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We formulate a correspondence between SU(2) monopole chains and “spectral data”, 
consisting of curves in CP1 × CP 1 equipped with parabolic line bundles. This is the 
analogue for monopole chains of Donaldson’s association of monopoles with rational maps. 
The construction is based on the Nahm transform, which relates monopole chains to Higgs 
bundles on the cylinder. As an application, we classify charge k monopole chains which are 
invariant under actions of Z2k . We present images of these symmetric monopole chains 
that were constructed using a numerical Nahm transform.

Crown Copyright © 2022 Published by Elsevier B.V. This is an open access article under 
the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

This paper concerns monopole chains. An SU(2) monopole chain is a pair (A, �) consisting of an SU(2) connection A
and an su(2)-valued section � over R2 × S1 satisfying the Bogomolny equation,

F A = ∗dA�, (1)

and the boundary conditions,

|F A | → 0, |�| ∼ v + u lnρ as ρ → ∞. (2)

Here u, v ∈R, u > 0 and ρ is the radial coordinate on R2. The second boundary condition implies that � is non-vanishing 
for large ρ , so defines a map from a torus to R3 \ {0} with well-defined degree k ∈ Z. In fact k is non-negative and is 
related to u via u = k/β , with β being the circumference of S1. For a more detailed discussion of the boundary conditions 
see [7,32]. There is a fairly substantial literature on monopole chains [7–9,12,13,15,16,24–27,32]. Like monopoles on R3, 
monopole chains form moduli spaces which are known to be hyperkähler [13]. Monopole chains can be identified with 
difference modules via a Kobayashi-Hitchin correspondence [32].

In the first part of this article we describe results which allow one to study the moduli spaces of monopole chains fairly 
directly. The first of these, Theorem 5, is a Kobayashi–Hitchin correspondence between certain moduli spaces Mk

Higgs of 
parabolic Higgs bundles on CP 1 and moduli spaces Mk

Hit of solutions of Hitchin’s equations on the cylinder. The latter 
correspond to moduli spaces Mk

mon of monopole chains, via the Nahm transform of Cherkis–Kapustin [7]. The second, 
Theorem 7, gives a bijection between the moduli spaces Mk

Higgs and moduli spaces Mk
spec of spectral curves equipped with 

parabolic line bundles.
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The composition Mk
spec →Mk

Higgs →Mk
Hit →Mk

mon can be viewed as the analogue for monopole chains of Donaldson’s 
[11] and Jarvis’ [22] maps from moduli spaces of rational maps to moduli spaces of monopoles on R3 . Spectral data consist 
of algebraic curves and line bundles and, like rational maps, are much easier to write down than explicit solutions of (1). 
This is what makes Theorems 5 and 7 useful. Donaldson’s rational maps were used to great effect by Segal and Selby in 
their work on Sen’s conjectures [34], and similarly our result could perhaps be used to study the cohomology of moduli 
spaces of monopole chains.

In the second part of this article we use these theorems to study monopole chains with a high degree of symmetry. We 
consider cyclic groups Z(n)

m generated by the following maps R2 × S1 →R2 × S1:

R2 × S1 = C × (R/Z) � (ζ,χ +Z) �→
(

e2π i/mζ,χ + n

m
+Z

)
. (3)

By classifying invariant spectral data, we show in Corollary 11 that for each k > 0 and 0 ≤ l < k there exists a monopole 
chain of charge k invariant under the action of Z(2l)

2k . Assuming that the map Mk
Higgs → Mk

mon is surjective, these are the 

only Z(n)

2k -invariant monopole chains in Mk
mon. We have also been able to construct these monopole chains numerically, 

and images are presented near the end of this article.
Our work on symmetric monopole chains can be viewed as the analogue for monopole chains of constructions of sym-

metric monopoles obtained in the 1990s [18–21]. It is also motivated by several papers that constructed cyclic-symmetric 
monopole chains using ad hoc methods [24,25,27]. Our classification includes several new examples of symmetric monopole 
chains which were not accessible using the methods of these papers. Our work here parallels recent work of Cork [10], who 
classified cyclic-symmetric calorons (instantons on R3 × S1). Additional motivation comes from the paper [15], which con-
structed minimisers of the Skyrme energy on R2 × S1. These energy minimisers turned out to be invariant under groups of 
the form Z(n)

m . A well-known heuristic says that skyrmions resemble monopoles [28], so studying Z(n)
m -invariant monopole 

chains presents a more systematic way to study minimisers of the Skyrme energy on R2 × S1.
We now outline the contents of this article. In section 2 we describe in detail the Higgs bundles on CP 1 that correspond 

to monopole chains. They are particular examples of filtered Higgs bundles. Theorem 5, which relates these to Hitchin’s 
equations on the cylinder, is a particular case of a Kobayashi–Hitchin correspondence established in [31]. To keep this 
article relatively self-contained we given an independent proof of parts of this theorem in an appendix.

In section 3 we prove Theorem 7, which relates filtered (or parabolic) Higgs bundles on CP 1 to spectral curves equipped 
with parabolic line bundles. Although most of this material is fairly standard in the Higgs bundle literature, the inclusion of 
parabolic structures may not be.

In section 4 we prove our main result, Theorem 10, which leads to a classification (in Corollary 11) of monopole chains 
invariant under actions of Z(n)

2k . This section also includes a discussion of various groups which act naturally on the moduli 
spaces. The proof of Theorem 10 uses standard tools, such as the Abel–Jacobi map, but is technically rather intricate.

In section 5 we write down the Higgs bundles that correspond to these symmetric monopole chains. Although the 
existence of these Higgs bundles is guaranteed by Theorems 7 and 10, writing them down explicitly does not appear to be 
straightforward. From these explicit Higgs bundles we have been able to construct the associated monopole chains through 
numerical implementations of the Kobayashi–Hitchin correspondence and Nahm transform. Pictures of these monopole 
chains are presented at the end of section 5.

2. Parabolic structures and Higgs bundles

In this section we describe parabolic Higgs bundles associated with monopole chains. We begin by defining and de-
scribing basic properties of parabolic bundles. Although this material is standard, our presentation is not, and readers 
are encouraged to review this even if they are familiar with parabolic bundles. We then describe in some detail the 
parabolic Higgs bundles relevant to monopole chains, and finally prove a Kobayashi–Hitchin correspondence relating these 
to monopole chains.

2.1. Parabolic vector bundles

Definition 1. Let E → M be a rank k holomorphic vector bundle over a Riemann surface M and let P ∈ M . A parabolic 
structure at P is a filtration of the fibre at P ,

0 = EkP
P ⊂ EkP −1

P ⊂ . . . ⊂ E1
P ⊂ E0

P = E P , (4)

together with real numbers αkP −1
P , . . . , α0

P (called weights) satisfying

α0
P + 1 > αkP −1

P > αkP −2
P > . . . > α0

P . (5)

A parabolic structure is called full if kP = k, and in this case the quotient spaces Ei
P /Ei+1

P are all one-dimensional. A framed 
parabolic vector bundle consists of a holomorphic vector bundle E → M together with parabolic structures at a finite set P
of points.
2
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A local holomorphic frame e0, . . . , ek−1 near a parabolic point P is said to be compatible if, for each 0 ≤ i < kP , there 
exist integers mi

P such that Ei
P = span{e j(P ) : mi

P ≤ j < k}. In the particular case of a full parabolic structure, this means 
that Ei

P = span{ei(P ), ei+1(P ), . . . , ek−1(P )}. A holomorphic trivialisation is called compatible if it is induced by a compatible 
frame.

The sheaf of holomorphic sections of a framed parabolic vector bundle E will be denoted E , and for any parabolic point 
P the sheaf of holomorphic sections σ such that σ(P ) ∈ Ei

P will be denoted E i P .

Definition 2. Let E be a framed parabolic vector bundle. A hermitian metric h on E \ P is said to be compatible with the 
holomorphic structure if near each parabolic point P there exists a holomorphic coordinate z on a neighbourhood U of P
with z(P ) = 0 such that for all 0 < i ≤ k and all αi−1

P < α ≤ αi
P ,{

s ∈ E|U : h(s, s) = O (|z|2α)
} = E i P |U . (6)

Parabolic structures are a way to encode monodromy of a connection. To see this, consider the singular hermitian metric 
on the trivial rank k vector bundle over C defined by the matrix

h = diag(|z|2α0
0 , |z|2α1

0 , . . . , |z|2αk−1
0 ).

This is compatible with the parabolic structure at zero in which Ei
0 consists of vectors whose first i entries vanish. The 

Chern connection of this metric is

A = h−1∂h = dz

z
diag(α0

0,α1
0 , . . . ,αk−1

0 ).

The gauge transformation g = diag(|z|−α0
0 , . . . , |z|−αk−1

0 ) brings us to a unitary gauge, in which

A �→ g−1dg + g−1 Ag = idθ diag(α0
0,α1

0 , . . . ,αk−1
0 ),

with θ = arg z. In this form the connection clearly has holonomy around z = 0 described by αi
0.

Given a framed parabolic bundle E with parabolic structure at P , we define sheaves EnP for all n ∈ Z as follows. Let 
U ⊂ M be an open set. If P /∈ U set EnP |U = EU . If P ∈ U , let zP be a local coordinate that vanishes at P , and let q, r be 
integers with 0 ≤ r < kP such that n = qkP + r. Let EnP |U be the set of meromorphic sections σ of E over U such that z −q

P σ

is holomorphic near P and (z −q
P σ)(P ) ∈ Er

P . Then there is a filtration

· · ·E(kP +1)P ⊂ EkP P ⊂ E(kP −1)P ⊂ · · · ⊂ E1P ⊂ E ⊂ E−1P ⊂ · · · . (7)

We also define associated weights αn
P = αr

P + q. Then

. . . > αkP +1
P > αkP

P > αkP −1
P > . . . > α1

P > α0
P > α−1

P > . . . . (8)

If h is any compatible metric and U ⊂ M is an open set containing P then EnP |U is the set of holomorphic sections s of 
E|U\{P } such that h(s, s) = O (|zP |2αn

P ).
Each of the sheaves EnP is locally free1 and of the same rank as E . The holomorphic vector bundle F defined by the 

locally free sheaf EnP , such that F ∼= EnP , is called the twist of E by nP . This bundle carries a natural parabolic structure at 
P such that

FmP ∼= E(n+m)P ∀m ∈Z (9)

The associated weights are

βm
P = αn+m

P . (10)

Since by definition F |M\{P } = E |M\{P } , the bundles F |M\{P } and E|M\{P } are canonically isomorphic. In the case of line 
bundles L twisting is equivalent to tensoring with the line bundle associated with the divisor −nP and adding n to the 
parabolic weights αi

P ; we use the notation LnP =L[−nP ] in this case.
Similarly, for any divisor 

∑
P∈P nP P supported in the set P of parabolic points, one can define a twist E

∑
P nP P of E . 

Twisting defines an action of the free abelian group ZP generated by the parabolic points on the moduli space of framed 
parabolic vector bundles, and the associated equivalence classes are called unframed parabolic vector bundles. An unframed 

1 For example, if E → C has a full parabolic structure at z = 0 and e0, . . . , ek−1 is a compatible frame near z = 0, then e1, . . . , ek−1, 1z e0 is a frame for 
E1P .
3
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parabolic vector bundle has a unique representative such that the parabolic weights all lie in the interval [0, 1), so unframed 
parabolic vector bundles can equivalently be defined as framed parabolic vector bundles satisfying this constraint. Most 
literature refers to what we have called unframed parabolic vector bundles as “filtered sheaves” [31,32] or simply “parabolic 
vector bundles”; we have introduced the distinction between framed and unframed bundles for later convenience.

If h is a hermitian metric on E|M\{P} and F is a twist of E then h induces a metric on F |M\{P} , because F |M\{P} ∼=
E|M\{P} canonically. The weights (10) have been defined in such a way that h is compatible with the parabolic structure on 
F if and only if it is compatible with the parabolic structure on E .

An important invariant of framed parabolic vector bundles is the parabolic degree, defined by

pardeg(E) = deg(E) +
∑
P∈P

kP −1∑
i=0

αi
P dim(Ei/Ei+1). (11)

This is invariant under twist, so descends to an invariant of unframed parabolic vector bundles.

2.2. Parabolic Higgs bundles and Hitchin’s equations

To construct monopole chains we will need a parabolic vector bundle E and a meromorphic section φ of End(E). The 
section φ will have prescribed behaviour at the parabolic points, and the next proposition summarises this behaviour.

Proposition 3. Let E be a framed parabolic vector bundle of rank k with full parabolic structure at a parabolic point P . Let φ be a 
meromorphic section of End(E) which is holomorphic away from the parabolic points. Then the following are equivalent:

(i) φ induces isomorphisms of stalks (EnP )P → (E (n−1)P )P for all n ∈Z.
(ii) φ has a simple pole at P . The residue ResP φ of φ at P is a surjective map E0

P → Ek−1
P , and φ induces isomorphisms Ei

P →
Ei−1

P /Ek−1
P for 0 < i < k.

(iii) Let z be any local holomorphic coordinate that vanishes at P . There is a compatible local holomorphic frame e0, . . . , ek−1 for E
such that the matrix of φ with respect to this frame takes the form

φ =

⎛
⎜⎜⎜⎝

− fk−1(z)
... Idk−1

− f1(z)
c/z − f0(z) 0 · · · 0

⎞
⎟⎟⎟⎠ (12)

for some holomorphic functions f i(z) and non-zero c ∈C.

Proof. First we show (i) implies (ii). Choose a holomorphic coordinate z that vanishes at P . Since zφ(EP ) ⊆ (E (k−1)P )P ⊆
EP , zφ maps local holomorphic sections to local holomorphic sections, and so φ has a simple pole. The filtration of the 
fibre of E at P is recovered from the stalks of the sheaves EnP by setting Ei

P = (E i P )P /(EkP )P for 0 ≤ i ≤ k. Since φ
induces isomorphisms (EnP )P → (E (n−1)P )P it also induces isomorphisms Ei

P = (E i P )P /(EkP )P → (E (i−1)P )P /(E (k−1)P )P =
Ei−1

P /Ek−1
P . Finally, zφ induces a map E0

P = (E0P )P /(EkP )P → (E (k−1)P )P /(E (2k−1)P )P → (E (k−1)P )P /(EkP )P = Ek−1
P which is 

a composition of surjections, hence the residue of φ is a surjective map E0
P → Ek−1

P .

Next we show (ii) implies (iii). Let ek−1 be a local non-vanishing holomorphic section of E such that ek−1(P ) ∈ Ek−1
P . Let 

ek−1−i = φiek−1 for 0 < i < k. Since φ(Ei
P ) ⊂ Ei−1

P , ei are all holomorphic in a neighbourhood of P and ei(P ) ∈ Ei
P . Since 

the maps φ : Ei
P → Ei−1

P /Ek−1
P are isomorphisms, ei(P ), . . . , ek−1(P ) form a basis for Ei

P and moreover e0, . . . , ek−1 form a 
local frame for E . Since ResP φ : E0

P → Ek−1
P is surjective and ResP φ(ei) = 0 for 0 < i < k, it must be that ResP (e0) = cek−1

for some c = 0. It follows that the matrix of φ has the stated form with respect to this frame.
Finally we show (iii) implies (i). It is clear from the matrix form of φ that φ((EnP )P ) ⊆ (E (n−1)P )P . To show that the map 

φ : (EnP )P → (E (n−1)P )P is an isomorphism we just need to exhibit an inverse. The inverse of the matrix given for φ is

φ−1 =

⎛
⎜⎜⎜⎝

0 · · · 0 z(c − zf0(z))−1

zfk−1(z)(c − zf0(z))−1

Idk−1
...

zf1(z)(c − zf0(z))−1

⎞
⎟⎟⎟⎠ (13)

It is clear that φ−1((E (n−1)P )P ) ⊆ (EnP )P , and that this map of stalks is the inverse of the map of stalks induced by φ. �
Note that condition (i) (and hence conditions (ii) and (iii)) is invariant under twist: if φE is a section of End(E) satisfying 

(i) near a parabolic point, and F is a twist of E , then the induced section φ F of End(F ) also satisfies condition (i).
Now we are ready to state the main definition of this section.
4
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Definition 4. Let E →CP 1 be a rank k framed parabolic vector bundle with two parabolic points such that pardeg(E) = 0. 
Suppose that the parabolic structure at each parabolic point P is full and that the weights satisfy

αi
P − αi−1

P = 1

k
for 0 < i < k. (14)

Let φ be a meromorphic section of End(E) which is holomorphic away from the parabolic points and which satisfies any of 
the three equivalent conditions of Proposition 3 at each parabolic point. Then the equivalence class of a pair (E, φ) under 
bundle isomorphisms is called a framed cylinder Higgs bundle. An equivalence class of framed cylinder Higgs bundles under 
twist is called an unframed cylinder Higgs bundle.

The usual approach to Higgs bundles involves a section of End(E) ⊗ K , rather than End(E). One can easily obtain such a 
section from our definition by tensoring � with a section of KCP 1 with simple poles at the parabolic points. The resulting 
section � will have poles of order 2 at the parabolic points, and the pair (E, �) is an example of a wild Higgs bundle. In 
the terminology of [31], it is an example of a good filtered Higgs bundle (but not an unramifiedly good filtered Higgs bundle). 
From a different perspective, (E, φ) could be thought of as a twisted Higgs bundle (see e.g. [4,29]) with parabolic structures 
(see e.g. [23]).

Before proceeding to describe the relationship between cylinder Higgs bundles and monopole chains, let us fix some 
conventions. By choice of coordinate w we identify CP 1 with C ∪ {∞}, and without loss of generality we assume that 
the two parabolic points are w = 0 and w = ∞. The boundary condition (iii) implies that det φ has simple poles at each 
parabolic point, so that

(−1)k detφ = a0 − c0

w
− c∞w (15)

for constants c0, a0, c∞ . We may assume without loss of generality that w is chosen such that c0 = c∞ =: c.
Let us fix β > 0. We obtain from a cylinder Higgs bundle (E, φ) a Higgs bundle (in the usual sense) (E|C∗ , �) over 

C∗ = CP 1 \ {0, ∞} by setting � = φ dw
2βw . A hermitian metric h on E which is compatible with the parabolic structure is 

called hermitian-Einstein if

Fh := F h + [�,�∗h] = 0. (16)

Here F h denotes the curvature of the Chern connection Ah of h and �∗h denotes the hermitian conjugate with respect to 
h. The commutator of 1-forms is understood in a graded sense: [�, �∗h] := � ∧ �∗h + �∗h ∧ �. It is sometimes convenient 
to introduce operators D ′′ = ∂̄ + � and D ′

h = ∂h + �∗h; then the quantity Fh defined in (16) is equal to D ′′ D ′
h + D ′

h D ′′ , and 
can be understood as the curvature of the connection D ′′ + D ′

h .
Given existence of a hermitian-Einstein metric, the hermitian-Einstein equation (16) and the condition that φ is holo-

morphic may be rewritten in a unitary gauge with respect to the real coordinates x1, x2 defined by w = exp(β(x1 + ix2))

as:

F12 = i

2
[φ,φ†] (17)

0 = ∂φ

∂x1 + i
∂φ

∂x2
+ [A1 + iA2, φ]. (18)

These equations are known as Hitchin’s equations. Cherkis and Kapustin [7] established a bijection between monopole 
chains and solutions of Hitchin’s equations on the cylinder subject to the following conditions:

H1. Tr(φ(w)α) for α = 1, . . . , k − 1 extend to holomorphic functions on CP 1;
H2. det(φ(w)) extends to a meromorphic function on CP 1 with simple poles at 0 and ∞;
H3. |F12|2 = O (|x1|−3) as |x1| → ∞.

Solutions of Hitchin’s equations satisfying H1, H2, H3 correspond to cylinder Higgs bundles. More precisely,

Theorem 5.

(i) Every unframed cylinder Higgs bundle admits a compatible hermitian-Einstein metric which is unique up to scaling.
(ii) The norm of the curvature of the Chern connection of the metric constructed in (i), measured using the cylindrical metric xidxi on 

R × S1 , decays faster than any exponential function of |x1| as |x1| → ∞. In particular, the corresponding solution of Hitchin’s 
equations satisfies H1, H2 and H3.

(iii) Conversely, given any solution of Hitchin’s equations on the cylinder satisfying H1, H2, H3, the underlying bundle E and section φ
can be extended to a cylinder Higgs bundle on CP1 .
5
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Part (i) of this theorem follows from the fact that every good filtered Higgs bundle admits a wild harmonic metric. This 
is proved in [32] in a rather general setting. The corresponding statement for unramifiedly good filtered Higgs bundles over 
Riemann surfaces was proved earlier in [3], and the statement for good filtered Higgs bundles over Riemann surfaces is 
easily deduced from this by taking a ramified covering. For completeness, we give a direct proof of part (i) of the theorem 
in an appendix.

Part (ii) of this theorem follows from Proposition 7.2.9 of [31]. Again, a direct proof of this part is given in the appendix 
to this paper.

Part (iii) of the theorem follows from Theorem 21.3.1 of [31], which states that every good wild harmonic bundle admits 
a natural filtration. According to [31], in the case of Riemann surfaces the proof is simpler than that given in [31] and 
follows from earlier work of Simpson.

Combined with Cherkis–Kapustin’s results on the Nahm transform, Theorem 5 gives a natural correspondence between 
monopole chains and cylinder Higgs bundles.

3. Spectral data

In the previous section we saw that monopole chains correspond to cylinder Higgs bundles, i.e. twisted Higgs bundles 
over CP 1 with prescribed parabolic structures. In this section we describe how cylinder Higgs bundles correspond to 
spectral data consisting of curves in CP 1 × CP 1 equipped with parabolic line bundles. Spectral curves are a standard 
feature of the theory of Higgs bundles [17], and their relevance to monopole chains was already highlighted in [7]. The 
novel contribution of this section is the incorporation of parabolic structures.

Let (E, φ) be a framed cylinder Higgs bundle. The associated spectral curve S ⊂CP 1 ×CP 1 is defined by the equation

det(ζ IdE − φ(w)) = 0. (19)

More precisely, let πw , πζ : CP 1 ×CP 1 → CP 1 be the projections onto the first and second factors, so that πw (w, ζ ) =
w , πζ (w, ζ ) = ζ for w, ζ ∈ C ⊂ CP 1. Let z0, z1 be holomorphic sections of O(1) → CP 1 such that z0/z1 = ζ . Then 
S ⊂CP 1 ×CP 1 is the vanishing set of the section det(π∗

ζ z0IdE − π∗
ζ z1π

∗
wφ) of π∗

ζ O(k).
Let us consider the form of the spectral curve in more detail. Near the point w = 0 we may choose a trivialisation so 

that φ takes the form given in equation (12) (with local coordinate z = w). Then

det(ζ IdE − φ) = − c

w
+ ζ k +

k−1∑
i=0

ζ i f i(w). (20)

Thus the coefficient of ζ i for i > 0 is a holomorphic function of w near w = 0, while the coefficient of ζ 0 has a simple 
pole. A similar analysis near w = ∞ shows that the coefficients of ζ i for i > 0 are also holomorphic near w = ∞, and the 
coefficient of ζ 0 again has a simple pole. It follows that the coefficients of ζ i are constant functions of w for i > 0, while 
the coefficient of ζ 0 is −c(w + w−1) plus a constant.2 Thus the equation defining the spectral curve takes the form [7]

−cw − c

w
+ ζ k +

k−1∑
i=0

aiζ
i = 0 (21)

for constants ai ∈C. Observant readers may recognise equation (21) as the spectral curve for Toda mechanics.3 This reflects 
the fact that, regarded as an integrable system, the moduli space of Higgs bundles on a cylinder is the Toda model [30].

The spectral curve S is irreducible and hence an integral scheme. To see this, write the defining equation as a polynomial 
in w with coefficients in C[ζ ]:

w2 − c−1 w

(
ζ k +

k−1∑
i=0

aiζ
i

)
+ 1. (22)

This satisfies Eisenstein’s criterion, because there exists a degree one polynomial that divides the coefficient of w but 
does not divide the coefficients of w2 or w0. Therefore the polynomial is irreducible, and S , which equals the closure in 
CP 1 ×CP 1 of the associated affine variety, is also irreducible.

In fact, for generic values of the coefficients ai the spectral curve is nonsingular. The map S →CP 1 given by (w, ζ ) �→ ζ

is two-to-one, so this curve is hyperelliptic. Its genus is k − 1 [7]. For all values of ai the curve contains the points P0, P∞
with coordinates (w, ζ ) = (0, ∞) and (∞, ∞).

2 recall that the coefficients of w and w−1 were fixed to be equal by our choice of coordinate w – see the discussion around equation (15).
3 I am grateful to S. Ruisenaars for this observation.
6
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In cases where S is a nonsingular curve it carries a natural line bundle L. This is defined to be the cokernel of the map

π∗
ζ z0IdE − π∗

ζ z1π
∗
wφ : π∗

w E ⊗ π∗
ζ O(−1) → π∗

w E. (23)

The fibre of L at a point (w, ζ ) ∈ S ∩C∗ ×C is then

Lw = E w/ Im
(
φ(w) − ζ Id : E w → E w

)
. (24)

The sheaf of holomorphic sections of L is denoted L. If S is singular there is no line bundle but one still has a torsion free 
invertible sheaf L.

The bundle E and endomorphism φ can be recovered from the spectral data [17,4]. Let π : S → CP 1 be the k-to-one 
map π(w, ζ ) = w . The push-forward π∗(L) is a locally free and of rank k, so defines a vector bundle over CP 1. Now any 
holomorphic section of E over an open set U ⊂ CP 1 determines a section of π∗E over π−1(U ) ⊂ S via pull-back, and 
hence determines a section of L over π−1(U ) via the map E → L. Thus there is a natural map

E → π∗(L). (25)

This map induces an isomorphism from E to the bundle determined by π∗(L) [17,4], so E can be recovered from the 
spectral data. The endomorphism of L|S\{P0,P∞} determined by multiplication with ζ induces an endomorphism of E |C∗ ∼=
π∗(L|S\{P0,P∞}) which agrees with φ, so φ can also be recovered from the spectral data.

Note that the preceding construction differs from that of [17], which takes L to be the kernel (rather than cokernel) of 
φ − ζ Id. The two approaches are however related, as explained in [4].

Having described the relationship between (E, φ) and (S, L), we now introduce parabolic structures on L and explain 
how the parabolic structures on E can be recovered from them. Our construction is similar to one studied in [1]. First we 
introduce filtrations on L at the points P = P0, P∞ by setting

Li P = L[−i P ]. (26)

This induces filtrations on π∗L by setting

(π∗L)iπ(P ) := π∗(L[−i P ]). (27)

The function ζ̃ = 1/ζ on S has zeros of order 1 at the points P = P0, P∞ , so multiplying sections with ζ̃ induces surjections 
of stalks,

ζ̃ : L[−i P ]P → L[−(i + 1)P ]P (28)

Therefore we have an isomorphism of stalks,

((π∗L)iπ(P ))π(P ) = π∗(ζ̃ iL)π(P ), i ≥ 0. (29)

On the other hand, we know from the boundary conditions of φ that the stalk (E iπ(P ))π(P ) of E iπ(P ) is equal to the image of 
EP under φ−i . Since the endomorphism φ−1 corresponds to multiplying with ζ̃ we conclude that the filtration π∗(L[−i P ])
agrees with the filtration E iπ(P ) . Thus the filtration of E can be recovered from its spectral data.

We have seen that L has natural filtrations at P0 and P∞ corresponding to the filtrations of E . In order to define 
parabolic structures at these points we introduce weights

α0
P = kα0

π(P ), P = P0, P∞. (30)

The weights of E can easily be recovered from the weights of L using the formulae

αi
π(P ) = α0

P + i

k
, 0 ≤ i < k. (31)

The following proposition shows that this association of parabolic weights on E and L is natural:

Proposition 6. Let h be a compatible hermitian metric on L → S and let E = π∗L. For any open set U ⊂ C∗ and section σ ∈
π∗L|π−1(U ) define a function

π∗h(σ ,σ ) : U → R, π∗h(σ ,σ )(z) =
∑

(w,ζ )∈π−1({w})
h(σ ,σ )(w, ζ ). (32)

Then π∗h defines a hermitian metric on E near the parabolic points which is compatible with the parabolic structures.
7
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Proof. Close to (but not at) the parabolic points the map π : S →CP 1 is k-to-1, and there is a canonical decomposition

E w ∼=
⊕

(w,ζ )∈π−1({w})
L(w,ζ ).

Then π∗h is equal to the sum of the hermitian metrics on these summands, and is in particular a hermitian metric.
Now we show that this metric is compatible with the parabolic structure of E . Let P = P0 or P∞ be one of the parabolic 

points of S . Then ζ̃ = ζ−1 is a local coordinate on S that vanishes at P , and z = w or w−1 is a local coordinate on a 
neighbourhood U of π(P ) ∈ CP 1 that vanishes at π(P ). In these coordinates the projection π can be written ζ̃ �→ z(ζ̃ ), 
and we know that |z| = O (|ζ̃ |k) and |ζ̃ | = O (|z|1/k) as ζ̃ → 0.

Let σ ∈ π∗L|U and α ∈R. Suppose that h(σ , σ)(ζ̃ ) = O (|ζ̃ |2kα) as ζ̃ → 0. Then

π∗h(σ ,σ )(z) =
∑

ζ̃∈π−1({z})
h(σ ,σ )(ζ̃ ) = O (|ζ̃ |2kα) = O (|z|2α).

Conversely, suppose that π∗h(σ , σ)(z) = O (|z|2α). Then

h(σ ,σ )(ζ̃ ) ≤ π∗h(σ ,σ )(z(ζ̃ )) = O (|z|2α) = O (|ζ̃ |2kα).

Therefore, for αi−1
π(P ) < α ≤ αi

π(P ) ,

π∗h(σ ,σ ) = O (|z|2α) ⇐⇒ h(σ ,σ ) = O (|ζ̃ |2kα)

⇐⇒ σ ∈ L[−i P ]|π−1(U ) = E i|U .

So π∗h is compatible with the parabolic structure of E . �
We summarise this discussion by stating the precise relationship between cylinder Higgs bundles and their spectral data.

Theorem 7. There is a one-to-one correspondence between the moduli space of framed rank k cylinder Higgs bundles and the moduli 
space of spectral data (S, L), where S is a curve in CP1 of the form (21) and L → S is a framed parabolic line bundle (or torsion free 
invertible sheaf) with parabolic structures at the points P0, P∞ such that

pardeg(L) = k − 1. (33)

This correspondence respects the actions of Z ×Z given by twisting at the parabolic points, so induces a correspondence between the 
moduli spaces of unframed cylinder Higgs bundles and unframed spectral data.

Proof. The only part that has not been proved in the preceding discussion is the statement about the parabolic degree of 
L. By the Grothendieck-Riemann-Roch theorem,

c1(S)

2
+ c1(L) = k

c1(CP 1)

2
+ c1(E). (34)

Now c1(L) = deg(L), c1(E) = deg(E), c1(CP 1) = 2 and c1(S) = 2 − 2g(S) = 4 − 2k, so

deg(L) = deg(E) + 2k − 2. (35)

From the definition of parabolic degree and equation (30),

pardeg(L) = deg(L) + α0
P0

+ α0
P∞ (36)

pardeg(E) = deg(E) +
k−1∑
i=0

(
α0

P0
+ i

k
+ α0

P∞ + i + 1 − k

k

)
(37)

= deg(E) + α0
P0

+ α0
P∞ + (k − 1). (38)

Since pardeg(E) = 0,

pardeg(L) = pardeg(E) − (k − 1) + 2 − 2k = k − 1. � (39)

We have defined parabolic structures on L → S using cylinder Higgs bundles. The spectral curve S and line bundle L
can equivalently be defined directly in terms of the monopole chain [7]. Mochizuki [32] has identified parabolic structures 
associated with monopole chains, and these should induce parabolic structures on L. It would be interesting to know 
whether the two parabolic structures on L associated with Higgs bundles and monopole chains agree.
8
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4. Spectral data with cyclic symmetry

4.1. Group actions on the moduli space

In this section we will study fixed points of groups which act naturally on the moduli space of cylinder Higgs bundles. 
We begin by describing the action of these groups, and their interpretation for monopole chains.

First, there is a group U(1)R which acts by multiplication on φ:

eiθ · (E, φ) = (E, eiθφ). (40)

This action multiplies the determinant of φ by a phase and in particular maps the parameter c to eikθ c (see equation (15)). 
Cherkis and Kapustin [7] regard this parameter c (which is e−βv in their notation) as fixed, and they study moduli spaces 
of solutions of Hitchin’s equations with a fixed value of c. So from their perspective, only the subgroup Zk of U(1)R acts on 
the moduli space, and in general elements of U(1)R map from one moduli space to another. We however do not give the 
parameter c special status, so U(1)R acts on the moduli spaces of framed and unframed cylinder Higgs bundles.

Under this action the spectral curve S maps to its image under the transformation

(w, ζ ) �→ (w, eiθ ζ ) (41)

of CP 1 ×CP 1. The line bundle L maps to its pull-back under the inverse of this map. For monopole chains on R2 × S1
β , 

the action of U(1)R corresponds to rotation of the plane R2.
Next, there is a group Z2 which acts on (E, φ) as pull back under the map w �→ −w . Note that under this map the 

coefficients of w and 1/w in our expression (15) for det(φ) are multiplied by -1, so the action respects the condition that 
these coefficients are equal. The spectral curve S is mapped to its image under the map

(w, ζ ) �→ (−w, ζ ), (42)

acting on CP 1 ×CP 1, and the line bundle L is mapped to its image under pull-back.
The corresponding action on monopole chains is to twist with a line bundle over R2 × S1

β equipped with a flat connection 
whose holonomy about the circle is −1. This is equivalent to what is known in the physics literature as a “large” gauge 
transformation. The analogous action on the moduli space of calorons (i.e. instantons on R3 × S1) is sometimes known as 
the rotation map [10,33].

Finally, there is an action of R on the moduli space of framed cylinder Higgs bundles given by adding real numbers to 
the parabolic weights:

(αi
π(P0),α

i
π(P∞)) �→ (αi

π(P0) + χ,αi
π(P∞) − χ). (43)

We remind the reader that the points π(P0), π(P∞) ∈CP 1 are those with coordinates w = 0, ∞. This action is defined in 
such a way that the parabolic degree is unchanged. If χ = n ∈Z then, up to twist, this action is equivalent to

(E,αi
π(P0),α

i
π(P∞)) �→ (E−knπ(P0)+knπ(P∞),αi

π(P0),α
i
π(P∞)) (44)

because αi
P ± n = αi±kn

P . Now E−knπ(P0)+knπ(P∞) ∼= E[nπ(P0) − nπ(P∞)] ∼= E since the line bundle on CP 1 associated to 
the divisor π(P0) − π(P∞) is trivial. Therefore Z ⊂R acts trivially and there is a well-defined action of U(1)T :=R/Z on 
the moduli space of unframed cylinder Higgs bundles. The corresponding action on spectral data is

(S, L,α0
P0

,α0
P∞) �→ (S, L,α0

P0
+ kχ,α0

P∞ − kχ). (45)

If h is a hermitian-Einstein metric on E compatible with the parabolic weights (αi
π(P0), α

i
π(P∞)) then the unique 

hermitian-Einstein metric compatible with the weights in equation (43) is |w|2χh. The Chern connection of |w|2χh dif-
fers from that of h by χdw/w = χβ(dx1 + idx2). Transforming to a unitary gauge, we see that the action of U(1)T on 
solutions of Hitchin’s equations is

(A1, A2, φ) �→ (A1, A2 + iχβIdk, φ). (46)

For monopole chains on R2 × S1
β , this corresponds to translation in the circle S1

β =R/βZ by βχ .

4.2. Maximal symmetry

We have seen that there is a natural action of the group

Z2 × U(1)R × U(1)T (47)

on the moduli space of unframed cylinder Higgs bundles. We now seek points in this moduli space with non-trivial sta-
biliser. Our first result is
9
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Lemma 8. Let G ⊂Z2 × U(1)R × U(1)T be a subgroup which fixes a point in the moduli space of unframed cylinder Higgs bundles of 
rank k. Then the image of G under the projection Z2 × U(1)R × U(1)T → Z2 × U(1)R is a subgroup of the cyclic group of order 2k
generated by

R : (w, ζ ) �→ (−w,exp(−iπ/k)ζ ). (48)

If the image of G equals the whole of this cyclic group then the spectral curve S of the fixed point is nonsingular and given by

cw2 + c − wζ k = 0. (49)

Proof. Recall that the equation of the spectral curve takes the form cw2 + c − w 
(
ζ k + ak−1ζ

k−1 + . . .
)
. Written this way, 

the coefficients of w2 and w0 are unchanged under transformations in Z2 × U(1)R × U(1)T , so a transformation fixes the 
curve if and only if it fixes the remaining coefficients of the remaining terms.

Now U(1)T acts trivially on the curve, while (±1, eiθ ) ∈Z2 × U(1)R multiplies the coefficient of wζ j by ±e−i jθ . The co-
efficient of wζ k is non-zero, and clearly invariant if and only if (±1, eiθ ) = Rn for some n. Finally, the remaining coefficients 
ai are invariant under R if and only if they are all zero. �

Motivated by this result, we say that a stabiliser subgroup G ⊂ Z2 × U(1)R × U(1)T is maximal if its image in Z2 × U(1)R

is generated by the transformation R defined in (48). From the perspective of monopole chains on R2 × S1
β , maximal groups 

are those which act on R2 as the cyclic group of order 2k.

4.3. Classification

The goal of the remainder of this section is to classify points in the moduli space of cylinder Higgs bundles with maximal 
symmetry group. If a cylinder Higgs bundle has maximal stabiliser group then its spectral curve S is of the form (49) and 
its parabolic line bundle must be invariant under the lifted action of R up to twist: thus

((R−1)∗L,α0
P0

+ kχ,α0
P∞ − kχ) = (L[−lP∞ − mP0],α0

P0
+ m,αP∞ + l) (50)

for some χ ∈R and l, m ∈Z. Clearly this equation is solved by choosing m = −l, χ = −l/k and choosing L such that

R∗L = L[lP∞ − lP0]. (51)

Thus in order to classify cylinder Higgs bundles with maximal symmetry we need to classify line bundles L solving equation 
(51). A cylinder Higgs bundle whose line bundle solves this equation will be invariant under the action of the order 2k cyclic 
subgroup of Z2 × U(1)R × U(1)T generated by

(−1,exp(π i/k),exp(2lπ i/k)). (52)

This group will be denoted Z(2l)
2k .

In order to solve equation (51) we employ the Abel-Jacobi map, which gives an explicit parametrisation of line bundles 
on S of fixed degree. Given bases ω j and δi for H0(S, �1,0) and H1(S, Z), with j = 1, . . . , g and i = 1, . . . , 2g , the period 
lattice � ⊂Cg is the lattice generated by the vectors

�i =
⎛
⎜⎝∫

δi

ω1, . . . ,

∫
δi

ωg

⎞
⎟⎠ . (53)

The Jacobian J is defined to be the quotient Cg/�. The Abel-Jacobi map μ sends degree 0 divisors to points in the Jacobian 
and is defined by the equations

μ(P − Q ) =
⎛
⎜⎝

P∫
Q

ω1, . . . ,

P∫
Q

ωg

⎞
⎟⎠ and μ(D + D ′) = μ(D) + μ(D ′). (54)

A divisor lies in the kernel of this map if and only if its induced line bundle is holomorphically trivial, so the Abel-Jacobi 
map is a bijection from the space of degree 0 line bundles to the Jacobian.

Now we describe convenient choices of basis for the homology and cohomology groups of the curve S defined by (49). 
It is useful to regard S as a branched double cover over C, with covering map (w, ζ ) �→ ζ and branch points the roots of 
ζ k = 2c. Let γ denote the curve in S which starts at P∞ and ends at P0 and whose image in the ζ -plane encloses one 
branch point, as depicted in Fig. 1. We denote by −Rγ the image of γ under the action R with reversed orientation, and 
by γ − Rγ the closed curve obtained by joining γ and −Rγ . Then γ − Rγ is homologous in H1(S, Z) to the curve δ0
10
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P∞

P0

P0

P∞

γ

−Rγ

δ0

Fig. 1. Curves used to construct the homology basis for S (see text for details). The curve S is represented as a two-sheeted branched covering over C
using the map S � (w, ζ ) �→ ζ , and the branch points are indicated by solid circles.

depicted in Fig. 1. The 2k images δi = Riδ0 of this curve under the action of Z2k provide a spanning set for H1(S, Z) (but 
they are not linearly independent).

A convenient basis for H0(S, �1,0) is

ω j = C jζ
j−1 dζ

w − ζ k/2c
, j = 1, . . . ,k, (55)

with C j ∈ C denoting some normalisation constants which are yet to be chosen (see page 255 of [14]). This cohomology 
basis transforms nicely under the action of R−1 defined in (48):

R∗ω j = −e− jπ i/kω j . (56)

It follows that the integrals of ω j over the curves Riγ and δi are determined by its integral over γ :∫
Riγ

ω j =
∫
γ

(Ri)∗ω j (57)

= (−e− jπ i/k)i
∫
γ

ω j (58)

∫
δi

ω j =
∫

Riγ

ω j −
∫

Ri+1γ

ω j (59)

= (
(−e− jπ i/k)i − (−e− jπ i/k)i+1)∫

γ

ω j . (60)

We will choose the constants C j so that∫
γ

ω j = 1. (61)

We remark that the integral on the left of this equation is guaranteed to be non-zero, since if it was not, the integral of ω j

over all the curves δi would be zero, contradicting the fact that ω j represents a nontrivial class in H0(S, �1,0) and δi span 
H1(S, Z).
11
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With these choices of bases, the generators of the period lattice defined in (53) are

�i = ρ i(1 − ρ)

⎛
⎜⎜⎜⎝

1
1
...

1

⎞
⎟⎟⎟⎠ , i = 0, . . . ,2k − 1, (62)

where ρ is the matrix representing the action of R:

ρ = −diag(e−π i/k, e−2π i/k, . . . , e−(k−1)π i/k). (63)

The divisor (P0 − P∞) that appears in equation (51) corresponds under the Abel-Jacobi map to the point in the Jacobian 
represented by the following vector:

�0 =

⎛
⎜⎜⎜⎜⎝

∫
γ ω1∫
γ ω2

...∫
γ ωk−1

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1
1
...

1

⎞
⎟⎟⎟⎠ . (64)

Addition of this vector generates an action of Z on the Jacobian, and the quotient by this action will be denoted J /〈�0〉. 
By equation (62) ρ�0 − �0 ∈ �, so multiplication with the matrix ρ gives a well-defined action on J /〈�0〉. Any solution 
(L, l) of (51) determines a fixed point of ρ in J /〈�0〉, so finding these fixed points helps to solve equation (51). The fixed 
points are classified in the following:

Proposition 9. There are precisely k fixed points of ρ in J /〈�0〉. They are represented by the vectors,

l(1 − ρ)−1�0, l = 0,1, . . . ,k − 1. (65)

Proof. We begin with a few linear algebraic observations. Let

�i =

⎛
⎜⎜⎜⎜⎝

∫
Riγ ω1∫
Riγ ω2

...∫
Riγ ωk−1

⎞
⎟⎟⎟⎟⎠ = ρ i

⎛
⎜⎜⎜⎝

1
1
...

1

⎞
⎟⎟⎟⎠ , i = 0, . . . 2k − 1. (66)

The vectors �i and �i are related as follows:

�i = �i − �i+1 = (1 − ρ)�i . (67)

The 2k vectors �0, . . . , �2k−1 are not linearly independent over R: they satisfy two non-trivial relations,

k−1∑
i=0

�2i = 0 and
k−1∑
i=0

�2i+1 = 0, (68)

because roots of unity sum to zero. However, the vectors �0, . . . , �2k−3 are linearly independent over R. To show this, 
suppose that 

∑2k−3
i=0 αi�i = 0 for some real numbers αi . Then additionally 

∑2k−3
i=0 αi�̄i = 0, so

2k−3∑
i=0

αi(−e−π i j/k)i = 0 and
2k−3∑
i=0

αi(−eπ i j/k)i = 0 ∀ j = 1, . . . ,k − 1, (69)

in other words, the polynomial 
∑2k−3

i=0 αi xi has 2k − 2 distinct roots. Since the degree of this polynomial is less than or 
equal to 2k − 3 it must be zero, so the coefficients αi must vanish.

Since the vectors �0, . . . , �2k−3 are linearly independent and (1 − ρ) is invertible, by equation (67) the vectors 
�0, . . . , �2k−3 are linearly independent and by equations (67) and (68) they generate �.

Let � be the lattice generated by �0, . . . , �2k−3 and �0. Then J /〈�0〉 = Ck−1/�. Moreover, � equals the lattice gener-
ated by �0, . . . , �2k−3, because by (67) the �i can be expressed in terms of the �i , and conversely �i = �0 − ∑i−1

j=0 � j .

The fixed points of ρ in Ck−1/� are represented by solutions z ∈Ck−1 of

ρz = z mod �. (70)
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The set of solutions z ∈ Ck−1 to this equation is the lattice (1 − ρ)−1�, so the set of solutions in Ck−1/� is the quotient 
((1 −ρ)−1�)/�; we need to determine the size of this set. The quotient ((1 −ρ)−1�)/� is an abelian group which is clearly 
isomorphic to �/(1 −ρ)�. Note that the lattices (1 − ρ)� and � are equal, since by equation (67) �i = (1 −ρ)�i . Thus the 
number of fixed points equals the size of the abelian group �/�.

Equation (67) implies that

�i = �i+1 mod �, (71)

and hence that the group �/� is generated by �0. Equations (71) and (68) imply that k�0 = 0 mod �, so the order of �0
in �/� divides k. We claim that the order of �0 equals k. It will follow that �/� has size k, and that there are k fixed 
points of the form stated in the proposition.

To prove our claim we derive an expression for �0 in terms of the basis �0, . . . , �2k−3 with the help of equation (68):

�0 = 1

k

k−1∑
i=0

�2i +
k−2∑
i=0

k − 1 − i

k
(�2i + �2i+1) (72)

=
k−2∑
i=0

k − 1 − i

k
(�2i + �2i+1). (73)

It is clear from this expression that l�0 can be written as a linear combination of the �i with integer coefficients if and 
only if l = 0 mod k. Since the basis vectors �0, . . . , �2k−3 generate �, the order of �0 in Ck−1/� is k as claimed. �

The preceding proposition allows us to prove:

Theorem 10. For fixed |c| > 0 and k ∈ N there are, up to the action of Z2 × U(1)R × U(1)T , precisely k distinct unframed cylinder 
Higgs bundles with maximal symmetry. They are fixed by the groups Z(2l)

2k , with l = 0, . . . , k − 1.

Proof. The spectral curve S of a maximally symmetric cylinder Higgs bundle must be the one given in equation (49). The 
group U(1)R alters the phase of the parameter c, so for fixed |c| and up to the action of U(1)R this curve is unique.

By twisting we can arrange that the line bundle L has degree zero, so must be one of the line bundles identified in the 
previous proposition. Any such line bundle corresponds to a point in the Jacobian represented by a vector

j�0 + l(1 − ρ)−1�0, j ∈ Z, l = 0, . . . ,k − 1. (74)

Recall that twisting with the divisor P∞ − P0 corresponds to adding �0 in the Jacobian. Thus by twisting we may arrange 
that j = 0, and up to equivalence there are precisely k possibilities for the line bundle L, labelled by l.

Since deg L = 0 and pardeg L = k − 1, the parabolic weights must satisfy α0
P0

+ α0
P∞ = k − 1. It follows that the weights 

are unique up to the action of U(1)T .
Finally, since

ρl(1 − ρ)−1�0 = l(1 − ρ)−1�0 − l�0, (75)

R∗L =L[lP∞ − lP0]. Therefore, from the discussion surrounding equation (51) the cylinder Higgs bundle is invariant under 
the action of Z(2l)

2k . �
As an immediate consequence we obtain

Corollary 11. For fixed k ∈ N , l = 0, . . . , k − 1 and |c| > 0 there exists a monopole chain invariant under the action of Z(2l)
2k . This 

monopole chain is unique up to the action of Z2 × U (1)T × U (1)R . There are no monopole chains invariant under the action of 
Z(2l+1)

2k .

5. Construction of monopole chains

In this section we present pictures of the Z2k-symmetric monopole chains whose spectral data we have just discussed. 
The construction of the monopole chains proceeds in three stages: (i) find the associated Higgs bundle; (ii) solve the 
hermitian-Einstein equation to find a solution of Hitchin’s equations; (iii) apply the Nahm transform to construct the 
monopole chain. Only the first stage can be accomplished explicitly; the remaining two are implemented numerically. We 
first describe how the monopole chains are constructed, and finish with a discussion of the qualitative features of these 
monopole chains.
13
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5.1. Higgs bundle and metric with cyclic symmetry

We identify C∗ with C/(2π i/β)Z by writing w = eβs . We work in a holomorphic trivialisation over the covering space 
C, so that the Higgs field φ is represented by a rank k holomorphic matrix-valued function of s ∈ C. Since this defines a 
section of a bundle over C/(2π i/β)Z it must be periodic up to a holomorphic gauge transformation U :

φ(s + 2π i/β) = U (s)−1φ(s)U (s) (76)

In order to have Z2k symmetry it must satisfy

ωφ(s + π i/β) = V (s)−1φ(s)V (s) (77)

where

ω := exp(π i/k) (78)

and V is a holomorphic invertible matrix-valued function. Like φ, this function V represents a section of a bundle over 
C/(2π i/β) so must be periodic up to a gauge transformation in the following sense:

V (s + 2π i/β) = U (s)−1 V (s)U (s + π i/β). (79)

Note that the argument of U on the right is s + π i/β rather than s for consistency with equations (76) and (77): U (s)
represents a map from the fibre Es+2π i/β at s + 2π i/β to Es , and V (s) represents a map from Es+π i/β to Es , so both sides 
of equation (79) compose nicely to give maps from Es+3π i/β to Es+2π i/β .

Thus to construct a Z2k-invariant Higgs bundle we need to solve equations (76), (77) and (79). Combining equations (77)
and (76), we see that

ω2φ(s) = W (s)−1φ(s)W (s), where W (s) := V (s)V (s + π i/β)U (s)−1. (80)

This equation places constraints on W : since det(φ) = 0, ω2 must be an eigenvalue of the adjoint action of W −1 with 
multiplicity at least k. This means that the eigenvalues of W must be distinct and their ratios must be kth roots of unity. 
We may therefore choose to work in a gauge in which

W (s) = w(s)diag(1,ω2,ω4, . . . ,ω2k−2) (81)

for some function w(s). It follows that

φ(s) = c1/k�−1 diag(φ0(s),φ1(s), . . . , φk−1(s)) (82)

where � is the “shift” matrix introduced in equation (124).
The gauge transformation V (s) in equation (77) needs to preserve this form of φ. Therefore it must be of the form

V (s) = �l diag(V 0(s), V 1(s), . . . , Vk−1(s)) (83)

for some l ∈ {0, 1, . . . , k − 1}. Then equation (77) becomes

ωφ j(s + π i/β) = V j(s)V j−1(s)−1φ j+l(s), j = 0, . . . ,k − 1 (84)

In this equation and those that follow, indices are to be understood modulo k: thus for example V−1 = Vk−1.
From the equation (15) we see that

e−βs + eβs = c−1(−1)k−1 detφ =
k−1∏
j=0

φ j(s). (85)

The zeros of the function on the left of this equation are the points sp = (2p − 1)π i/2β for p ∈ Z. Each of these must 
be a zero of precisely one of the functions φ j . By applying a gauge transformation if necessary, we may assume without 
loss of generality that −π i/2β is a zero of φ0. Then equation (84) tells us that (2p − 1)π i/2β is a zero of φ−lp . Thus the 
distribution of zeros amongst the functions φ j is completely determined by equation (84).

This observation guides the choice of the functions φ j . Let

φ j(s) =
∏

i∈Zk

il= j mod k

μi(s), μ j(s) = e−βs/k − ω2 j+1eβs/k. (86)

These satisfy equation (85) and have zeros in the desired places. Moreover,
14
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μ j(s + π i/β) = ω−1μ j+1(s) (87)

and

φ j(s + π i/β) =
{
ω−mφ j+l(s) j = 0 mod m

φ j+l(s) j = 0 mod m
, (88)

where

m := gcd(k, l). (89)

Inserting these into equation (84) gives

V j(s)V j−1(s)−1 =
{
ω1−m j = 0 mod m

ω j = 0 mod m
. (90)

The solution of this equation is

V j(s) = v(s)ω j mod m (91)

for some function v(s).
The gauge transformation U is determined by V and W via equation (80):

U (s) = W (s)−1 V (s)V (s + π i/β) (92)

= �2l diag(U0(s), . . . , Uk−1(s)) (93)

U j(s) := v(s)v(s + π i/β)w(s)−1ω−4lω−2m floor( j/m), (94)

where floor( j/m) = ( j − ( j mod m))/m denotes the greatest integer less than or equal to j/m.
We have now solved equations (76) and (77): φ is given in equations (82) and (86), V is given in equations (83) and 

(91), and U is given in equations (93) and (94). It remains to solve equation (79). A short calculation using equations (83), 
(91), (93), (94) shows that

U (s)−1 V (s)U (s + π i/β) = w(s)v(s + 2π i/β)

w(s + π i/β)v(s)
ω2l V (s). (95)

Therefore the remaining equation (79) is equivalent to

w(s + π i/β) = ω2l w(s). (96)

In order to determine the symmetry type of this solution we now turn our attention to the hermitian metric. This is 
represented by a positive hermitian matrix-valued function h satisfying

h(s + 2π i/β) = U (s)†h(s)U (s) (97)

|eβl′s/k|2h(s + π i/β) = V (s)†h(s)V (s). (98)

The first of these says that h defines a metric on the bundle over C/(2π i/β)Z, and the second says that h is invariant 
under the action of Z(2l′)

2k , where l′ is to be determined. The equations together imply that

|e2βl′s/k|2h(s) = W (s)†h(s)W (s), (99)

where W was defined in equations (80) and (81). Taking determinants, we see that

|e2βl′s|2 = |w(s)k|2. (100)

It follows that w(s) equals e2βl′s/k times a phase. Comparing with (96) we see that l′ = l, so the solution has Z(2l)
2k symmetry. 

Equation (99) is then solved by

h(s) = exp diag(ψ0(s),ψ1(s), . . . ,ψk−1(s)) (101)

for real functions ψ j(s).
We now impose the condition that det(h) = 1, or equivalently,

k−1∑
ψ j(s) = 0. (102)
j=0
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No generality is lost in doing so: the hermitian-Einstein equation implies that ln det h is a harmonic, and therefore equal to 
the real part of a holomorphic function f . Applying the gauge transformation exp(− f (s)/2k)Idk then ensures that det h = 1.

With condition (102) imposed, and V given in equations (83) and (91), equation (98) is solved by

v(s) = eβls/k, ψ j(s + π i/β) = ψ j+l(s). (103)

It is straightforward to check that these conditions also ensure that equation (97) is solved.

5.2. Hermitian-Einstein equation and the Nahm transform

This completes our description of the Z(2l)
2k -invariant Higgs bundle. Switching to a unitary gauge, the solution is

φ = c1/k�−1

diag(e(ψk−1−ψ0)/2φ0, e(ψ0−ψ1)/2φ1, . . . , e(ψk−2−ψk−1)/2φk−1) (104)

A1 = − i

2

∂

∂x2
diag(ψ0,ψ1, . . . ,ψk−1) (105)

A2 = i

2

∂

∂x1
diag(ψ0,ψ1, . . . ,ψk−1), (106)

with A being the Chern connection and s = x1 + ix2. The cases l = 0 and (for even k) l = k/2 of this solution were previously 
obtained by Maldonado [25]. Note that, from equations (88) and (103), these are the cases where the functions φ j and ψ j
are invariant under s �→ s + 2π i/β . The remaining cases of the solution are new.

By construction this solves the second of Hitchin’s equations (18). Inserting this into the first of Hitchin’s equation (17)
(i.e. the hermitian-Einstein equation (16)) yields

|c|−2/k�ψ j = |φ j+1|2 exp(ψ j − ψ j+1) − |φ j|2 exp(ψ j−1 − ψ j). (107)

These are the variational equations for the functional

2π/β∫
0

∞∫
−∞

k−1∑
j=0

(
1
2 |c|−2/k|∇ψ j|2 + |φ j+1|2 exp(ψ j − ψ j+1)

)
dx1dx2, (108)

which is of course the Donaldson-Simpson functional. Equations (107) are a form of the affine Toda field equations. This 
is a consequence of invariance under the subgroup Zk ⊂ Z2k: it has been known for some time that Zk-invariant Higgs 
bundles are equivalent to affine Toda equations [2].

The differential equation (107) needs to be supplemented with boundary conditions coming from the parabolic structures 
at x1 = ±∞. Rather than deal with the parabolic structures directly, it is more straightforward to proceed by examining the 
differential equation (107). From our earlier work we know that the right hand side, which represents [φ, φ†], should tend 
to zero as |x1| → ∞. The asymptotics of |φ j |2 are given by

|φ j|2 ∼
{

e2β|x1|m/k j = 0 mod m

1 j = 0 mod m.
(109)

Inserting these into the right hand side of equation (107) and equating to zero gives

ψ j+1 − 2ψ j + ψ j−1 =

⎧⎪⎨
⎪⎩

− 2β|x1|m
k j = 0 mod m

2β|x1|m
k j = −1 mod m

0 otherwise.

(110)

This difference equation has a unique solution satisfying the constraint (102), leading to the asymptotic boundary conditions

ψ j ∼ 2β|x1|
k

(
m − 1

2
− ( j mod m)

)
as |x1| → ∞. (111)

Thus Hitchin data for cyclic monopole chains can be constructed by solving the differential equation (107), subject to 
the boundary conditions (111). Although the Hitchin equations are (like all reductions of self-dual Yang-Mills) integrable, 
we have elected to solve this equation numerically. We used a heat flow technique to solve a discretised version of the 
equations (107) on a finite cylinder defined by |x1| ≤ L for some L > 0, with Neumann boundary conditions based on (111)
imposed at x1 = ±L.
16



D. Harland Journal of Geometry and Physics 178 (2022) 104552
Having solved the Hitchin equations, the corresponding monopole chain can be constructed using the Nahm transform. 
This involves the operators

/D y =
(

(y1 + iy2)Idk − φ 2(∂s + As) + y3

2(∂s̄ + As̄) − y3 (y1 − iy2)Idk − φ†

)
, (112)

/D†
y =

(
(y1 − iy2)Idk − φ† −2(∂s + As) − y3
−2(∂s̄ + As̄) + y3 (y1 + iy2)Idk − φ

)
, (113)

which depend on y ∈ R3 and act on C2k-valued functions Z(x1, x2). Since in our ansatz the Hitchin data is periodic up to 
a gauge transformation U , these functions Z are required to satisfy

Z

(
x1, x2 + 2π

β

)
=

(
U (x1, x2)−1 0

0 U (x1, x2)−1

)
Z(x1, x2). (114)

It is known that the dimensions of the spaces of L2-normalisable solutions of /D y Z = 0 and /D†
y Z = 0 are respectively 0 and 

2 [7].
The Nahm transform is a two-step process; the first step is to find for each y ∈ R3 an L2-orthonormal basis for the 

kernel of /D†
y , i.e. solutions Z1(x; y), Z2(x; y) to /D†

y Za = 0 normalised such that

2π/β∫
0

∞∫
−∞

Z †
a Zbdx1dx2 = δab. (115)

In the second step the monopole Higgs field is constructed via

φ̂ab(y) = i

2π/β∫
0

∞∫
−∞

x1 Z †
a Zb dx1dx2. (116)

We carried out this process numerically, using our numerical Hitchin data. Rather than solve the equation /D†
y Z = 0

directly, we solved instead the equation /D y /D†
y Z = 0. The two equations are equivalent (since /D y has zero-dimensional 

kernel) but the latter is more amenable to numerical solution because the differential operator involved is nonnegative and 
of second order. The formula that we used for /D y /D†

y is

/D y /D†
y =

( [φ,φ†] − �A,φ,y −2(∂sφ + [As, φ])
−2(∂sφ + [As, φ])† [φ†, φ] − �A,φ,y

)
(117)

�A,φ,y = (
∂1 + A1

)2 + (
∂2 + A2 + iy3Idk

)2

− 1

2
{φ − y1 − iy2, φ

† − y1 + iy2}. (118)

(Note that this identity assumes that A, φ solve Hitchin’s equations.) This was converted to a matrix by replacing derivatives 
with finite differences; in order to obtain L2-normalisable solutions we imposed Dirichlet boundary conditions on Z . The 
resulting operator /D y /D†

y was stored as a sparse matrix and its smallest eigenvalues were computed using an algorithm 
included in the MATLAB software package. Our numerical approximation to the basis Z1, Z2 of the kernel was given by the 
two eigenvectors corresponding to the smallest eigenvalues. In practice the two smallest eigenvalues were always very close 
to zero, in the sense that they were less than 1% of the third-smallest eigenvalue. This gives an indication of the reliability 
of our numerical scheme.

Finally, the gauge-invariant quantity ‖φ̂‖2 = 1
2 Tr(φ̂φ̂†) was evaluated for points y in a rectangular lattice by evaluating 

the integrals (116). From this, the energy density was calculated using Ward’s formula E = �‖φ̂‖2 [36] for the energy 
density.

5.3. Features of the monopole chains

Energy density isosurfaces of monopole chains with k = 4 and various values of l and β are shown in Figs. 2, 3 and 4. 
The Z(6)

8 -symmetric chain is not shown, but this corresponds to a reflection of the Z(2)
8 -symmetric chain in Fig. 3. These 

are representative of images obtained for other values of k (images of Z4-symmetric 2-monopole chains can be found in 
[26]). These images clearly exhibit the expected order 8 symmetry, and appear to have additional symmetries: for example, 
Figs. 2 and 4 have some reflection symmetries.

For large values of β the images resemble chains of well-separated monopoles, such that in the limit β → ∞ one could 
obtain a monopole on R3. The individual monopoles have charges 4, 1 and 2 in the cases of Z(0) , Z(2) and Z(4) symmetry. 
8 8 8
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Fig. 2. Energy isosurfaces for Z(0)
8 -symmetric 4-monopole chains with c = 1 and β/2π = 0.07 (left), 0.14 (centre) and 0.28 (right). The range of the vertical 

axis is 3β , so the image covers three “periods”. Images are not to scale. The isosurface shown is where the energy density is 0.6 times its maximum value.

Fig. 3. Energy isosurfaces for Z(2)
8 -symmetric 4-monopole chains with c = 1 and β/2π = 1 (left), 2 (centre) and 3 (right). The range of the vertical axis is 

β . Images are not to scale. The isosurface shown is where the energy density is 0.6 times its maximum value.

Fig. 4. Energy isosurfaces for Z(4)
8 -symmetric 4-monopole chains with c = 1 and β/2π = 0.3 (left), 0.6 (centre) and 1.2 (right). The range of the vertical 

axis is 2β , so the image covers two “periods”. Images are not to scale. The isosurface shown is where the energy density is 0.6 times its maximum value.

The general pattern seems to be that a Z(2l)
2k -symmetric k-monopole chain breaks up into individual monopoles of charge 

gcd(k, l). For small values of β the monopole chains in Figs. 2 and 3 appear to separate to codimension-2 defects.
The middle pictures in Figs. 2 and 4 consist of cylindrical shells with hollow interiors, and can be considered examples 

of magnetic bags [5]. The magnitude of the scalar field φ̂ is close to zero on the interior of the shell, and seems to attain 
the value zero at isolated points on the central axis. So these are “cherry bags”, in the terminology introduced in [6].

Finally, we note that the middle image of Fig. 4 is very similar to a picture of a Skyrme chain obtained in [15]. It remains 
to be seen whether any of the other monopole chains constructed here correspond to Skyrme chains.

Appendix A. Proof of Theorem 5, parts (i) and (ii)

This appendix proves parts (i) and (ii) of Theorem 5 using results of Simpson [35]. We begin by considering part (ii), 
which concerns the behaviour of hermitian-Einstein metrics near parabolic points.
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Proposition 12. Let (E, φ) be a rank k cylinder Higgs bundle and let z be a local holomorphic coordinate on CP1 such that 
z = 0 is a parabolic point. Then there exists a compatible holomorphic trivialisation for E near 0 and local holomorphic functions 
φ−1, φ0, . . . , φk−2 such that φ−1(0) = 0 and

φ(z) =
k−2∑

i=−1

φi(z)Z(z)i where Z(z) =

⎛
⎜⎜⎜⎝

0 · · · 0 z
0

Idk−1
...

0

⎞
⎟⎟⎟⎠ . (119)

Proof. We start by choosing a compatible trivialisation of E near z = 0 as in part (iii) of Proposition 3. The eigenvalues 
and eigenvectors of φ are not single-valued functions of z, so we work on the k-fold covering with coordinate u, such that 
z = cuk . Then it can be shown that φ(cuk) has an eigenvector of the form

σ(u) =

⎛
⎜⎜⎜⎝

uk−1 + O (uk)
...

u + O (u2)

1 + O (u)

⎞
⎟⎟⎟⎠ .

(The corresponding eigenvalue is 1/u + O (1).) Let ω = e2π i/k; then σi(u) := σ(ωiu) for i = 0, . . . , k − 1 are eigenvectors of 
φ and form a local frame.

Let τi(u) be the frame

τi(u) =

⎛
⎜⎜⎜⎝

(ωiu)k−1

...

ωiu
1

⎞
⎟⎟⎟⎠ , i = 0, . . . ,k − 1,

and let g(u) be the invertible matrix-valued function such that g(u)τi(u) = σi(u). Then

g(ωu)τi(u) = g(ωu)τi−1(ωu) = σi−1(ωu) = σi(u) = g(u)τi(u),

so g(ωu) = g(u) and g can be written as a function of z = cuk . Therefore g defines a change of trivialisation away from 
the point z = 0. By construction, the eigenvectors of g−1φg are τi(u), and it follows that g−1φg can be written in the form 
(119).

It remains to show that the trivialisation defined by g is compatible with the parabolic structure at z = 0. It suffices to 
show that g extends to z = 0, and that g(0) is invertible and lower-triangular.

To this end, note that τi can be written τi = ∑
j e j V ji , where e j are the standard basis vectors for Ck and V ji =

(ωiu)k−1− j are entries of a Vandermonde matrix (with 0 ≤ i, j < k). From definition of σi(u) above, and the fact that 
(ω ju)k−1−l(V −1) ji = Vlj V −1

ji = δli , we obtain that

gei = gτ j(V −1) ji = σ j(V −1) ji =

⎛
⎜⎜⎜⎜⎜⎜⎝

...

O (uk)

1
O (1)

...

⎞
⎟⎟⎟⎟⎟⎟⎠

,

with “1” in the ith position. Thus at the point cuk = z = 0, g is a lower triangular matrix.
Finally, we note that the holomorphic function φ−1(z) in equation (119) cannot vanish at 0, because by definition φ has 

a pole at the origin. �
Consider the following metric, defined near a parabolic point P using the trivialisation provided by Proposition 12:

hP = diag(|z|2α0
P , . . . , |z|2αk−1

P ). (120)

This is compatible with the parabolic structure at 0. The Chern connection of this metric is

AhP = h−1
P ∂hP = diag(α0

P , . . . ,αk−1
P )

dz
. (121)
z
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It has zero curvature, and non-trivial holonomy about the parabolic point (as the αi
P are not all zero).

It will prove convenient to consider the same metric in an alternative, non-periodic gauge. Let s = r + it be a local 
holomorphic coordinate such that z = e−βs . We apply a holomorphic gauge transformation φ �→ g−1φg , hP �→ g†hP g with

g = exp
(

diag(α0
P , . . . αk−1

P )βs
)

. (122)

The resulting expressions for φ, hP and AhP are

φ =
k−2∑
j=−1

φ j(e−βs)e−βsj/k� j, hP = Idk, AhP = 0, (123)

where

� =

⎛
⎜⎜⎜⎝

0 · · · 0 1
0

Idk−1
...

0

⎞
⎟⎟⎟⎠ . (124)

This gauge is quasi-periodic, in the sense that local sections of E are represented by vector-valued functions v(r, t) satisfying

v(r, t + 2π/β) = exp(−2π i diag(α0
P , . . . ,αk−1

P ))v(r, t). (125)

Note that H∗hP = H† = H−1. It follows that [φ, φ∗hP ] = 0. Moreover, since F hP = 0 the metric hP is hermitian-Einstein.
We will use the trivialisation just defined to study the decay properties of a second hermitian-Einstein metric. Before 

doing so we state and prove a useful lemma:

Lemma 13.

(a) Let f : [0, ∞) →R≥0 be a bounded non-negative real function satisfying f ′′ ≥ m2 f for some m > 0. Then f ′(r) ≤ 0 for all r and 
f (r) = O (e−mr) as r → ∞.

(b) Let F : [0, ∞) × S1 → R≥0 be a bounded non-negative real function satisfying �F ≥ 0, such that 
∫

S1 F (r, t)dt = O (e−mr) as 
r → ∞ for some m > 0. Then supt F (r, t) = O (e−mr) as r → ∞.

(c) Let F : [0, ∞) × S1 → R≥0 be a bounded non-negative real function satisfying �F ≥ m2 F for some m > 0. Then supt F (r, t) =
O (e−mr) as r → ∞.

Proof. (a) Consider the function g(r) = f ′(r) + mf (r). This satisfies g′ ≥ mg . Suppose that g(a) > 0 for some a ∈ [0, ∞). 
Then g(r) ≥ g(a)em(r−a) for all r ≥ a. This implies that f grows exponentially and contradicts the boundedness of f . So 
f ′(r) + mf (r) ≤ 0 for all r. It follows that f ′ ≤ 0, and that f = O (e−mr).

(b) Choose a positive constant C such that 
∫

S1 F (r, t)dt ≤ Ce−mr . Since �F ≥ 0, the value of F at any point r0, t0 is 
bounded from above by its average over a ball of radius ε > 0. Therefore

F (r0, t0) ≤ 1

πε2

∫
Bε (r,t)

F (r, t)dr dt ≤ 1

πε2

∫
|r−r0|≤ε

F (r, t)dr dt

≤ 1

πε2

r0+ε∫
r0−ε

Ce−mrdr = O (e−mr). (126)

(c) Consider the function f (r) = ∫
S1 F (r, t)dt . This satisfies f ′′(r) ≥ m2 f (r), so by part (a) f (r) = O (e−mr) as r → ∞, and 

by part (b) supt F (r, t) = O (e−mr) as r → ∞. �
Now we consider the decay properties of a hermitian-Einstein metric. In order to state the next result we need to recall 

the definition of the Donaldson-Simpson functional. Let (E, �) be a Higgs bundle over a (possibly non-compact) Riemann 
surface M . Let h0 and h1 be two hermitian metrics such that h1(·, ·) = h0(·, eψ ·) for some section ψ of End(E) which is 
hermitian with respect to h0. Choose a local frame for E consisting of eigenvectors of ψ which is orthonormal with respect 
to h0, and let λi denote the associated eigenvalues. Given any section X of End(E), we denote the matrix components of X
with respect to this basis by Xij . Let ρ be the real analytic function

ρ(x) =
{

ex−x−1
x2 x = 0

1 x = 0
(127)
2
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The Donaldson-Simpson density is defined by

DS(h0,h1) = iTr(ψFh0) − i
∑
i, j

ρ(λ j − λi)D ′′ψ ji ∧ D ′
h0

ψi j (128)

= iTr(ψ(F h0 + � ∧ �∗h0))

+
∑
i, j

ρ(λ j − λi)
{
∂̄ψ ji ∧ ∗(∂̄ψ)

∗h0
i j + [�,ψ] ji ∧ ∗[�,ψ]∗h0

i j

}
.

Here ∗ denotes the Hodge star with respect to some metric compatible with the complex structure; in particular, ∗ acts 
as multiplication by −i (resp. i) on �1,0 (resp. �0,1). Note that the 2-form DS(h0, h1) does not depend on the choice of 
orthonormal basis, and is thus defined globally, even though the orthonormal frame may exist only locally. The Donaldson-
Simpson functional is defined by

D S(h0,h1) =
∫
M

DS(h0,h1) (129)

Simpson proved the existence of hermitian-Einstein metrics on stable Higgs bundles by studying the gradient flow for 
this functional. Note that although our definition of the Donaldson-Simpson functional involves a choice of metric, it is 
independent of this choice since the action of ∗ on 1-forms is conformally invariant.

We are now ready to state our first result on the decay of hermitian-Einstein metrics:

Proposition 14. Let E be a cylinder Higgs bundle and let z = e−βs be a local holomorphic coordinate such that z = 0 is a parabolic 
point P , and write s = r + it for real coordinates r, t. Let hP be a hermitian metric defined as in (120) and let ψ be a bounded traceless 
self-adjoint section of End(E) such that h(·, eψ ·) is a hermitian-Einstein metric. Then

(a) ψ decays uniformly and exponentially in r as r → ∞;
(b)

∫
{r≥R} DS(hP , h) < ∞ for sufficiently large R; and

(c) |D ′′ψ |2 and |D ′′D ′
hP

ψ | are integrable functions, where the norms and integrals are defined using the metric hP and the cylindrical 
metric dr2 + dt2 .

Proof. Let λi denote the eigenvalues of ψ and let us choose a local frame consisting of eigenvectors of ψ which is or-
thonormal with respect to hP . Again, we write Xij for the matrix elements of an endomorphism X with respect to this 
frame.

The following identity plays a key role in this proof:

(e−ψ D ′
hP

eψ)i j = eλ j−λi − 1

λ j − λi
D ′

hP
ψi j . (130)

Here the right hand side is understood to equal D ′
hP

ψi j if λi = λ j . We now present a short proof of this identity.

First, the identity [ψ, eψ ] = 0 implies that [D ′
hP

eψ, ψ] = [D ′
hP

ψ, eψ ] and hence that

[e−ψ D ′
hP

eψ,ψ] = e−ψ [D ′
hP

eψ,ψ] = e−ψ [D ′
hP

ψ, eψ ]. (131)

This implies that (λ j − λi)(e−ψ D ′
hP

eψ)i j = (eλ j−λi − 1)D ′
hP

ψi j , and if λ j = λi the result follows. Second, consider the case 
that λi = λ j for some i, j at a given point z. Without loss of generality we may assume that λi(z) = λ j(z) = 0, since neither 
side of equation (130) is changed by adding a multiple of the identity matrix to ψ . We have that

eψ = Idk + ψ + ψρ(ψ)ψ, (132)

where ρ is the analytic function defined in equation (127). Then

D ′
hP

eψ = D ′
hP

ψ + D ′
hP

(ψρ(ψ))ψ + ψρ(ψ)D ′
hP

ψ. (133)

We are interested in the i, j-component of this matrix equation. Since ψ is diagonal and ψii = ψ j j = 0 at the point z, the 
i, j-component is (e−ψ D ′

hP
eψ)i j(z) = D ′

hP
ψi j(z), which was to be proved.

Let N be the non-negative real function N = Tr(ψ2) and let n(r) = ∫
S1 N (r, t)dt . We aim to prove the following two 

identities for some positive constant C :

�N ≥ 4 ∗DS(hP ,h) (134)∫
S1

DS(hP ,h)(r, t)dt ≥ Cn(r). (135)
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Here � = ∂2
r + ∂2

t is the Laplacian with respect to the cylindrical metric dr2 + dt2 and ∗ denotes Hodge star for the same 
metric. It follows from these and from Lemma 13 that n(r) decays exponentially as r → ∞ and that n′(r) ≤ 0 for all r. Since 
�N ≥ 0 the lemma shows moreover that supt N (r, t) decays exponentially with r, as claimed in (a). Moreover, claim (b) 
will also follow because the fact that n′(r) ≤ 0 will imply that

4
∫

r≥R

DS ≤
∫

r≥R

�Ndrdt = lim
r→∞n′(r) − n′(R) ≤ −n′(R) < ∞. (136)

First we prove identity (134). Differentiating N yields

∂N = Tr∂hP (ψ2) = TrD ′
hP

(ψ2) = 2Tr(ψ D ′
hP

ψ) = 2
∑

i

λi(D ′
hP

ψ)ii

since [�∗hP , ψ2] is traceless. Then, by equation (130),

∂N = 2
∑

i

λi(e−ψ D ′
hP

eψ)ii = 2Tr(ψe−ψ D ′
hP

eψ).

The hermitian-Einstein equation for h reads

0 = Fh = FhP + D ′′(e−ψ D ′
hP

eψ).

Therefore differentiating N again and employing the identity (130) yields

∂̄∂N = 2Tr(D ′′(ψe−ψ D ′
hP

eψ))

= 2Tr(D ′′ψ ∧ e−ψ D ′
hP

eψ − ψFh)

= 2
∑
i, j

eλ j−λi

λ j − λi
D ′′ψ ji ∧ D ′

hP
ψi j − 2Tr(ψFhP ).

The identity (134) for �N = −2i ∗ ∂̄∂N then follows from the definition (128) of the Donaldson-Simpson density and the 
fact that the analytic function

ex − 1

x
− ex − x − 1

x2

is non-negative for all x ∈R.
Now we prove identity (135). Note that, by construction, F hP = 0 and [�, �∗hP ] = 0. Since ψ is bounded we know that 

there is a positive constant C1 such that

∗DS(h,hP ) ≥ C1 ∗ Tr
(
∂̄ψ ∧ ∗(∂̄ψ)∗h0 + [�,ψ] ∧ ∗[�,ψ]∗h0

)
. (137)

We work in the gauge of equations (123) and (125). In this gauge ψ need not be diagonal. We write ψ = ψ D + ψ⊥ , where 
ψ D is diagonal and ψ⊥ has zeros on its diagonal. As a result of equations (125) and (14), the entries of ψ satisfy

ψi j(r, t + 2π/β) = e2π i(α j
P −αi

P )ψi j(r, t) = e2π i( j−i)/kψi j(r, t). (138)

Thus the entries of ψ⊥ are quasi-periodic. By considering the Fourier series or otherwise we deduce that∫
S1

∗Tr(∂̄ψ ∧ ∗(∂̄ψ)∗hP )dt ≥ 1

4

∫
S1

Tr(∂tψ∂tψ
∗hP )dt ≥ C2

∫
S1

Tr((ψ⊥)2) (139)

for a positive constant C2 that depends on k.
Now consider the term ∗Tr([�, ψ] ∧∗[�, ψ]∗hP ) = 1

2 Tr(ψ[φ, [φ∗hP , ψ]]). Recall from equation (123) that the leading term 
in φ as r → ∞ is the matrix eβs/k�−1, where � is given in equation (124). It is straightforward to check that the self-adjoint 
operator [�−1, [(�−1)∗hP , · ]] = [�−1, [�, · ]] acting on traceless diagonal matrices has positive eigenvalues. Therefore there 
exists a constant C3 such that for sufficiently large r

∗Tr([�,ψ] ∧ ∗[�,ψ]∗hP ) ≥ C3Tr((ψ⊥)2). (140)

Identity (135) follows from inequalities (139) and (140).
Having established parts (a) and (b) of the proposition, we now prove part (c). By equation (137) the integral of |D ′′ψ |2

is bounded above by a multiple of the Donaldson-Simpson functional, which is finite by part (b). We establish integrability 
of |D ′′D ′ψ | using the following identity, whose proof is similar to that of (130):
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eλ j−λi − 1

λ j − λi
(D ′′D ′

hP
ψ)i j = FhP

i j

+ eλ j

λi − λ j

(
e−λi − e−λk

λi − λk
− e−λ j − e−λk

λ j − λk

)
D ′′ψik ∧ D ′

hP
ψkj

+ e−λi

λi − λ j

(
eλi − eλk

λi − λk
− eλ j − eλk

λ j − λk

)
D ′

hP
ψik ∧ D ′′ψkj . (141)

As has already been observed, FhP = 0. The coefficients of the remaining three terms are analytic functions which remain 
bounded as λi − λ j , λi − λk or λk − λ j approach 0. Moreover, the coefficient (eλ j−λi − 1)/(λ j − λi) of (D ′′D ′

hP
ψ)i j never 

vanishes. Since ψ is bounded, it follows that |D ′′ D ′
hP

ψ | is bounded from above by a constant multiple of |D ′′ψ |2 and thus 
is integrable. �

To prove our next result on the decay of hermitian metrics, we need the following lemma:

Lemma 15. Let � be the k × k matrix defined in equation (124). Consider the following functions on the space of k × k hermitian 
matrices:

V 1(ψ) = Tr(e−ψ�−1eψ − �−1)(� − e−ψ�eψ) (142)

V 2(ψ) = Tr([�−1, e−ψ�eψ ][�−1, e−ψ�eψ ]) (143)

V 3(ψ) = Tr([�−1, e−ψ�eψ ][�, e−ψ�−1eψ ]). (144)

Then there exist constants ε > 0 and C > 1 such that

|ψ | < ε =⇒ 0 ≤ V i(ψ) < C V j(ψ) ∀i, j ∈ {1,2,3}. (145)

Proof. Let U denote the set of all k × k hermitian matrices and let � denote the set of hermitian matrices that com-
mute with �. One can show that � is equal to the intersection of the span of the linearly-independent matrices 
Idk, �, �2, . . . , �k−1 with U . We will show that:

1. V i(ψ) = 0 and dV i(ψ) = 0 for ψ ∈ �.
2. The quadratic forms Q i on U/� defined by the hessians of V i at 0 are positive definite.

The result then follows by considering the Taylor expansions of V i about points ψ ∈ �.
Item 1 follows almost immediately from the observation that the matrices

e−ψ�−1eψ − �−1, � − e−ψ�eψ, [�−1, e−ψ�eψ ], [�, e−ψ�−1eψ ] (146)

all vanish when ψ ∈ �.
For item 2, we introduce the operator T (X) = [�, [�−1, X]] = [�−1, [�, X]] acting on hermitian matrices X . A short 

calculation shows that the hessians of V 1, V 2, V 3 are

d2

dt2
V 1(t X)

∣∣
t=0 = Tr(X T (X)), (147)

d2

dt2
V 2(t X)

∣∣
t=0 = d2

dt2
V 3(t X)

∣∣
t=0 = Tr(X T 2(X)). (148)

Since � is unitary it can be diagonalised, and the eigenvalues of T are of the form |λi − λ j |2 for eigenvalues λi, λ j of �. It 
is straightforward to check that the eigenvalues of � are distinct (in fact they are the roots of unity), so precisely k of the 
eigenvalues of T are zero. The corresponding eigenspace is �, and T defines a positive definite operator on U/�. It follows 
that the quadratic forms Q i on H/� are positive definite. �

Now we state our second result about the decay of hermitian-Einstein metrics, from which part two of Theorem 5
follows:

Proposition 16. Let E be a cylinder Higgs bundle and let z = e−βs be a local holomorphic coordinate such that z = 0 is a parabolic 
point, and write s = r + it for real coordinates r, t. Let hP be a hermitian metric defined as in (120) and let ψ be a bounded traceless 
self-adjoint section of End(E) such that h = hP (·, eψ ·) is a hermitian-Einstein metric. Then supt |F h|(r, t) decays faster than any 
exponential function as r → ∞.
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Proof. We work in the gauge of equations (123) and (125). Consider the functions

V1(r, t) = Tr(�∗h − �−1)(�∗h − �−1)∗h

= Tr(��∗h + �−1(�−1)∗h) − 2k (149)

V2(r, t) = Tr([�−1, (�−1)∗h]2) (150)

V3(r, t) = Tr([�−1, (�−1)∗h][�,�∗h]). (151)

These are just the compositions of the functions V 1, V 2, V 3 studied in Lemma 15 with ψ . They are periodic, in the sense 
that Vi(r, t + 2π/β) = Vi(r, t). This is most easily shown by rewriting these functions in terms of Z = e−βs/k�, which 
represents a well-defined section of End(E) over the cylinder.

We aim to estimate �V1. First, since ∂̄� = 0,

∂V1 = Tr(�∗h∂h� + (�−1)∗h(∂h�−1)). (152)

Then, using again the holomorphicity of � and the hermitian-Einstein equation (16), we obtain

∗�V1 = −2i∂̄∂V1 (153)

= −2iTr((∂h�)∗h ∧ ∂h� + (∂h�−1)∗h ∧ (∂h�−1))

− 2iTr(�∗h[F h,�] + (�−1)∗h[F h,�−1]) (154)

= 2Tr((∂h�)∗h ∧ ∗∂h� + (∂h�−1)∗h ∧ ∗(∂h�−1))

∗ Tr(�∗h[[φ,φ∗h],�] + (�−1)∗h[[φ,φ∗h],�−1]). (155)

The leading term in the expansion of φ given in equation (123) is a positive multiple of eβs/k�−1, so there exists a positive 
constant C1 such that, for sufficiently large r,

�V1 ≥ C1e2βr/kTr
(
�∗h[[�−1, (�−1)∗h],�]

+ (�−1)∗h[[�−1, (�−1)∗h],�−1]) (156)

= C1e2βr/kTr([�−1, (�−1)∗h][�,�∗h] + [�−1, (�−1)∗h]2) (157)

= C1e2βr/k(V2 + V3). (158)

Let ε be the constant given in Proposition 15. By Proposition 14 ψ satisfies the estimate |ψ(r, t)| < ε for sufficiently large 
r. Therefore by Lemma 15 there exists a constant C2 such that, for sufficiently large r,

�V1 ≥ C2e2βr/kV1. (159)

By choosing r sufficiently large the coefficient of V1 on the right hand side can be made arbitrarily large. Therefore by part 
(c) of Lemma 13 supt V1(r, t) decays faster than any exponential function of r.

Now we consider the curvature F h of the Chern connection of h. By the hermitian-Einstein equation,

|F h|2h = |[�,�∗h]|2h = 1

4
Tr([φ,φ∗h]2). (160)

By equation (123) the leading contribution to φ at large r is eβs/k�−1. Therefore there exists a constant C3 such that, for 
sufficiently large r,

|F h|2h ≤ C3e4βr/kTr([�−1, (�−1)∗h]2) = C3e4βr/kV2. (161)

By Proposition 14 and Lemma 15 there exists a positive constant C4 such that, for sufficiently large r,

|F h|2h ≤ C4e4βr/kV1. (162)

We have already shown that supt V1(r, t) decays faster than any exponential function, and it follows that supt |F h|2h decays 
faster than any exponential function. �

Now we prove part (i) of Theorem 5. For the existence part we appeal to a theorem of Simpson [35]. Simpson proved 
existence of a hermitian-Einstein metric by applying a heat flow to the Donaldson-Simpson functional. To use this theorem 
we need to show that the Higgs bundle is stable and supply a suitable initial hermitian metric.

First we show stability of (E, φ). This entails showing that every φ-invariant sub-bundle of E satisfies a slope-stability 
condition. We establish this trivially by showing that there are no non-trivial φ-invariant sub-bundles.
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To show that E|C∗ has no φ-invariant subbundles, consider the curve in C∗ ×C defined by the characteristic polynomial 
of φ:

det(ζ IdE − φ(w)) = 0.

(This is the spectral curve, and was discussed in more detail in section 3.) The map (w, ζ ) �→ w gives a k-sheeted branched 
covering of this curve over C∗ , and the sheets of this covering correspond to the eigenvalues of φ. Near a parabolic point 
P one obtains from part (iii) of Proposition 3 that the curve has equation

0 = ζ k + fk−1(z)ζ k−1 + . . . + f1(z)ζ + f0(z) − c/z.

It follows that for sufficiently small z = 0 the eigenvalues of φ are distinct. Moreover, as z circles once around the point 
z = 0 the eigenvalues are cyclically permuted.

Suppose that F ⊆ E is a φ-invariant sub-bundle. The eigenvalues of the restriction of φ to F at any point z form a subset 
of the set of eigenvalues of φ. Since these eigenvalues depend continuously on z as it circles the point z = 0, this subset 
must be invariant under cyclic permutations, hence is either the whole set or the empty set. Thus F has rank either k or 0, 
so is not a non-trivial sub-bundle.

Now we construct a suitable initial hermitian metric. We may assume without loss of generality that E has degree 0, 
since the degree can be changed by twisting E . Since the parabolic degree of E is zero, this means that the parabolic weights 
satisfy

∑
P∈{0,∞}

k−1∑
i=0

αi
P = 0 (163)

Let us choose a non-vanishing holomorphic section e of the line bundle �k(E); doing so trivialises �k(E), and provides an 
identification of hermitian metrics h on �k(E) with positive real functions h(e, e).

Recall that the cylinder Higgs bundle has two parabolic points P = 0, ∞, with local coordinates z0 = w and z∞ = w−1. 
Near each such point choose a compatible frame eP

0 , . . . , eP
k−1 as in Proposition 12. We may assume that these frames satisfy 

eP
0 ∧ · · · ∧ eP

k−1 = e, since if not we can multiply them by a non-vanishing local holomorphic function so that they do. We 
then choose hermitian metrics h0, h∞ near each point as in equation (120). The induced metrics on �k(E) are

det(h0) = |w|2
∑

i α
i
0 , det(h∞) = |w|−2

∑
i α

i∞ . (164)

By equation (163), det(h∞) = |w|2
∑

i α
i
0 . Therefore there exists a smooth hermitian metric hI on E which agrees with h0

near w = 0 and h∞ near w = ∞, such that the induced metric on �k(E) is

det(hI ) = |w|2
∑

i α
i
0 (165)

By construction, FhI vanishes in neighbourhoods of the parabolic points so has compact support. Therefore |FhI |hI is 
bounded, so hI satisfies the hypotheses of Simpson’s theorem. Simpson’s theorem gives a hermitian metric h = hI (·, eψ ·)
such that det(h) = det(hI ) = |w|2

∑
i α

i
0 , h and hI are mutually bounded, |D ′′ψ |hI is square integrable, and

Fh − 1

k
Tr(Fh) = 0. (166)

Since TrFh = Tr(F h) = ∂̄∂ ln |w|2
∑

i α
i
0 = 0, Fh = 0 and the metric h is hermitian-Einstein. Since hI is compatible with the 

parabolic structure and h, hI are mutually bounded, h is also compatible with the parabolic structure. Finally, since h, hI are 
mutually bounded, the section ψ is bounded with respect to hI and Proposition 16 gives that the curvature F h decays faster 
than any exponential function.

Now we establish uniqueness statement of part (i), following a standard argument. Suppose that h1 = hI (·, eψ1 ·) and 
h2 = hI (·, eψ2 ·) are two hermitian-Einstein metrics which are compatible with the parabolic structures. The condition of 
compatibility ensures that the self-adjoint sections ψ1, ψ2 are bounded with respect to hI . Then |D ′′ψi |hI and |D ′′D ′

hI
ψi |hI

have bounded integrals by Proposition 14.
Let ψ be the unique self-adjoint section of End(E) such that h2 = h1(·, eψ ·). Let ht = h1(·, e(t−1)ψ ·) and let f : [1, 2] →R

be the function f (t) = D S(hI , ht). Then f (t) has critical points at t = 1, 2. By a result of Simpson [35],

D S(hI ,ht+s) = D S(hI ,ht) + D S(ht,ht+s). (167)

Therefore

d2 f

dt2
=

∫
1

Tr(∂̄ψ ∧ ∗(∂̄ψ)∗ht + [�,ψ] ∧ ∗[�,ψ]∗ht ) ≥ 0. (168)
CP \{0,∞}
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Since f has critical points at t = 1, 2, d2 f /dt2 = 0. It follows that ψ is holomorphic and commutes with �.
We claim that these conditions imply that ψ is a multiple of the identity. We could prove this using stability, but in 

the present case it is simpler to make a direct argument. Consider the characteristic polynomial det(ζ − ψ(w)) of ψ . The 
coefficients are holomorphic real-valued functions of w ∈ C∗ , and hence constant. Therefore the eigenvalues λ0, . . . , λk−1 of 
ψ(w) are independent of w . Recall that near a parabolic point the eigenvalues of φ are distinct. Since ψ commutes with 
φ the eigenspaces of φ are subspaces of eigenspaces of ψ . Recall that the eigenspaces of φ are cyclically permuted as one 
circles the parabolic point. It follows that the eigenvalues λ0, . . . , λk−1 of ψ are invariant under some cyclic permutation, 
hence equal. Therefore ψ is proportional to the identity operator and h2 is a rescaling of h1.
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