
This is a repository copy of A survey of 3D audio through the browser:practitioner
perspectives.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/187913/

Version: Accepted Version

Proceedings Paper:
McArthur, Angela, Van Tonder, Cobi and Knight-Hill, Andrew (2021) A survey of 3D audio
through the browser:practitioner perspectives. In: 2021 Immersive and 3D Audio: from
Architecture to Automotive (I3DA). IEEE , pp. 1-10.

https://doi.org/10.1109/i3da48870.2021.9610839

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©2021 IEEE

A survey of 3D audio through the browser:
practitioner perspectives

Angela McArthur
SOUND/IMAGE Research

Group
University of Greenwich

London, UK
a.mcarthur@gre.ac.uk /

Orchid ID - 0000-0002-

4564-4737

Cobi van Tonder

Dept of Theatre, Film,

Television & Interactive

Media
University of York

York, UK
cobi.vantonder@york.ac.uk

Leslie Gaston-Bird
Institute of Sound

Recording
University of Surrey
Guildford, Surrey

l.gaston-bird@surrey.ac.uk

Andrew Knight-Hill
SOUND/IMAGE Research

Group
University of Greenwich

London, UK
a.hill@gre.ac.uk / Orchid

ID - 0000-0003-1521-0396

Abstract — This paper examines the current eco-system of

tools for implementing dynamic 3D audio through the browser,

from the perspective of spatial sound practitioners. It presents a

survey of some existing tools to assess usefulness, and ease of use.

This takes the forms of case studies, interviews with other

practitioners, and initial testing comparisons between the

authors. The survey classifies and summarizes their relative

advantages, disadvantages and potential use cases. It charts the

specialist knowledge needed to employ them or enable others to.

The recent and necessary move to online exhibition of works,

has seen many creative practitioners grapple with a disparate

eco-system of software. Such technologies are diverse in their

both their motivations and applications. From formats which

overcome the limits of WebGL’s lack of support for Ambisonics,

to the creative deployment of Web Audio API (WAA), to third-

party tools based on WAA, the field can seem prohibitively

daunting for practitioners. The current range of possible

acoustic results may be too unclear to justify the learning curve.

Through this evaluation of the current available tools, we hope

to demystify and make accessible these novel technologies to

composers, musicians, artists and other learners, who might

otherwise be dissuaded from engaging with this rich territory.

This paper is based on a special session at Soundstack 2021.

Keywords—3D audio, Web Audio, Ambisonics, Browser,

Practice, Survey

I. INTRODUCTION

The last year and a half has witnessed an increased
presentation of sound and musical works online. The
pandemic has catalysed the development of these tools as
promoters seek to employ more immersive impressions for
audiences. Whilst this has afforded greater potential audiences
for event organisers and artists, there are associated challenges
in translating (or creating) works for this form of exhibition.
This paper provides an overview of the current tools available
for creative practitioners to work with spatial sound through
the browser. Such tools overcome the limitations of pre-
rendered binaural (stereo) streams, which may provide
immersive sound but not dynamically (e.g. without head-
tracking so that the sound field moves with head movement,
decreasing immersion). Existing technologies can provide a
greater range of possibilities, including an enhanced sense of
immersion. Increased awareness of these, and hopefully an
increased uptake, is the motivation for this paper.

The tools are grouped into three categories – Web Audio API
(WAA), Ambisonics, and WebRTC. These groupings may not
at first glance seem intuitive to practitioners, however they
designate important components in the architecture of the
tools. These components limit or potentiate their affordances

Fig. 1. A map of the tools surveyed in this paper

in fundamental ways. The tools described below were
presented at Soundstack 2021, though do not represent an
exhaustive sweep of available tools. A section outlining
further tools is included towards the end of the paper for this
reason. All tools (with just one exception) are free to use and/
or open source. See Fig. 1 for an overall representation of the
eco-system of tools set out in this paper.

In section II we outline the criteria for evaluation we applied
when evaluating the tools. In section III we introduce WAA
and discuss tools which extend WAA and provide certain
spatial affordances. In section IV we turn our attention to tools
which make an ambisonic representation of the sound field
possible. Section V discusses one tool built using WebRTC
(as this tool is unique in many ways and provides a useful
point of comparison). Section VI briefly outlines tools which
are available but were not presented at Soundstack 2021.

II. CRITERIA FOR EVALUATION

A. Usefulness

The way practitioners use technologies is often symbiotic
with their affordances. While it is not feasible to anticipate
every use to which a creative practitioner could apply a given
tool (indeed, the creative use of tools is what often extends
their application beyond the original intent of developers) the
affordances of the tools are addressed in pragmatic terms.
Usefulness here therefore comprises two things: the number
of barriers which the tool overcomes effectively on the behalf
of a practitioner, and the range of use cases it affords (a diverse
range of options being preferable).

2
0
2
1
 I

m
m

er
si

v
e

an
d
 3

D
 A

u
d
io

:
fr

o
m

 A
rc

h
it

ec
tu

re
 t

o
 A

u
to

m
o
ti

v
e

(I
3
D

A
)

| 9
7
8
-1

-6
6
5
4
-0

9
9
8
-8

/2
1
/$

3
1
.0

0
 ©

2
0
2
1
 I

E
E

E
 |

D
O

I:
 1

0
.1

1
0
9
/I

3
D

A
4
8
8
7
0
.2

0
2
1
.9

6
1
0
8
3
9

Authorized licensed use limited to: University of York. Downloaded on December 07,2021 at 17:33:49 UTC from IEEE Xplore. Restrictions apply.

B. Ease of use

This criterion designates an absence of barriers to using
the tool for a non-specialist. Most practitioners have an
intermediate level of technical knowledge if working with
spatial sound. They would need an extended range of this
knowledge, to consider working through the browser. Web
development is in itself a specialism and often requires a large
investment of time and effort to achieve reliable results (the
challenges of working across operating systems, browsers,
etc. are beyond the scope of this paper).

C. Support & documentation

Projects which produce open-source tools are often funded
for finite periods of time. Active support and maintenance for
such tools beyond the life of the project can be uncommon.
Without communities of users to support one another, and/ or
adequate documentation aimed at non-specialists,
implementing specific artistic goals with such tools can be
difficult. The burden of learning increases. This impacts a
practitioner’s experience, a project’s time frame, and thus use
of the tool.

III. WEB AUDIO API (WAA)

WAA is a high-level JavaScript (JS) API, a tool (or more
accurately, set of tools) which enable optimised audio
synthesis and processing, directly in the browser - the kinds of
capabilities “found in modern game audio engines as well as
some of the mixing, processing, and filtering tasks that are
found in modern desktop audio production applications” [1]
These range from basic processing like equalisation, to
spatialisation, to more interactive processing such as real-time
microphone input. WAA processing is done via JS control of
Assembly/C/C++ code, and is implemented in all major
browsers [2]. One can also write custom effects directly using
JS. These range from basic processing like equalisation, to
spatialisation, to more interactive processing such as real-time
microphone input. WAA was developed by the World Wide
Web Consortium (W3C) to afford more complex audio
applications through the browser than was possible with
HTML5’s audio element. HTML5 had led to media players
(plugins such as QuickTime or Flash) becoming obsolete.
However, the audio streaming and playback afforded by
HTML5 was basic. The development of WAA overcame this,
and afforded many use cases as a result (see [3] for examples),
enabled by its modular flexibility and integration with other
web standards and tools (e.g.WebGL, WebXR).

“..we can write the code needed for our project with ease.
If we run into a problem we will usually find a good solution

Fig. 2. WAA PannerNode Visualization. Source: [4]

to it on the web. We don’t have to spend our time with learning
[…] some poorly documented proprietary audio engine” [5].

 WAA’s PannerNode enables spatialisation of an audio
stream, relative to an AudioListener, for an AudioContext
instance. It renders distance and direction cues in cartesian
space, based on the stream’s position and orientation, relative
to the AudioListener’s. Different distance and direction
models are available (though distance modelling is limited to
attenuation and does not account for spectral changes, which
is limiting). PannerNode objects (the audio streams) have an
orientation vector (which direction the stream is facing) and a
sound cone (how directional the stream is). The AudioListener
(the listener’s ears) have vectors representing their facing
direction. These features alone provide a level of spatial
control which can be helpful to the practitioner new to
working through the browser (see Fig. 3).

The PannerNode requires that mono-to-stereo (if all inputs
are mono) and stereo-to-stereo (where any input is not mono)
panning is supported. PannerNode currently offers two
panning algorithms: ‘equal-power’ and ‘HRTF’ (the default,
which operates as a stereo-only panner). The HRTF ((Head-
related Transfer Function) requires particularly optimized
convolution [1], which is a key concern for any browser-
based system. HRTF panning is more expensive than the
‘equal-power’ algorithm, but does provide a spatialized sound
more true to perceptual experience [1] than the ‘between the
ears’ experience of the former [6].

WAA currently specifies a maximum channel count of 32,
which constrains reproduction of multitrack signals. This
means streaming > 4OA (Fourth Order Ambisonics) is not
currently possible. In theory, a custom Chromium [7] browser
could be built for a greater number of (arbitrarily specified)
channels, simply by changing the maximum channel count
value before compiling the browser, though this is likely to be
a prohibitive step for most practitioners.

WAA has been implemented using one fixed set of HRTFs
(which developers cannot alter) from the IRCAM Listen
database [8] as described in [9], in Google Chrome and
Mozilla Firefox. This set is not identified in WAA
documentation. Although issues can arise from non-
individualized HRTFs (e.g. poor externalization) these issues
can be offset if head-tracking is employed [10]. The BBC
Audio R&D team undertook a custom build of the Chromium
browser to implement a HRTF set of their choosing [6] though
as previously stated, this is likely a prohibitive step for most

Fig. 3. An example of modular routing Source: [1]

Authorized licensed use limited to: University of York. Downloaded on December 07,2021 at 17:33:49 UTC from IEEE Xplore. Restrictions apply.

practitioners. Work has been done to extend WAA in order to
have custom HRTF capability (for example, as FIR filters via
a Binaural-FIRNode which accept SOFA [11] HRTF files, see
[9] for details) though implementing these this requires further
development time and skills. The Ambisonic tools outlined in
section IV also afford custom-loaded HRTFs. Future versions
of WAA may support the SOFA file format, for loading
custom HRTFs, giving developers more control over this
aspect of binaural reproduction [6].

General limitations (-) and affordances (+)

- Maximum channel count of 32 limits ambisonic
reproduction to <= 4OA

- One fixed set of HRTFs unless custom Chromium
browser is built (a prohibitive step)

- Distance models based only on attenuation only, not
combined with frequency changes, thus perceptually crude

- Without customization, the spatial parameters of WAA
are aggressive (though obvious cues can be valuable at times)

- Implementations of WAA vary across browsers (e.g.,
channel-ordering of audio files) which can affect the
behaviour of practitioners’ work, making it unreliable

+ Widely supported and documented. Online communities
make this a good starting place for practitioners

+ WAA uses a modular audio graph paradigm (inter-
connecting nodes, a kind of visual programming, see Fig. 3),
which may make it easier for practitioners to engage with (for
a helpful interactive demo of this visit [12].

+ Native spatialization is obvious for non-expert listener
audiences so can have immediate impact

+ Future versions of WAA may support custom HRTFs

+ For the practitioner with more advanced JavaScript
skills, custom effects can be created. A key benefit of WAA
is its extensibility.

A. Nemisindo

Nemisindo (formerly FXive) is a web-based, procedural
audio synthesis framework for sound design. It builds on
WAA with customized JS processors and functions. Its
procedural nature makes it stand out here. Many of the
Nemisindo’s sound synthesis models are original. Some are
based on work that has been published [13]–[16]. A useful list
of references used for the project have been made available at
[17] and key examples include [18]–[20].

The site provides a library of “synthesis models, audio
effects, post-processing tools, temporal and spatial placement
functionality for the user to create the scene from scratch” [21,
p. 1]. The procedural, real-time nature of the platform enables
a practitioner to shape the sound during its creation. These can
then be post-processed (including spatialization) using the
browser interface. In addition, 680 presets are available with
an option to download a snippet.

Each model and effect is encapsulated using the JSAP
audio plugin standard [22]. This affords flexibility through the
creation of complex audio graphs, which can be connected in

various configurations. The system’s architecture allows for
the models to be chained together.

The parameters for manipulating a sound’s qualities vary
with the sounds themselves, and include physical (e.g.
‘density’) and semantic (e.g. ‘warmth’) properties. The 'fan’
for example, offers parameters such as ‘motor ratio, ‘fan pulse
width’, and ‘brush level’, while the model for ‘wind’ offers
‘gustiness’, ‘squall’, and ‘branches’. Every model can be
processed with EQ, reverb, delay, distortion, and
compression. There are also controls for ‘spatialization’,
‘random’ (which randomizes the slider values), and ‘trigger’
(which permits triggering at specific times for each model’s
parameters, the presets, and for the randomizer). The
randomizer and trigger combined form a useful way of
introducing changes over time, thereby making sounds less
‘synthesized’.

The spatialization tool offers sliding controls for room
width and height, as well as for source position (see Fig. 4).
These panning functions utilize the WAA PannerNode. The
spatialization model also accounts for source direction,
orientation, velocity and provides parameters for setting the
distance model.

Helpfully, users can record and render the sounds they
create to a downloadable stereo .wav file. It should be noted
that Nemisindo has been optimized for Chrome and may not
work well on other browsers.

 Limitations (-) and affordances (+)

- The interface is at times a little clumsy, moving between
different tools, audio playback and effects can be awkward

- The app is standalone. VST integration is planned but
currently not available

- Although the target demographic is sound designers, a
specific sub-group of amateur designers is the ideal audience.
This is because professional sound designers require a specific
workflow, seamless integration with a DAW, and the ability
to insert sounds at specific timecodes

- Procedural, therefore potentially computationally
demanding (though sounds can be downloaded to mitigate
against this)

+ Procedural, with all the benefits of real-time synthesis

+ The interface is easy to use and provides user-friendly,
real-time manipulation of parameters

+ Good documentation. A help button is available on every
screen, and a FAQ section is also available

+ The sounds are convincing enough for a video game
environment

+ The program is a good instructional tool in itself

+ Avoids pitch-shifting and time-stretching sample-based
audio, which can be limiting

Authorized licensed use limited to: University of York. Downloaded on December 07,2021 at 17:33:49 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Nemisindo Spatialization Interface

B. The PlugSonic Suite

Pluggy is an open-source social platform for creative
content related to cultural heritage. It allows users to both
store ‘assets’ and ‘exhibitions’. Assets can be individual
images, audio files, 3D models or video files, whilst
exhibitions are categorized in Blog Stories, Tours,
Soundscapes, AR/VR, Games and Timelines. The Pluggy
platform offers useful tools called pluggable applications to
edit, organize, license and share content. These free
applications are Pluggy3d Suite (for creating AR/VR
experiences), Pluggy Pins (for creating self-guided tours),
Games Hunter (a video game authoring App that provides the
basic bricks to develop without specific programming
knowledge collaborative games) and the PlugSonic Suite (for
creating soundscapes) [12].

 The wider aim of this project is to encourage active
participation in digital cultural heritage activities by creating

immersive experiences, with easy to use, free tools to allow users
to share their local knowledge and everyday experience with
others. Here the focus is on describing the tools in terms of
their spatial audio capabilities. The PlugSonic Suite [23]
allows the user to edit samples, create soundscapes, create 3D
objects, and integrate them into the online exhibitions hosted
within the Pluggy social platform. From editing and
processing, to licensing, combining into exhibition and
sharing, everything is done from the user account in the
browser. See [12] for examples and tutorials.

The PlugSonic Suite consists of PlugSonic Sample,
PlugSonic Soundscape, Soundscape Experience Web, and
Soundscape Experience Mobile. PlugSonic Sample is a sound
file editor that includes basic editing functions as well as
licensing tools to create individual audio samples stored as the
previously mentioned assets. These assets next can be used in
the PlugSonic Soundscape to create and experience 3D
interactive soundscapes within the browser and on touch-
enabled devices. It allows various details such as positioning
sounds, setting whether they loop or play once, spatiality
attributes such as panning and loudness relative to an object,
and volume. It allows for setting interaction areas (when a
visitor enters this area a sound becomes audible for example)
and interaction behaviours (the sound fades in, or triggers at
full volume for example). There are timing settings allowing

for various time controls, such as order in which a series of
samples are played. Soundscape Experience Web allows
visitors to experience exhibitions in the browser, using the
mouse or keyboard arrows to navigate and listen (see Fig. 5).
Soundscape Experience Mobile enables navigating
soundscapes using touch-based interfaces. Alternatively, it
enables an immersive virtual experience delivered in real-
world or AR environments. In this case, users explore a
soundscape according to their movements in the real-world
captured using ARkit. The 3D audio simulation in real-time
according to the relative position of the device with respect to
the detected ground plane. Spatialization is performed by the
3DTune-In audio toolkit [24].

 Limitations (-) and affordances (+)

- When moving through an exhibition, it would be good if
there is some sort of UI barrier/boundary condition to avoid
the user moving through the sound source itself (a black dot)
as this sometimes results in distortion

- If selecting individualized HRTFs, it would be useful to
have test playback using an audio reference, to discern which
HRTF is preferred. With unfamiliar /artistic sound files, it is
hard to judge whether the experience reflects the spatial
quality of the recording, or the selected HRTF

- The documentation places a strong emphasis on
'European Heritage'. The authors think it would be important
to include a global audience and heritage sites/projects from
all over the world

+ Having an entire suite allows even novices with basic
technical skills access to tools that allow them to prepare
samples, all the way up to preparing an exhibition in a spatial
audio context

+ Comprehensive documentation and an easy-to-use
interface

+ For playback settings, the visitor can control parameters
such as ‘head circumference’

+ The visitor can choose from various HRTFs to
individualize the binaural experience

+ Audio sources are clear in terms of directivity,
localization and disambiguation

+ Offers user accounts for creators to edit, save and share
work in an online platform

Fig. 5. PlugSonic Soundscape Create User Interface

Authorized licensed use limited to: University of York. Downloaded on December 07,2021 at 17:33:49 UTC from IEEE Xplore. Restrictions apply.

IV. AMBISONICS

The tools designated in the following section make an
ambisonic representation of the sound field possible. They are
based on WAA, specifically the GainNode, ConvolverNode
(used during binaural decoding) and ChannelMergerNode
(which groups audio channels into single streams). However
through Ambisonics, these tools use a different, scene based,
paradigm. One key advantage of this approach for spatial
sound representation, is computational efficiency. This is
particularly helpful for audio-visual experiences, interactive /
real-time experiences, and/ or cases where there are many
sources, where source panning is frequent, or manipulations
of the entire scene are likely. In short, where there are high
demands placed on computational resource. The impact of this
benefit is heightened for some hardware configurations,
though becomes more complicated overall, due to the
unpredictability of the client’s system, an inherent issue with
web development. For this reason, practitioners may decide to
decode the ambisonic signal at the server side, rather than
render the binaural signal independently on each client.

Currently only <= 4OA is possible due to the limit of 32
audio channels prescribed in the WAA specification.
Meanwhile many tools are being developed for working
offline in 5OA - 7OA. With the Eignenmike’s 64 channel
ambisonic microphone being released this year, a 7OA end-
to-end production workflow (offline) is possible. IEM’s
ambisonics plugin suite [25], Aalto’s SPARTA [26], and
Ircam’s Spat externals [27], are available for free. This is
important for practitioners working creatively, while
workflows remain uncertain. However, the ability of the
browser to reproduce these is currently limited to static, pre-
rendered streams.

 Limitations (-) and affordances (+)

- Only <= 4OA currently possible due to the limit of 32
audio channels in the WAA specification

+ Relatively inexpensive, computationally

+ Custom HRTFs can be loaded

+ For practitioners who are familiar with Ambisonic
representations, practices and workflows, their existing body
of knowledge can be built upon, with less additional learning

A. JSAmbisonics

This JavaScript library comprises modules for real-time
spatial audio processing. The extensive set of modules
correspond to typical ambisonic production and manipulation
processes (e.g. encoding, rotation, binaural decoding). It is
deployed via Node.js, and each ‘node’ can be used
independently or in combination. It has been designed for
computational efficiency “particularly regarding spatial-
encoding and decoding schemes, optimized for real-time
production and delivery of immersive web content” [28, p. 1].
It works for Ambisonics of various specifications:

- ACN channel ordering and N3D (as default) or
SN3D normalization

- FuMa format (up to 3rd-order)

- FOA B-format signals in some cases (see [28])

For some examples of the library’s modules at work see
[29]. For a (perhaps partisan) appraisal of this library over
Google’s Omnitone see [30].

 Limitations (-) and affordances (+)

- Not actively maintained

+ Overall an advanced and comprehensive suite of
components

+ Customizable features (e.g. binDecoder: implements
ambisonic to binaural decoding, using user-defined HRTF-
based filters)

+ Provides many audio classes which provide helpful
ready-to-use features (such as conversion between different
Ambisonic ordering conventions)

+ Provides ability to rotate the sound scene of an
ambisonic stream, with real-time control of yaw, pitch, and
roll rotation angles

+ Well documented despite lack of active maintenance

B. Omnitone

Google’s Omnitone library is another JavaScript
implementation based on WAA, for multichannel streaming
and binaural rendering of ambisonic signals <= 3OA. It does
this through the AudioBufferSourceNode. As with
JSAmbisonics, head position (with additional
implementation) can be translated via the rotation matrix to
create head-tracking. Binaural rendering is enabled through
WAA’s ConvolverNode and GainNodeinterfaces. Omnitone
uses SADIE HRTFs [31] though custom HRTFs can be
loaded. Omnitone's goal is to be a transparent framework for
binaural rendering. Additional effects are possible due to the
extensible nature of Omnitone, but only through further
development. An example of this can be seen in OpenAirLib
[32] which is a modified version of Omnitone. An
implementation of 2OA using Omnitone is available at [33].
A primer is available at [34].

Although there is a forum [35] which is active, it is not
populated with many issues, so resolving issues may require
more proactivity on the part of the practitioner. Not all
practitioners are comfortable interacting with developers in
such environments, but are encouraged to do so by the authors.
Feature requests, raising issues, etc. all contribute to a
repository of information, which is helpful to future
practitioners.

 Limitations (-) and affordances (+)

- Forum only nominally active

+ Codec-agnostic. Providing that the audio stream is
available via WAA(e.g. BufferSource or MediaStreamSound)
it performs the spatialization as expected

+ Optimized performance as Google is heavily involved
with web specifications, including WAA

+ Good suite of components alongside documentation

Authorized licensed use limited to: University of York. Downloaded on December 07,2021 at 17:33:49 UTC from IEEE Xplore. Restrictions apply.

C. HOAST

HOAST (Higher-Order Ambisonics STreaming) is a
browser-based multimedia platform for HOA audio and 360o
videos. It is based on JSAmbisonics but provides some useful
modifications. It uses OPUS files in a WebM container, and
streams using MPEG-DASH. This stream is received by the
client via dash.js and sent to the HTML5 audio element. It is
then decoded and included in the WAA audio context using a
MediaElementAudioSourceNode. The audio part of the
stream (if the file is a 360o video) is then sent to nodes (based
on the JSAmbisonics nodes) for processing - namely rotation
and acoustic zoom. Finally, the binaural decoding filters are
convolved with the ambisonics stream using the WAA
convolver nodes and sent to the client audio hardware via the
AudioDestinationNode. Internally, the video is rendered using
the JavaScript 3D library (three.js) which itself uses a WebGL
renderer. The acoustic zoom effect allows the user to focus on
far-field sources in a particular direction (the view direction),
essentially ‘pulling’ the field toward the listener from this
direction. Consequently, it emphasizes sound sources in that
direction, and effectively attenuates sources outside that
direction.

The OPUS codec (a versatile audio codec for interactive
speech and music transmission over the internet, also intended
for storage and streaming applications) was chosen as it
supports the highest number of channels per file (for browsers
tested by the developers, see [36] with the exception of Safari,
which can be difficult to develop for). Despite it being a lossy
codec, research [37] has shown any degradation to be
negligible in 3OA for a bit rate of 32 kbit/s per channel or
higher. The balance between quality and performance is
heightened for browser-based applications.

 Limitations (-) and affordances (+)

- iOS devices and some browsers do not support OPUS

+ Simultaneous audio and video rendering has been given
particular attention (this is expensive in general, so codecs,
and decoding methods have been selected with this in mind)

+ State-of-the-art dynamic binaural decoding based on
FOV (MagLS filters used, see [38])

+ Adaptive bitrate streaming for video

+ Acoustic zoom/ dominance effect (in 3DoF media)

+ Audio content can be accompanied by 360o video or
dual-mono video content, for playback in the browser, where
the FOV is controlled via the mouse, or via head-mounted
displays (HMDs) via a custom video.js plug-in using WebXR
API (WebXR needs to be enabled explicitly in Chromium-
based browsers)

+ Support of further 360o and HMD formats in videojs-xr
is planned for the future

+ Option to use the IEM servers to host your 360o HOA
video for playback

+ Documented case of live streaming 3OA (during Audio
Mostly 2020 in Graz)

D. Earshot

Envelop Ambisonic RTMP Streaming Higher-Order
Transcoder (Earshot) forms part of a series of tools created by
Envelop for creating and streaming multi-channel immersive
3D sound experiences. These include offline spatial audio
production tools ‘Envelop for Live’ (E4L) (for Ableton Live
Suite). Earshot can be used to transcode higher-order
Ambisonics and other multichannel live streams for the web.
Earshot is mostly aimed at developers creating custom
applications for livestreaming ambisonics. Earshot integrates
with E4L in such a way that one can for example work in
Ableton Live with the E4L to do panning and then, by using
Loopback [39] or a digital or physical alternative, stream it
with Earshot (see Fig. 6).

 Earshot allows one to stream HOA up to 3OA (16
channels) through the browser. Earshot is a containerized
multichannel Real-Time Messaging Protocol (RTMP) -->

Fig. 6. Earshot User Interface

Authorized licensed use limited to: University of York. Downloaded on December 07,2021 at 17:33:49 UTC from IEEE Xplore. Restrictions apply.

Dynamic Adaptive Streaming over HTTP (DASH) or in short
RTMP --> DASH transcoder, based on Nginx’ [40]. Nginx is
open-source software for web serving, caching, load
balancing, media streaming, and more [41].

Earshot can be used with OBS Studio Music Edition [42]
an open-source software for video recording and live
streaming. It supports multichannel AAC encoding up to 16
channels (OPUS provides support for up to 255 channels,
however OBS only supports up to 16 channels on the encoding
side – therefore limiting the stream to 3OA). In any case, the
limit for <= 3OA web streaming (due to WAA) persists.

Earshot is based on Docker (a tool to create, deploy, and
run applications by using containers, that allow a developer to
package up an application with all of the parts it needs, such
as libraries and other dependencies, and deploy it as one
package); FFMPEG (a command line toolbox to manipulate,
convert and stream multimedia content), MPEG-DASH (an
adaptive bitrate streaming technique that enables high quality
streaming of media content over the internet delivered from
conventional HTTP web servers) and OPUS [43]. Earshot is
designed to be easily deployed to a cloud-based hosting
solution, such as AWS ECS or DigitalOcean.

Earshot is mostly aimed at developers creating custom
applications for livestreaming ambisonics. Earshot integrates
with E4L in such a way that one can for example work in
Ableton Live with the E4L to do panning and then, by using
Loopback [39] or a digital or physical alternative, stream it
with Earshot (see Fig. 6).

 Limitations (-) and affordances (+)

 - iOS devices and some browsers do not support OPUS

+ Well documented with and active community of users

+ Relatively easy to use (requires some knowledge of the
syntax of networking)

+ Codec supports live stream up to 255 audio channels (i.e.
up to 14OA) with optional video (web stream constrained to
4OA due to WAA channel count limitation)

+ Web interface for stream monitoring and debugging

+ Documentation clearly written and comprehensive

+ The Ambisonics stream produced on the server side
using Earshot is stable

E. Acoustic Atlas

Acoustic Atlas is a real-time auralization application
connected to a growing archive of room impulse responses
(RIRs) from natural and cultural heritage sites. These sites are
displayed on an interactive globe map user interface. Similar
to browsing Google Earth, a user can search via the globe
interface or also via text, for locations in the database. It
functions on any smart mobile device or computer running a
web browser. The built-in microphone (or selected
microphone in the device soundcard settings) and headphone
output of the device is utilized to transport the user to the
selected heritage site via headphones and live microphone
feed (which has its own UI, see Fig. 7).

Fig. 7. UI inside a location in Acoustic Atlas

The system utilizes a document-oriented database that
contains information such as geospatial position, room
impulse response filenames, ambient field recording
filenames, photography, archaeological text, acoustic text and
analysis, technology used, and more. These are all loaded
when clicking on the globe location.

The aims are to conserve acoustic heritage by creating
audible interactive experiences of said spaces, with an equal
mixture of acoustic scientific methods as well as creative
artistic process.

The project aims to curate specialist RIR content as well
as immersive field recordings and compositions. Such data is
managed via user accounts directly embedded into the
database, meaning said scientists and artists can manage their
own content. The general public may record themselves and
save their song or sound to their own devices. For legal
reasons the Acoustic Atlas do not keep such files and the audio
buffer clears on the client’s device the moment the site is
refreshed, or a new location is loaded. Any researcher or artist
doing relevant work should get in touch to add their work to
the archive [44].

The auralization process is enabled by WAA via
connecting a number of node objects to create the desired
signal chain. Tone.js [45] is a web audio framework, used as
a wrapper around WAA for various parts of the audio signal
flow and in particular for the convolution process. Tone.js
(similar to WAA) allows for sample-accurate synchronization
and scheduling of parameters. The simplified auralization
signal flow of audio is as follows:

MIC_INPUT --> GAIN --> EQ --> CONVOLVER -->
MASTER (see Fig. 8)

As a bridge, Tone.Context is used as AudioContext.
Tone.Convolver, Tone.Filter, Tone.EQ3, Tone.Meter,
Tone.Gain, Tone.UserMedia, Tone.Master enables the signal
flow for the complete auralizations process. Additionally, the
architecture includes Cesium.js for the globe interface.

 Limitations (-) and affordances (+)

- The project is in early development and still needs to
undergo robust user testing

- Documentation is largely unavailable at present

Authorized licensed use limited to: University of York. Downloaded on December 07,2021 at 17:33:49 UTC from IEEE Xplore. Restrictions apply.

Fig. 8. Signal flow of UI & audio processing in Acoustic Atlas

- A plugin version that musicians can use as a VST or
Max4Live plugin in musical DAWs would make more sense
in the context of music production, the current WAA version
has limited functionality in this respect

+ Supported on most devices

+ Easy to get started with and use

+ Great variety of potential future creative variations of
this project and such an archive

+ Practitioners can refer to a URL of a selected location
with its respective content, to enrich their work with real-time
auralizations of said location

+ Version 2.0 (anticipated summer 2021) will support
360o headtracking/browser movement mapped to B-format
RIR convolution reverb, thus adding to mobile and VR
formats

+ Useful for heritage acoustics and sound ecology contexts

+ Useful for sound art and music projects dealing with
acoustics and specific sites

V. WEBRTC

WebRTC (‘web real-time communication’) is an open-

source collection of JavaScript APIs affording direct, native

connection between browsers and web-enabled devices. It

provides high quality, low latency and low-cost video, audio

and data communications, implemented as open standards

for real-time, plugin-free applications. As such, it’s
particularly useful for computationally demanding

experiences (for example, social VR). It can be integrated

with WAA, which affords utilization of WAA’s modular
paradigm for audio processing and effects. It was developed

by Google and is available on most browsers and native

clients for major platforms. Its implementations vary across

browsers, as we would expect.

“The guiding principles of the WebRTC project are that its
APIs should be open source, free, standardized, built into

web browsers, and more efficient than existing

technologies” [46].

A. High Fidelity’s Spatial Audio API
High Fidelity’s Spatial Audio API is included here, though

proprietary, as it does something unique relative to other tools.
High Fidelity set out to have high quality audio with low
‘mouth to ear’ latency, available for live communication in
online environments, with multiple sound sources and
multiple listeners. This is no small undertaking. To achieve
this, they use their own cloud servers to mix in real-time and
send a single stereo stream to each listener in the online
environment. Hundreds of listeners can occupy the same
online environment, without compromising sound quality and
intelligibility. In fact, using peer networked servers they have
tested having 5,000 listeners within earshot of one another in
a single environment, simultaneously. Each with their own
real-time rendered HRTF, for binaural synthesis of a dynamic,
high quality environment. It worked. In order for it to work,
they needed to take a distinct design direction:

Use of WebRTC over WAA to overcome the > 100ms
latency of WAA

Audio is processed in the cloud with no cost on the client
side (making it mobile-friendly)

Use of full HRTF for each of the sources for each listener

The results can be experienced in online demos (see [47]).
They achieved these by making their HRTF model fast (using
a small audio framing window), paying attention to noise
gating and peak limiting methods, and other mixing
techniques which are not commonly employed by
technologies using WebRTC (video conferencing software)
where latency is prioritized, but spatialization is absent and
mixing is largely ignored, save for (sometimes aggressive)
ducking.

 Limitations (-) and affordances (+)

- Paid-for product

+ High quality sound

+ Low latency makes it great for real-time applications

+ Low acoustic stress for listeners relative to the number
of sound sources (sources do not compete for attention due to
high-quality spatialization)

+ Accommodates a high number of sources and listeners
in one space, simultaneously

+ Updated documentation, guides and examples [47] make
it relatively easy to implement

VI. FURTHER TOOLS

A. Google’s Resonance Audio SDK for the web

Resonance SDK is a real-time JavaScript SDK (or suite of
libraries) for encoding Ambisonics dynamically for the

Authorized licensed use limited to: University of York. Downloaded on December 07,2021 at 17:33:49 UTC from IEEE Xplore. Restrictions apply.

browser [48]. It uses Google’s Omnitone (and can export for
this) and extends it to include customizable parameters
(source directivity and spread, near-field effects) as well as
simple room-model features (surfaces and dimensions as well
as occlusions).

B. bogJS

bogJS [49] is a JS framework for object-based browser-
rendered audio, which uses WAA’s PannerNode (to be
extended by SpatialPannerNode once this is implemented in
the major browsers). Object based audio affords personalized,
scalable, immersive audio through the browser. For an
introduction to object-based audio see [50].

C. Invisio

Invisio allows expert and non-expert practitioners to
design platform-agnostic complex sonic experiences through
the browser, with dynamic 3D sound components [51].

VII. CONCLUDING REMARKS

All but one of the tools outlined in this paper are free to
use and/ or open source. This is a tremendous credit to the
work being undertaken by individuals and organizations
worldwide. High Fidelity's Spatial Audio API, the proprietary
tool, undertakes all of its processing on the company’s cloud
servers, at cost to them. The investment in this infrastructure
is evident in the quality of their tool. Some general notes about
developing for the web follow:

• Keep file codecs and sizes as manageable as possible,
given a project’s demands

• Develop for a primary browser (often Chrome, as
Google is heavily involved in developing web
standards) and primary hardware configuration. It’s
just not possible to consider all combinations of
hardware and software

• Web development is a specialism which should not be
underestimated, particularly on the server-side (e.g.
for live-streaming)

• Consider how powerful your server needs to be (for
example, how many people will access it
simultaneously) as this impacts project feasibility

• Invest in a good test setup to simulate live/ actual use

ACKNOWLEDGMENT

The authors would like to extend special thanks for input
provided by the following contributors: Hongchan Choi
(Chrome/ Omnitone/ W3C), Thomas Deppisch and Nils
Meyer-Kahlen (HOAST), Roddy Lindsay (Envelop/ Earshot),
Lorenzo Picinali (Pluggy) and Josh Reiss (Nemisindo). Cobi
van Tonder thanks the European Union’s Horizon 2020
research and innovation programme for support under the
Marie Sklodowska-Curie grant agreement No 897905.

REFERENCES

[1] “Web Audio API.” [Online]. Available:

https://www.w3.org/TR/webaudio/#Spatialization. [Accessed:
18-May-2021].

[2] A. Deveria and L. Schoors, “Can I use... Support tables for
HTML5, CSS3, etc,” 2021. [Online]. Available:
https://caniuse.com/?search=web audio api. [Accessed: 27-May-
2021].

[3] J. (ed. . Berkovitz and O. (ed. . Thereaux, “Web Audio
Processing: Use Cases and Requirements,” 2013. [Online].
Available: https://www.w3.org/TR/webaudio-usecases/.
[Accessed: 27-May-2021].

[4] MDN contributors, “Basic concepts behind Web Audio API -
Web APIs | MDN,” 2021. [Online]. Available:
https://developer.mozilla.org/en-
US/docs/Web/API/Web_Audio_API/Basic_concepts_behind_We
b_Audio_API. [Accessed: 14-Jun-2021].

[5] Tom Söderlund, Marcus Krüger, Michael Stenmark, Oskar
Åsbrink, and Robert Nyman, “Songs of Diridum: Pushing the
Web Audio API to Its Limits - Mozilla Hacks - the Web
developer blog,” 2013. [Online]. Available:
https://hacks.mozilla.org/2013/10/songs-of-diridum-pushing-the-
web-audio-api-to-its-limits/. [Accessed: 20-May-2021].

[6] C. Pike, P. Taylour, and F. Melchior, “Delivering Object-Based
3D Audio Using The Web Audio API And The Audio Definition
Model,” in 1st Web Audio Conference (WAC-2015) (2015) 2-6,
2010.

[7] “The Chromium Projects.” [Online]. Available:
https://www.chromium.org/. [Accessed: 27-May-2021].

[8] “LISTEN HRTF DATABASE.” [Online]. Available:
http://recherche.ircam.fr/equipes/salles/listen/. [Accessed: 19-
May-2021].

[9] T. Carpentier, “Binaural synthesis with the Web Audio API,” in
Proc. of 1st Web Audio Conference, 2015, pp. 0–7.

[10] P. Stitt, E. Hendrickx, J.-C. Messonnier, and B. Fg Katz, “The
Role of Head Tracking in Binaural Rendering,” in 29th
Tonmeistertagung - VDT International Convention, 2016, pp. 1–
5.

[11] “SOFA (Spatially Oriented Format for Acoustics) -
Sofaconventions,” 2021. [Online]. Available:
https://www.sofaconventions.org/mediawiki/index.php/SOFA_(S
patially_Oriented_Format_for_Acoustics). [Accessed: 14-Jun-
2021].

[12] “Web Audio Playground.” [Online].
Available: https://webaudioplayground.appspot.com/ [Accessed:
07-Jun-2021]

[13] J. R. R. Lee, J. D. Reiss, J. Ryan, R. Lee, and J. D. Reiss, “‘Real-
Time Sound Synthesis of Audience Applause’ Real-Time Sound
Synthesis of Audience Applause,” J. Audio Eng. Soc, vol. 68, no.
4, pp. 261–272, 2020.

[14] R. Selfridge et al., “Creating Real-Time Aeroacoustic Sound
Effects Using Physically Informed Models,” J. Audio Eng. Soc,
vol. 66, no. 8, pp. 594–607, 2018.

[15] J. Zúñiga and J. D. Reiss, “Realistic Procedural Sound Synthesis
of Bird Song Using Particle Swarm Optimization,” in 147th
Audio Engineering Society International Convention, 2019.

[16] J. Reiss, H. Tez, R. S.-A. E. S. C. 150, and U. 2021, “A
comparative perceptual evaluation of thunder synthesis
techniques,” in 150th Audio Engineering Society Convention,
2021.

[17] “Nemisindo References - Google Docs.” [Online]. Available:
https://docs.google.com/document/d/1qGFCtd8drv0GBETCAptX
J2EbIkJtdwZ2gQ5rhUsIGc0. [Accessed: 10-Jun-2021].

[18] A. Farnell, Designing sound. Cambridge, Massachusetts: Mit
Press, 2010.

[19] D. Rocchesso and F. Fontana, The sounding object. Firenze,
Italy: Phasar Srl, 2003.

[20] P. R. Cook, Real Sound Synthesis for Interactive Applications,
First. New York: A K Peters/ CRC Press, 2002.

[21] P. Bahadoran, A. Benito, T. Vassallo, and J. D. Reiss, “FXive: A
Web Platform for Procedural Sound Synthesis,” in 144th Audio

Authorized licensed use limited to: University of York. Downloaded on December 07,2021 at 17:33:49 UTC from IEEE Xplore. Restrictions apply.

Engineering Society Convention, 2018.

[22] N. Jillings, Y. Wang, J. Reiss, and R. Stables, “Convention e-
Brief 301 JSAP: A Plugin Standard for the Web Audio API with
Intelligent Functionality,” in 141st Audio Engineering Society
Convention, 2016.

[23] M. Comunità, A. Gerino, V. Lim, and L. Picinali, “Design and
evaluation of a web-and mobile-based binaural audio platform for
cultural heritage,” Appl. Sci., vol. 11, no. 4, pp. 1–22, Feb. 2021.

[24] M. Cuevas-Rodríguez et al., “3D tune-in toolkit: An open-source
library for real-time binaural spatialisation,” PLoS One, vol. 14,
no. 3, p. e0211899, Mar. 2019.

[25] Institute of Electronic Music and Acoustics, “IEM Plug-in Suite,”
2021. [Online]. Available: https://plugins.iem.at/. [Accessed: 15-
Jul-2021].

[26] “SPARTA - Spatial Audio Real-Time Applications,” 2021.
[Online]. Available:
http://research.spa.aalto.fi/projects/sparta_vsts/. [Accessed: 15-
Jul-2021].

[27] “Spat | Ircam Forum,” 2020. [Online]. Available:
https://forum.ircam.fr/projects/detail/spat/. [Accessed: 15-Jul-
2021].

[28] A. Politis and D. Poirier-Quinot, “JSAmbisonics: A Web Audio
library for interactive spatial sound processing on the web,”
Interactive Audio Systems Symposium, 2016.

[29] D. Poirier-Quinot and R. Vincent, “WebAudioAPI First and
Higher Order Ambisonic Examples,” 2017. [Online]. Available:
https://cdn.rawgit.com/polarch/JSAmbisonics/e28e15b384f2442a
66fadc0035439c64ed65fa4d/index.html. [Accessed: 20-May-
2021].

[30] J. Werle and A. Politis, “JSAmbisonics vs Omnitone · Issue #8 ·
polarch/JSAmbisonics · GitHub,” 2016. [Online]. Available:
https://github.com/polarch/JSAmbisonics/issues/8. [Accessed:
20-May-2021].

[31] “SADIE | Spatial Audio For Domestic Interactive
Entertainment.” [Online]. Available:
https://www.york.ac.uk/sadie-project/GoogleVRSADIE.html.
[Accessed: 27-May-2021].

[32] K. I. Brown, M. D. J. Paradis, and D. T. Murphy, “OpenAirLib -
Research Database, The University of York,” 2017. [Online].
Available:
https://pure.york.ac.uk/portal/en/publications/openairlib(60379d6
5-11fc-4478-8125-2406ea2b66c0).html. [Accessed: 19-May-
2021].

[33] “ASSEMBLY 2020,” 2020. [Online]. Available:
https://www.assembly2020.co/. [Accessed: 27-May-2021].

[34] “OMNITONE.” [Online]. Available:
https://googlechrome.github.io/omnitone/#home. [Accessed: 21-
May-2021].

[35] “Issues · GoogleChrome/omnitone · GitHub.” [Online].
Available: https://github.com/GoogleChrome/omnitone/issues.
[Accessed: 27-May-2021].

[36] T. Deppisch, N. Meyer-Kahlen, B. Hofer, T. Latka, and T.
Zernicki, “HOAST: A Higher-Order Ambisonics Streaming
Platform,” in AES Engineering Brief, 2020.

[37] M. Narbutt, S. O’Leary, A. Allen, J. Skoglund, and A. Hines,

“Streaming VR for immersion: Quality aspects of compressed
spatial audio,” in Proceedings of the 2017 23rd International
Conference on Virtual Systems and Multimedia, VSMM, 2017,
pp. 1–6.

[38] C. Schörkhuber, M. Zaunschirm, and R. Höldrich, “Binaural
Rendering of Ambisonic Signals via Magnitude Least Squares,”
in Proceedings of the DAGA, vol. 44, 2018, pp. 339–342.

[39] “Loopback.” [Online]. Available:
https://rogueamoeba.com/loopback/. [Accessed: 09-Jun-2021].

[40] Envelop, “Earshot,” https://github.com/EnvelopSound/Earshot.
[Online]. Available: https://github.com/EnvelopSound/Earshot.
[Accessed: 07-Jun-2021].

[41] “NGINX,” https://www.nginx.com/resources/glossary/nginx/.
[Online]. Available:
https://www.nginx.com/resources/glossary/nginx/. [Accessed: 08-
Jun-2021].

[42] OBS Project, “Open Broadcasting Software (OBS),”
https://obsproject.com. [Online]. Available:
https://obsproject.com/wiki/. [Accessed: 07-Jun-2021].

[43] “Opus Codec Documentation,” https://opus-codec.org/docs/,
2017. [Online]. Available: https://opus-codec.org/docs/.
[Accessed: 08-Jun-2021].

[44] C. van Tonder, “Acoustic Atlas,” https://acousticatlas.info, 2019.
[Online]. Available: https://acousticatlas.info. [Accessed: 07-Jun-
2021].

[45] Y. Mann, “Tone.js.” [Online]. Available: https://tonejs.github.io.
[Accessed: 07-Jun-2021].

[46] S. Dutton, “Get Started with WebRTC - HTML5 Rocks,” 2012.
[Online]. Available:
https://www.html5rocks.com/en/tutorials/webrtc/basics/.
[Accessed: 14-Jun-2021].

[47] “Real-time Spatial Audio API for Group Voice Chat | High
Fidelity.” [Online]. Available: https://www.highfidelity.com/.
[Accessed: 20-May-2021].

[48] “Resonance Audio - Resonance Audio SDK for Web.” [Online].
Available: https://resonance-audio.github.io/resonance-
audio/develop/web/getting-started.html. [Accessed: 10-Jun-
2021].

[49] M. Weitnauer and M. Meier, “GitHub - IRT-Open-Source/bogJS:
JavaScript framework for object-based audio rendering in modern
browsers from IRT,” 2016. [Online]. Available:
https://github.com/IRT-Open-Source/bogJS. [Accessed: 10-Jun-
2021].

[50] C. (BBC), Baume, A. M. (BBC), P. B. (BBC), M. L. (BBC), M.
F. (BBC), and M. V. (MAGIX), “Object-based broadcasting – for
European leadership in next generation audio experiences D3 . 4 :
Implementation and documentation of a live object-based
production environment,” 2016.

[51] A. Çamcı, K. Lee, C. J. Roberts, and A. G. Forbes, “INVISO: A
Cross-platform User Interface for Creating Virtual Sonic
Environments,” Proc. 30th Annu. ACM Symp. User Interface
Softw. Technol. (pp. 507-518), 2017.

Authorized licensed use limited to: University of York. Downloaded on December 07,2021 at 17:33:49 UTC from IEEE Xplore. Restrictions apply.

