
This is a repository copy of Beneficial effects of antisymmetric nonlinear damping with 
application to energy harvesting and vibration isolation under general inputs.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/187930/

Version: Published Version

Article:

Zhu, Y.-P. and Lang, Z.Q. (2022) Beneficial effects of antisymmetric nonlinear damping 
with application to energy harvesting and vibration isolation under general inputs. 
Nonlinear Dynamics, 108 (4). pp. 2917-2933. ISSN 0924-090X 

https://doi.org/10.1007/s11071-022-07444-0

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



ORIGINAL PAPER

Beneficial effects of antisymmetric nonlinear damping

with application to energy harvesting and vibration isolation

under general inputs

Yun-Peng Zhu . Z. Q. Lang

Received: 4 September 2021 / Accepted: 5 April 2022 / Published online: 28 April 2022

� The Author(s) 2022

Abstract Beneficial effects of nonlinear damping on

energy harvesting and vibration isolation under har-

monic inputs have been investigated showing that the

introduction of nonlinear damping can increase the

harvested energy and reduce the vibration over both

the resonant and higher frequency ranges. However,

the scenario becomes more complicated when the

loading inputs are of more general form such as multi-

tone and random inputs, which can produce system

responses that are induced by an interaction of system

input components of different frequencies. In the

present study, by introducing the concept of power

transmissibility, the study of the beneficial effects of

nonlinear damping is extended to the systems subject

to general inputs including both multi-tone and

random inputs. A rigorous analysis is conducted based

on single degree of freedom systems subject to general

inputs. The analysis reveals the conditions under

which the antisymmetric nonlinear damping is bene-

ficial for improving energy harvester performance and

reducing of the power of system output in vibration

isolation. Moreover, the beneficial effects are demon-

strated by two case studies.

Keywords Energy harvesting � Vibration isolation �
Power transmissibility � Antisymmetric nonlinear

damping � Frequency analysis

1 Introduction

Additional nonlinear damping has shown many

advantages in vibration suppression and exploitation

[1–5]. For example, Magneto-rheological (MR) non-

linear damping has been widely applied in vibration

isolations for engineering structures such as buildings

[1] and vehicles [2]. Recently, nonlinear damping has

also been proven to be beneficial for vibrational

energy harvesting [3, 5]. These have shown that

nonlinear damping can play important roles and have

great potential in solving different engineering

problems.

The antisymmetric nonlinear damping is a type of

damping where the damping force is in proportion to

the velocity raised to odd orders [6]. The study of

antisymmetric nonlinear damping is a significant area

of nonlinear damping-related research as in engineer-

ing practice, a large class of damping nonlinearities

can be represented by an antisymmetric function of

velocity [7]. The exploitation of antisymmetric non-

linear damping for either vibration reduction or energy

harvesting has been studied by many researchers

[2, 8–12]. For example, it has been shown that the
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force transmissibilities of vibration isolation systems

are reduced over the resonant frequencies, while

unchanged over higher frequencies by an introduction

of antisymmetric nonlinear damping [8]. This property

has been applied to solve many engineering problems

such as building isolation in long period seismic

movements [9, 11] and vibration suppression of rotor

bearing systems [12]. Co et al. [11] applied a semi-

active implementation of the cubic damping-based

building isolation systems to achieve better isolation

performance for multiple story buildings subject to

long period seismic movements. Yan et al. [12]

indicate that antisymmetric nonlinear damping sus-

pension can benefit high-speed rotor systems achiev-

ing a desired isolation performance with more

stable response than the linear damping. Recently,

researchers have also explored the application of

antisymmetric nonlinear damping in energy harvest-

ing systems [3–5], demonstrating that, under certain

conditions, an antisymmetric nonlinear damping-

based energy harvester can harvest more energy than

a linear energy harvester system. Hendijanizadeh et al.

[5] developed an energy harvesting device for small

boats and yachts where the dynamic range of the

energy harvester was expanded using variable load

resistance mechanism that can produce nonlinear

damping characters.

However, most current studies on the application of

antisymmetric nonlinear damping on vibration isola-

tion and energy harvesting only consider harmonic

loadings where system behaviors involve no interac-

tions between input components at different frequen-

cies. Where loading inputs are multi-tone, band-

limited or random signals [13, 14], the system

dynamics are often more complicated. Some works

have been carried out to discuss these problems

[13–18] for specific cases. For example, in [13–16],

the advantages of applying additional antisymmetric

nonlinear damping in vehicle suspension and building

isolation systems under random loading conditions

had been revealed. However, these advantages were

also claimed to be inconspicuous by other studies

[17, 18]. Basically, different conclusions can be

reached for different application scenarios where

specific loading conditions are different. In addition,

nonlinear energy harvesters have been studied by

considering Gaussian white noise excitations for

building base isolation and vehicle suspension systems

[19, 20]. It has been shown that an introduction of

nonlinear stiffness can expand the working range of

energy harvesters [21]. However, there is still no result

showing whether an additional antisymmetric nonlin-

ear damping can achieve a better energy harvesting

performance than a linear damping when the energy

harvesting system is subject to a general loading input.

There is also a lack of rigorous analyses that can reach

a definite conclusion about when an antisymmetric

nonlinear damping can be beneficial to vibration

isolations and energy harvesting when associated

systems are subject to loadings more complicated

than harmonics.

In the present study, the concept of power trans-

missibility is introduced to address the difficulties

associated with dealing with general loading inputs.

The effects of nonlinear damping and the magnitude of

loading input on the output power of nonlinearly

damped SDOF systems are studied using the output

frequency response function (OFRF) [22–24]. The

results reveal, for the first time, that with the increase

in either antisymmetric nonlinear damping or input

magnitude of a nonlinearly damped SDOF system, the

power transmissibility decreases if the power of the

system input is concentrated over the resonant

frequency regions, while unchanged if the power of

the system input is located around higher frequencies.

These conclusions are significant for the analysis and

design of both SDOF nonlinear vibration isolators and

SDOF energy harvesters when the system is subject to

a general input loading. Two case studies are used to

demonstrate the advantages with the application of

antisymmetric nonlinear damping to energy harvest-

ing and vibration isolation, respectively.

2 Force and power transmissibility of SDOF

systems with antisymmetric nonlinear damping

2.1 SDOF system with antisymmetric nonlinear

damping

The SDOF dynamic systems with an antisymmetric

damping are shown in Fig. 1 and can be represented by

m€y tð Þ þ fc tð Þ þ ky tð Þ ¼ u tð Þ ð1Þ

where t is time; u tð Þ represents the force input in

Fig. 1a and m€z tð Þ in Fig. 1b with z tð Þ is the displace-
ment of ground movement; y tð Þ is the relative

displacement output with respect to the ground; m
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and k are the mass and linear stiffness of the system,

respectively; fout tð Þ is the force transmitted to the

ground in Fig. 1a and represents the force acted on the

mass in Fig. 1b; and fc tð Þ is the damping force given

by

fc tð Þ ¼ c1 _y tð Þ þ
X

Q

q¼1

c2qþ1 _y tð Þ2qþ1 ð2Þ

with c1 and c2qþ1, q ¼ 1; . . .; Q representing the

linear and antisymmetric nonlinear damping coeffi-

cients, respectively.

In practice, both linear and antisymmetric nonlinear

damping forces can be realized using MR damper

[10]- or electromagnetic damper [20]-based active or

semi-active control approaches.

The force and power transmissibility of the SDOF

system (1) will be introduced in the following.

2.2 Force transmissibility

The force transmissibility of a nonlinear system is

defined as the ratio between the spectrum of the system

force output and the spectrum of the force input [25]

given by

TF xð Þ ¼ Fout jxð Þ
U jxð Þ

�

�

�

�

�

�

�

�

ð3Þ

where x is the angular frequency, and Fout jxð Þ and

U jxð Þ are the spectra of the force output fout tð Þ and the
force input u tð Þ, respectively.

It has been found that, under single-tone harmonic

inputs, an increase in antisymmetric nonlinear damp-

ing or input magnitude can reduce the force transmis-

sibility over the resonant frequency range without

detrimental effects to the force transmissibility over

the non-resonant frequency ranges [3, 25].

For example, for nonlinear system

€y tð Þ þ c1 _y tð Þ þ c3 _y tð Þ3þc5 _y tð Þ5þ1� 104y tð Þ ¼ u tð Þ
ð4Þ

where c1 is the linear damping coefficient, and c3 and

c5 are the coefficients of the nonlinear damping, the

force output is

fout tð Þ ¼ c1 _y tð Þ þ c3 _y tð Þ3þc5 _y tð Þ5þ1� 104y tð Þ ð5Þ

When system (4) is subject to a harmonic input

u tð Þ ¼ A cos xFtð Þ where A and xF are the input

magnitude and frequency, respectively, the force

transmissibility is

TF xFð Þ ¼ Fout jxFð Þ
A

�

�

�

�

�

�

�

�

ð6Þ

Under different values of the system linear and

nonlinear damping coefficients and input magnitudes

as given in Table 1, the force transmissibility over the

frequency range of xF 2 0; 300½ � rad=s is shown in

Fig. 2.

Basically, larger force transmissibility means more

energy can be harvested [5]. It can be seen in Fig. 2a

that under a larger input amplitude of A ¼ 5, the linear

and nonlinear energy harvesting systems have similar

force transmissibility around resonance as shown in

Cases 2 and 3. But, under a smaller input amplitude of

A ¼ 1, the nonlinear energy harvesting system has a

larger force transmissibility than the linear system as

shown in Cases 4 and 5. The results, therefore, indicate

that overall the nonlinear energy harvester can harvest

more energy than the linear one. This conclusion has

been reached in [3] and [5]. On the other hand, the

results illustrated for Cases 1, 2 and 3 in Fig. 2b clearly

demonstrate the significant beneficial effect of non-

linear damping for vibration isolation, which has been

revealed in [8, 25].

Fig. 1 SDOF systems with antisymmetric nonlinear damping

Table 1 Different linear and nonlinear damping and input

magnitude cases under study

Cases Parameters

Case 1 c1 ¼ 10; c3 ¼ c5 ¼ 0; A ¼ 5

Case 2 c1 ¼ 40; c3 ¼ c5 ¼ 0; A ¼ 5

Case 3 c1 ¼ 10; c3 ¼ 2� 103; c5 ¼ 2� 105;A ¼ 5

Case 4 c1 ¼ 40; c3 ¼ c5 ¼ 0; A ¼ 1

Case 5 c1 ¼ 10; c3 ¼ 2� 103; c5 ¼ 2� 105;A ¼ 1
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However, when a system is subject to a general

loading input such as multiple and random loadings,

the above results cannot be directly applied. This is

because under general inputs, the system output forces

often contain the components covering a range of

frequencies which are dependent on the interaction of

the input components of different frequencies and,

therefore, cannot be separately investigated. But it is

expected that if the input loadings only contain

components over either the resonant frequency range

or the non-resonant frequency ranges, a nonlinear

damping should also be beneficial for both vibration

isolation system and energy harvesting just as in the

case where the system is subject to harmonic loadings.

In order to study and confirm these expectations,

the concept of power transmissibility will be first

introduced.

2.3 The power transmissibility

The energy of signal x tð Þ can be represented using the
Parseval theorem as [26]

Px ¼
Z þ1

�1
x tð Þj j2dt ¼

Z þ1

�1
X jxð Þj j2 dx

2p

¼ 2

Z þ1

0

X jxð Þj j2 dx
2p

ð7Þ

where X jxð Þ is the spectrum of x tð Þ.
In order to study the effects of antisymmetric

nonlinear damping under general inputs, the spectra of

the input and output signals over three different ranges

of frequencies will be taken into account separately.

The three ranges are

IL � 0;

ffiffiffi

2
p

2
xr

� �

; IR �
ffiffiffi

2
p

2
xr;

ffiffiffi

2
p

xr

� �

;

IH �
ffiffiffi

2
p

xr; þ1
� i

ð8Þ

where xr is the resonant frequency of the SDOF

system under study and IL, IR and IH represent the low-

frequency, resonant frequency and high-frequency

ranges, respectively. The high-frequency range IH is

defined by the isolation range of SDOF systems [4],

while the resonant frequency range is defined sym-

metric to the resonant frequency xr. In addition,

denote

Pu; LH ¼ 2
R

ffiffi

2
p

xr
2

0
U jxð Þj j2 dx

2p
þ
Z þ1

ffiffi

2
p

xr

U jxð Þj j2 dx
2p

� �

Pu; R ¼ 2
R

ffiffi

2
p

xr
ffiffi

2
p

xr
2

U jxð Þj j2 dx
2p

Pfout; LH ¼ 2
R

ffiffi

2
p

xr
2

0
Fout jxð Þj j2 dx

2p
þ
Z þ1

ffiffi

2
p

xr

Fout jxð Þj j2 dx
2p

� �

Pfout; R ¼ 2
R

ffiffi

2
p

xr
ffiffi

2
p

xr
2

Fout jxð Þj j2 dx
2p

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

ð9Þ

are input and output power over non-resonant fre-

quencies (subscript ‘‘LH’’) and resonant frequencies

(subscript ‘‘R’’), and define the input power ratio

!in ¼
Pu; LH

Pu; R þ Pu; LH
2 0; 1½ � ð10Þ

and the output power ratio

!out¼
Pfout; LH

Pfout; R þ Pfout; LH
2 0; 1½ � ð11Þ

to represent the percentage of power over non-

resonant frequencies in the input and output signal,

respectively.

Then, the power transmissibility of system (1) in

terms of !in can be defined as

TP !inð Þ ¼ Pfout !inð Þ
Pu !inð Þ ¼

Rþ1
0

Fout jxð Þj j2dx
Rþ1
0

U jxð Þj j2dx
ð12Þ

where Pfout !inð Þ and Pu !inð Þ represent the energy of

the system output fout tð Þ and input u tð Þ in terms of !in,

respectively.

In the following, the effect of antisymmetric

nonlinear damping on the power transmissibility of

Fig. 2 The force transmissibilities of different cases
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SDOF nonlinear systems subject to general inputs will

be analyzed.

3 Beneficial effects of antisymmetric nonlinear

damping on SDOF systems under general inputs

3.1 The frequency domain representation

The output response of nonlinear systems asymptot-

ically stable around zero equilibrium can be repre-

sented by a Volterra series as [27]:

y tð Þ ¼
X

N

n¼1

Z þ1

�1
� � �
Z þ1

�1
hn s1; . . .; snð Þ

Y

n

i¼1

u t � sið Þdsi

ð13Þ

where N is the maximum truncation order of the

Volterra series, and hn s1; . . .; snð Þ is the nth-order

Volterra kernel.

In the frequency domain, the system output spec-

trum Y jxð Þ can be represented as [27]

Y jxð Þ ¼
X

N

n¼1

1
ffiffiffi

n
p

2pð Þn�1

Z

x1þ���þxn¼x

Hn x1; . . .;xnð Þ

�
Y

n

i¼1

U jxið Þdrx

ð14Þ

where
R

x1þ���þxn¼x
:½ �drx denotes the integration over

the hyperplane x1 þ � � � þ xn ¼ x with drx repre-

senting an infinitely small element on the hyperplane,

x1; � � � ;xn are the frequency variables, and

Hn x1; . . .;xnð Þ ¼
Z þ1

�1
� � �
Z þ1

�1
hn s1; . . .; snð Þ

� exp �j x1s1 þ � � � þ xnsnð Þ½ �ds1 � � � dsn
ð15Þ

is the nth-order generalized frequency response func-

tion (GFRF) of the system, which can be determined

from the system’s differential equation model using a

recursive algorithm [28].

From (14), the system output spectrum Y jxð Þ can
be represented by a polynomial function of the system

parameters which define the system nonlinearity in the

differential equation model of the system, known as

the output frequency response function (OFRF) [22].

For nonlinear system (1) with an antisymmetric

nonlinear damping, the OFRF representation of the

system output spectrum Fout jxð Þ is given in Lemma 1.

Lemma 1: The OFRF representation of the output

spectrum of system (1) can be written as.

Fout jxð Þ ¼ F1 jxð Þ þ
X

N�1ð Þ=2b c

v¼1

F2vþ1 jxð Þ ð16Þ

where :b c denote to take the integer,

F1 jxð Þ ¼ 1� mx2L xð Þ½ �U jxð Þ v ¼ 0

F2vþ1 jxð Þ ¼
X

j1;���;jQð Þ2J 2vþ1ð Þ

U
j1;���;jQð Þ
2vþ1 jxð Þ

� c
j1
3 � � � cjQ2Qþ1

v� 1

8

>

>

>

<

>

>

>

:

ð17Þ

U
j1;...;jQð Þ
2vþ1 jxð Þ¼ mx2

ffiffiffiffiffiffiffiffiffiffiffiffi

2vþ1
p

2pð Þ2v

�
Z

x1þ���þx2vþ1¼x

L x1; . . .;x2vþ1ð Þ

�
Y

2vþ1

i¼1

L xið Þ �jxið ÞU jxið Þ

�

X

v

z¼1

Y

z

i¼1

jx
zð Þ
li 1ð Þþ���þ jx

zð Þ
li jvð Þ

L�1 x
zð Þ
li 1ð Þ; . . .;x

zð Þ
li jvð Þ

� 	

2

6

6

6

4

3

7

7

7

5

drx

ð18Þ

L x1; . . .;x2vþ1ð Þ ¼ � m jx1 þ � � � þ jx2vþ1ð Þ2

þc jx1 þ � � � þ jx2vþ1ð Þ þ k

" #�1

ð19Þ

and J 2vþ1ð Þ is a set of Q-dimensional nonnegative

integer vectors containing the exponents of monomi-

als c
j1
3 � � � cjQ2Qþ1; v and z in (18) are the integers

dependent on v, and

x
zð Þ
li jvð Þ 2 x1; . . .;x2vþ1f g; jv ¼ 1; 3; . . .; 2vþ 1:

Proof of Lemma 1 See details in [6, 25].

Based on the OFRF representation (16), the power

transmissibility of system (1) will be analyzed next.
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3.2 Effects of antisymmetric nonlinear damping

on SDOF system power transmissibility

First, consider the power transmissibility TP !inð Þ of

system (1) with an antisymmetric nonlinear damping

in the case of !in � 0. Denote the input frequency

range of the system as Win, and assume the output

response over the frequency range produced by

higher-order system nonlinearities due to the effect

of intermodulation which are negligible [25, 29]. In

this case, an important property of the power trans-

missibility TP !inð Þ can be summarized in Proposition

1.

Proposition 1 Consider system (1) subject to input

u tð Þ ¼ au tð Þ where a[ 0 and u tð Þ is a given baseline

input. If !in � 0, then (i) Win � 	IR, (ii) !out � 0,

and (iii) there exists a c2qþ1[ 0; q ¼ 1; . . .;Q such

that when 0\c2qþ1\c2qþ1,

oTP !inð Þ
oc2qþ1

\0 and
oTP !inð Þ

oa
\0 ð20Þ

Proof of Proposition 1 See Appendix A.

Proposition 1 shows that if the input of system (1)

only contains energy over the resonant frequency

range, the power transmissibility of the system

decreases when either a coefficient of the antisym-

metric nonlinear damping or the magnitude of the

system input increases.

On the other hand, consider the power transmissi-

bility TP !inð Þ of system (1) in the case of !in � 1,

properties can be revealed via studying the boundary

of the system power transmissibility in Proposition 2.

Proposition 2 If !in � 1, then (i)Win � 	 IL[ð IHÞ,
(ii) !out � 1, and (iii).

TP !inð Þ
 TP !inð Þ �
R

Win
F
2

1dx

pPu !inð Þ ð21Þ

where TP !inð Þ is independent from either the

nonlinear damping parameters or the input magnitude

a, and F1 is the boundary of the linear damping force

F1 jxð Þ.

Proof of Proposition 2 See Appendix B.

Proposition 2 shows that when the input of system

(1) only contains energy over the non-resonant

frequency range, the power transmissibility of the

system will be bounded by the same boundary on that

of the corresponding linear system.

Propositions 1 and 2 imply that when the input of

system (1) only contains energy over the system

resonant frequency range, the power transmissibility

decreases when either the value of the antisymmetric

nonlinear damping coefficients or the input magnitude

increases. However, when the input contains energy

outside the system resonant frequency range, the

power transmissibility does not vary with either the

nonlinear damping parameters or the amplitude of the

input. In the following, an example will be used to

illustrate the implication of the conclusions of Propo-

sitions 1 and 2.

3.3 An example

In the following, system (4) is used as an example to

demonstrate the effects of antisymmetric nonlinear

damping on the power transmissibility of the SDOF

nonlinear systems represented by Eq. (1).

The resonant frequency of system (4) is xr ¼
100 rad=s, and according to (8), the three frequency

ranges of IL; IR and IH are given by

IL � 0; 70:7½ Þrad=s; IR � 70:7; 141:4½ �rad=s; IH
� 141:4; þ1ð �rad=s

ð22Þ

Consider a band-limited input

u tð Þ ¼ au tð Þ ð23Þ

where

u tð Þ ¼ A0

p

sin xst þ 70ð Þ t � t0ð Þ½ � � sin xst t � t0ð Þ½ �
t � t0

ð24Þ

with t 2 0; 2t0½ �, t0 ¼ 3s, xst 2 0; 210½ � rad=s,
A0 ¼0:5 N and xst;xst þ 70½ � being the frequency

range of the band-limited input.

The total power of u tð Þ is

Pu ¼
Z

Win

U jxð Þ2dx ¼ xst þ 70� xstð ÞA2
0

¼ 17:5 W ð25Þ

and u tð Þ under different xst 2 0; 210½ � rad=s is shown
in Fig. 3.

The power ratio !in of u tð Þ is obviously a function

of xst, which can be obtained as
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!in ¼
A2
0 xst � 70:7j j

Pu

xst 
 141:4 rad=s

1 Others

8

<

:

ð26Þ

Table 2 shows the different values of c1; c3; c5 and
a that are used to evaluate the power transmissibility of

system (4) when the system is subject to input (24).

The power transmissibility evaluated against the input

power ratio !in for the different cases in Table 2 is

shown in Fig. 4.

In Fig. 4, the bottom axis is the start frequency xst

of the input frequency range, while the top one shows

the input power ratio !in. !in starts with !in ¼ 1

because Pu;R ¼ 0 at the beginning when the input

frequency range is within IL. Then, !in reduces to

!in ¼ 0 due to Pu;LH ¼ 0 when the input frequency

range is within IR. Finally, !in gets back to !in ¼ 1 as

Pu;R ¼ 0 again when the input frequency range is

within IH.

The results in Fig. 4a illustrate what has been

revealed in Propositions 1 and 2. For example, by

comparing the results in Cases 2, 3, 4 and 5, it can be

seen that when!in is around zero and a ¼ 1, the power

transmissibility of the system under linear damping

(Case 2) is similar to that under antisymmetric

nonlinear damping (Case 3). However, when a is

reduced from 1 to 0.2, the antisymmetric nonlinear

damping (Case 5) can produce higher power trans-

missibility than what can be produced by the linear

damping (Case 4). This is the conclusion of Proposi-

tion 1 and is greatly beneficial to vibrational energy

harvesting, which will be demonstrated in Case study

1 in Sect. 4.

In addition, the results of Cases 2 and 3 in Fig. 4b

indicate that the power transmissibility under a linear

damping (Case 2) and the power transmissibility under

an antisymmetric nonlinear damping (Case 3) are

similar when!in is around zero. But, when!in � 0:76,

the antisymmetric nonlinear damping (Case 3) can

produce lower power transmissibility than that with

the linear damping (Case 2). On the other hand, it can

also be observed from Fig. 4b that with the same linear

damping c1 ¼ 40 in Case 2 and Case 6, the antisym-

metric nonlinear damping (Case 6) can produce a

lower power transmissibility when !in is around zero,
Fig. 3 The time and frequency domain representation of u tð Þ
under different xst

Table 2 Different linear and nonlinear damping parameters

and input magnitudes considered in the example

Cases Parameters

Case 1 c1 ¼ 10; c3 ¼ c5 ¼ 0; a ¼ 1

Case 2 c1 ¼ 40; c3 ¼ c5 ¼ 0; a ¼ 1

Case 3 c1 ¼ 10; c3 ¼ 2� 103; c5 ¼ 2� 105; a ¼ 1

Case 4 c1 ¼ 40; c3 ¼ c5 ¼ 0; a ¼ 0:2

Case 5 c1 ¼ 10; c3 ¼ 2� 103; c5 ¼ 2� 105; a ¼ 0:2

Case 6 c1 ¼ 40; c3 ¼ 2� 103; c5 ¼ 2� 105; a ¼ 1

Fig. 4 The power transmissibility against the range of input

frequencies (represented by xst)/power ratio of input !in
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and a similar power transmissibility over !in � 0:76
showing again an overall superior performance of

nonlinear damping over linear damping.

These analyses confirm the conclusion of Proposi-

tion 2 and can significantly benefit vibration isolation,

which will be demonstrated in Case study 2 in Sect. 4.

It is worth emphasizing that, as far as we are aware,

this is the first time that these beneficial effects of

nonlinear damping have been rigorously revealed for

SDOF system (1) for the cases where the system is

subject to a general band-limited loading input.

4 Case studies

4.1 Case study 1—application to energy

harvesting subject to random excitations

Vibrational energy harvesting has attracted great

interests in engineering practice, and various struc-

tures and devices have been proposed such as the

piezoelectric energy harvesting [30] and electromag-

netic energy harvesting [31]. It has been shown in

[3, 5] that, under harmonic excitations, a cubic

damping has better performance than a linear damping

in energy harvesting under both higher and lower level

excitations. In this case study, the application of cubic

damping in an energy harvester subject to random

excitations is studied based on the analysis results in

Sect. 3.

A vibrational energy harvester as shown in Fig. 5 is

used in this study [5], where ml is the mass of the

harvester, kl is the linear stiffness, and cl and cn3 are

the linear and cubic nonlinear damping coefficients,

respectively. A rotational energy storage is applied to

absorb vibration energy, which is composed of a ball

screw driven by the vibrating mass that drives a

generator on top of the energy harvester. The energy

harvesting circuit is shown in Fig. 5, where I is the

current, Ri is the resistance related to the energy

dissipation and Rl is the resistance related to the

energy absorption, and C and L are the inductance and

the capacitance of the circuit, respectively. The

voltage across the circuit V tð Þ ¼ Kt _y tð Þ is dependent
on the velocity of the mass, where Kt is the electro-

magnetic coupling coefficient.

The energy harvester in Fig. 5 can be represented as

m€y tð Þ þ cl þ ceð Þ _y tð Þ þ cn3 _y tð Þ3þkly tð Þ ¼ �m€z tð Þ
ð27Þ

where y tð Þ is the relative displacement of the mass and

z tð Þ is the displacement of the base, ce is the equivalent

damping coefficient of the energy absorption circuit,

m ¼ ml þ m0 withm0 ¼ J 2p=l0ð Þ2 being the inertia of
the system, J is the moment of inertia of the system,

and l0 is the lead size of lead screw [5].

When neglecting the effect of C and L, there is [5]

ce ¼
K2
t

Ri þ Rl

ð28Þ

The absorbed instant power of the vibrational

energy harvester in Fig. 5 can then be given as [32]

pVEH tð Þ ¼ 1

Rl

Rl

Ri þ Rl

V tð Þ
� �2

¼ RlK
2
t

Ri þ Rlð Þ2
_y tð Þ2

ð29Þ

and the absorbed energy can be obtained as

PVEH ¼
Z þ1

�1
pVEH tð Þdt

¼
Z þ1

0

2RlK
2
t

Ri þ Rlð Þ2
jxð ÞY jxð Þj j2dx

2p

�
X

Ns=2b c

n¼0

2RlK
2
t

Ri þ Rlð Þ2
j
2pnfs

Ns

� �

Y j
2pnfs

Ns

� ��

�

�

�

�

�

�

�

2
fs

Ns

ð30Þ

where fs is the sampling frequency, and Ns is the

number of the total sampling points.

It is worth noting that the test rig of vibrational

energy harvester illustrated in Fig. 5 was built with

linear damping in [5]. The model (27) and the

harvested energy (30) have been experimentally

verified [5], based on which beneficial effects of cubic

nonlinear damping on vibration energy harvesting can

be exploited. In practice, the cubic nonlinear damping
Fig. 5 The vibrational energy harvester with a nonlinear cubic

damping

123

2924 Y.-P. Zhu, Z. Q. Lang



force can be realized using electromagnetic damper or

MR damper based on semi-active control approaches

developed in [2, 10, 11].

It can be seen from (30) that the absorbed energy is

only dependent on the output spectrum Y jxð Þ when

circuit parameters Ri;Rl and Kt are fixed. On the other

hand, the output force can be written as

fout tð Þ ¼ cl þ ceð Þ _y tð Þ þ cn3 _y tð Þ3þkly tð Þ
¼ �m€z tð Þ � m€y tð Þ

ð31Þ

and the output power of the vibrational energy

harvester is

Pfout !inð Þ ¼ 2

Z þ1

0

Fout jxð Þj j2 dx
2p

¼ 2

Z þ1

0

mx2 Z jxð Þ þ Y jxð Þ½ �
�

�

�

�

2 dx

2p

ð32Þ

The power transmissibility of the energy harvester

can therefore be obtained as

TP !inð Þ ¼ Pfout !inð Þ
Pu !inð Þ ¼

Rþ1
0

x
2 Z jxð Þ þ Y jxð Þ½ �

�

�

�

�

2
dx

Rþ1
0

x2Z jxð Þj j2dx
ð33Þ

It can be seen from (33) that, under an input

excitation spectrum Z jxð Þ, a large power transmissi-

bility TP !inð Þ indicates a large output displacement

Y jxð Þ over the output frequency range, so as to

produce more PVEH to be absorbed as shown in (30).

Now, consider the case where:

(a) System (27) is subject to an input with !in � 0.

(b) The input has driven the relative displacement

y tð Þ to the maximum bound, and

(c) A linear and a corresponding cubic nonlinear

energy harvester are adopted such that the

power harvested by system (27) using the linear

and nonlinear damping is the same.

Then, according to Proposition 1, it is known that if

the magnitude of the inertial force �m€z tð Þ now

decreases by a constant factor, the cubic nonlinear

damping-based energy harvester can absorb more

energy than the energy that can be absorbed by the

linear damping-based energy harvester.

This beneficial effects of nonlinear damping have

been demonstrated by researchers when the system is

subject to a harmonic input [3, 5]. However, under the

conditions of (a)–(c), the same conclusion can be

reached by applying Proposition 1 to system (27)

which is subject to a general input. In the following, a

specific case of system (27) will be used to demon-

strate this significant and more general beneficial

effect of nonlinear damping on vibrational energy

harvesting.

Take the parameters of the linear vibrational energy

harvester in Fig. 5 as [5]

m ¼ 8:3 kg; kl ¼ 250 N=m; Kt ¼ 7:57 N=A;Ri

¼ 1:3 X; Rl ¼ 7 X

ð34Þ

such that the resonant frequency is xr ¼ 5:488 rad=s.
1000 different realizations of two band-limited

random inputs are produced by passing Input 1 €z tð Þ ¼
10rand tð Þ and Input 2 €z tð Þ ¼ rand tð Þ through a low-

pass filter with pass band x 2 p; 3pð Þ rad=s, respec-
tively. The output spectrum Y jxð Þj j of system (27) to

one realization of Input 1 under a linear damping with

cl ¼ 10:1 Ns=m; cn3 ¼ 0 and a nonlinear damping

with cl ¼ 0; cn3 ¼ 2� 103 Ns3



m3, respectively, is

shown in Fig. 6a.

The absorbed output power is evaluated using (27)

to assess the energy harvesting performance of system

(27). Over the 1000 different realizations of the band-

limited random Input 1 under the linear and nonlinear

damping, respectively, the absorbed power results are

statistically analyzed and shown in the box plot in

Fig. 6b.

On the other hand, the corresponding output

spectrum and absorbed power of system (27) to the

Fig. 6 The output responses and energy harvesting perfor-

mance of system (27) subject to input 1 under linear and cubic

damping
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band-limited random Input 2 are shown in Fig. 7a, b,

respectively.

The results in Figs. 6 and 7 demonstrate how an

antisymmetric nonlinear damping can benefit energy

harvesters when the system is subject to ambient

random vibrations as revealed rigorously in Proposi-

tion 1. Some detailed explanations are as follows.

In practice, the maximum y tð Þ that can be exploited
by energy harvester (27) is limited due to space

constraint [3, 5]. Figure 6 shows the case where a

linear and cubic nonlinear damping-based energy

harvester is both subject to Input 1 (a random loading

around the system resonance) and achieves a similar

performance. Assuming that Input 1 represents the

scenario where y tð Þ in system (27) reaches the

exploitable maximum. Then, according to [3], it is

known that the adopted linear and cubic nonlinear

damping in this case is equivalent. Therefore, since

Input 2 has less amplitude than Input 1 representing a

normal (non-extreme) random loading scenario, the

results in Fig. 7 demonstrate that the cubic nonlinear

damping performs better than its equivalent linear

damping for the energy harvester system (27) in

normal working conditions and, consequently, has an

overall advantage.

The average energy conversion efficiency can be

computed as g ¼
P1000

i¼1 PVEH;i

.

P1000
i¼1 Pc;i [33],

where PVEH;i represents the literally harvested vibra-

tion energy under the ith realization of the random

input determined from (30), while

Pc;i ¼
Z þ1

�1
cl þ ceð Þ _y ið Þ tð Þ þ cn3 _y ið Þ tð Þ3

h i

dt

�
X

Ns=2b c

n¼0

cl þ ceð Þ j
2pnfs

Ns

� �

Y ið Þ j
2pnfs

Ns

� ��

�

�

�

�

�

�

�

fs

Ns

�

þcn3 j
2pnfs

Ns

� �

Y ið Þ j
2pnfs

Ns

� ��

�

�

�

�

�

�

�

3
fs

Ns

#

ð35Þ

where y ið Þ tð Þ and Pc;i represent the output response and

the energy that is absorbed by the damping mechanism

of the system under the same random input realization.

It can be shown that the average energy conversion

efficiency achieved by cubic and linear damping is

gnon ¼ 39:08% and glin ¼ 34:24%, respectively, under

Input 1 and gnon ¼ 84:22% and glin ¼ 34:24%, respec-

tively, under Input 2. This indicates a significant

advantage of cubic nonlinear damping over linear

damping in energy harvesting performance with

average energy conversion efficiency increasing from

34:24% to 84:22% in the case of Input 2.

It is worth pointing out that the benefits discussed

above are the unique contribution of antisymmetric

nonlinear damping to vibrational energy harvesting

compared to nonlinear stiffness-based energy har-

vesters. Nonlinear energy harvesters with hardening

nonlinear stiffness may extend the energy harvesting

working range under harmonic excitations [34], but

this is not the case when the system is subject to

random excitations [35]. Energy harvesters based on

quasi-zero stiffness are widely applied in practice

especially when the system is subject to low-fre-

quency vibrations [36]. An additional antisymmetric

damping in this case will further improve the energy

harvesting performance under low-frequency vibra-

tions according to the results in this study proposed in

Proposition 1.

4.2 Case study 2—Application to vibration

isolation of a physical building model subject

to seismic waves

Building isolation systems are important for vibration

isolation during earthquakes, and low stiffness bear-

ings are usually applied to shift the structural resonant

frequencies well below the frequencies of ground

motions. However, severe long period earthquakes

have been recorded, for example, in the Tohoku

Fig. 7 The output responses and energy harvesting perfor-

mance of system (27) subject to input 2 under linear and cubic

damping
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earthquake in 2011 [37]. In this case, traditional low

stiffness-based vibration isolator may not satisfy the

required building isolation performance [38]. The

issue can be resolved by using the nonlinear damping-

based isolator. This has been studied in [11] where

both a numerical and a scaled down laboratory model

of the Sosokan building in Keio University in Japan

has been used to demonstrate the advantage of

nonlinear damping over linear damping in building

isolation when a building is subject to long-period

sinusoidal ground motions.

However, in most earthquakes, the ground motions

are random signals. In this case study, the power

transmissibility of a nonlinearly damped physical

building model subject to seismic waves is experi-

mentally investigated to demonstrate the advantage of

nonlinear damping over linear damping in building

isolation applications during earthquakes.

A scaled down Sosokan building physical model is

shown in Fig. 8, which is a 2-story building system

and can be written as

M€xþ C _xþKx ¼ Eucon þ F€z ð41Þ

where ucon represents the controlled damping force,

and

x ¼
x1

x2

� �

; M ¼
m1 0

0 m2

� �

; C ¼
c1 þ c2 �c2

�c2 c2

� �

;

K ¼
k1 þ k2 �k2

�k2 k2

� �

; E ¼
1

0

� �

; F ¼
�m1

�m2

� �

with x1; x2 being the relative displacement of the first

and the second floor to the ground, respectively.

The parameters of the test rig are taken as

m1 ¼ 3:672 Kg; m2 ¼ 1:696 Kg, k1 ¼ 1036 N=m;

k2 ¼ 5868:7 N=m; c1 ¼ 0:0856 Ns=m;

c2 ¼ 0:5367 Ns=m

ð42Þ

where it can be found that the second natural

frequency of the test rig (11.5 Hz) is much higher

than the first natural frequency (2.0 Hz) due to the low

base stiffness k1. Considering that the dominant

frequencies of seismic waves are much lower than

the building’s second natural frequency [39], the

analysis of the test rig can be conducted based on a

SDOF system model.

A nonlinear damping force is generated by using a

semi-active damper illustrated in Fig. 9 with three

different linear damping coefficients

cp1 ¼ 4:76 Ns=m; cp2 ¼ 40 Ns=m; cp3 ¼ 55:9 Ns=m

ð43Þ

and the shifting time delay of T ¼ 0:16 s [40].

The control of the semi-active damper has been

introduced in [11] by using an open-loop control

algorithm as

cs tð Þ ¼
cp1; for ud=v
 cp1 þ cp2

� �


2

cp2; for cp1 þ cp2
� �


2\ud=v
 cp2 þ cp3
� �


2

cp3; for ud=v[ cp2 þ cp3
� �


2

8

<

:

ð44Þ

as illustrated in Fig. 10 to produce the damping force

ucon ¼ �cs tð Þv ð45Þ

where ud ¼ �cn3 _x
3
1 is the desired nonlinear damping

force with cn3 being the desired nonlinear damping

coefficient, and v ¼ _x1 in this study is the velocity

across the damper measured from the first floor of the

building.

Fig. 8 The scaled down Sosokan building model Fig. 9 The structure of the semi-active damper
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Figure 10a shows the semi-active implementation

of a nonlinear damping. Figure 10b shows the imple-

mented antisymmetric nonlinear damping. Basically,

the implementation approach selects the best linear

damping coefficient such that a damping force ucon
close to the desired nonlinear damping force ud can be

produced.

The Kokuji seismic waves, known as the simulated

earthquake motions fitted to a target response accel-

eration spectrum of the Building Standard Law

Enforcement Order of Japan [41], are generally used

in the design and analysis of building isolation systems

[42]. In the experiment, two different Kokuji seismic

waves are applied to study the isolation performance

of the nonlinear damping-based building isolation

system. The two Kokuji seismic waves are generated

from the response spectra shown in Fig. 11a, produc-

ing two types of ground motions, the hard (Type 1) and

soft (Type 2) ground motions as shown in Fig. 11b.

According to Propositions 1 and 2 and the example

in Sect. 3.3, it is expected that nonlinear damping

could improve the isolation performance when most

frequency components that the ground motion con-

tains are in the non-resonant frequency range of the

building model.

In the experiment, the power transmissibility from

the ground to the first floor of the test rig computed

from the absolute accelerations is considered with the

sampling frequency of fs ¼ 100 Hz:

TP !inð Þ ¼ Pfout !inð Þ
Pu !inð Þ ¼

Rþ1
0

x
2 Z jxð Þ þ X1 jxð Þ½ �

�

�

�

�

2
dx

Rþ1
0

x2Z jxð Þj j2dx

�

P

Ns=2b c

n¼0

2pnfs
Ns

� 	2

Z j 2pnfs
Ns

� 	

þ X1 j 2pnfs
Ns

� 	h i

�

�

�

�

�

�

�

�

2

P

Ns=2b c

n¼0

2pnfs
Ns

� 	2

Z j 2pnfs
Ns

� 	

�

�

�

�

�

�

�

�

2

ð46Þ

where Ns is the number of the total sampling points.

The power ratio of Type 1 Kokuji wave is

!in;1 � 0:86, and the ratio for Type 2 Kokuji wave is

!in;2 � 0:91, indicating that Type 2 Kokuji wave has

more high-frequency power than Type 1 Kokuji wave.

Therefore, when the isolation performance of the

building with linear damping and cubic nonlinear

damping under Type 1 Kokuji wave is similar, the

isolation performance with cubic nonlinear damping is

expected to be better than that with linear damping

under Type 2 Kokuji wave.

Denote the power transmissibility under the cubic

nonlinear isolator as TP non !inð Þ, and the power

transmissibility under the linear isolator as

TP lin !inð Þ. In the experiment, the coefficient of the

semi-active damper cp2 ¼ 40 Ns=m is used as the

parameter of the linear isolator, and the corresponding

nonlinear damping parameters are tuned to be

Fig. 10 The semi-actively implemented nonlinear damping

force

Fig. 11 The response spectra and corresponding time history of

seismic ground motions
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cn3 ¼ 6� 104 Ns3



m3, such that under Type 1 Kokuji

wave

TP non !in;1

� �

� TP lin !in;1

� �

� 1:75 ð47Þ

Now, consider the case where the building model is

subject to Type 2 Kokuji wave with!in ¼ !in;2. In this

case, the system’s power transmissibility under linear

and nonlinear damping is

TP non !in;2

� �

� 1:52 and TP lin !in;2

� �

� 1:56;

respectively. The fact

TP non !in;2

� �

� 1:52\TP lin !in;2

� �

� 1:56

validates the results in Proposition 2 demonstrating a

superior performance of nonlinear damping.

It is worth noticing that in the design of building

base isolation systems, seismic waves with different

response spectra need to be taken into account to

evaluate the overall performance of the isolation

systems [40, 41]. In this case study, the power

transmissibility under both linear and nonlinear

damping is about the same under the seismic wave

with !in ¼ !in;1, which is located around the struc-

tural system’s resonance frequency. In such scenarios,

the overall vibration isolation performance is often

considered when loading changes from the motion

wave over the range of resonant frequency (such as the

case with !in ¼ !in;1) to the motion wave over the

range of higher frequencies (such as the case with

!in ¼ !in;2) [43, 44]. In this study, the vibration

isolation performance is assessed by using the reduc-

tion of the power transmissibility when loading

changes from !in ¼ !in;1 to !in ¼ !in;2 under linear

and nonlinear damping isolators by referring

TP non !in;1

� �

� TP lin !in;1

� �

� 1:75 in (47), which

are obtained as

TP lin !in;1

� �

� TP lin !in;2

� �

¼ 0:19

TP non !in;1

� �

� TP non !in;2

� �

¼ 0:23

(

ð48Þ

respectively. The results indicate that the use of

nonlinear damping can achieve an extra

gr ¼ 0:23� 0:19ð Þ=0:19 ¼21:05% reduction of the

power transmissibility than the use of linear damping.

5 Conclusions

The benefits of antisymmetric nonlinear damping to

vibration isolation and energy harvest have been

studied when a SDOF system is subject to a harmonic

loading. However, when the system is subject to

general loadings such as multi-tone and random

inputs, no conclusions have yet been reached about

these benefits due to the complexities with associated

analysis.

In order to address this problem, in this study, the

concept of power transmissibility is introduced to

study the benefits of antisymmetric nonlinear damping

to vibration isolation and energy harvesting for SDOF

systems subject to general loadings. The results show,

for the first time, that with the increase in either an

antisymmetric nonlinear damping coefficient or the

input magnitude, the power transmissibility decreases

if the power of the loading input is mainly concen-

trated over the system resonant frequency region,

while is unchanged if the input power is mainly

located beyond the region of the system resonance. An

example and two case studies have been used to

demonstrate these beneficial effects of antisymmetric

nonlinear damping on vibration isolation and energy

harvesting under general inputs. In general, this study

reveals a significant principle that can be applied to the

development of a wide range of mechatronic systems

for more effective vibrational energy harvesting and

vibration isolation performances.
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Appendix A

When !out � 0, most of the output energies are

concentrated in the resonant frequency range and

non-resonant frequency energies are neglectable. This

means the system is excited by input including most

energies in the resonant frequency range, and the input

power ratio can be given as !in � 0, such that

Win � 	IR. Two cases are discussed as follows.

If only the q0th nonlinear damping is nonzero, there

is

c2qþ1
6¼ 0 q ¼ q0
¼ 0 q 6¼ q0




ð49Þ

Considering that the output power is an integration

of the squared output force spectrum, Fout jxð Þj j2 is

obtained as

Fout jxð Þj j2 ¼ Fout jxð ÞFout �jxð Þ ¼ F1 jxð ÞF1 �jxð Þ

þ mx2c2q0þ1

F1 jxð ÞU 1ð Þ
2q0þ1 �jxð Þ

þF1 �jxð ÞU 1ð Þ
2q0þ1 jxð Þ

2

4

3

5

þ
X

2 V=2q0�1b c

v¼2

cv2q0þ1

�
X

v

q¼0

m2
x

4
U

qð Þ
2q0qþ1 jxð ÞU v�qð Þ

2q0 v�qð Þþ1
�jxð Þ

h i

ð50Þ

In Eq. (50), whenWin � 	IR, letx � xr, and there

is

F1 jxð Þ � c� m jxrð Þ
c

U jxrð Þ ð51Þ

Noticing x1; . . .;x2q0þ1 2 Win, let x1; . . .;xq0 �
xr andxq0þ1; . . .;x2q0þ1 � �xr, such thatx1 þ � � � þ
x2q0þ1 � �xr and

U
1ð Þ
2q0þ1 �jxð Þ � � jxrð Þ

x2
r c

2q0þ2
U jxrð Þj j2q0U �jxrð Þ ð52Þ

Therefore, according to (51) and (52), there is

F1 jxð ÞU 1ð Þ
2q0þ1 �jxð Þ þ F1 �jxð ÞU 1ð Þ

2q0þ1 jxð Þ

� �2m

c2q0þ3
U jxrð Þj j2q0þ2

ð53Þ

and substituting (53) into (50), evaluate the partial

derivation o Fout jxð Þj j2
.

oc2q0þ1 as

o Fout jxð Þj j2
oc2q0þ1

� � 2m2
x

2
r

c2q0þ3
U jxrð Þj j2q0þ2

þ
X

2 N=2q0�1b c

v¼0

vcv�1
2q0þ1

X

v

q¼0

m2
x

4
r

� U
qð Þ
2q0qþ1 jxrð ÞU v�qð Þ

2q0 v�qð Þþ1
�jxrð Þ

h i

ð54Þ

and there must exist a c2q0þ1[ 0 such that if

0\c2q0þ1\c2q0þ1,

o Fout jxð Þj j2
oc2q0þ1

\0 ð55Þ

Consequently, according to (55), there is

oTP !inð Þ
oc2q0þ1

¼ 1

pPu !inð Þ

Z

Win

o Fout jxð Þj j2
oc2q0þ1

dx\0: ð56Þ

when 0\c2q0þ1\c2q0þ1.

Consider that more than one antisymmetric damp-

ing exist in the system with c2qþ1 6¼ 0; q ¼ 1; . . .;Q,

the results can be proven by using the same process

proposed in [6]. Moreover, when the input is given as

au tð Þ with a being the proportional coefficient of the

input magnitude, it can be proven similar as above that

oTP !inð Þ
oa

¼ 1

pPu !inð Þ

Z

Win

o Fout jxð Þj j2
oa

dx\0 ð57Þ

Then, Proposition 1 is proven.
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Appendix B

Based on the output boundary representation of system

(1) proposed in [29], the OFRF representation of the

bounded output force can be proposed according to

Lemma 1 as

Fout jxð Þj j 
Fout ¼ F1 þ
X

N�1ð Þ=2b c

v¼1

F2vþ1 ð58Þ

where Fout is the boundary,

F1 ¼ Lw 1þ mX
2

� 	

½½u�� v ¼ 0

F2vþ1 ¼
L
2vþ2

w mX
2vþ3½½u��2vþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffi

2vþ 1
p

2pð Þ2v

�
X

j1;...;jQð Þ2J 2vþ1ð Þ

c
j1
3 � � � cjQ2Qþ1H

j1;...;jQð Þ
2vþ1

v� 1

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

ð59Þ

represents a boundary on the output force contributed

by the 2vþ 1th-order system nonlinearity with v ¼
0; . . .; V � 1ð Þ=2b c

Lw ¼ sup
x2Win

L jxð Þj j; X ¼ max x 2 Winf g

H
j1;...;jQð Þ
2vþ1 ¼

X

v

z¼1

Lw 2vþ 1ð ÞX
� �z

8

>

>

>

<

>

>

>

:

ð60Þ

and

½½u�� ¼ max
x2Win

F�1 U jxð Þj j½ �; U jxð Þj j
� �

ð61Þ

where F�1 :½ � represents the inverse Fourier transform.

Therefore, a boundary on the power transmissibility

can be obtained as

TP !inð Þ
 TP !inð Þ ¼ Pfout !inð Þ
Pu !inð Þ

�

�

�

�

!¼!P

¼ 1

pPu !inð Þ

Z

Win

F1 þ
X

N�1ð Þ=2b c

n¼1

F2nþ1

 !2

dx

ð62Þ

where TP !inð Þ is this boundary.
When !out � 1, most of the output energies are

concentrated in the low- and high-frequency range and

the resonant frequency energies are neglectable. This

means the system is excited by input including most

energies in the non-resonant frequency range, and the

input power ratio can be given as !in � 1, such that

Win � 	 IL [ IHð Þ. Two cases are discussed as

follows.

(a) When Win � 	IL, let X; x � xr such that

Lw ¼ sup
x2Win

L jxð Þj j¼ sup
x2Win

m x
2 � c

m
jxð Þ � k

m

� ��

�

�

�

�

�

�

�

�1

¼ sup
x2Win

k
x

2

x2
r

� c

m
j
x

xr

� �

� 1

� ��

�

�

�

�

�

�

�

�1

� 1

k

ð63Þ

and the boundary of the higher-order output force can

be written as

F2vþ1 �
X

xr

� �2vþ2
X½½u��2vþ1

m2vþ1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2nþ 1
p

2pð Þ2v

�
X

j1;...;jQð Þ2J 2vþ1ð Þ

c
j1
3 � � � cjQ2Qþ1H

j1;���;jQð Þ
2vþ1 � 0

ð64Þ

(b) When Win � 	IH, let X; x � xr such that

Lw ¼ sup
x2Win

k
x

2

x2
r

� c

m
j
x

xr

� �

� 1

� ��

�

�

�

�

�

�

�

�1

� 1

mx2
ð65Þ

and the higher-order output force bound can be written

as

F2vþ1 �
1

x2vþ1

X

x

� �2vþ3 ½½u��2vþ1

m2vþ1
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2vþ 1
p

2pð Þ2v

�
X

j1;...;jQð Þ2J 2vþ1ð Þ

c
j1
3 � � � cjQ2Qþ1H

j1;���;jQð Þ
2vþ1 � 0

ð66Þ

Consequently, the output power boundary is

obtained as

Pfout !inð Þ ¼ 1

p

Z

Win

F
2

1dx ð67Þ

When the input is given by au tð Þ, the boundary of

the power transmissibility of the nonlinear system is

obtained as

TP !inð Þ �
R

Win
a
2F

2

1dx

pa2Pu !inð Þ ¼ 1

pPu !inð Þ

Z

Win

F
2

1dx ð68Þ

Then, Proposition 2 is proven.
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