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Abstract—Additive manufacturing (AM) of metals is a complex
process to monitor in-situ, as the layer-by-layer deposition and
material-beam interactions present a number of challenges.
However, a design-driven build of customised and nearly net-
shape parts makes it favourable for the manufacture of complex
geometries. For process certification of critical parts there is
a need for reliable process monitoring and control. Advanced
thermal imaging methods can provide information in-situ, this
can be used for quality assurance. Existing state-of-the-art studies
based on thermal image acquisitions have the limitation of being
demonstrated on simple part designs, often symmetric thin walls
or cuboid structures. Statistical Process Control (SPC) has been
demonstrated in past work as effective in AM, however on simple
part geometries. In this work we introduce a multi-model and
self-tuning computational framework for SPC via multilinear
principal component analysis (MPCA), to address AM process
monitoring of geometrically complex parts. In the proposed
computational method, process behaviours are expressed via
extracting and grouping meltpool features, thus accounting for
multiple possible meltpool behaviours corresponding to part
complexity and different design features. The framework oper-
ates on an iterative fashion, where the clusters (hence captured
behaviours) are updated in-situ on a per-layer basis, hence
continuously tuning the monitoring algorithm. A case study in
blown-powder laser melting deposition of a complex geometry
is presented, which includes two manufactured parts where the
correlation between the predicted outliers and measured part
defects is demonstrated.

Index Terms—additive manufacturing, statistical process con-
trol, process monitoring, in-situ defect detection.

I. INTRODUCTION

Additive manufacturing (AM) is a customised part construc-

tion method that enables a digital design to be built layer

by layer. Expanding technologies in recent years provided

the creation of complex and free form geometries unlike

the conventional manufacturing practises within the many

industrial sectors (such as aerospace and biomedical). The

market size is predicted to have the size of $50 billion by

2031 [1]. However, the complex and free form parts require

rigorous practises for quality control in the manufacturing

environment. AM challenges existing quality control practises

that are mostly designed for low variability and high volume

manufacturing settings.

This project has been supported by the Aerospace Technology Institute,
UK funding awards AIRLIFT and DAM lead by GKN Aerospace, and the
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Advanced imaging technologies have a significant role in

industry to cope with the complexity that comes from the

nature of the AM [2]. Furthermore, nowadays accessible

computational power make an in-situ analysis of the image

acquisitions feasible in practice. In situ monitoring, feedback

and control have consistently been classified as one of the

most-required technologies for advancing in AM [3]. Due

to the small length scales and rapid solidification in AM,

conventional monitoring methods fail to capture the process

sufficiently. Also, there are several problems (eg. keyhole

porosity, cracking, unmelted feedstock and abnormal morphol-

ogy)to monitor during the deposition. Porosity and cracks are

two material discontinuities that limit the quality. Porosity can

be occurred due to trapped gas or the lack of fusion between

the layers from the insufficient energy density. Differences in

thermal expansion coefficients or powder contamination result

from crackings [4]. In this context, in-situ process monitoring

for AM is still in the development stage where most of the

studies implemented to improve geometrical accuracy.

Statistical process control (SPC) tools are in favour to

handle big data issues such high-frequency video images

for in-situ monitoring purposes [5]. Even though SPC tools

have been widely used for industrial process monitoring ap-

proaches, several studies have used SPC tools to propose in-

situ monitoring based on image acquisition. Spatially weighted

principal component analysis (PCA) is proposed via moving

window updates in the modelling through the selective laser

melting process [5]. This was a follow-up study for previously

proposed PCA-based approach [6]. Although model updates

can create changes on the control limits, pre-defined control

limits were too wide to detect any abnormality due to the lack

of sensitivity from a single model. Multilinear PCA (MPCA) is

used for combustion monitoring [7] and blown-powder direct

laser deposition image stream monitoring [8]. The complexity

of the AM is not tested in [8] due to the simple geometry of

the deposition. Therefore, a single and static MPCA model

performs well on the selected image frames. However the

single model approach, would likely fail in dealing with

multiple behaviours (eg. multiple meltpool behaviours, due to

multiple design features).

In this paper, an image-based, multi-model, in-situ moni-

toring technique based on SPC via MPCA is proposed; the



proposed also has the capability to self-tune in-situ. In the

proposed method, clustering based on the meltpool features

and using those separate captured behaviours for monitoring

gives flexibility on how to address the complex design of AM

parts which is where other studies are limited [5] and [8]. The

hypothesis here is that, multiple geometrical features would

give rise to separate meltpool behaviours. Capturing these

behaviours separately, and analysing them (SPC via MPCA)

separately, could increase the sensitivity and resolution in

terms of detecting outliers (hence defects).

II. MULTI-MODEL MONITORING FOR ADDITIVE

MANUFACTURING

This section includes the proposed in-situ multi-model

based monitoring methodology for the detection of outliers

(hence, potentially defects) in AM. SPC and its variations

have been widely used in in-situ process monitoring. One of

the main drawbacks for the SPC methodologies is the single

model approach which limits the effectiveness (resolution,

complexity) of the method. In this study, a methodology based

on creating multiple monitoring models via MPCA is proposed

to address this challenge.

The proposed methodology illustrated in Fig. 1 uses thermal

images from an AM deposition process. The methodology

starts with the pre-processing of the meltpool images for

feature clustering purposes. The class labels identify the

different characteristics of the deposition. PCA is extensively

used in the literature for the implementation of SPC method-

ologies. In this study, MPCA is adopted as a dimensionality

reduction mechanism. The performance metrics Hotelling’s T 2

and squared prediction errors (SPE) also called Q charts are

the main indicators for performance monitoring and outlier

detection. Here, Hotelling’s T 2 is adopted for outlier detection,

where outliers are identified based on a pre-defined upper limit

for the T 2 metric.

The feedback loop illustrated in Fig. 1 allows the controller

involvement in the case of outlier detection and online per-

formance improvement through the deposition. A self-tuning

mechanism that updates the models (clusters) in a sliding

window fashion, for a pre-defined number of layers, is used

to address the changing design features, as the part is printed

layer-wise. It is worth noting that, the MPCA models require

the same size of input vectors, therefore, images are cropped

to get lesser noise characteristics from the background where

the meltpool is kept in the cropped image. This can also be

done with the centralisation of the meltpool for the same size

image windows. For on-axis thermal imaging tools attached

to the floating robot head, the aforementioned cropping is not

required where the meltpool position is tracked by the robot

printing head.

A. Calculation of the Features

The first step of the feature calculation is the segmentation

of the image in three regions namely: meltpool, tail and back-

ground as illustrated in Fig. 2. Depending on the resolution of

the camera, the acquired image might need to be cropped to

reduce the background noise, while keeping the main interest

in the meltpool and tail area.

Fig. 2. Illustration of the image segmentation into three regions.

For each zone in the segmentation, an ellipse is used as

an approximation, for extracting size and shape measures.
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Fig. 1. Demonstration of the proposed outlier detection procedure.



Furthermore, the moments up to third order are calculated for

each zone. These moments are scalar magnitudes that can be

used to describe the distribution of the pixels in the image

dimensions (vertical and horizontal). Due to the nature of

these magnitudes, some are invariant to scale and translation,

and thus, they are extremely useful in computer vision. In a

total of 21 moments under 3 categories namely: raw moments,

central moments where they are invariant to translation, and

invariant moments where they are invariant to translation and

scale. Also, thermal profiles and gradients are extracted for

the two principal directions of the process, longitudinal and

cross-sectional of the meltpool, and for a cross-sectional of

the tail. For each image, a line is approximated following the

tail direction. Using Boolean operations for a parallel of this

line and its perpendicular, at the centre of the meltpool, the

heat gradients are extracted. In addition to given features, area,

length, width, the ratio of length to width, mean and maximum

for the pre-defined areas are also extracted.

B. Feature Clustering

Well-known unsupervised clustering technique k-means

clustering is used for the separation of the image character-

istics. K-means aims to partition n observations in a pre-

determined k number of clusters where each observation

belongs to a cluster with the nearest mean. The design of the

part can result in different meltpool characteristics through

the deposition depending on the location and direction of the

energy deposition. A set of features (n) from the different

regions of the image segmentation are used for separation.

Normalisation is applied to the features individually before

clustering. The separation allows the multi-model approach to

increase the overall sensitivity for outlier detection. Depending

on the design of the deposition, some ’noise’ characteristics

of some regions could be meaningful deposition signatures in

other regions, where the meltpool ma be showing different

part-beam interactions. Cluster centres trained via the training

data set transferred to the testing data set to assign clusters

numbers for the new observations. This process is the same

for whole the testing data until the models are re-trained again.

In every new training iteration, new clusters are assigned for

the same labelling where the difference between the previous

cluster centres and the new cluster members are constrained.

C. Multilinear Principal Component Analysis

Multilinear PCA (MPCA) is proposed by Lu et all [9]. It is

a framework for tensor object feature extraction where thermal

image steams represent 3-D video sequences naturally de-

scribed as tensors. MPCA performs feature extraction through

the determined multilinear projections that represent captured

variances from the original input. In the proposed method, a

MPCA model is to be trained for each cluster defined in the

clustering stage (resulting in multiple models in the system).

These models are updated iteratively for a pre-defined number

of deposition layers. This mechanism (self-tuning) allows for

tuning the system to a ’changing’ (in the z-axis) part design.

The extraction process is done iteratively by decomposing

the original problem where it is R
M×N×K into a series of

multiple projection subspace R
P1×P2×K with P1 < M and

P2 < N . Here, M and N are the dimensions of the video

frame. MPCA is a tensor-based that can support more than

3-dimensional (3D), however, the notation is downgraded to

3D for the sake of simplicity.

A set of images can be defined as X = Xk ∈ R
i×j and k =

1, ...,K. The MPCA objective is to find a set of orthogonal

transformation matrices Ũ = {Ũ(k) ∈ R
Ik×Pk ; Ũ(k)T

Ũ
(k) =

IPk
, Pk < Ik, k = 1, 2, 3} where the projected tensor captures

the most of the variation from the observations. MPCA starts

with pre-processing of the observations by centring all of them

as {X̃ = X − X̄} where X̄ = 1
M

∑M

m=1 Xm is the sample

mean. MPCA is an iterative algorithm to calculate the eigen-

decomposition of

Φ
(n)∗ =

M∑

m=1

X̃m(n) · X̃
T
m(n) (1)

and X̃m(n) is the n-mode of an unfolded matrix of Xk.

An estimated transformation matrix U
(k)comprises the first

and most Pn significant eigenvalues where n = 1, 2 of Φ(n)∗

for the meltpool image stream. Local optimisation or the

iteration process of the MPCA starts with the calculation of

the projection of X̃ onto the subspace:

Ỹm = X̃m ×1 Ũ
(1)T ×2 Ũ

(2)T (2)

where m = 1, ...,M . Here, Ỹm captures most of the variations

observed in the original tensor objects. The initialisation of the

total scatter for the objective function can be done

ΨY0 =

M∑

m=1

∥∥∥Ỹm

∥∥∥
2

F
(3)

where ∥ · ∥F is Frobenius norm and the mean
¯̃
Y value of

Ỹ is all zero as X̃ is centred. Local optimisation continues

for the number of iterations until the stopping criteria is met.

For each order of the original tensor where n = 1, 2 for the

image stream set the matrix Ũ
(n) that contains the largest Pn

eigenvectors of the matrix

ΦY0 =
M∑

m=1

(Xm(n) − X̄(n)) · ŨΦ(n)

·ŨT
Φ(n) · (Xm(n) − X̄(n))

T

(4)

where

ŨΦ(n) =
(
Ũ

(n+1) ⊗ Ũ
(n+2) ⊗ ...⊗ Ũ

(N)⊗

Ũ
(1) ⊗ Ũ

(2) ⊗ ...⊗ Ũ
(n−1)

) (5)

where ⊗ denotes the Kronecker product and Ũ
(n) is to be the

solution for the optimisation subproblem of follows:

Ũ
(n), n = 1, ..., N = argmin

Ũ(1),Ũ(1),...,Ũ(N)

ΨY (6)

This followed by the calculation of {Ym,m = 1, ...,M} and

ΨYk
until the breaking condition of the optimisation ΨYk

−



ΨYk−1
< η is met. Here η is a pre-determined small number.

After local optimisation, the feature tensor after projection can

be obtained as follows for m = 1, 2, ...,M

Ym = Xm ×1 Ũ
(1)T ×2 Ũ

(2)T (7)

D. Statistical Process Control

Following the determination of the projected features, con-

trol chart/s such as Hoteling’s T2 multivariate cumulative

sum or Q-charts can be chosen for further assessment for

monitoring purposes. In process monitoring approaches, phase

II approaches consider the process where online monitoring

of the process is done while phase I primary interested in the

assessment of the process stability. In this paper, we focus

on phase II. Therefore, it is assumed that M images were

collected from an in-control process that was worked on to

design traditional control charts. First, images are used for

feature extraction. Then, the features are used for clustering

purposes; following the MPCA modelling for each cluster,

control limits computation for the monitoring chart can be

done. In this paper, T2 charts are adopted. The Hotelling’s T2

can be used to synthesise the information from the principal

components (PCs) based on pre-determined false alarm rates.

For each new thermal image observation, assigned parameters

for the MPCA model are applied in regards to newly assigned

cluster information for the new observation. Following to low-

dimensional features projection, T2 statistic can be calculated

as follows [7]:

T 2
m =

(
θ − θ̄

)T
S
−1

(
θ − θ̄I

)
N
(
M − P1P2

)

P1P2

(
M2 − 1

) (8)

where θ̄I and SI are the mean and variance-covariance matrix

of the features estimated from M in-control observations by

the MPCA. θ denotes the P1P2-dimensional vector and a

positive value extracted from an observation. In applications,

if the extracted features follow the multivariate normal dis-

tributions, then T 2 follow a F distribution with P1P2 and

M −P1P2 degrees of freedom. Thereby, the control limits for

T 2 can be assigned by the (1 − α)100th percentiles of the

distribution. Nevertheless, the condition for the normality of

the feature distribution is not met in some applications. In these

conditions, an empirical distribution of T 2 can be estimated

by using the training data of the in-control observations. Fol-

lowing the determination of α, control limits can be designed

in regards to the (1− α)100th percentiles of the distribution.

The monitoring system is based on the designed control limits

and T 2 statistics defined for each time frame. If the statistic

exceeds the control limit, the process is evaluated as out of

control and the sample evaluated as an outlier. Otherwise, the

process is still in control.

P parameter for each dimension has to be determined for

the calculation of the T 2 statistics. This is also the basis of

the dimension reduction in the MPCA. Therefore, the objective

function given in Equation 6 needs to be revised to include

dimensionality reduction constraints. The Q-based method is

one of the dimensionality reduction methods proposed by Lu

[9] which is also the simplified one. It is based on the ratio

of the total scatter in the n-mode and the remained portion of

it which can be defined as follows

Q(n) =

∑Pn

in=1 λ
(n)∗
in∑In

in=1 λ
(n)∗
in

(9)

where λ
(n)∗
in

is the inth full-projection n-mode eigenvalue.

Here,
∑In

in=1 λ
(n)∗
in

= ΨX for all n from Equation 4 where

it is equal to total scatter for the full projection was given as

ΨX =
∑M

m=1

∥∥Ym(n) − Ȳ(n)

∥∥ for n = 1, ..., N .

III. EXPERIMENTAL RESULTS

The case studies for the proposed methodology is tested

on thermal images acquired from laser melting depositions

(LMDs). The details about the testing process and the depo-

sition discussed in the following subsections.

A. Experimental setup

Two different depositions were used in this study to validate

the accuracy of the proposed methodology. The depositions

show differences in regards to laser power, scan speed, path

planning and deposition material. One of the depositions can

be seen in Fig. 3(a). Both parts are the same shape called c-

c coupon constructed of different shapes of the walls from a

single bead deposition. A blown powder-based LMD setup is

used for both depositions. Image acquisition provided via high-

speed coaxial medium wavelength infrared (NWIR) imaging

(1 kHz) attached to the processing head with the resolution of

64× 64 pixels where each pixel stands for 50× 50 um .

(a) (b)

Fig. 3. Illustration of (a) finished c-c coupon from blown-powder, laser
melting deposition, (b) 3-dimensional positions of the images captured from
the deposition. The first 11 layers with blue colour show the training data.

The first coupon is used path planning that requires the

alternation of the direction between the layers but starts in all

layers at the same point. The same alternation applied for the

second coupon but the starting points changed in every layer.

The laser power is set to 650W for the 10mm/s scan speed

and 32.5 J/mm3 energy densities for the first coupon and

850 W for the 6 mm/s scan speed and 70.8 J/mm3 energy

densities for the second coupon. Layer thickness is set to

2.24 mm for the first coupon and 3.03 mm for the second

coupon for the deposition. The deposition data set consists of



120 layers and 91000 frames for the first part and 66 layers

and 86000 frames for the second part.

A computerised tomography (CT) scan has been done on

both parts to identify defects without destruction on the parts.

The scan result provides the number of defects per layer for

both parts. In this study, a relationship between the number of

the defects and outliers identified by the proposed algorithm

is assumed.

B. Online outlier detection using a self-tuning multi-model

approach

The training of the proposed method starts with the selection

of the training data set from the deposition. In this study, the

first 11 layers of the part are selected as initial training data set.

Fig. 3(b) illustrates the comparison of all layers and the initial

training data set. The update in the training dataset follows

a moving window principle where the newly deposited layer

is added, but the very last layer is removed from the training

window.

In Fig. 4, k-means clustering labels for the first training data

set is illustrated. Here, the number of the clusters assigned as 4
based on Silhouette scores. This assignment remains constant

for the coming updates via the self-tuning mechanism, for the

sake of simplicity for this study. A clear separation of the

direction and position of the samples in the deposited part can

be seen. Even though different separations are observed in the

first 3 layers, similar patterns are acquired in the following

layer. This is because of the difference between the interaction

of the melting points with ground zero and the deposited part.

The aforementioned path planning for the first coupon that

is related to the same starting point for each layer can also

be seen around origin of the x-axis where these behaviours

clustered under cluster-4.

Fig. 4. Illustration of the cluster separation on the training data set acquired
from the first coupon.

Following the initial clustering in Fig. 4, MPCA models

are trained from the meltpool images assigned into the related

clusters to reduce the size of the dimensions while keeping

the explained variances high. One of the parameters for the

MPCA modelling to identify the number of the reduced size

of features is the level of the explained variance. 90% level

of explained variance is selected for each MPCA model. Due

to the complex process dynamics of the AM, the meltpool

characteristics tend to change through the deposition due to

the nature of the path planning and the design of the print

parameters.

In this study, the training data set and MPCA models

change with every layer by following the moving window

principle that always provides 11 layers long training data

set for clustering and consequently MPCA modelling. After

successful modelling, the T 2 metric evaluation for the next

layer is done for the detection of the outliers; once the next

layer is printed, the training-forecasting process is repeated.

It is worth noting that the outliers identified in this stage are

not involved in the training data set for the next iteration of

the self-tuning scheme due to suspected abnormalities of the

samples.

Initial MPCA models for each sample cluster provided

around 80% total reduction in the size of the original thermal

image where they convert 64 × 64 tensor to 12 × 12, 12 ×
15, 10 × 10, 11 × 11 matrices for 90% level of explained

variance, respectively. Even though these numbers are for

the first training data set the remaining iterations for the

self-tuning followed the same trend. Determination of the

control limits for the T 2 is another important point for the

outlier detection where it can be determined as (1− α)100th

percentiles of the F-distribution. However, these normality

assumptions for features and residual distributions are not valid

in some cases. In such cases like this study, the empirical

distributions are estimated using the training samples which

are in control. In this study, 3 different control limits are tested

for both parts where they are assigned by using 2.2, 2.5 and 3
times of the standard deviation of the empirical distributions

of the training data set.

Fig. 5. Illustration of the testing data set with the outlier identified by the
MPCA models based on 2.2σ for the first coupon.

Fig. 5 illustrates the outliers on the testing data sets for the

first coupon based on 2.2 times the standard deviation. Here,



detected outliers are dense on the outer c-shape where the

angle of the wall is suitable for the defects considering the

single bead based deposition. Defects frequency also follow

the beam path of the deposition where we see more outliers

in the direction of the path around the starting point for the

first part. The frequent outlier side alternates in every layer

from the starting point.
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Fig. 6. Illustration of the quadratic fit on the number of defects versus the
predicted number of the outlier where the reference represents one to one
matching.

Fig. 6 illustrates the number of defects found from the CT

scan and the number of outliers from the proposed methodol-

ogy. The samples represent 50 layers after the initial 11 layers

for the base training. There is a clear relationship between

the number of outliers detected and defects measured. It is

possible to fit a function (linear, quadratic etc.) that would

account for the mapping between outliers and defects. In our

case, a quadratic function is estimated to project this bias:

b = −004511a2 + 1.181a + 46.48. Table I tabulates mean

absolute percentage errors (MAPEs) of the remained testing

layers that are not used in the calibration according to

MAPE =
100

M

M∑

m=1

∣∣∣∣
Am − Fm

Am

∣∣∣∣ (10)

where Am and Fm are the number of defects from the CT

scan and the proposed algorithm after the calibration. M is

the number of the remained sample of layers. Here, each

calibration is done separately for each control limit and coupon

combination. Choosing 2.2σ for the first coupon results in

good prediction response in comparison with the other control

limits. On the other hand, the second coupon shows different

characteristics in the calibration phase where the higher control

limits results in better defect forecasting. Note that higher

control limits can result in fewer outliers above the limits if

the T 2 metric is assumed as well-distributed.

TABLE I
MAPE [%] VALUES FOR THE DIFFERENT CONTROL LIMITS.

Coupon No—Control Limit 2.2σ 2.5σ 3σ

1 10.80 11.13 11.66

2 22.75 21.49 15.89

IV. CONCLUSION

In this study, we presented an in-situ monitoring method for

AM based on image streams. To the best of our knowledge,

it is the first deployment of a multi-model approach based on

SPC and MPCA where extracted image features are clustered

together to define the multi-model characteristics. In-situ im-

plementation is achieved via a self-tuning mechanism that uses

a sliding window approach to add/drop layers to the training

dataset iteratively. This results to multi-model framework, that

continuously adapts to part design.

The proposed outlier detection scheme is tested on two

LMD parts, of the same design, but manufactured under

different process conditions. Results demonstrate there is a

correlation between the outliers predicted and the measured

part defects. This relationship can be modelled, in each case,

using simple functions as a way to calibrate the system for

the proposed empirical control limits. The best case scenario

calibration and control limits, for the two parts, yield above

84% accuracy in forecasting defects.
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