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Review

Protein acetylation in the critical biological
processes in protozoan parasites

Suellen Rodrigues Maran ,1 Krista Fleck ,2 Natália Melquie Monteiro-Teles ,3 Tony Isebe ,4

PegineWalrad ,3 Victoria Jeffers ,2 Igor Cestari ,4,6 Elton J.R. Vasconcelos ,5 and Nilmar Moretti 1,*

Protein lysine acetylation has emerged as a major regulatory post-translational

modification in different organisms, present not only on histone proteins affecting

chromatin structure and gene expression but also on nonhistone proteins involved

in several cellular processes. The same scenario was observed in protozoan para-

sites after the description of their acetylomes, indicating that acetylation might

regulate crucial biological processes in these parasites. The demonstration that

glycolytic enzymes are regulated by acetylation in protozoans shows that this

modification might regulate several other processes implicated in parasite survival

and adaptation during the life cycle, opening the chance to explore the regulatory

acetylation machinery of these parasites as drug targets for new treatment

development.

Protein acetylation in protozoan parasites

Apicomplexan and trypanosomatid parasites are a group of protists with a broad range of species

that cause various public health-impacting diseases worldwide. Among these species, Toxoplasma

gondii, Plasmodium falciparum, Trypanosoma brucei, Trypanosoma cruzi, and Trypanosoma

evansi – etiological agents of toxoplasmosis, malaria, African trypanosomiasis/nagana, Chagas'

disease and surra, respectively – are listed in the rankings of the most relevant protozoan parasites

[1–4]. These microorganisms have complex life cycles shifting between different hosts and facing

varied environmental conditions, requiring alterations in several biological processes aimed at

their survival and infection success [5–7].

Reversible post-translational modifications (PTMs) (see Glossary) represent a fast and

economical way for cells to respond to physiological and environmental conditions. PTMs

such as phosphorylation, methylation, and acetylation, are found on several proteins in the cell

[8–10]. Acetylation is one of the most common PTMs and is characterized by the addition of an

acetyl group to the ε-amino group of lysine residues [8,11]. This PTM neutralizes lysine positive

charges and can confer novel properties to the modified proteins, comprising changes in enzy-

matic activity, subcellular localization, and DNA binding [8,11]. Moreover, acetylation is also

found in the N-terminal regions of proteins and plays an important role in the synthesis, stability,

and cellular localization of proteins [12]. This review focuses on the roles of lysine ε-amino

acetylation.

Protein acetylation was first described on histones [13], and for many years the main interest was

in understanding the impact of this modification on chromatin structure and the regulation of gene

expression. However, the advent of new proteomic technologies allowed the identification of

thousands of acetylated lysine sites (K-ac) in both prokaryotes and eukaryotes and described

numerous nonhistone acetylated proteins. Hence, the initial focus on chromatin-associated

protein acetylation has now shifted to a broader scope and highlights acetylation's regulatory

functions in any subcellular location [8,11].
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Acetylomes of many organisms, including apicomplexans and trypanosomatids, have been

described [14–20]. The widespread presence of K-ac in these organisms indicates that its regula-

tory functions are diverse. Thus, in this review, we consider the advances in the study of protein

acetylation in protozoan parasites of medical and veterinary importance that had their acetylomes

described so far. We also discuss what these recent studies have taught us about the functionality

of this particular PTM on essential biological processes in these organisms. Finally, we review the

parasitic protein acetylation machinery and the potential to explore them as drug targets for the

development of new therapeutic strategies against these parasites.

Regulatory machinery of protein acetylation in protozoan parasites

The addition, removal, and recognition of acetyl groups on lysines are coordinated by lysine

acetyltransferases (KATs), lysine deacetylases (KDACs), and bromodomain-containing

proteins (BDPs), respectively. KATs add acetyl groups to lysines [21], while KDACs remove

the acetyl groups [22]. Bromodomains bind acetylated lysines, and link acetylation marks

with the proteins that perform downstream regulatory functions [23]. The acetylation regula-

tory machinery of apicomplexans and trypanosomatids has been shown to be similar

(Box 1) but compared to higher eukaryotes, such as humans, it is reduced and contains

both highly conserved and parasite-specific acetylation factors (Figure 1). In the next sections

we give more detail about the acetylation machinery of protozoans that have their acetylome

available.

KATs

KATs are grouped based on the sequence similarity of their acetyltransferase domain to historically

well-conserved KATs. The most common families include GNAT, MYST, Hat1, and p300/CBP.

Their specific domains/substrates are reviewed in [21]. While humans have a large repertoire of

KATs, protozoans have far fewer. T. gondii and P. falciparum each have four GNAT family KATs,

while trypanosomes have only two (Figure 1 and see Table S1 in the supplemental information

Box 1. Repertoire of proteins involved in lysine acetylation from protozoan parasites

Proteins involved in the regulation of lysine acetylation levels are present in organisms ranging from bacteria to humans,

and the set of these proteins can vary depending on the complexity of each organism. For protozoan parasites, the num-

ber of genes coding for KDACs, KATs, and BDPs are similar, especially within species from the same group (Figure I).

However, most of these proteins still need to be characterized.

In general, the number of lysine deacetylases (Zn-dependent and sirtuins) varies from three to 20 among the species

analyzed, with the smallest set in Eimeria brunetti and the biggest in Trichomonas vaginalis. The sirtuins are present in

similar numbers amid the species. For example, most of the trypanosomatids (blue circles), T. brucei, T. evansi, Leish-

mania spp.,Crithidia fasciculata, and Leptomonas seymouri, have three genes for sirtuins, while T. cruzi and T. rangeli have

two and Leptomonas pyrrhocoris has four. Differences are also observed for the apicomplexan species (green circles),

where P. falciparum, T. gondii, and Neospora caninum have two sirtuins, while Cryptosporidium parvum and E. brunetti

have only one. The intestinal parasites, amoebas and Giardia lamblia, have four sirtuins. By contrast, the set of Zn-depen-

dent enzymes detected among the species is more similar, except for amoebas and E. brunetti, which have only two

genes, and T. vaginalis which has nine, compared to four genes found in the other species.

Regarding the KATs, the smallest repertoire is found in the amoeba species (2 genes), and the biggest in T. vaginalis

(13 genes). Apicomplexan species have genes coding for tree family of KATs [GNATs, MYST, and noncanonical

(HAT1)], while the last group is not present in the other species analyzed. Trypanosomatids have two and four genes cod-

ing for GNATs and MYST, respectively; except T. brucei and T. evansi which have only tree MYST proteins.

The number of BDPs found in the groups of protozoan parasites varies from five in some trypanosomatids (T. cruzi,

Leishmania spp., andC. fasciculata) to more than 100 in T. vaginalis. Amongst apicomplexans, the number of BDPs varies

from seven in P. falciparum to 12 in T. gondii and C. parvum. It is important to mention that the bigger number of genes

found in T. vaginalis for all groups of proteins can be explained by the fact that this parasite has a huge genome with more

than 60 000 genes, and further analyses are necessary to understand the functional importance of this for this parasite.

Trends in Parasitology

816 Trends in Parasitology, September 2021, Vol. 37, No. 9

Glossary

Acetylome: set of lysine-acetylated

proteins of a specific organism; the

number of acetylated proteins can vary

consistently depending on the organism.

Bloodstream form: a T. brucei

parasite stage inhabiting the vertebrate

host; it relies on glycolysis for energy

production and has a degenerated

mitochondrion.

Bradyzoite: the dormant stage of

Toxoplasma in the intermediate host; it is

responsible for chronic disease in

humans.

Bromodomain-containing proteins

(BDPs): proteins bearing BDP domains

that bind to acetylated lysine; usually

they are within protein complexes

involved in downstream functions of

acetylation.

Euchromatin: lightly packed

chromatin, usually containing actively

expressed genes.

Gametocyte: a Plasmodium sexual

precursor cell transmitted from human

to mosquito.

Glycosomes: specialized enclosed-

membrane organelles that contain

glycolytic enzymes found in

trypanosomatids.

Heterochromatin: densely packed

chromatin, usually containing repressed

genes.

Lysine acetyltransferase (KAT): a

family of enzymes responsible for the

addition of acetyl groups to lysine

residues; the number of members of this

family varies depending on the

organism.

Lysine deacetylase (KDAC): a group

of enzymes involved in the removal of

acetyl groups from lysine residues; they

are divided mainly in two families: zinc-

and NAD+-dependent.

Oocyst: the form of Plasmodium in the

mosquito that releases sporozoites.

Ookinete: the motile form of

Plasmodium in the mosquito that forms

oocysts.

Oxidative phosphorylation: the

process in which ATP is formed as a

result of the transfer of electrons from

NADH or FADH2 to O2 by a series of

electron carriers; this process occurs in

the mitochondria.

Post-translational modifications

(PTMs): covalent modifications of

proteins following protein synthesis; they

are frequently performed by enzymes.

Procyclic form: a T. brucei parasite

stage present in the tsetse invertebrate

host; this stage has an elaborated



online). T. gondii is unique in possessing two GCN5 homologs, and P. falciparum has a GNAT

protein (PF3D7_1020700) with no similarity to other identified KATs outside of the GNAT domain.

The MYST family of KATs are named for the first identified proteins of this group (MOZ, Ybf2/

Sas3, Sas2, Tip60). While T. gondii and P. falciparum contain more GNAT family KATs,

trypanosomes have many MYST KATs [24] (Figure 1 and Table S1). The third group of KATs

is similar to Hat1, the first identified histone acetyltransferase in yeast [25]. The genomes of

T. gondii and P. falciparum each encode a single Hat1 homolog, but neither has been investi-

gated, and no homologs have been identified in trypanosomes (Figure 1 and Table S1). The

fourth family of eukaryotic KATs, p300/CBP, have no known homologs in apicomplexans or

trypanosomes.

KDACs

KDACs are subdivided into four classes (I, II, III/sirtuins, IV). Classes I, II, and IV are categorized

based on sequence similarity to yeast deacetylases Rpd3, Hda1, and HDAC11, respectively.

TrendsTrends inin ParasitologyParasitology

Figure I. Comparative analyses of the regulatory protein acetylation repertoire of several protozoan species.

Abbreviations: BDP, bromodomain-containing protein; KAT, lysine acetyltransferase; KDAC, lysine deacetylase.
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mitochondrion, and ATP production

relies mainly on oxidative

phosphorylation.

RNA-binding proteins (RBPs):

enzymes that bind to single- or double-

stranded RNAs in cells and are

important for regulating gene

expression.

Sporozoite: the form of Plasmodium

that is transmitted from mosquitoes to a

new host during a blood meal.

Tachyzoite: the proliferative stage of

Toxoplasma, found in intermediate

hosts. It is responsible for acute disease

in humans.



Class III KDACs, also referred to as sirtuins, are homologous to yeast Sir2 and require nicotinamide

adenine dinucleotide (NAD+) as a cofactor for their catalytic activity [22].

T. gondii possesses four class I KDACs, but only TgHDAC3 has been characterized [26], while

P. falciparum has only one class I KDAC. Trypanosomes have twice as many class II KDACs

as T. gondii and P. falciparum, and of all the protozoan class II KDACs, only T. brucei enzymes

have been characterized [27] (Figure 1 and Table S1).

The precise function of the T. gondii sirtuins has not yet been identified; however, the role of the

P. falciparum sirtuins in regulating gene expression has been reported [28,29]. T. brucei has

two mitochondrial sirtuins (TbSir2rp2 and TbSir2rp3) and one nuclear sirtuin (TbSir2rp1) [30,31].

The two sirtuins of T. cruzi – cytoplasmic TcSir2rp1 and mitochondrial TcSir2rp3 – have distinct

functions in parasite multiplication and differentiation [32,33]. The three T. evansi sirtuins remain

uncharacterized. (Figure 1 and Table S1). No class IV KDACs have been identified in apicomplexans

or trypanosomes.

BDPs

Apicomplexans and trypanosomes have a limited repertoire of BDPs compared to humans. With

12 BDPs, T. gondii has the largest number of these reader proteins in its genome, almost twice

TrendsTrends inin ParasitologyParasitology

Figure 1. Regulatory lysine acetylation machinery of protozoan parasites. (A) Overview of 'writers', 'erasers', and

'readers' from protozoan parasites with described acetylomes compared to human. (B) Diversity of lysine acetylation

machinery components of protozoan parasites. Although the repertoire of protozoan machinery is smaller, the diversity of

components is comparable to that in humans, as observed by the families of enzymes from each species. Abbreviations:

KAT, lysine acetyltransferase; KDAC, lysine deacetylase; H. sapiens, Homo sapiens; P. falciparum, Plasmodium falciparum;

T. gondii, Toxoplasma gondii, T. brucei, Trypanosoma brucei; T. cruzi, Trypanosoma cruzi; T. evansi, Trypanosoma evansi.
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the number found in P. falciparum or Trypanosoma species. Many human BDPs contain more

than one bromodomain; however, this is only found for TgBDP3 in T. gondii and TcBDF5 in

T. cruzi, each of which have two bromodomains. Importantly, apicomplexans and trypanosomes

have many parasite-specific BDPs with no similarity to human BDPs; they have been seen as

promising drug targets [34] (Table S1).

Acetylated protein repertoire of protozoan parasites

General overview on published acetylomes

To date, acetylomes have been reported for five protozoan parasites: P. falciparum [16,18,35],

T. gondii [14,15,19], T. brucei [17,20], T. evansi [20], and T. cruzi [17]. For more details about

the methods used to describe their acetylomes see Box 2.

From the five parasite acetylomes addressed herein, those of P. falciparum and T. brucei were

more comprehensively studied and combine several recent studies with revised and improved

Box 2. Proteome-wide analysis used for describing the acetylomes of protozoan parasites

Although there are differences in the approaches used to describe protozoan parasite acetylomes, it generally follows similar methodologies applied to other prokaryote

and eukaryote acetylomes. The methods are laborious, containing several steps schematically represented in Figure I, and are described in more detail here. (1) Sample

preparation. Protein extracts are obtained from the specific parasite stages (described in the figure) with lysis buffer and digested into peptides using proteases, usually

trypsin. Whole-cell protein extracts were obtained for all parasites, except for the Trypanosoma cruzi and Trypanosoma brucei procyclic acetylomes, in which organelle

fractionation was performed before lysate preparation. (2) Acetylated peptide enrichment. Trypsin digestion of total protein extracts generates several peptides, but only

a minor proportion is acetylated (indicated by a yellow circle). To decrease sample complexity and increase the detection capacity, acetylated peptides are enriched by

immunoaffinity purification using pan-acetyl-lysine antibodies that bind to acetylated peptides. This step was not applied to T. cruzi acetylome, and total trypsin-digested

peptides were used directly in mass spectrophotometry analysis. (3) Peptide fractionation. Sample complexity can be further decreased using peptide fractionation

steps, and the methods vary. This step was employed on Plasmodium (new version) [42], T. brucei bloodstream stage, and Trypanosoma evansi acetylome descrip-

tions. Strong cation exchange was the method used. (4) LC-MS/MS and computational analysis. Peptide samples are submitted to high-resolution nano-ultra perfor-

mance liquid chromatography-mass spectrometry (nano-UPLC) andMS/MS.MS/MS spectra are then computationally processed to define the peptide sequences and

the presence/position of acetylated sites. Themore recent versions of T. brucei and Plasmodium acetylomes considerably improved the number of acetylated sites iden-

tified, helping to increase our knowledge about the function of acetylation in these parasites (see Figure 2A,B in main text).

TrendsTrends inin ParasitologyParasitology

Figure I. Methodological steps used to describe the acetylomes of protozoan parasites. Abbreviation: m/z, mass divided by charge number.
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new methodologies [20,35]. Twelve hundred and 2756 acetylated proteins were identified in

P. falciparum and T. brucei, corresponding to 21.6% and 24.6% of their total predicted proteome,

respectively (Figure 2A,B). Similarly, 19.2% of T. evansi proteome contains K-ac-modified proteins,

whereas 5.9% of T. gondii and 2.2% of T. cruzi proteomes have K-ac proteins (Figure 2A,B). These

differences might reflect the use of distinct protocols and tandem mass spectrometry (MS/MS)

technologies. Notably, the T. cruzi acetylome protocol did not include the K-ac immunoaffinity

enrichment step [17]. Hence, the number of acetylated proteins identified in some of these

parasites might be underestimated (as depicted in Figure 2A–C).

Comparative analyses of protozoan parasite acetylomes

Gene ontology (GO)-based enrichment analyses of several parasite acetylomes via the VEuPathDB

(www.veupathdb.org) [36] revealed that chromatin and nucleosome GO cellular component (CC)

terms are present in all three genera: Trypanosoma, Toxoplasma, and Plasmodium (Figure 2D and

Table S2); moreover, it showed that glucose metabolism is a GO biological process (BP) also com-

mon to both apicomplexan and trypanosomatid species studied herein (Figure 2D and Table S2).

Furthermore, processes related to nucleotide metabolism/biosynthesis were shared between

P. falciparum and T. gondii, whereas T. evansi and T. cruzi have 'tRNA aminoacylation for protein

translation' (BP) and 'proteasome complex' (CC) terms in common. Finally, 'microtubule-based trans-

port' (BP)-associated K-ac-containing proteins were enriched in T. evansi and T. brucei acetylomes.

A survey using parasite acetylated proteins by the Markov Clustering algorithm [37] indicated that

those acetylome datasets form 20 distinct clusters that vary in size from five to 45 proteins each,

and they contain at least one protein from each species (Figure 2E and Table S3). Putative functional

clusters of orthologous groups (COGs) corroborate the GO-based enrichment analysis (Figure 2D),

notably, the chromatin, glucose metabolism, and protein synthesis/degradation-related COGs

(Figure 2E). Chaperones, cell division, oxidative stress, and RNA degradation-associated COGs

also display functional groups of acetylated proteins in all analyzed species (Figure 2E). Details on

all 20 COGs are found in Table S3. Hence, there are conserved functional groups of acetylated

proteins in protozoans, and they may play a role in specific processes of parasite biology.

Physiological roles of protein acetylation in protozoan parasites

Regulation of chromatin structure and gene expression in apicomplexan parasites

Protozoans possess the same basic components and assembly of chromatin as higher eukaryotes.

Acetylation weakness the histone tails' affinity to DNA, allowing chromatin to relax and trans factors

to access DNA. T. gondii and P. falciparum both rely heavily on PTMs to regulate gene expression

[38]. They lack typical regulatorymechanisms present inmetazoans, such as a conserved TATA box

in promoters, the linker histone H1, DNAmethylation, and diverse DNA-binding transcription factors.

Analysis of the repertoire of PTMs in Plasmodium showed a prevalence of histone acetylation [18].

Histone H3 and H4 acetylation upstream of active genes has consistently been observed in

T. gondii and P. falciparum [16,18,35,39–41]. The presence of histone acetylation in euchromatin

and its absence in heterochromatin is observed particularly well inP. falciparum, in which inactive

var genes are devoid of acetyl marks and located in highly compacted chromatin at the nuclear

periphery [42,43]. Moreover, the acetyl marks H3K9ac, H3K14ac, H4K5ac, and H4K12 are

present in intergenic regions of transcribed genes [39,44,45]. The correlation between H3K9ac

and transcript levels has been established in P. falciparum asexual blood stages, sporozoites,

and male gametocyte ookinetes [46].

While most acetyl marks are associated with active transcription, other acetyl marks, identified in

T. gondii and P. falciparum, show no such correlation. In the oocyst and sporozoite mosquito

Trends in Parasitology
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stages of P. falciparum H3K27ac is enriched in intergenic euchromatin regions but is not asso-

ciated with gene expression [47]. Also, it was found that the H3K9ac mark does not correlate

with increased transcript levels in female gametocytes [46], and low-passage strains of

T. gondii have significant histone acetylation at inactive genes [48].

KATs and KDACs are typically associated with gene activation and repression, respectively. In

apicomplexans, they appear to be multifunctional, present in various complexes, and involved

in regulating the expression of specific subsets of genes, including those involved in parasite

growth and differentiation. T. gondii and P. falciparum asexual replication requires the KATs

TgGCN5B and PfGCN5, respectively, to regulate gene expression via histone acetylation

[49,50]. The P. falciparum KDACs PfSir2A, PfSir2B, and PfHda2 play an essential role in hetero-

chromatin formation and silencing var genes [51,52]. The differentiation between tachyzoite and

bradyzoite stages of T. gondii is also affected by acetylation. TgHDAC3 is enriched at the stage-

specific inactive genes in tachyzoites, and inhibition of TgHDAC3 with the compound FR235222

causes expression of bradyzoite-specific genes and differentiation [53].

More recently, BDPs have surfaced as critical players in protozoan gene regulation. Studies

suggest that they might be essential for T. gondii growth [54] and verified to be critical for

P. falciparum growth and invasion [55]. Recently, TgGCN5B was identified as essential for

T. gondii viability [56]. It is likely that parasite GCN5 requires both the KAT and acetyl binding func-

tions for gene regulation during parasite growth and differentiation. The bromodomain protein

PfBDP1 associates with acetylated histones in actively transcribed genes, with the transcription

factor PfAP2-I, and the BDP PfBDP2 [55,57].

In addition to histones, KATs, KDACs, BDPs, and other transcriptional components are themselves

acetylated. The effects of acetylation on the function of these proteins are poorly understood.

Acetylation of ApiAP2 transcription factors has been found to alter their interactions with DNA and

other proteins [35]. Moreover, the KAT inhibitor garcinol decreased acetylation of the KATTgGCN5B

itself, in addition to its substrate H3, resulting in disrupted tachyzoite growth [58]. It will be interesting

to know how acetylation of these factors is regulated and how it contributes to regulating

transcription.

Regulation of chromatin structure and gene expression by acetylation in trypanosomatids

The chromatin structure of trypanosomatids is organized into 10 nm nucleosomal filaments [59].

Micrococcal nuclease digestion of chromatin, followed by histone analysis, revealed that the

trypanosome chromatin's basic structure and organization is similar, but not identical, to that of

other eukaryotes [60]. Proteomic analysis has identified over 170 PTMs in trypanosome histones

[17,20,61–63]. Acetylation was found in T. cruzi at H2A C-terminal tails and H2A.Z at the N- and

C-terminal tails. Moreover, H2B.V, H3, and H4 were predominantly acetylated at the N-terminal

tails [61–63]. Notably, acetylation was also detected in the globular domains of several histones.

Much less is known about histone acetylation in Leishmania, but H4 is acetylated at K4 and K10,

whereas H3 is acetylated at the N-terminal tails [64]. KATs and KDACs are also encoded in the

Figure 2. Protein lysine acetylation repertoire of protozoan parasites. (A) The number of acetylated proteins detected from Plasmodium falciparum (Pf), Toxoplasma

gondii (Tg), Trypanosoma brucei (Tb), Trypanosoma cruzi (Tc), and Trypanosoma evansi (Tev). (B) The percentage of acetylated proteomes over their respective total predicted

proteomes. (C) The number of acetylated sites identified for each species. (D) Cellular component (CC) and biological process (BP) distribution of acetylated proteins in each

species. The three most prevalent CC and BP for each species are listed (adj. P value <0.01). Data from species with more than one available acetylome were combined to

obtain the whole set of acetylated lysine sites and proteins. (E) Putative clusters of orthologous groups (COGs) comprising acetylated proteins from all five species. An all-

versus-all (acetylomes) BlastP alignment file (e-value <0.001, >35% identity and >25% query coverage) was used as input for the Markov Clustering algorithm (MCL) with

a 2.0 inflation value. Some COGs’ functions corroborated GO-based enrichment analysis results.
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trypanosomatid parasite genomes (Table S1). The T. brucei TbSir2rp1 acetylates histones H2A

and H2B in vitro [31]. T. brucei HAT1 can acetylate the N-terminal tails of H2A.Z and H2B.V,

whereas HAT2 can acetylate H4K10, and HAT3 can acetylate H4K4 [65,66].

Dissecting the role of specific histone acetylation is technically challenging. A typical approach is

the knockdown of genes encoding acetylase or deacetylase enzymes combined with chromatin

immunoprecipitation and sequencing or gene expression analysis. Kraus et al. identified H4 and

H2A.Z acetylation associated with transcription start sites (TSSs) [66]. These modifications were

mediated by the histone acetyltransferases HAT2 and HAT1, respectively. The knockdown of

HAT2 decreased H2A.Z deposition and resulted in changes in transcription initiation sites. By

contrast, the knockdown of HAT1 decreased total mRNA levels by half, implying that these

histones' acetylation plays a role in RNA polymerase II transcription [66]. The knockdown of

Sir2rp1 in T. brucei bloodstream forms also affected transcription of a reporter gene near telo-

meres but did not affect transcription of variant surface glycoprotein (VSG) genes [35]. Respuela

et al. found an enrichment of acetylated H3 and H4 at strand switch regions of divergent polycis-

tronic genes in T. cruzi, which indicates a role for these modifications on transcription [67].

Little is known about the role of histone acetylation in T. cruzi and Leishmania spp. The expression

of mutant nonacetylated forms of H4, which prevents acetylation at positions K10 or K14,

affected DNA replication and repair and indicated a role in chromatin assembly/remodeling

required for gene expression or DNA replication in T. cruzi [68]. Hence, many histone acetylation

sites have been identified in trypanosomatids; however, their function is, in most cases, elusive.

Nevertheless, it is clear that they play a role in transcription, DNA repair, and recombination in

these organisms.

Acetylation as a regulatory mechanism of RNA-binding proteins

RNA-binding proteins (RBPs) are modular regulatory proteins that are characteristically rich in

positively charged amino acids. These versatile proteins are essential components of ribonucleo-

protein (RNP) complexes that drive RNA metabolism to control gene expression regulation net-

works [69,70]. Conventionally, RNP associations are mediated by RNA-binding domains

(RBDs) [71,72]. Of great interest, many RNA-associated proteins lack traditional RBD motifs [73].

In such instances, RNA binding capacity can be accomplished through intrinsically disordered

regions, protein–protein interaction interfaces, enzymatic cores, and through as yet undefined

molecular affinities [74].

Beyond the regulatory functions of RBPs, these proteins also serve as regulatory targets for

multiple enzymatic pathways. PTMs such as phosphorylation, methylation, and acetylation, can

provide a post-transcriptional epigenetic layer of gene expression control [75,76]. Arginine

monomethylation impacts both RBP stability and RNA-binding capacity [75]. Modifying enzymes

have a wide-reaching impact upon associated RNP complexes, expanding the 'regulon' network

paradigms. Such modifiers can alter RBP binding affinities to target transcripts in a very tailored

manner, enabling cell type-specific selection of distinct RNA pools [73,75].

Acetylation regulates several steps of post-transcriptional RNA processing, such as pre-mRNA

splicing and polyadenylation, and polyadenylated mRNA degradation. Acetylation can modify

RBPs and most commonly targets lysine residues of RNA interaction sites and can negatively or

positively impact the RNA affinity of acetylated-modified RBPs [77,78]. Several RBPs have been

identified as acetylated in T. gondii, P. falciparum, and Trypanosomes that are predominantly asso-

ciated with RNA processing, splicing, and ribosome biogenesis [14,16,17,20]. For example,

Pumilio homology domain family member 8 (PUF8) in T. brucei (Tb927.3.2470) [20]; RNA-binding
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protein 42 (TcCLB.509167.140) in T. cruzi [17]; RNA-binding protein (TGME49_105850) in

T. gondii [14], and RNA-binding protein NOVA1 (Pf7G8_140020700) in P. falciparum [16].

Although there are many known acetylations of RBPs in protozoans, the regulatory implica-

tions of this modification are still poorly explored.

In summary, the impact of acetylation on the function, stability, and binding properties of RNA-

binding proteins likely represents a global regulatory mechanism in need of further exploration.

The trypanosomatid parasites present an excellent eukaryotic system to accomplish such an

investigation due to their relatively high abundance of RBPs and emphasis upon post-

transcriptional gene regulation [73,75].

Regulation of glycolytic metabolism by differential acetylation

During their life cycle, protozoan parasites must adapt their metabolism in response to nutrient

sources available in the different hosts [6]. Metabolic enzymes are among the most prevalent

acetylated proteins detected in the acetylomes of both prokaryotes and eukaryotes [79,80]. In

protozoans, this is evident in the glycolytic pathway, where most of the enzymes were detected

acetylated at different lysine sites (Box 3), except for glucose phosphate isomerase (PGI). The

number of lysine acetylated sites identified varies between protein homologs in each species

[14–17,20,35] (Box 3), suggesting that acetylation in glycolytic enzymes might have different

purposes and outcomes for each parasite.

Functional studies to investigate the role of acetylation on glycolytic enzymes were recently published

for T. brucei and T. gondii [15,81]. The T. brucei procyclic form, which develops in the insect gut,

relies on amino acids as the primary carbon source and obtains adenosine triphosphate (ATP)

by oxidative phosphorylation. By contrast, the bloodstream form that replicates in the

blood faces high glucose levels and generates ATP mainly by glycolysis in the glycosomes [6,82].

Comparing the acetylation profile of both parasite forms, Moretti et al. found higher levels of acetyla-

tion on procyclic glycolytic enzymes compared to bloodstream forms [17] (Figure 3A), which

suggested that acetylation might act as a regulator for glycolytic activity in T. brucei, as observed

for aldolase and glycerol-3-phosphate dehydrogenase in mammals or enolase in bacteria [79,80].

Interestingly, fructose 1,6-biphosphate aldolase, which converts fructose 1,6-biphosphate (F-1,6-P)

to dihydroxyacetone phosphate (DHAP) and glyceraldehyde 3-phosphate (GA-3-P), acetylation levels

are higher in procyclic forms cultivated in the absence of glucose, compared to those cultivated in the

presence of glucose. This observation is associated with lower aldolase activity in procyclics grown in

the absence of glucose, a phenotype that is reverted after in vitro deacetylation [81] (Figure 3B).

Human aldolase is negatively regulated by the acetylation of lysine 147 (K147) present in the

catalytic site [79]. We compared T. brucei and mammalian aldolase protein structures and

observed a high degree of similarity between the structures with the conservation of the residues

that compose the catalytic pocket, including the regulatory K147 residue, which corresponds

to K157 in T. brucei [81] (Figure 3C). T. brucei aldolase recombinant proteins mimicking an

acetylated state of K157 (lysine is replaced by glutamine) abolishes the enzyme activity

compared to the native form [81], similarly to mammalian aldolase [79]. Indeed, in silico analyses

suggested that acetylation of parasite aldolase at K157 affects its electrostatic potential, alters

the substrate binding to the catalytic pocket, and reduces the catalytic site volume compared to

unacetylated protein [81]. These findings identify lysine acetylation as a new regulatory mechanism

of the T. brucei aldolase enzyme, and the conservation of key lysine residues for the enzyme activity

among other species (Figure 3C) might indicate that this regulatory mechanism could be

conserved.
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Recently, Kloehn et al. demonstrated hypoacetylation of glycolytic enzymes in T. gondii mutant

parasites lacking cytosolic acetyl-CoA, but no alterations in glycolytic flux was observed by

metabolome analyses, except a reduction in the levels of F-1,6P, the substrate of aldolase [15].

Interestingly, K216, the residue corresponding to K157 in T. brucei (Figure 3C), was not detected

acetylated in T. gondii aldolase, suggesting that the enzyme is active, and this could explain the

lower levels of F-1,6P. Also, K301, present in the catalytic site of T. gondii aldolase, involved in

the Schiff reaction [83] and conserved among other parasites (Figure 3C), was detected

hyperacetylated, suggesting that acetylation of this residue could activate the enzyme [15]. By

Box 3. Acetylation of glycolytic enzymes from protozoan parasites

Glycolysis is an ancient and regulatory mechanism used by most organisms to break down glucose and generate energy.

The pathway is a sequence of ten enzyme-catalyzed reactions that converts glucose into pyruvate and has a net of two

molecules of ATP (Figure I). In most organisms, glycolysis takes place in the cytosol, but in trypanosomes the first five

or six steps of the pathway (depending on parasite stage) happen in specialized organelles called glycosomes.

The first reaction of the pathway is catalyzed by hexokinase (HK), which phosphorylates glucose, producing glucose

6-phosphate; one molecule of ATP is consumed. Glucose 6-phosphate is then isomerized into fructose 6-phosphate

by glucose phosphate isomerase. (PGI), which is then phosphorylated by phosphofructokinase (PFK) to generate fructose

1,6-biphosphate. Fructose 1,6-biphosphate is split on dihydroxyacetone phosphate (DHAP) and glyceraldehyde 3-phosphate

by fructose 1,6-biphosphate aldolase (ALD). Next, triose phosphate isomerase (TIM) converts DHAP into glyceralde-

hyde 3-phosphate, which is first dehydrogenated by glyceraldehyde 3-phosphate dehydrogenase (GAPDH), releas-

ing NADH+, and then adds a phosphate to generate 1,3-biphosphoglycerate. Phosphoglycerate kinase (PGK)

transfers a phosphate from 1,3-biphosphoglycerate to ADP forming ATP and two molecules of 3-phosphoglycerate.

These two molecules of 3-phosphoglycerate are converted to 2-phosphoglycerate by phosphoglycerate mutase

(PGM), which has a water molecule removed by enolase (ENO) to obtain phosphoenolpyruvate. Finally, pyruvate ki-

nase transfers a phosphate group from phosphoenolpyruvate to ADP, generating ATP and pyruvate.

The description of protozoan parasite acetylomes identified most of the glycolytic enzymes acetylated (left panel, each

colored circle represents the presence of acetylation). The only exception was PGI, in which acetylation was not detected

in any species. Moreover, HK, PFK, PGM, PGK, ENO, and PK were not identified acetylated in Trypanosoma cruzi, while

TIM was not identified as acetylated in Toxoplasma. One explanation for the low number of acetylated enzymes in T. cruzi

could be the low coverage of the acetylome. Interestingly, the number of lysine acetylated sites for each enzyme varies

depending on the protozoan species (right panel) and could reflect the distinct regulatory function of acetylation or the

parasite stage's metabolic state to perform the acetylome analysis.
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Figure I. Acetylation profile of glycolytic enzymes from protozoan parasites.
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contrast, the authors also investigated the impact of acetylation in the gluconeogenic enzyme

phosphoenolpyruvate carboxykinase (PEPCK-1) in vivo but found no clear impact in the enzyme

activity [15].

Further experiments are necessary to better understand and validate the regulatory mechanism

of protein acetylation in the glucose metabolism of protozoan parasites and to identify the

enzymes responsible for regulating the acetylation level of glycolytic enzymes.

Exploring protein acetylation regulatory machinery as drug targets in protozoan

parasites

Regulators of lysine acetylation have proven to be critical for parasite survival and development,

and their potential as therapeutic targets for parasitic diseases has been realized. The first indica-

tion that inhibiting acetylation modifiers could have antiprotozoal activity occurred in 1996 when

Darkin-Rattray et al. found that apicidin, a fungal metabolite, was cytotoxic to several protozoan

species by disrupting histone acetylation [84]. Since then, inhibitors of KATs, KDACs, and

more recently, BDPs have been investigated for their potential as antiprotozoan therapeutic

targets [85,86].

Protozoan KATs, KDACs, and BDPs make excellent targets for chemical inhibitors. They are

generally divergent from human proteins despite maintaining conserved domain structures

responsive to small-molecule inhibitors. A shining example of these unique characteristics is

the KDAC inhibitor FR235222. This compound was first identified as a human KDAC inhibitor,

but apicomplexans are more susceptible to the drug due to two divergent amino acids located

in the catalytic domain [57].

Several strategies have been employed to identify and develop antiprotozoan drugs that target

the parasite's lysine acetylation network. Multiple groups have performed parasite growth

assay screens with known synthesized and natural compounds to identify those with cytotoxic

effects [87–89]. These have uncovered several promising compounds, and additional studies

TrendsTrends inin ParasitologyParasitology

Figure 3. Regulatory function of acetylation on glycolytic enzymes from protozoan parasites. (A) Changes in metabolism during the life cycle of Trypanosoma

brucei. The bloodstream of a mammalian host is a very rich environment, containing high levels of glucose, while the nutrient sources found in the tsetse fly (insect vector) is

glucose-poor but amino acid-rich. Thus, the ATP generation of T. brucei bloodstream (BSF) and procyclic (PCF) stages relies mainly on glycolysis and oxidative

phosphorylation (OXPHOS), respectively. Comparative analysis demonstrates that PCF glycolytic enzymes have higher acetylation levels compared to BSF enzymes,

suggesting a negative regulatory mechanism of this modification in T. brucei. (B) T. brucei aldolase activity is regulated by acetylation. Fructose 1,6-biphosphate

aldolase (aldolase) splits fructose 1,6-biphosphate (F-1,6-P) into dihydroxyacetone phosphate (DHAP) and glyceraldehyde 3-phosphate (GA-3-P). PCF parasites

cultivated in the presence of glucose have lower aldolase acetylation and higher enzyme activity compared to PCF cultivated in the absence of glucose, which have

higher aldolase acetylation and lower enzymatic activity. (C) Regulatory aldolase lysine acetylation site conservation within protozoan parasites. The K157 or K147

residue that negatively regulates T. brucei and human aldolase activity when acetylated, respectively, is conserved in Toxoplasma, Plasmodium, and other

trypanosomes, suggesting a conserved regulatory mechanism. Other lysine residues important for aldolase activity, K52, K117, and K240 in T. brucei (red), are also

conserved and are acetylated in some of these parasites.
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have used such hits to design derivatives with higher specificity. A recent approach to developing

more effective drugs that may also help combat drug resistance is creating hybrid compounds that

merge chemical structures of two ormore compoundswith confirmed antiparasitic properties. This

has been used to develop SAHAquines consisting of the standard antimalarial primaquine and

the KDAC inhibitor SAHA [90]. Another successful strategy has been rational drug design, using

in silico molecular modeling and docking to identify inhibitors with a high likelihood of binding

parasite-specific KAT, KDAC, and BDP domains [87,91,92].

KDAC inhibitors have been the most studied and found to be the most effective against parasites

thus far. This is in part due to a large number of KDAC inhibitors available from human and other

model organism drug repositories. A couple of recent comparative studies of multiple epigenetic

inhibitors against several stages of P. falciparum found that KDAC inhibitors consistently displayed

the highest efficacy [88]. In trypanosomatids, such as T. cruzi, the inhibitors of parasite sirtuins

seem to be the most effective drugs for control of the infection as observed from in vitro and

in vivo infection assays with sirtinol, a known SIRT inhibitor [32], and from further screenings of

33 chemically different modulators of human SIRTs [93]. For more information about the potential

of KDAC inhibitors against protozoan see [86,94].

KAT and BDP inhibitors have been studied far less but have also proven to be effective at killing

parasites. The natural products curcumin and anacardic acid have potent antimalarial and

antitrypanosomal activity [95–97]. These compounds, while nonspecific, have been identified as

binding and inhibiting KATs. Garcinol is another nonspecific KAT inhibitor identified as targeting

GCN5 homologs and disrupting parasite growth [58]. With recent studies identifying BDPs as

essential to parasites and their amenability to drug design, BDP inhibitors are being investigated

for their antiprotozoan activity. Jeffers et al. showed that the human BDP inhibitor I-BET151 is

cytotoxic to T. gondii at concentrations that do not affect host cells [98]. The compound

L-Moses has been reported to inhibit the bromodomain of the GCN5 homologs in both

P. falciparum and T. gondii, revealing a second potential route for drug inhibition of the critical

GCN5 homologs in the apicomplexans [56,99]. The bromodomain of PfGCN5 was reported to

be a target of the bromodomain inhibitor SGC-CBP30, which was identified in a screen of 42 com-

pounds for binding to the recombinant PfGCN5 BRD [87]. Recently, GSK2801 was demonstrated

to bind to T. brucei TbBDF2 and reduce parasite growth [100].

Tremendous progress has been made in the past two decades at unveiling KATs, KDACs,

and BDPs as promising therapeutic targets and discovering many compounds that warrant

further investigation. The repertoire of drug candidates will continue to expand and improve

as a combination of approaches is employed, and as the knowledge of these essential

factors grows, helping in the development of new treatments for the diseases caused by

these parasites.

Concluding remarks

The repertoire of acetylated proteins has increased substantially. It has revealed the diversity of

targets for this modification, which has allowed researchers to propose that 'acetylation is the

phosphorylation rival', a well-known modification implicated in several regulatory pathways.

This prediction is proving to be true year by year and is not different regarding protozoan para-

sites. Still, our understanding of acetylation's real impact on nonhistone proteins is only at the be-

ginning. We expect that years aheadwill precisely show how different acetylation sites can impact

on protein function in these organisms (see Outstanding questions). One opportunity is to use

protozoan parasites, early-branching organisms in the eukaryotic evolution, to investigate how

acetylation has evolved to regulate specific biological processes.
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Outstanding questions

Is acetylation regulatory function

important for other crucial biological

processes in protozoan parasites?

How are acetylation writers, erasers, and

readers targeted to specific proteins?

How is the activity of acetylation writers,

erasers, and readers regulated in

protozoan parasites?

Can KAT-, KDAC-, and BDP-specific

inhibitors be an effective treatment for

diseases caused by protozoans in the

future?

How do the known protein acetylation

profiles compare to those of other

protozoan species, such as Leishmania

spp. and Bodo saltans?



The demonstration that glycolytic enzymes are directly regulated by acetylation in T. brucei opens

the opportunity to investigative the role of this modification on other essential processes in protozoa,

such as oxidative stress response, protein synthesis/degradation and amino acid metabolism,

all processes with several components identified as acetylated in the parasites studied herein.

Understanding how acetylation regulatory machinery acts within each specific process will support

efforts to explore these enzymes as drug targets. Finally, it will be crucial to uncover the acetylome

of other protozoan species, either human parasites or free-living organisms, as they might provide

insights into how acetylation impacts the development of parasitism.
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