

LO-criticality utilization of a single LO-criticality task is not. With

SMC and NMC, schedulability effectively depends on the total

utilization in abnormal mode, i.e. the sum of the LO-criticality

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

RTNS ’22, June 7–8, 2022, Paris, France R. I. Davis and I. Bate

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Figure 1: Success Ratio: Varying task set utilization, 2 cores.

Figure 2: Weighted Schedulability: Varying Resource

Sensitivity, 2 cores.

Figure 3: Weighted Schedulability: Varying the Criticality

Proportion, 2 cores.

Figure 4: Success Ratio: Varying task set utilization, 4 cores.

Figure 5: Weighted Schedulability: Varying Resource Stress,

2 cores.

Figure 6: Weighted Schedulability: Varying the Criticality

Factor, 2 cores.

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Mixed Criticality on Multi-cores Accounting for Resource Stress and Resource Sensitivity RTNS ’22, June 7–8, 2022, Paris, France

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

utilization of the LO-criticality tasks and the HI -criticality

utilization of the HI -criticality tasks, and this can be worse when

almost but not all of the tasks are of HI -criticality.

In Figure 3 with the UBHL bound, weighted schedulability

remains roughly constant until the proportion of HI -criticality

tasks exceeds 50%. This is because the default Criticality Factor is

2.0, hence when more than 50% of the tasks are HI -criticality, the

increased utilization of HI -criticality tasks in abnormal mode

becomes the dominant factor influencing schedulability. Before

then, the total LO-criticality utilization is the dominant factor and

that does not vary with the Criticality Proportion.

The results of varying the Criticality Factor CF , from 1.0 to 4.0

in steps of 0.2, are shown in Figure 6. Observe that schedulability

according to AMCR, AMC, SMC, and NMC, progressively

decreasesas the Criticality Factor increases, so increasing the

utilization of HI -criticality tasks in abnormal mode. This trend is

not evident with the UBHL bound, as the default Criticality

Proportion of HI -criticality tasks is 0.2, and hence even with

CF = 4.0 the increased utilization of HI -criticality tasks in

abnormal mode is still not the dominant factor influencing system

schedulability, rather the total LO-criticality utilization is the

dominant factor and that does not vary with the Criticality Factor.

Overall, the results for the modified AMCR scheme provide a

useful improvement over their counterparts for the original AMC

scheme, shifting the schedulability guarantees closer to the

hypothetical UBHL upper bound that ignores the effects of the

mode change transition. As expected, both AMCR and AMC

significantly outperform SMC and NMC.

6 CONCLUSIONS

The main contributions of this paper are as follows: (i) The

integration of mixed criticality concepts into the MRSS [30, 31]

multi-core system model that characterizes cross-core contention

and interference via task resource stress and sensitivity. (ii)

Consideration of the different levels of assurance needed in mixed

criticality systems, specifically the need to provide HI -criticality

tasks with robust timing guarantees. (iii) Derivation of

schedulability analysis for four mixed criticality scheduling

schemes (NMC, SMC, AMC, and AMCR), accounting for resource

contention and interference on a partitioned multi-core processor,

providing appropriate timing guarantees for both HI - and

LO-criticality tasks.

The key observations are as follows. Firstly, as expected, the

significant performance advantages that the AMCR and AMC

schemes hold over the simple SMC and NMC schemes are retained

when cross-core contention and interference is included via a

mixed criticality multi-core resource stress and sensitivity model.

Secondly, utilizing more precise context-dependent schedulability

tests to bound the interference on LO-criticality tasks results in

useful performance improvements, while still ensuring that

HI -criticality tasks are provided with robust timing guarantees.

Finally, it is interesting to note that while the AMCR and AMC

schemes have identical performance in terms of schedulability

when cross-core contention is not considered, once such

interference is included, then the AMCR scheme dominates AMC.

ACKNOWLEDGMENTS

This research was funded in part by Innovate UK HICLASS project

(113213) EPSRC Research Data Management: No new primary data

was created during this study.

REFERENCES
[1] Benny Akesson, Mitra Nasri, Geoffrey Nelissen, Sebastian Altmeyer, and Robert I.

Davis. 2020. An Empirical Survey-based Study into Industry Practice in Real-time
Systems. In 41st IEEE Real-Time Systems Symposium, RTSS 2020, Houston, TX, USA,
December 1-4, 2020. IEEE, 3ś11. https://doi.org/10.1109/RTSS49844.2020.00012

[2] Benny Akesson, Mitra Nasri, Geoffrey Nelissen, Sebastian Altmeyer, and Robert I.
Davis. 2021. A comprehensive survey of industry practice in real-time systems.
Real-Time Syst. (2021), 41. https://doi.org/10.1007/s11241-021-09376-1

[3] Sebastian Altmeyer, Robert I. Davis, Leandro Soares Indrusiak, Claire Maiza,
Vincent Nélis, and Jan Reineke. 2015. A generic and compositional framework
for multicore response time analysis. In 23rd International Conference on Real
Time Networks and Systems, RTNS 2015, Lille, France, November 4-6, 2015, Julien
Forget (Ed.). ACM, 129ś138. https://doi.org/10.1145/2834848.2834862

[4] J.H. Anderson, S.K. Baruah, and B.B. Brandenburg. 2009. Multicore Operating-
System Support for Mixed Criticality. In Proc. of theWorkshop on Mixed Criticality:
Roadmap to Evolving UAV Certification, San Francisco.

[5] Björn Andersson, Hyoseung Kim, Dionisio de Niz, Mark H. Klein, Ragunathan
Rajkumar, and John P. Lehoczky. 2018. Schedulability Analysis of Tasks with
Corunner-Dependent Execution Times. ACM Trans. Embed. Comput. Syst. 17, 3
(2018), 71:1ś71:29. https://doi.org/10.1145/3203407

[6] Sedigheh Asyaban and Mehdi Kargahi. 2018. An exact schedulability test for
fixed-priority preemptive mixed-criticality real-time systems. Real Time Syst. 54,
1 (2018), 32ś90. https://doi.org/10.1007/s11241-017-9287-2

[7] Neil C. Audsley. 2001. On priority assignment in fixed priority scheduling. Inf.
Process. Lett. 79, 1 (2001), 39ś44. https://doi.org/10.1016/S0020-0190(00)00165-4

[8] Neil C. Audsley, Alan Burns, Michael Richardson, Kenneth W. Tindell, and
Andrew J. Wellings. 1993. Applying new scheduling theory to static priority pre-
emptive scheduling. Software Engineering Journal 8 (September 1993), 284ś292(8).
Issue 5. https://digital-library.theiet.org/content/journals/10.1049/sej.1993.0034

[9] Joshua Bakita, Shareef Ahmed, Sims Hill Osborne, Stephen Tang, Jingyuan Chen,
F. Donelson Smith, and James H. Anderson. 2021. Simultaneous Multithreading
in Mixed-Criticality Real-Time Systems. In 27th IEEE Real-Time and Embedded
Technology and Applications Symposium, RTAS 2021, Nashville, TN, USA, May
18-21, 2021. IEEE, 278ś291. https://doi.org/10.1109/RTAS52030.2021.00030

[10] Sanjoy Baruah, Alan Burns, and Robert I. Davis. 2013. An Extended Fixed
Priority Scheme for Mixed Criticality Systems. In Workshop on Real-Time Mixed
Criticality Systems (ReTiMics) 2013, 21st August, Taipei, Taiwan. 18ś24. https:
//www-users.cs.york.ac.uk/~robdavis/papers/jitterRTCSA.pdf

[11] Sanjoy K. Baruah and Alan Burns. 2011. Implementing Mixed Criticality Systems
in Ada. In Reliable Software Technologies - Ada-Europe 2011 - 16th Ada-Europe
International Conference on Reliable Software Technologies, Edinburgh, UK, June
20-24, 2011. Proceedings (Lecture Notes in Computer Science, Vol. 6652), Alexander B.
Romanovsky and Tullio Vardanega (Eds.). Springer, 174ś188. https://doi.org/10.
1007/978-3-642-21338-0_13

[12] Sanjoy K. Baruah, Alan Burns, and Robert I. Davis. 2011. Response-Time Analysis
for Mixed Criticality Systems. In Proceedings of the 32nd IEEE Real-Time Systems
Symposium, RTSS 2011, Vienna, Austria, November 29 - December 2, 2011. IEEE
Computer Society, 34ś43. https://doi.org/10.1109/RTSS.2011.12

[13] Sanjoy K. Baruah and Bipasa Chattopadhyay. 2013. Response-time analysis of
mixed criticality systems with pessimistic frequency specification. In 2013 IEEE
19th International Conference on Embedded and Real-Time Computing Systems
and Applications, RTCSA 2013, Taipei, Taiwan, August 19-21, 2013. IEEE Computer
Society, 237ś246. https://doi.org/10.1109/RTCSA.2013.6732224

[14] Andrea Bastoni, Bjorn B. Brandenburg, and James H. Anderson. 2010. Cache-
Related Preemption and Migration Delays: Empirical Approximation and Impact
on Schedulability. In International Workshop on Operating Systems Platforms for
Embedded Real-Time Applications. 33ś44.

[15] Iain Bate, Alan Burns, and Robert I. Davis. 2015. A Bailout Protocol for Mixed
Criticality Systems. In 27th Euromicro Conference on Real-Time Systems, ECRTS
2015, Lund, Sweden, July 8-10, 2015. IEEE Computer Society, 259ś268. https:
//doi.org/10.1109/ECRTS.2015.30

[16] Iain Bate, Alan Burns, and Robert I. Davis. 2017. An Enhanced Bailout Protocol
for Mixed Criticality Embedded Software. IEEE Trans. Software Eng. 43, 4 (2017),
298ś320. https://doi.org/10.1109/TSE.2016.2592907

[17] Iain Bate, Alan Burns, and Robert I. Davis. 2022. Analysis-Runtime Co-design
for Adaptive Mixed Criticality Scheduling. In IEEE Real-Time and Embedded
Technology and Applications Symposium, RTAS 2022, 4-6 May 2022, Milano, Italy,
Heechul Yun (Ed.). IEEE Computer Society, 14 pages.

[18] Alan Burns and Robert I. Davis. 2013. Mixed Criticality on Controller Area
Network. In 25th Euromicro Conference on Real-Time Systems, ECRTS 2013, Paris,

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

RTNS ’22, June 7–8, 2022, Paris, France R. I. Davis and I. Bate

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

France, July 9-12, 2013. IEEE Computer Society, 125ś134. https://doi.org/10.1109/
ECRTS.2013.23

[19] Alan Burns and Robert I. Davis. 2014. Adaptive Mixed Criticality Scheduling
with Deferred Preemption. In Proceedings of the IEEE 35th IEEE Real-Time Systems
Symposium, RTSS 2014, Rome, Italy, December 2-5, 2014. IEEE Computer Society,
21ś30. https://doi.org/10.1109/RTSS.2014.12

[20] Alan Burns and Robert I. Davis. 2018. A Survey of Research into Mixed Criticality
Systems. ACM Comput. Surv. 50, 6 (2018), 82:1ś82:37. https://doi.org/10.1145/
3131347

[21] Alan Burns and Robert I. Davis. 2019. Mixed Criticality Systems: A Review (12th
Edition). Technical Report MCC-1(M), Available at https://www-users.cs.york.ac.
uk/~burns/review.pdf. Department of Computer Science, University of York.

[22] Alan Burns and Robert I. Davis. 2020. Schedulability Analysis for Adaptive Mixed
Criticality Systems with Arbitrary Deadlines and Semi-Clairvoyance. In 41st IEEE
Real-Time Systems Symposium, RTSS 2020, Houston, TX, USA, December 1-4, 2020.
IEEE, 12ś24. https://doi.org/10.1109/RTSS49844.2020.00013

[23] Alan Burns, Robert I. Davis, Sanjoy K. Baruah, and Iain Bate. 2018. Robust
Mixed-Criticality Systems. IEEE Trans. Computers 67, 10 (2018), 1478ś1491.
https://doi.org/10.1109/TC.2018.2831227

[24] Sheng-Wei Cheng, Jian-Jia Chen, Jan Reineke, and Tei-Wei Kuo. 2017. Memory
Bank Partitioning for Fixed-Priority Tasks in a Multi-core System. In 2017 IEEE
Real-Time Systems Symposium, RTSS 2017, Paris, France, December 5-8, 2017. IEEE
Computer Society, 209ś219. https://doi.org/10.1109/RTSS.2017.00027

[25] Micaiah Chisholm, Namhoon Kim, Bryan C. Ward, Nathan Otterness, James H.
Anderson, and F. Donelson Smith. 2016. Reconciling the Tension Between
Hardware Isolation and Data Sharing in Mixed-Criticality, Multicore Systems. In
2016 IEEE Real-Time Systems Symposium, RTSS 2016, Porto, Portugal, November 29
- December 2, 2016. IEEE Computer Society, 57ś68. https://doi.org/10.1109/RTSS.
2016.015

[26] Micaiah Chisholm, Bryan C. Ward, Namhoon Kim, and James H. Anderson. 2015.
Cache Sharing and Isolation Tradeoffs in Multicore Mixed-Criticality Systems.
In 2015 IEEE Real-Time Systems Symposium, RTSS 2015, San Antonio, Texas, USA,
December 1-4, 2015. IEEE Computer Society, 305ś316. https://doi.org/10.1109/
RTSS.2015.36

[27] Dakshina Dasari, Björn Andersson, Vincent Nélis, Stefan M. Petters, Arvind
Easwaran, and Jinkyu Lee. 2011. Response Time Analysis of COTS-Based
Multicores Considering the Contention on the Shared Memory Bus. In IEEE
10th International Conference on Trust, Security and Privacy in Computing and
Communications, TrustCom 2011, Changsha, China, 16-18 November, 2011. IEEE
Computer Society, 1068ś1075. https://doi.org/10.1109/TrustCom.2011.146

[28] Robert I. Davis, Sebastian Altmeyer, and Alan Burns. 2018. Mixed Criticality
Systems with Varying Context Switch Costs. In IEEE Real-Time and Embedded
Technology and Applications Symposium, RTAS 2018, 11-13 April 2018, Porto,
Portugal, Rodolfo Pellizzoni (Ed.). IEEE Computer Society, 140ś151. https:
//doi.org/10.1109/RTAS.2018.00024

[29] Robert I. Davis, Sebastian Altmeyer, Leandro Soares Indrusiak, Claire Maiza,
Vincent Nélis, and Jan Reineke. 2018. An extensible framework for multicore
response time analysis. Real Time Syst. 54, 3 (2018), 607ś661. https://doi.org/10.
1007/s11241-017-9285-4

[30] Robert I. Davis, David Griffin, and Iain Bate. 2021. Schedulability Analysis
for Multi-core Systems Accounting for Resource Stress and Sensitivity. In 33rd
Euromicro Conference on Real-Time Systems, ECRTS 2021, July 5-9, 2021, Virtual
Conference (LIPIcs, Vol. 196), Björn Brandenburg (Ed.). Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 7:1ś7:26.

[31] Robert I. Davis, David Griffin, and Iain Bate. 2022. A Framework for Multi-core
Schedulability Analysis Accounting for Resource Stress and Sensitivity. Real-Time
Syst. (2022), 1ś58. https://doi.org/10.1007/s11241-022-09377-8

[32] Robert I. Davis, A. Zabos, and Alan Burns. 2008. Efficient Exact Schedulability
Tests for Fixed Priority Real-Time Systems. IEEE Trans. Computers 57, 9 (2008),
1261ś1276. https://doi.org/10.1109/TC.2008.66

[33] Paul Emberson, Roger Stafford, and Robert I. Davis. 2010. Techniques For The
Synthesis Of Multiprocessor Tasksets. In International Workshop on Analysis
Tools and Methodologies for Embedded and Real-time Systems (WATERS). 6ś11.
http://retis.sssup.it/waters2010/waters2010.pdf

[34] Rolf Ernst and Marco Di Natale. 2016. Mixed Criticality Systems - A History
of Misconceptions? IEEE Des. Test 33, 5 (2016), 65ś74. https://doi.org/10.1109/
MDAT.2016.2594790

[35] Alexandre Esper, Geoffrey Nelissen, Vincent Nélis, and Eduardo Tovar. 2015.
How realistic is the mixed-criticality real-time system model?. In Proceedings
of the 23rd International Conference on Real Time Networks and Systems, RTNS
2015, Lille, France, November 4-6, 2015, Julien Forget (Ed.). ACM, 139ś148. https:
//doi.org/10.1145/2834848.2834869

[36] Mikel Fernández, Roberto Gioiosa, Eduardo Quiñones, Luca Fossati, Marco
Zulianello, and Francisco J. Cazorla. 2012. Assessing the suitability of the NGMP
multi-core processor in the space domain. In Proceedings of the 12th International
Conference on Embedded Software, EMSOFT 2012, part of the Eighth Embedded
Systems Week, ESWeek 2012, Tampere, Finland, October 7-12, 2012, Ahmed Jerraya,
Luca P. Carloni, Florence Maraninchi, and John Regehr (Eds.). ACM, 175ś184.

https://doi.org/10.1145/2380356.2380389
[37] Tom Fleming and Alan Burns. 2013. Extending Mixed Criticality Scheduling. In

Workshop on Mixed Criticality Systems (WMC). 7ś12.
[38] Oliver Gettings, Sophie Quinton, and Robert I. Davis. 2015. Mixed criticality

systems with weakly-hard constraints. In Proceedings of the 23rd International
Conference on Real Time Networks and Systems, RTNS 2015, Lille, France, Nov. 4-6,
2015, Julien Forget (Ed.). ACM, 237ś246. https://doi.org/10.1145/2834848.2834850

[39] Georgia Giannopoulou, Kai Lampka, Nikolay Stoimenov, and Lothar Thiele.
2012. Timed model checking with abstractions: towards worst-case response
time analysis in resource-sharing manycore systems. In Proceedings of the 12th
International Conference on Embedded Software, EMSOFT 2012, part of the Eighth
Embedded Systems Week, ESWeek 2012, Tampere, Finland, October 7-12, 2012,
Ahmed Jerraya, Luca P. Carloni, Florence Maraninchi, and John Regehr (Eds.).
ACM, 63ś72. https://doi.org/10.1145/2380356.2380372

[40] David Griffin, Iain Bate, and Robert I. Davis. 2020. Dirichlet-Rescale (DRS)
algorithm software: dgdguk/drs: v1.0.0 https://doi.org/10.5281/zenodo.4118059.

[41] David Griffin, Iain Bate, and Robert I. Davis. 2020. Generating Utilization Vectors
for the Systematic Evaluation of Schedulability Tests. In 41st IEEE Real-Time
Systems Symposium, RTSS 2020, Houston, TX, USA, December 1-4, 2020. IEEE,
76ś88. https://doi.org/10.1109/RTSS49844.2020.00018

[42] Jonathan L. Herman, Christopher J. Kenna, Malcolm S. Mollison, James H.
Anderson, and Daniel M. Johnson. 2012. RTOS Support for Multicore Mixed-
Criticality Systems. In 2012 IEEE 18th Real Time and Embedded Technology and
Applications Symposium, Beijing, China, April 16-19, 2012, Marco Di Natale (Ed.).
IEEE Computer Society, 197ś208. https://doi.org/10.1109/RTAS.2012.24

[43] Huang-MingHuang, Christopher D. Gill, and Chenyang Lu. 2012. Implementation
and Evaluation of Mixed-Criticality Scheduling Approaches for Periodic Tasks. In
2012 IEEE 18th Real Time and Embedded Technology and Applications Symposium,
Beijing, China, April 16-19, 2012, Marco Di Natale (Ed.). IEEE Computer Society,
23ś32. https://doi.org/10.1109/RTAS.2012.16

[44] Dan Iorga, Tyler Sorensen, JohnWickerson, and Alastair F. Donaldson. 2020. Slow
and Steady: Measuring and Tuning Multicore Interference. In IEEE Real-Time and
Embedded Technology and Applications Symposium, RTAS 2020, Sydney, Australia,
April 21-24, 2020. IEEE, 200ś212. https://doi.org/10.1109/RTAS48715.2020.000-6

[45] Mathai Joseph and Paritosh K. Pandya. 1986. Finding Response Times in a Real-
Time System. Comput. J. 29, 5 (1986), 390ś395. https://doi.org/10.1093/comjnl/
29.5.390

[46] Hyoseung Kim, Dionisio de Niz, Björn Andersson, Mark H. Klein, Onur Mutlu,
and Ragunathan Rajkumar. 2016. Bounding and reducing memory interference
in COTS-based multi-core systems. Real Time Syst. 52, 3 (2016), 356ś395. https:
//doi.org/10.1007/s11241-016-9248-1

[47] Namhoon Kim, Bryan C. Ward, Micaiah Chisholm, James H. Anderson, and
F. Donelson Smith. 2017. Attacking the one-out-of-m multicore problem by
combining hardware management with mixed-criticality provisioning. Real Time
Syst. 53, 5 (2017), 709ś759. https://doi.org/10.1007/s11241-017-9272-9

[48] Angeliki Kritikakou, Claire Pagetti, Olivier Baldellon, Matthieu Roy, and Christine
Rochange. 2014. Run-Time Control to Increase Task Parallelism In Mixed-Critical
Systems. In 26th Euromicro Conference on Real-Time Systems, ECRTS 2014, Madrid,
Spain, July 8-11, 2014. IEEE Computer Society, 119ś128. https://doi.org/10.1109/
ECRTS.2014.14

[49] Kai Lampka, Georgia Giannopoulou, Rodolfo Pellizzoni, Zheng Wu, and Nikolay
Stoimenov. 2014. A formal approach to the WCRT analysis of multicore systems
with memory contention under phase-structured task sets. Real Time Syst. 50,
5-6 (2014), 736ś773. https://doi.org/10.1007/s11241-014-9211-y

[50] Stephen Law and Iain Bate. 2016. Achieving Appropriate Test Coverage for
Reliable Measurement-Based Timing Analysis. In 28th Euromicro Conference on
Real-Time Systems, ECRTS 2016, Toulouse, France, July 5-8, 2016. IEEE Computer
Society, 189ś199. https://doi.org/10.1109/ECRTS.2016.21

[51] Stephen Law, Iain Bate, and Benjamin Lesage. 2020. Justifying the Service
Provided to Low Criticality Tasks in a Mixed Criticality System. In 28th
International Conference on Real Time Networks and Systems, RTNS 2020, Paris,
France, June 10, 2020, Liliana Cucu-Grosjean, RobertoMedina, Sebastian Altmeyer,
and Jean-Luc Scharbarg (Eds.). ACM, 100ś110. https://doi.org/10.1145/3394810.
3394814

[52] Joseph Y.-T. Leung and Jennifer Whitehead. 1982. On the complexity of fixed-
priority scheduling of periodic, real-time tasks. Perform. Evaluation 2, 4 (1982),
237ś250. https://doi.org/10.1016/0166-5316(82)90024-4

[53] Claire Maiza, Hamza Rihani, Juan Maria Rivas, Joël Goossens, Sebastian Altmeyer,
and Robert I. Davis. 2019. A Survey of Timing Verification Techniques for
Multi-Core Real-Time Systems. ACM Comput. Surv. 52, 3 (2019), 56:1ś56:38.
https://doi.org/10.1145/3323212

[54] Dorin Maxim, Robert I. Davis, Liliana Cucu-Grosjean, and Arvind Easwaran.
2017. Probabilistic analysis for mixed criticality systems using fixed priority
preemptive scheduling. In Proceedings of the 25th International Conference on
Real-Time Networks and Systems, RTNS 2017, Grenoble, France, October 04 - 06,
2017, Enrico Bini and Claire Pagetti (Eds.). ACM, 237ś246. https://doi.org/10.
1145/3139258.3139276

12

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Mixed Criticality on Multi-cores Accounting for Resource Stress and Resource Sensitivity RTNS ’22, June 7–8, 2022, Paris, France

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

[55] Malcolm S. Mollison, Jeremy P. Erickson, James H. Anderson, Sanjoy K. Baruah,
and John A. Scoredos. 2010. Mixed-Criticality Real-Time Scheduling for Multicore
Systems. In 10th IEEE International Conference on Computer and Information
Technology, CIT 2010, Bradford, West Yorkshire, UK, June 29-July 1, 2010. IEEE
Computer Society, 1864ś1871. https://doi.org/10.1109/CIT.2010.320

[56] Jan Nowotsch and Michael Paulitsch. 2012. Leveraging Multi-core Computing
Architectures in Avionics. In Ninth European Dependable Computing Conference,
Sibiu, Romania, May 8-11, 2012, Cristian Constantinescu and Miguel P. Correia
(Eds.). IEEE Computer Society, 132ś143. https://doi.org/10.1109/EDCC.2012.27

[57] Marco Paolieri, Eduardo Quiñones, Francisco J. Cazorla, Robert I. Davis, and
Mateo Valero. 2011. IAˆ3: An Interference Aware Allocation Algorithm for
Multicore Hard Real-Time Systems. In 17th IEEE Real-Time and Embedded
Technology and Applications Symposium, RTAS 2011, Chicago, USA, 11-14 April
2011. IEEE Computer Society, 280ś290. https://doi.org/10.1109/RTAS.2011.34

[58] Ivan Pavic and Hrvoje Dzapo. 2020. Commentary to: An exact schedulability test
for fixed-priority preemptive mixed-criticality real-time systems. Real Time Syst.
56, 1 (2020), 112ś119. https://doi.org/10.1007/s11241-020-09345-0

[59] Rodolfo Pellizzoni, Andreas Schranzhofer, Jian-Jia Chen, Marco Caccamo, and
Lothar Thiele. 2010. Worst case delay analysis for memory interference in
multicore systems. In Design, Automation and Test in Europe, DATE 2010, Dresden,
Germany, March 8-12, 2010, Giovanni DeMicheli, Bashir M. Al-Hashimi,Wolfgang
Müller, and Enrico Macii (Eds.). IEEE Computer Society, 741ś746. https://doi.
org/10.1109/DATE.2010.5456952

[60] Petar Radojkovic, Sylvain Girbal, Arnaud Grasset, Eduardo Quiñones, Sami Yehia,
and Francisco J. Cazorla. 2012. On the evaluation of the impact of shared resources
in multithreaded COTS processors in time-critical environments. ACM Trans.
Archit. Code Optim. 8, 4 (2012), 34:1ś34:25. https://doi.org/10.1145/2086696.
2086713

[61] Rapita Systems. 2019. Multicore Timing Analysis for DO-178C. https://www.
rapitasystems.com/downloads/multicore-timing-analysis-do-178c.

[62] Hamza Rihani, Matthieu Moy, Claire Maiza, Robert I. Davis, and Sebastian
Altmeyer. 2016. Response Time Analysis of Synchronous Data Flow Programs
on a Many-Core Processor. In Proceedings of the 24th International Conference on
Real-Time Networks and Systems, RTNS 2016, Brest, France, October 19-21, 2016,
Alain Plantec, Frank Singhoff, Sébastien Faucou, and Luís Miguel Pinho (Eds.).
ACM, 67ś76. https://doi.org/10.1145/2997465.2997472

[63] Simon Schliecker and Rolf Ernst. 2010. Real-time performance analysis of
multiprocessor systems with shared memory. ACM Trans. Embed. Comput. Syst.
10, 2 (2010), 22:1ś22:27. https://doi.org/10.1145/1880050.1880058

[64] Andreas Schranzhofer, Rodolfo Pellizzoni, Jian-Jia Chen, Lothar Thiele, andMarco
Caccamo. 2010. Worst-case response time analysis of resource access models
in multi-core systems. In Proceedings of the 47th Design Automation Conference,
DAC 2010, Anaheim, California, USA, July 13-18, 2010, Sachin S. Sapatnekar (Ed.).
ACM, 332ś337. https://doi.org/10.1145/1837274.1837359

[65] Steve Vestal. 2007. Preemptive Scheduling of Multi-criticality Systems with
Varying Degrees of Execution Time Assurance. In Proceedings of the 28th IEEE
Real-Time Systems Symposium (RTSS 2007), 3-6 December 2007, Tucson, Arizona,
USA. IEEE Computer Society, 239ś243. https://doi.org/10.1109/RTSS.2007.47

[66] Heechul Yun, Rodolfo Pellizzoni, and Prathap Kumar Valsan. 2015. Parallelism-
Aware Memory Interference Delay Analysis for COTS Multicore Systems. In 27th
Euromicro Conference on Real-Time Systems, ECRTS 2015, Lund, Sweden, July 8-10,
2015. IEEE Computer Society, 184ś195. https://doi.org/10.1109/ECRTS.2015.24

[67] Heechul Yun, Gang Yao, Rodolfo Pellizzoni, Marco Caccamo, and Lui Sha. 2012.
Memory Access Control in Multiprocessor for Real-Time Systems with Mixed
Criticality. In 24th Euromicro Conference on Real-Time Systems, ECRTS 2012, Pisa,
Italy, July 11-13, 2012, Robert Davis (Ed.). IEEE Computer Society, 299ś308. https:
//doi.org/10.1109/ECRTS.2012.32

[68] Qingling Zhao, Zonghua Gu, and Haibo Zeng. 2013. PT-AMC: integrating
preemption thresholds into mixed-criticality scheduling. In Design, Automation
and Test in Europe, DATE 13, Grenoble, France, March 18-22, 2013, Enrico Macii
(Ed.). EDA Consortium San Jose, CA, USA / ACM DL, 141ś146. https://doi.org/
10.7873/DATE.2013.042

[69] Qingling Zhao, Zonghua Gu, Haibo Zeng, and Nenggan Zheng. 2018.
Schedulability analysis and stack size minimization with preemption thresholds
and mixed-criticality scheduling. J. Syst. Archit. 83 (2018), 57ś74. https:
//doi.org/10.1016/j.sysarc.2017.03.007

[70] Qingling Zhao, Mengfei Qu, Bo Huang, Zhe Jiang, and Haibo Zeng. 2022.
Schedulability analysis and stack size minimization for adaptive mixed criticality
scheduling with semi-Clairvoyance and preemption thresholds. J. Syst. Archit.
124 (2022), 102383. https://doi.org/10.1016/j.sysarc.2021.102383

[71] Yecheng Zhao and Haibo Zeng. 2017. An efficient schedulability analysis for
optimizing systems with adaptive mixed-criticality scheduling. Real Time Syst.
53, 4 (2017), 467ś525. https://doi.org/10.1007/s11241-017-9267-6

13

	Abstract
	1 Introduction
	2 Related Work
	3 System Model
	4 Scheduling Schemes and Analyses
	4.1 No Mixed Criticality (NMC)
	4.2 Static Mixed Criticality (SMC)
	4.3 Original Adaptive Mixed Criticality (AMC)
	4.4 Modified Adaptive Mixed Criticality (AMCR)
	4.5 Dominance Relations
	4.6 Complexity

	5 Evaluation
	5.1 Task Set Parameter Generation
	5.2 Experiments
	5.3 Results

	6 Conclusions
	Acknowledgments
	References

