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ABSTRACT

Safety-critical cyber-physical systems increasingly use components

that are unable to provide deterministic guarantees of the cor-

rectness of their functional outputs; rather, they characterize each

outcome of a computation with an associated łuncertaintyž regard-

ing its correctness. The problem of assuring correctness in such

systems is considered. A model is proposed in which components

are characterized by bounds on the degree of uncertainty under

both worst-case and typical circumstances; the objective is to assure

safety under all circumstances while optimizing for performance

for typical circumstances. A problem of selecting components for

execution in order to obtain a result of a certain minimum uncer-

tainty as soon as possible, while guaranteeing to do so within a

specified deadline, is considered. An optimal semi-adaptive algo-

rithm for solving this problem is derived. The scalability of this

algorithm is investigated via simulation experiments comparing

this semi-adaptive scheme with a purely static approach.
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1 INTRODUCTION

Many safety-critical cyber-physical systems (CPS’s) are required

to have their safety properties verified (in some domains, certified)

prior to deployment. However there is an increasing use in these

CPS’s of łAutonomous Agentsž (AAs)1 developed using tech-

niques that are currently not widely accepted in safety-critical sys-

tems implementation. The presence of such łnon-pedigreedž[7, 8]

components means that approaches that have traditionally been

used for the purposes of performing safety assurance in safety-

critical systems are not directly applicable to the verification of

these CPS’s.

It is widely acknowledged that predictability of run-time behav-

ior [33] is very important for the purposes of assuring safety in

safety-critical systems. Although most non-trivial safety-critical

1The term Autonomous Agents is used here as an abstraction that includes, but is not
restricted to, components based on popular machine learning approaches (including
Learning-Enabled Components as defined in [26]).
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systems inevitably encounter some uncertainty during run-time,

safety-critical systems designers have developed a range of ad-

vanced and sophisticated techniques for dealing with inherent run-

time unpredictability with regards to extra-functional properties

such as timing (the duration required to complete execution) or

energy consumption. In addition to the problem of such extra-

functional unpredictability, however, safety-critical systems that use

AAs tend to also not be predictable from the functional perspective:

the precise łworthž or accuracy of a computation performed by an

AA is often not easily estimated beforehand; this is particularly true

if the AA incorporates deep learning or similar AI-based techniques.

The problems arising from such lack of functional determinism in

AI-based techniques such as deep learning has been recognized

within themachine learning community. It is thus typically required

that an AA, for example an autonomous advisor or a classifier, must

not only produce output but it must also produce a measure of

the uncertainly (or confidence) that is associated with that out-

put. E.g., Kendall et al. [20] state łUncertainty should be a natural

part of any predictive system’s output. Knowing the confidence with

which we can trust the semantic segmentation output is important

for decision making. For instance, a system on an autonomous vehicle

may segment an object as a pedestrian. But it is desirable to know

the model uncertainty. . . ž A number of techniques have been devel-

oped for obtaining an estimate of uncertainty, including Bayesian

Neural Nets [12], probabilistic model checking [9] and Deep En-

sembles [22]. However in the safety-critical domain, where very

low levels of uncertainty are required, it is unlikely that a single

AA even if presented with familiar input will be able to provide

an output with sufficiently high confidence. And with unfamiliar

input it is very likely that the outputs of multiple alternative AAs

will need to be fused together in order to drive down the aggre-

gate uncertainty to acceptable levels: as noted by Guo et al. [14]

in the context of autonomous vehicles, łIf the detection network is

not able to confidently predict the presence or absence of immediate

obstructions, the car should rely more on the output of other sensors

. . . ž It follows that in the safety-critical real-time domain, with the

current level of uncertainly that AAs, particularly learning-based

ones, are able to provide, a number of diverse components will

be needed to drive down uncertainty levels low enough to satisfy

safety requirements. In this research we consider how a family of

such components should be scheduled so that a specified deadline

for producing the output is satisfied and the required level of con-

fidence achieved (i.e. the level of uncertainly is guaranteed to fall

below a pre-defined threshold).

Amotivating use-case.We propose an approach for dealing with

functional run-time uncertainty for a particular form of compu-

tation involving AAs, that is motivated by the following use-case

drawn from a related project on navigation in autonomous mobile

systems (AMS’s) such as vehicles and robots:
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• A moving AMS repeatedly checks that its designated path is free

of hazards. Each check must be completed by a deadline.

• For each check, the AMS may apply one or several of a range

of available AAs, some of which are learning-enabled, that take

input from different sources (e.g., cameras, lasers, LiDAR, radars,

microphones, other vehicles, and even satellite feeds) to evaluate

the designated path. An AA, when applied, outputs its assessment

śeither hazard or clearś of the path ahead:

ś If the assessment is hazard, then the AMS immediately takes

safety action and comes to a stand-still as rapidly as it safely can.

ś If the assessment is clear then an uncertainty estimate, q (0 ≤ q ≤

1), is also output. The effectiveness of each AA is dependent on the

current conditions of the environment: road markings, proximity

of other vehicles (AMSs and human controlled), obstacles close

to the designated path, weather, ambient light etc.; the value

of q reflects the confidence one should place upon the clear

designation from this AA in view of current conditions.

• The AMS applies AAs one at a time until the cumulative uncer-

tainty falls below a pre-defined level Q. When this happens the

AMS concludes that its designated path is currently a safe one, and

proceeds with additional optimizations (e.g., activating actuators

that ensure a smoother śless jerkyś ride); the sooner this happens,

the łbetterž the performance of the AMS (and hence the sooner

the cumulative uncertainty falls below Q the better). However if

collective uncertainty does not fall belowQ by the pre-determined

deadline then the AMS flags a potential safety violation and hands

control over to an emergency handler (which may, e.g., bring it to a

stand-still as rapidly as safely feasible). This outcome is considered

a failure for the autonomous advisory system.

Thus, any one of three possible outcomes: (i) hazard designation;

(ii) clear designation at an uncertainty level ≤ Q; or (iii) failure (an

inability to achieve uncertainty level Q in the clear designation);

can happen each time the AMS performs its hazard check. We are

tasked with determining the order in which the AAs should be

applied in order to avoid the third outcome altogether; subject to

this constraint, we would like to obtain the second outcome ASAP.

The problem considered. Generalizing from the use-case above,

we assume that we have a number of components, each an abstract

representation of some AA, available to us. The i’th component Ci
takes some duration to execute, and we obtain an output with an

estimate of the uncertainty associated with that output. We make

the simplifying assumption that the execution duration of Ci does

not vary much on different executions, and is a priori known.2

However the exact level of uncertainty that is returned is unknown

prior to actually executing the component, and will in general differ

upon different executions of Ci . We assume that a pair of upper

bounds are a priori known for this actual uncertainty level:

• a worst-case bound qi , denoting that the component will produce

output with uncertainty ≤ qi under all circumstances; and

• a typical-case [31] bound qTi , denoting that the component will

attain an uncertainty level ≤ qTi under all łtypicalž circumstances

ś i.e., all circumstances except perhaps some highly pathological

ones that are extremely unlikely to occur in practice. Note qi ≥ qTi .

2 This simplifying assumption removes timing uncertainty from the picture and so allows us to
highlight the primary focus of this paper, which is that of dealing with the functional uncertainty

that characterizes the run-time behavior of many AAs.

Given a collection of such components, a target uncertainty level Q

that must be attained, and a deadlineD, we seek to determine the or-

der in which the components should be executed in order to ensure

that the target uncertainty level is obtained by the deadline, pro-

vided each component obtains a level ≤ its worst-case bound when

executed, and minimize the duration taken to obtain the target level

if each component obtains a level ≤ its typical-case bound when

executed. That is, we seek to optimize for performance assuming

typical circumstances, whilst avoiding failure under all circumstances,

typical or not. In this paper we develop an optimal semi-adaptive

algorithm for solving this problem; we will see that the problem

is inherently intractable and hence our algorithm will, in general,

have running time exponential in the number of components n.

We anticipate that n will not be too large in actual systems (this is

certainly true for our motivating use-case), and we have performed

extensive experimental evaluation to understand the scalability of

our optimal algorithm as the number of available components n

increases. Note that we assume that the components are executed

one at a time, rather than all in parallel. This has two advantages.

First, it saves resources by not executing components that turn out

to not be needed. Many AMSs (for example self-driving cars) are

mobile and thus not tethered to an energy source; hence engineer-

ing solutions that minimise resource usage are highly desirable.

Typical behaviour may require only 50% of those utilised in the

worst case (see Section 6). As the worst case is expected to be a

very rare occurrence, to execute the larger set of all components is

clearly wasteful. The other advantage comes from allowing compo-

nents to benefit from the fact that other components have already

executed. This may allow the delivered uncertainty level to be sig-

nificantly better than the typical as well as the worst-case estimates.

An example of this relationship are the components that make use

of LiDAR and monocular RGB (Red, Green, Blue camera); both of

which can benefit from the prior execution of the other [37].

In the following descriptions we focus on the notion of uncer-

tainty (q); an equivalent formulation is one that uses a measure

of confidence p. Both of these metrics are usually expressed as

probabilities, with p = 1 − q.

Organization. The reminder of this paper is organized as follows.

We briefly discuss some related work in Section 2. In Section 3

we formally define the problem that we are studying here. We

will see that solving this problem requires us to determine which

component is safe to execute at some system state Ð in Section 4

we show how such safe choices can be identified. This is used in

Section 5 to solve the general problem in a way that is efficient

in terms of run-time complexity. We have conducted extensive

simulations upon synthetically-generated workloads in order to

evaluate the performance of our algorithm: we report on these in

Section 6. We conclude in Section 7 by placing this work within

a larger perspective on the design and analysis of complex safety-

critical cyber-physical systems.

2 RELATED WORK

The importance, and the enormous complexity, of obtaining assur-

ance for safety-critical CPS’s that incorporate machine learning has

been widely recognized, and several large-scale initiatives aimed at

solving this problem have been launched. Some examples include
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the Assured Autonomy Program [26] of the United States Defense

Advanced Research Projects Agency (DARPA); the Assuring Au-

tonomy International Programme [40] funded by the international

insurance company Lloyd’s of London at the University of York

(UK); and the Bounded Behavior Assurance initiative [23], spear-

headed by the major US defense contractor Northrop Grumman

Corporation.

Our work here builds on some recent research [3] which pro-

posed a component model in that each component is assumed

to take a certain duration to execute, and to return a value that

can only be determined once the component has completed execu-

tion, but for which worst-case and typical-case bounds are a priori

known. However, [3] deals with a model of additive value that is

accumulated by executing multiple components, whereas we are

concerned here with minimizing uncertainty/confidence, which is

inherently multiplicative rather than additive. Furthermore, [3] ap-

plies its model to multi-stage computations where there is a choice

of components for each stage, and the issue is one of choosing a

component for execution at each stage. In contrast, the problem we

consider here has the added dimension that the order of execution

of components is not fixed but must be determined by the resource

allocation and scheduling mechanism.

In Section 3, we will define static and semi-adaptive variants

of our problem depending on how much of the selection of com-

ponents is determined prior to run-time; we note that a similar

distinction between static and adaptive strategies was made in the

context of a graph routing problem in [2, 4].

We emphasize that while there is a tremendous amount of ongo-

ing research in the design of AAs for provable correctness (e.g., [15,

17, 32, 35, 36]) and, more specifically, the tailoring (via focusing on

predictability, architectures, scheduling and WCET estimation) of

the application and training of DNNs (Deep Neural Nets) in real-

time systems (e.g., [11, 16, 18, 19, 24, 25, 27, 38, 39, 42]), we look

upon such work as orthogonal to the research reported here: we

adopt a łblack-boxž approach to AAs, whereby they are modelled

entirely by their execution durations and the self-reported uncer-

tainty of the results they compute, and the a priori estimates of

these parameters.

A common form of AA is a classifier [1, 28, 29, 41]. Here an

input is identified as being a member of one (or more) of a set of

classes; each estimation having an associated probability. So, for

example, the probability of input i being a member of S1 is p1; of

S2, p2 etc.. If none of the membership probabilities is greater than

some threshold then the input must be deemed to be unclassified.

This formulation is used by Wang et al. [35] to explore the use of

IDK classifiers [21, 34]: if a łbasež classifier is unable to produce

an output with sufficient confidence the IDK classifier declares łI

Don’t Knowž. We have recently [5, 6] begun the consideration of

IDK classifiers from a real-time perspective; the framework devel-

oped in the current paper is a further generalisation. A number of

components are available, their order of execution must be deter-

mined and the level of uncertainty is equivalent, in our use case, to

not knowing that the route is clear. Our scheme is also applicable

to a broader set of machine-learning algorithms.

3 MODEL AND PROBLEM STATEMENT

In this section we provide a formal definition of the problem that

was illustrated via a motivating use-case in Section 1 above. We

consider various aspects of this problem: the manner in which

outcomes of executing different components are combined together,

as well as restrictions that are placed upon the component-selection

strategies (including whether each component may be executed

multiple times or not). We will see that different combinations of

factors from these different aspects give rise to different specific

problems.

We suppose thatn different componentsC1,C2, . . . ,Cn , are avail-

able. ComponentCi is characterized by the 3-tuple (di ,qi ,q
T

i ), where

• di denotes its execution duration (assumed to be fixed ś see foot-

note 2);

• qi is an a priori upper bound on the (unknown) actual uncer-

tainty that is guaranteed to be obtained by executing Ci under all

circumstances; and

• qT

i is an a priori upper bound on the actual uncertainty that is

guaranteed to be obtained by executing Ci under all typical [31]

(i.e., non-pathological) circumstances.

A target acceptable uncertainty Q that must be obtained, and a

deadline D within which this must happen, are also specified. That

is, an instance of our problem is specified as follows:
〈{
Ci = (di ,qi ,q

T

i )
}n
i=1,Q,D

〉
(1)

During each execution of this instance, we are to execute compo-

nents one at a time until the composite uncertainty becomes ≤ Q.

Figure 1: A Template of the Run-time Strategy

Correct andTypical Behaviors.As stated earlier, the exact uncer-

tainty of the result obtained by executing a component is unknown

prior to actually executing it, and the same component may exhibit

different uncertainties upon different executions. The instance is

said to exhibit correct behavior during an execution if each executed

component Ci exhibits an uncertainty no greater than its value

parameter qi ; it is additionally said to exhibit typical behavior if

each executed component exhibits an uncertainty no greater than

its typical-value parameter qT

i .

Scheduling goal. Components are chosen for execution as shown

in Fig. 1. In so doing, our safety constraint is that the repeat-until

loopmust be exited within an interval of durationD upon all correct

behaviors of the instance. Subject to satisfying this safety constraint,

our optimization objective is to minimize the duration of execution

of the loop during all typical behaviors of the instance.

Composition of uncertainties. In Line 4 of the pseudo-code of

Fig. 1 above, we update the uncertainty Q based upon the actual
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Ci di qi qT
i

C1 2 10−3 10−4

C2 3 10−4 10−5

C3 4 10−5 10−6

Figure 2: An example collection of components {C1,C2,C3}

uncertainty returned upon executing the last component that was

executed, and the uncertainty that had accumulated prior to then.

This is represented in the pseudo-code as f (Q, q̂), where q̂ denotes

the value obtained by actually executing a component. Although

the exact form of this function f will, in general, depend upon

application characteristics, for the sake of concreteness we assume

in the remainder of this presentation that this composition is mul-

tiplicative: f (Q, q̂) = Q × q̂. In addition to being applicable to such

multiplicative composition of uncertainties, our results hold for

any system in which the uncertainties exhibited by executing com-

ponents are drawn from a totally ordered Abelian group.3 Consider,

e.g., our motivating use-case from Section 1, and suppose that the

confidence levels Ðthe p parametersÐ represent probabilities of

success and that the different components are independent. Let

pi be the actual confidence that is output upon executing the i’th

component to be executed. After k components have been executed,

the probability that their outputs are all incorrect is Πk
i=1(1 − pi );

hence, the probability of the output ś clear ś being correct is(
1 −

(
Π
k
i=1(1 − pi )

))
. It may be verified that we can have Q equal

this expression after k iterations if we initialize Q to zero in Line 1,

and update it as follows in Line 4: Q ← 1 − (1 −Q) × (1 − pi ).

Example 1. Throughout this manuscript wewill use the example

instance depicted in Figure 2 as an illustrative example.

There are three components in this instance, with execution

durations 2, 3, and 4 respectively, guaranteeing to return results that

have uncertainty no greater than 10−3, 10−4, and 10−5 respectively

in all correct behaviors, and no greater than 10−4, 10−5, and 10−6

respectively in all typical behaviors. □

Component re-use. Application characteristics will determine

whether each individual component may be executed at most once,

or multiple times, during a single execution of the instance. Our

application domains of interest generally do not allow for re-use;

accordingly we will restrict our attention here to the case where

such re-use is forbidden. (We point out that forbidding re-use is the

more difficult problem from an algorithmic perspective in the sense

that relatively straight-forward dynamic programming strategies

can be applied to solve the variants with re-use permitted.)

Static and adaptive strategies.We distinguish between static and

adaptive run-time strategies depending upon the manner in which

the choice of components is made in Line ?? of Figure 1. A static

strategy determines the order of execution prior to run-time, before

the first one is executed; in contrast, only the first component is

chosen prior to run-time by an adaptive strategy, and the actual

uncertainty with which the result was returned upon executing a

component is taken into account in choosing the next component

to execute.
3See, any algebra text or, e.gź https://encyclopediaofmath.org/wiki/Totally_ordered_
group (accessed February 17th, 2021) for a precise definition.

Not surprisingly, adaptive strategies are generally able to guar-

antee superior performance (i.e., shorter execution durations for

typical behaviors); we illustrate below on our running example

instance from Figure 2:

Example 2. Consider the example collection of three compo-

nents shown in Figure 2, with deadline D = 8 and target value

Q = 10−9. Since d1 + d2 + d3 = 9 while the available duration is 8,

all three components cannot be executed.

A static schedule can only guarantee an overall uncertainty of

10−4 × 10−5 = 10
−9, by choosing components C2 and C3. Under a

typical behavior in which each component obtains a value equal

to its qT

i parameter, we would need to execute both components in

order to drive the uncertainty down to ≤ Q (i.e., 10−9); hence the

schedule duration in a typical behavior is d2 + d3 = 7.

Now consider the following adaptive strategy:

This strategy is safe since the maximum duration is d3+

max(d1,d2) = 4 +max(2, 3) = 7. In a typical behavior, note that C3

would obtain a value ≤ 10−6 and henceC1 would be executed next,

for a duration of d3 + d1 = 6. □

The following lemma asserts that adaptive strategies may out-

perform static ones by an arbitrarily large degree:

Lemma 1. Static strategies may have arbitrarily poor performance

when compared to adaptive ones.

Proof. Consider an instance comprising the following three
components:

Ci di qi qT
i

C1 D − 1 10−4 10−4

C2 1 10−2 10−4

C3 1 10−2 10−4

with deadline D, and a target acceptable uncertainty Q = 10−6.

An adaptive schedule may execute one of C2 or C3. If the uncer-

tainty in the result of this execution ≤ 10−4, then the other one

of these is executed; else, C1 is executed. Since q
T

2 and q
T

3 are both

10−4, the schedule duration in the typical-case is 1 + 1 = 2.

A static schedule, on the other hand must include C1 and one

of C2 or C3 in order to guarantee an overall uncertainty Q = 10−6

under all correct behaviors. Hence even in typical-case behaviors

its schedule duration is as large as D. The ratio of the typical-case

schedule durations achievable by static versus adaptive strategies

is thus D/2, which→∞ as D →∞. □

By demonstrating that adaptive strategies can perform arbitrarily

better than static ones, Lemma 1 above argues in favor of consider-

ing the use of adaptive strategies rather than static ones. The remain-

der of this paper is devoted to the exploration of such an adaptive

strategy: in Section 4 below we describe some pre-processing that

enables us to very efficiently identify which components it is safe

to execute at any given system state, and in Section 5 we describe

how to optimize over all such safe components in order to choose

one that minimizes typical response time (i.e., the duration needed
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to reduce the uncertainty to below the specified amount under all

typical circumstances).

4 IDENTIFYING SAFE CHOICES

As discussed in Section 3 above, during run-time our algorithm

repeatedly (Line ??, Figure 1) selects a component from amongst

the ones that are eligible for execution in order to minimize the

duration by which the overall uncertainty falls below the acceptable

level, Q, in all typical instance behaviors. Since the selection must

also meet the safety constraint that the duration will not exceed

the specified deadline in all correct (even if not typical) behaviors,

the selected component must be one that is able to guarantee safety

even if it (and some or all subsequent components that are exe-

cuted) return[s] results with uncertainties that are as large as their

respective maximum values ś their qi parameters. In this section

we describe some pre-processing that is done by our algorithm in

order that the set of such components eligible for selection may

be identified efficiently. This algorithm is used as a subroutine in

Section 5 to design an algorithm that optimizes performance while

respecting this safety constraint.

For a given set S of components, a target uncertainty q, and a

duration d , the set of safe choices, denoted safe(S,d,q), is the set of

all the components that it is łsafež to execute in the sense that if it

is executed an overall uncertainty ≤ q can be guaranteed within a

duration d under all correct (but not necessarily typical) behaviors.

Observe that determining these sets of safe choices is computa-

tionally intractable: it can be shown by a simple polynomial-time

reduction to the Product Knapsack problem [10, 30] that it is an

NP-hard problem to even determine whether such a set is empty

or not, and we should therefore not expect to be able to solve it in

polynomial time.4

Let S denote any subset of the set of components, and letd be any

non-negative integer. LetM(S,d) denote the minimum uncertainty

that can be guaranteed over an interval of duration d , given the set S

of components, in all correct behaviors of the instance. Below we

write a recurrence relation defining values of M(S,d) in terms of

M(S ′,d ′) where S ′ ⊊ S and d ′ < d . We also define an auxiliary

functionMC (S,d), denoting the first component we should execute

in order to achieve this minimum uncertainty; in Fig. 3 we will use

MC (S,d) to reconstruct the subset of components that guarantees

this smallest uncertainty.

Base Case: S is a singleton set.

M({Ci },d) =

{
1.0, d < di
qi , d ≥ di

(2)

and

MC ({Ci },d) =

{
−, d < di
Ci , d ≥ di

(3)

Recursive case:

M(S,d) = 1.0 andMC (S,d) = − if
(
d < minCi ∈S {di }

)
; otherwise,

M(S,d) = min
(Ci ∈S )∧(d≥di )

{
qi ×M

(
S \ {Ci },d − di

)}
(4)

MC (S,d) = The Ci that minimizes the RHS above (5)

4Note that it therefore follows that our overall problem is computationally intractable: given the set

of all components, it is NP-hard to determine whether the safety constraint can be satisfied.

Figure 3: Identifying the sequence of components in S whose

execution guarantees a valueM(S,d) within duration d .

Example 3. The values of M(S,d) and MC (S,d) for our three-

component running example (Figure 2) are provided in tabular

form in Figure 4, for all non-empty subsets S ⊆ {C1,C2,C3} and all

d ≤ d1+d2+d3 = 9. Each row corresponds to a non-empty subset of

the set of components, and each column to a value of d . Each entry

in this table is in the form of an ordered pair: the first element in the

ordered pair in the d’th column of the row labeled S isM(S,d), and

the second element is the index of the componentMC (S,d). Hence

for example the entry in the last column of the first row states that

an uncertainty as low as 10−12 can be guaranteed by the entire set of

three components over an interval of duration 9, and that executing

component C3 first would enable us to achieve this guarantee. In a

similar vein, we see that the set of components {C1,C2}, over an

interval of duration 7, can guarantee an uncertainty as low as 10−7,

and that executing component C2 would enable us to achieve this

guarantee.5 □

Computational Complexity. Expressions 2ś5 are in the form

of standard recurrences; for a given instance ⟨{C1, C2, . . . ,Cn },Q,

D⟩, a table of the form depicted in Figure 4 can be generated in

Θ (2n × D) time via a standard bottom-up dynamic programming

implementation of these recurrences. We believe it reasonable to

expect the value of D to not be particularly large in real-time sys-

tems; the dependence on 2n indicates that the running time of

the algorithm scales exponentially with the number of available

components. Our experimental evaluations (Section 6) indicate

that this is unlikely to prove a limitation in practice: even upon

modestly-equipped general-purpose laptop computers, we are com-

fortably able to handle up to 30 or so components in very reasonable

amounts of time.

Reconstructing the sequence of components: The procedure

SafeSeqence(S,d) listed in Figure 3 applies standard dynamic

programming techniques to reconstruct the sequence of compo-

nents that guarantee a value M(S,d) for a set of components S

and duration d , in time linear in the number of components in the

sequence; its use is illustrated in Example 4 below.

5We will see below, in Example 4, how this latter piece of information may be used

to reconstruct the set of components that guarantees an uncertainty of 10−7 over an
interval of duration 7.
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S (↓) / d (→) 0 ś 1 2 3 4 5 6 7 8 9

{C1, C2, C3 } (1, -) (10−3 , 1) (10−4 , 2) (10−5 , 3) (10−7 , 2) (10−8 , 2) (10−9 , 3) (10−9 , 3) (10−12 , 3)
{C2, C3 } (1, -) (1, -) (10−4 , 2) (10−5 , 3) (10−5 , 3) (10−5 , 3) (10−9 , 3) (10−9 , 3) (10−9 , 3)
{C1, C3 } (1, -) (10−3 , 1) (10−3 , 1) (10−5 , 3) (10−5 , 3) (10−8 , 3) 10−8 , 3) (10−8 , 3) (10−8 , 3)
{C1, C2 } (1, -) (10−3 , 1) (10−4 , 2) (10−4 , 2) (10−7 , 2) (10−7 , 2) (10−7 , 2) (10−7 , 2) (10−7 , 2)
{C3 } (1, -) (1, -) (1, -) (10−5 , 3) (10−5 , 3) (10−5 , 3) (10−5 , 3) (10−5 , 3) (10−5 , 3)
{C2 } (1, -) (1, -) (10−4 , 2) (10−4 , 2) (10−4 , 2) (10−4 , 2) (10−4 , 2) (10−4 , 2) (10−4 , 2)
{C1 } (1, -) (10−3 , 1) (10−3 , 1) (10−3 , 1) (10−3 , 1) (10−3 , 1) (10−3 , 1) (10−3 , 1) (10−3 , 1)

Figure 4: The functionsM(S,d) andMC (S,d), described in Section 4, for the example instance of Figure 2. Each row corresponds

to a non-empty subset of components; each column to a possible value of d . The ordered pair in the row labeled S and column

labeled d denotes
(
M(s,d),MC (S,d)

)
. (The first two columns have been compressed into a single column, since they are identical

across the two columns for all rows.)

Example 4. Suppose that we have components {C1,C2} avail-

able, and an interval of duration 4. Procedure SafeSeqence (Fig-

ure 3) is called with S ← {C1,C2} and d ← 4. The column la-

beled 4 of the row labeled {C1,C2} in Figure 4 contains the en-

try (10−4, 2); the second item in this ordered pair denotes that

MC ({C1,C2}, 4) = C2. Procedure safeSeqence therefore appends

C2 to the initially empty seq, and repeats the loop with S = {C1}

and d = 4 − d2 = 4 − 3 = 1. Since M({C1}, 1) equals one (the first

column śthe one labeled ł0 ś 1žś of the last row), SafeSeqence

exits the loop, returning the sequence ⟨C2⟩ of components.

As another example, suppose that all three components are avail-

able, and the interval duration is 8. Procedure SafeSeqence (Fig-

ure 3) is called with S ← {C1,C2,C3} and d ← 8. The second-last

column śthe one labeled 8ś of the first row in Figure 4 contains the

entry (10−9, 3), indicating thatMC ({C1,C2,C3}, 8) = C3. The proce-

dure safeSeqence therefore appendsC3 to the initially empty seq,

and repeats the loop with S = {C1,C2} and d = 8 − d3 = 4. Since

the entry in the column labeled 4 of the row corresponding to the

subset {C1,C2} in Figure 4 contains the entry (10−4, 2), procedure

safeSeqence concludes that MC ({C1,C2}, 4) = C2 and appends

C2 to seq. Now S = {C1} and d = 4−d2 = 1; sinceM({C1}, 1) equals

zero (the first column śthe one labeled ł0 ś 1žś of the last row),

SafeSeqence exits the loop and returns the sequence ⟨C3,C2⟩ of

components. It may be verified that their cumulative duration is

≤ 8 (d3+d2 = 7), and their cumulative worst-case value-guarantees

is indeed 10−9 (q3 × q2 = 10−5 × 10−4 = 10
−9).

For a final example, let us compute SafeSeqence(C2, 2). The

entry in Figure 4 in the row labeled {C2} and column labeled 2 is

(1,−); i.e.,M({C2}, 2) = 1.0 (in other words, we cannot reduce the

uncertainty at all over an interval of size two with only component

C2 ś not surprising, since d2 > 2). Hence by Line 1 of the pseudo-

code of Figure 3, the empty sequence ⟨ ⟩ is returned. □

Computing safe(S,d,q).We now describe how safe(S,d,q), the

set of components that may be executed without compromising

safety is computed when given the components in S , an interval of

durationd , and a target maximum uncertaintyq. It is safe to execute

component Ci when an uncertainty ≤ q must be guaranteed over

an interval of durationd , if and only if, in the event of this execution

achieving an uncertainty that is as poor as its worst-case guarantee

of qi , it remains possible to achieve the remaining uncertainty

needed, (q ÷qi ), within the remaining interval, of duration (d −di ),

from the remaining components, i.e., (S \ {Ci }):

safe(S,d,q) =
⋃

Ci ∈S

{
Ci | M

(
(S \ {Ci }), (d − di )

)
≤ (q ÷ qi )

}
(6)

Once the values ofM(S,d) have been pre-computed for all S and d ,

observe that determining safe(S,d,q) is an efficient operation that

can be performed in time linear in the number of components in S :

simply check, for each Ci ∈ S , whether M
(
(S \ {Ci }), (d − di )

)
≤

(q ÷ qi ).

Example 5. We illustrate the use of Expression 6 on the collec-

tion of components depicted in Figure 2, for a couple of example

values of S , d , and q.

(1) safe({C1,C2,C3}, 8, 10
−9):

For each Ci , we need to determine whether M({C1,C2,C3} \

{Ci }, 8 − di , ) is ≤ 10−9 ÷ qi . For instance for Ci ← C1, this
checks whether

M ({C2, C3 }, 8 − 2) ≤ 10−9 ÷ 10−3

≡ M ({C2, C3 }, 6) ≤ 10−6

≡ 10−5 ≤ 10−6 (From Figure 4 ś 2nd row, column labeled 6)

which is false. Hence C1 < safe({C1,C2,C3}, 8, 10
−9). In a

similar vein, we can verify

• C2: IsM({C1,C3}, 8−3) ≤ 10−9÷10−4? I.e., isM({C1,C3}, 5) ≤

10−5? ś Yes

• C3: IsM({C1,C2}, 8−4) ≤ 10−9÷10−5? I.e., isM({C1,C2}, 4) ≤

10−4? ś Yes

And hence safe({C1,C2,C3}, 8, 10
−9) = {C2,C3}

(2) Another example: safe({C1,C2}, 4, 10
−3) = {C1,C2} since

• C1: Is M({C2}, 4 − 2) ≤ 10−3 ÷ 10−3? I.e., is M({C1}, 2) ≤ 1?

ś Yes (trivially)

• C2: IsM({C1}, 4−3) ≤ 10−3÷10−4? I.e., isM({C1}, 1) ≤ 10?ś

Yes (again, trivially)

(3) A final example: safe({C1,C3}, 5, 10
−4) = {C3} since

• C1: IsM({C3}, 5−2) ≤ 10−4÷10−3? I.e., isM({C3}, 3) ≤ 10−1?

ś No

• C3: IsM({C1}, 5−4) ≤ 10−4÷10−5? I.e., isM({C1}, 1) ≤ 10?ś

Yes, trivially

□

5 AN OPTIMAL SEMI-ADAPTIVE STRATEGY

Recall that adaptive strategies choose components for execution

one at a time during run-time: the actual uncertainties at which
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results are returned by executing components play a role in deter-

mining which component to execute next. We have seen (Lemma 1)

that adaptivity is desirable since non-adaptive (i.e., static) strate-

gies may perform arbitrarily poorly when compared to adaptive

ones. However, one potential drawback of adaptive strategies is

the computational complexity of each selection step during run-

time; indeed, the following is a correct optimal adaptive strategy:

(i) determine the first component to execute; (ii) execute this compo-

nent and note the uncertainty under which it returns its result; and

(iii) recurse on the remaining components for the target uncertainty

divided by this obtained uncertainty, and a duration equal to the

original duration minus the execution duration of the component

that was executed. Notice that such a naïve approach would require

us to solve the NP-hard problem identified in Section 3 each time a

component is selected during run-time: we expect that this is not

realistic for all but the smallest problem instances. In this section

we discuss a somewhat restricted form of adaptivity called semi-

adaptivity [2], for which the pre-processing is more efficient than

for general adaptivity. A semi-adaptive strategy is a restricted form

of an adaptive strategy, that is of the following kind:

• An initial sequence of components is determined prior to run-time.

This initial sequence specifies the order in which components

should be executed in all typical behaviors.

• An alternative sequence of components is defined, also prior to

run-time, for each component specified in the initial sequence6. If

a component in the initial sequence fails to return its result with

an associated uncertainty no smaller than its typical uncertainty

parameter (its qT) upon being executed, the original sequence is

abandoned henceforth and the alternative sequence defined for

this particular component is executed instead. The alternative

sequence is then followed; the original sequence is no longer

utilised.

Example 6. The adaptive strategy discussed in Example 2 can in

fact be looked upon as a semi-adaptive one: the initial sequence is

⟨C3,C1⟩, and alternative sequence ⟨C2⟩ is associated with the first

component of this original sequence.

(This example also illustrates why there may sometimes be no

need for specifying an alternative sequence for the last component

of the initial sequence: even the worst-case minimum uncertainty

for this last component suffices to satisfy the safety constraint.) □

Once the initial and alternative sequences have been determined

prior to run-time, we point out that choosing the next component

during run-time becomes aΘ(1) (i.e., constant-time) operation: there

is a choice of at most two components to execute next depending

upon the actual value obtained by the just-executed component.

We now derive an algorithm for synthesizing the initial sequence

and the alternative sequences. Let G(S,d,q) denote the minimum

duration over which we can guarantee to achieve an uncertainty

no larger than q under typical circumstances, whilst simultaneously

guaranteeing to achieve an uncertainty no larger than q over an inter-

val of duration d ≥ 0 under all circumstances. Example 7 illustrates

this notation.

6Other than perhaps the last component in the initial sequence ś the example below illustrates why

this alternative sequence is not always needed for the last component.

Example 7. As stated in Example 6 above, the scheduling strat-

egy described in Example 2 is a semi-adaptive one which guarantees

an uncertainty no larger than 10−9 over an interval of duration 8

using the three components {C1,C2,C3} under all circumstances,

and a duration 6 under all typical circumstances. It may additionally

be verified that no other semi-adaptive strategy that guarantees

an uncertainty no larger than 10−9 over an interval of duration 8

under all circumstances can guarantee a duration smaller than 6

under all typical circumstances. In the notation introduced above,

this can be represented as

G({C1,C2,C3}, 8, 10
−9) = 6

□

Wewill write a recurrence relation defining values ofG(S,d,q) in

terms ofG(S ′,d ′,q′)where S ′ ⊊ S ,d ′ < d , andq′ > q. Analogously

with the case of minimum uncertainty above (Equations 2-5), we

will also define an auxiliary function GC (S,d) that we will use to

reconstruct a sequence that achieves this minimum duration.

Base case: S a singleton set.

G({Ci },d,q) =




0 if q ≥ 1

di , if 1 > q ≥ qi and d ≥ di
∞ otherwise

(7)

and

GC ({Ci },d,q) =

{
Ci , if 1 > q ≥ qi and d ≥ di
−, otherwise

(8)

Recursive case:

G(S,d,q) = min
Ci ∈safe(S,d,q)

{
di +G

(
S \ {Ci },d − di ,min

(
(q ÷ qT

i ), 1
) )}

(9)

GC (S,d,q) = The Ci that minimizes the RHS above (10)

Example 8. We illustrate the computation of G(S,d,q) and

GC (S,d,q), by computing these functions for S comprising the

three components of Figure 2, d = 8, and q = 10−9. The recursion

graph for this computation is depicted in Figure 5. The numbers

1ś6 labeling the nodes represent a possible order in which the re-

cursive calls are made, assuming a standard top-down recursive

implementation.

Let us start with the initial call, at the root node. We have already

seen (Example 5) that safe({C1,C2,C3}, 8, 10
−9) = {C3,C2}; hence,

only two recursive calls are made withC3 andC2 being the potential

components executed first. In Example 5 we have also seen (by

explicitly computing them), that safe({C1,C2}, 4, 10
−3) = {C1,C2}

and safe({C1,C3}, 5, 10
−4) = {C3} Ð these explain the nodes that

are explored in the recursion graph of Figure 5.

It is evident that the path in this graph that is highlighted in

blue has the minimum duration (d3 + d1 = 4 + 2 = 6). This path

bears witness to the fact that G({C1,C2,C3}, 8, 10
−9) = 6 (as stated

in Example 7 above), and GC ({C1,C2,C3}, 8, 10
−9) = C3. □

Synthesizing the Sequences. Having computed the functions

G( ) and GC ( ) defined above, we can use them to generate the

initial sequence, and the SafeSeqence procedure of Figure 3 that

was derived in Section 4 to generate the alternative sequences. The

manner in which we do so is represented in pseudo-code form in

Figure 6 Ð given an instance
〈{
Ci = (di ,qi ,q

T

i )
}n
i=1,Q,D

〉
, a call
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to generateSeqences({C1, C2, . . . ,Cn },D,Q) returns the initial

sequence, and sets the variable Ai to be the alternative sequence

for the i’th component of the initial sequence, i = 1, 2, . . .. The

pseudo-code for this is pretty self-explanatory; we illustrate its use

in Example 9 below.

Example 9. Let us revisit the situation discussed in Example 8

above, after G({C1,C2,C3}, 8, 10
−9) and GC ({C1,C2,C3}, 8, 10

−9)

have been computed Ð i.e., after all the recursive calls of the recur-

sion graph depicted in Figure 5 have completed. We explain how

the initial sequence and alternative sequences are computed for this

example, by tracing the execution of the pseudo-code in Figure 6.

• Since GC ({C1,C2,C3}, 8, 10
−9) = C3, the initial iteration of the

while loop would set seq to ⟨C3⟩, and A1 to

safeSeqence({C1,C2}, 4) Ð we have seen in Example 4 that this

is the sequence ⟨C2⟩.

• The next iteration has S ← {C1,C2}, d ← 8 − 4 = 4 and v ←

10−9 ÷ 10−6 = 10
−3. Notice that this sub-problem has been solved

(represented by the node in Figure 5 labeled ({C1,C2}, 4, 10
−3)).

• SinceGC ({C1,C2}, 4, 10
−3) = C1,C1 is appended to the end of seq,

which now has value ⟨C3,C1⟩. A2 is set equal to

safeSeqence({C2}, 2). We saw in Example 4 that this is the

empty sequence ⟨ ⟩, which is the value assigned to A2.

• Now, Line 10 assign q a value 10−3 ÷ 10−4, or 10. Therefore the

while loop is exited and we return from the call to generateSe-

qences.

Summarising, the returned sequence is ⟨C3,C1⟩, while the alterna-

tive sequences are A1 = ⟨C2⟩ and A2 = ⟨ ⟩. The reader may verify

that this is indeed the semi-adaptive strategy we had presented

(without derivation) in Example 2. □

6 EVALUATION

In this section we conduct simulation experiments upon ran-domly-

generated synthetic workloads in order to experimentally evaluate

our semi-adaptive strategy. In this evaluation we first examine how

long it takes our algorithm to construct the initial and alternative se-

quences: these experiments reveal the scalability of our approach Ð

how many components our algorithm is able to accommodate with

acceptable pre-run-time overhead. We then compare the schedules

generated at run-time by the semi-adaptive algorithm with those

generated by a static approach. We are thus able to experimentally

characterize the benefits of adaptivity.
Random sets of components, representing the AAs available to

us, are obtained by sampling uncertainty values generated by the
DRS algorithm [13]. DRS enables a given budget of worst case and
typical estimated of uncertainty to be uniformly divided amongst
the components, while maintaining the normal relationship be-
tween worst case and typical. In addition, bounds are provided to
prevent any given component from having an uncertainty value
which is too dominant. Execution times for components were gen-
erated from a uniform distribution. Hence for these experiments a
set of n components is defined by the following:

(1) Array d = [randint(min_execution_time, max_execution_time) for

_ in range(n)]

(2) Array X = drs(n, total_worst_case_uncer tainty , upper

_bound= 1.0, lower_bound = worst_case_lower_bound)

(3) Array Y = drs(n, total_worst_case_uncer tainty , upper

_bound=X, lower_bound = typ_case_lower_bound)

(4) Ci = (di , Xi , Yi ))

where drs(n, u, ...) is the DRS function that returns an array of n

floating point values that multiply7 tou, with additional constraints

as specified by the named parameters, and C is a component as

defined by Equation (1).

Once the components are specified, the deadlineD is obtained by

multiplying the total execution time by a constant that represents

the proportion of components that can be considered for execution.

Multiple values for this constant were tested and not found to have

a significant effect on the results obtained, so only the results for 0.9

are presented. Finally, the target uncertainty bound Q is calculated

by computing the best safe bound that the system is capable of.

Due to the manner in which the target uncertainty bound is set,

the impact of the majority of parameters is minimised.

Figure 7 shows how the running time of the algorithm scales with

the number of components considered, with each data point rep-

resenting the average of the generation times of schedules for 250

randomly-generated instances. (These measurements were taken

on an AMD EPYC 7501 running at 2.4GHz.) As can be seen, for the

semi-adaptive algorithm this duration grows exponentially with

respect to the number of components. The data in Figure 7 indicate

that tables for up to 20 components can be constructed in approxi-

mately 15 minutes. In practice perhaps 6, or at most 10 components

are likely to be employed in an AMS, in which case the running

time for schedule generation is then less than a second.

Having thus established the viability of the semi-adaptive strat-

egy, we next evaluate its efficacy by computing the response time

(predicted execution time) of the typical sequence and comparing

this to the response time if we were to have done static schedul-

ing. Figure 8 shows these values for the number of components

ranging from 3 to 20 (each point being the median value of 250

randomly produced examples). The figure shows a clear reduction:

for most numbers of components response times are less than half

that required by even an optimal static scheme. This additionally

implies that fewer than half the number of components are typically

executed under semi-adaptive scheduling when compared to the

static method.

The results presented in Figure 8 are for randomly generated

parameters following uniform distributions Ð we were unable to

find convincing arguments in, e.g., the machine learning litera-

ture, to support the use of other distributions for modeling AA

components. However, it is reasonable to speculate that some AA

components are likely to have more skewed behaviours: there may

be AI-based algorithms that can only guarantee very poor outcomes

(uncertainty close to 1.0) in the worst case, but performmuch better

śexpress lower uncertainty (i.e., greater certainty) that the outputs

they generate are correctś under typical circumstances. It is ex-

pected that the availability of such components will significantly

enhance the performance of semi-adaptive strategies vis-a-vis static

ones since they would never form part of a static sequence but are

likely to be chosen in semi-adaptive sequences.

Finally, whilst the above has illustrated the benefits that accrue

when typical values (or better) are experienced it is theoretically

7The normal DRS algorithm uses the sum; however, as the positive real numbers under
addition are isomorphic to [0, 1) under multiplication, it is trivial to adapt DRS to a
multiplicative domain.
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Figure 5: An example of recursive calls made during pre-processing by the Semi-Adaptive Strategy (discussed in Example 8).

Each vertex is labeled with the three-tuple (S,d,q), denoting that an uncertainty ≤ q over an interval of duration d must be

guaranteed using the set of components S . The values returned by each call are given as an ordered pair: the ordered pair over

the vertex labeled (S,d,q) represents (G(S,d,q),GC (S,d,q)).

Figure 6: Semi-adaptive Strategy: Generating initial and al-

ternative sequences

possible for semi-adaptive scheduling to perform worse than static

scheduling, provided that a sufficient number of components return

their worst-case uncertainty value. An investigation was under-

taken to find these situations in our analysis, and calculate an upper

bound on the probability of the failure of a component to return

its typical case uncertainty value. This was accomplished by enu-

merating all possible schedules and determining how many such

failures were necessary to cause semi-adaptive scheduling to per-

form worse than static scheduling. Even in the worst case, it was

found that provided the probability of a worst case uncertainty

value being returned was less than 0.45, semi-adaptive scheduling

would perform at least as well as static scheduling. As a probability

of 0.45 would represent a common event, this suggests that for the
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hypothesis that a typical uncertainty value represents the worst

case in all but very rare circumstances, semi-adaptive scheduling

will perform better than static scheduling. It is possible to devise

pathological cases which push the performance down further, but

these seem to be extremely rare when using randomly generated

parameters.

7 CONCLUSIONS

Autonomous Agents (AAs), including ones that are based upon

deep learning and similar AI-based principles, are increasingly

used in safety-critical CPS’s; it is therefore imperative that the

safety-critical systems research community devise techniques that

enable the analysis of such systems to both assure safety (which is

essential) and optimize performance (which is desirable, for cost and

related reasons). This paper reports on some of our ongoing efforts

in this direction. Building off recent work on typical-case analysis

pioneered in [31] we have argued that safety-critical systems whose

run-time behaviors incorporate a great deal of uncertainty should

be designed to optimize for performance in the typical case (while

guaranteeing safety in all cases, including atypical ones). We have

developed a model for representing the run-time behaviour of some

kinds of AAs that exhibit run-time functional uncertainty in a

quantitative manner. We have applied this model to a problem that

arises in an application relating to navigation in autonomousmobile

systems, in which one or more of an available array of AAs are to be

used, in any desired order, to perform a safety-assessment operation

as soon as possible (for superior performance), but definitely within

a specified deadline (for safety). We have identified a trade-off,

formalized in the concepts of static, and semi-adaptive strategies,

between run-time performance and the pre-run time computation

that is needed, and have developed and experimentally evaluated

algorithms for obtaining provably optimal semi-adaptive strategies.

Future work will look to move from a semi-adaptive to a more

fully adaptive scheme. For such schemes the run-time overhead

may be prohibitive; but this is yet to be fully investigated.
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