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Accurate but protein-only AlphaFold models may show structural
fingerprints of likely posttranslational modifications (PTMs). In this
issue of PLOS Biology, Bludau and colleagues add a functional con-
text to models by combining them with readily available proteomics
results.

The recent artificial intelligence revolution in protein structure prediction, spearheaded by

DeepMind’s AlphaFold [1] and swiftly seized upon by RoseTTAFold [2], is allowing scientists

to arrive at an accurate structural model of a protein, or at least parts of it, in a matter of hours.

This already diminutive lead time can be further compressed to mere seconds if the protein of

interest is found in the complete set of proteins expressed by an organism (proteome) in the

list of the ever expanding set of organisms covered by the AlphaFold Protein Structure Data-

base (AFDB). The AFDB, released in 2021 and subsequently updated [3], is expected to cover

the 100 million set of sequences in the proteomes available at UniRef90 [4]. It offers immediate

access to predicted models of human proteins, alongside reliable estimates of their accuracy in

the form of 2 metrics: pLDDT (per-residue confidence) and PAE (positional alignment error

of each residue with respect to the rest). Structures with a consistently high pLDDT and very

low PAE are expected to show an accuracy on par with experimentally determined protein

models.

Human proteins are obvious targets for therapeutics; however, their function and structure

are, more often than not, modulated or regulated by co- and posttranslational (covalent) modi-

fications, plus ligands and cofactors (noncovalent). Those important moieties, not currently

targeted by the AlphaFold algorithm, are conspicuously absent from predicted structures [5]:

As an example, many more than half of all human proteins are expected to include either pro-

tein glycosylation [6], phosphorylation [7], or both. Thus, the analysis of AlphaFold structures

of modified proteins can produce misleading results [5].

Recent studies have suggested that most predicted models are accurate enough to include

space for the absent modifications, ligands, and cofactors to be added postprediction [5,8].

Importantly, these endeavours can only be as successful as AU : Anabbreviationlisthasbeencompiledforthoseusedthroughoutthetext:Pleaseverifythatallentriesarecorrect:our ability to pinpoint their occur-

rence and location on a protein’s structure. In a slightly different case, transplanting likely

ligands (e.g., a heme group onto hemoglobin or a polysaccharide onto a glycoside hydrolase)

onto AlphaFold models by homology with experimental structure models becomes
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increasingly error-prone when the homology becomes more distant. In the case that homology

is absent altogether, transferable knowledge from experimental structure models is absent as

well, and this process becomes a speculative docking experiment.

In the absence of experimental structural models, the extensive proteomics datasets avail-

able today can provide information on co- and posttranslational modifications (PTMs) on the

respective target proteins [9]. Furthermore, the covalent transference of modifications onto

protein often follows a consensus sequence—e.g., N-glycosylation on Asn-X-Ser/Thr where X

is any amino acid other than proline; these consensus sequences are variably well studied

across modifications. Crucially, mapping proteomics and bioinformatics information onto

AlphaFold 3D models may allow us to not just complete models, but to learn more about the

structural fingerprints left by modifications: the structure of their protein scaffold and their

environment. In this issue, Bludau and colleagues [10] discuss the first results from the imple-

mentation of such an approach, targeting different modification types including phosphoryla-

tion, ubiquitination, and more.

Not all PTMs are made equal: They may play different roles depending on whether they are

buried or exposed to solvent (Fig 1), added to a correctly folded region, a misfolded region, or

to an intrinsically disordered one. On that last point, the synergy with AlphaFold brings

another important contribution to the table: Because AlphaFold has been trained on data from

the structured parts of ordered proteins—a precondition for atomic positions to be well

resolved in both X-ray crystallography and electron cryo-microscopy, the 2 main techniques

contributing structures to the Protein Data Bank (PDB)—there is a good correlation between

intrinsic disorder and low prediction confidence as measured by AlphaFold;s pLDDT [1].

Fig 1. Different sequence profiles in exposed and solvent-excluded phosphosites (STY) as recognised by different kinases. The availability of accurate 3D
models now allows for this direct mapping of sequence profiles onto structures and allows estimating their solvent accessibility. Extracted from Fig 3d of
Bludau and colleagues [10].

https://doi.org/10.1371/journal.pbio.3001673.g001
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Bludau and colleagues [10] use this knowledge to select PTMs that are enriched for having reg-

ulatory functions. These regulatory modification sites show a preference for short intrinsically

disordered regions such as the activation loops in protein kinases. In addition, the authors use

AlphaFold models to show that different regulatory modification sites have a strong tendency

to flock together in 3D and not just in sequence space, hinting at coregulation or even cross

talk between different types of PTMs [10].

The work, as one of the first systematic analyses of the functional importance of PTMs, lays

an important foundation for new experimental studies targeting PTMs in specific proteins.

The authors provide software tools to shortlist the modification sites of regulatory importance,

thereby allowing more focused experimental studies. Importantly, the software—for which

source code is available from the “structuremap” and “alphamap” repositories at https://

github.com/MannLabs—will also enable richer annotation of PTMs on AlphaFold entries. To

this end, we think the results from Bludau and colleagues [10] would make a worthy contribu-

tion to the recently introduced 3D-Beacons database, which aims to become a reference point

for structural knowledge (https://www.ebi.ac.uk/pdbe/pdbe-kb/3dbeacons).
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