
This is a repository copy of Functional Uncertainty in Real-Time Safety-Critical Systems.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/187712/

Version: Accepted Version

Proceedings Paper:
Baruah, Sanjoy, Burns, Alan orcid.org/0000-0001-5621-8816 and Griffin, David Jack
orcid.org/0000-0002-4077-0005 (2022) Functional Uncertainty in Real-Time Safety-Critical
Systems. In: Proceeding Real-Time Networks and Systems. ACM

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Functional Uncertainty in Real-Time Safety-Critical Systems

Sanjoy Baruah
Washington University

USA
baruah@wustl.edu

Alan Burns
The University of York

UK
alan.burns@york.ac.uk

David Griffin
The University of York

UK
david.griffin@york.ac.uk

ABSTRACT

Safety-critical cyber-physical systems increasingly use com-

ponents that are unable to provide deterministic guarantees of

the correctness of their functional outputs; rather, they char-

acterize each outcome of a computation with an associated

łuncertaintyž regarding its correctness. The problem of as-

suring correctness in such systems is considered. A model is

proposed in which components are characterized by bounds

on the degree of uncertainty under both worst-case and typi-

cal circumstances; the objective is to assure safety under all

circumstances while optimizing for performance for typical cir-

cumstances. A problem of selecting components for execution

in order to obtain a result of a certain minimum uncertainty as

soon as possible, while guaranteeing to do so within a specified

deadline, is considered. An optimal semi-adaptive algorithm

for solving this problem is derived. The scalability of this algo-

rithm is investigated via simulation experiments comparing

this semi-adaptive scheme with a purely static approach.

ACM Reference Format:

Sanjoy Baruah, Alan Burns, and David Griffin. 2022. Functional Uncer-

tainty in Real-Time Safety-Critical Systems. In Proceedings of the 30th

International Conference on Real-Time Networks and Systems (RTNS

’22), June 7ś8, 2022, Paris, France. ACM, New York, NY, USA, 11 pages.

https://doi.org/10.1145/3534879.3534884

1 INTRODUCTION

Many safety-critical cyber-physical systems (CPS’s) are re-

quired to have their safety properties verified (in some do-

mains, certified) prior to deployment. However there is an in-

creasing use in these CPS’s of łAutonomous Agentsž (AAs)1

developed using techniques that are currently not widely ac-

cepted in safety-critical systems implementation. The pres-

ence of such łnon-pedigreedž[7, 8] components means that

approaches that have traditionally been used for the purposes

of performing safety assurance in safety-critical systems are

not directly applicable to the verification of these CPS’s.

It is widely acknowledged that predictability of run-time

behavior [33] is very important for the purposes of assuring

safety in safety-critical systems. Although most non-trivial

safety-critical systems inevitably encounter some uncertainty

1The term Autonomous Agents is used here as an abstraction that includes, but
is not restricted to, components based on popular machine learning approaches
(including Learning-Enabled Components as defined in [26]).

Permission to make digital or hard copies of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for third-party components of
this work must be honored. For all other uses, contact the owner/author(s).

RTNS ’22, June 7ś8, 2022, Paris, France

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9650-9/22/06.
https://doi.org/10.1145/3534879.3534884

during run-time, safety-critical systems designers have devel-

oped a range of advanced and sophisticated techniques for

dealing with inherent run-time unpredictability with regards

to extra-functional properties such as timing (the duration

required to complete execution) or energy consumption. In ad-

dition to the problem of such extra-functional unpredictability,

however, safety-critical systems that use AAs tend to also not be

predictable from the functional perspective: the precise łworthž

or accuracy of a computation performed by an AA is often

not easily estimated beforehand; this is particularly true if the

AA incorporates deep learning or similar AI-based techniques.

The problems arising from such lack of functional determin-

ism in AI-based techniques such as deep learning has been

recognized within the machine learning community. It is thus

typically required that an AA, for example an autonomous

advisor or a classifier, must not only produce output but it

must also produce a measure of the uncertainly (or confidence)

that is associated with that output. E.g., Kendall et al. [20] state

łUncertainty should be a natural part of any predictive system’s

output. Knowing the confidence with which we can trust the

semantic segmentation output is important for decision making.

For instance, a system on an autonomous vehicle may segment

an object as a pedestrian. But it is desirable to know the model

uncertainty. . . ž A number of techniques have been developed

for obtaining an estimate of uncertainty, including Bayesian

Neural Nets [12], probabilistic model checking [9] and Deep

Ensembles [22]. However in the safety-critical domain, where

very low levels of uncertainty are required, it is unlikely that a

single AA even if presented with familiar input will be able to

provide an output with sufficiently high confidence. And with

unfamiliar input it is very likely that the outputs of multiple

alternative AAs will need to be fused together in order to drive

down the aggregate uncertainty to acceptable levels: as noted

by Guo et al. [14] in the context of autonomous vehicles, łIf

the detection network is not able to confidently predict the pres-

ence or absence of immediate obstructions, the car should rely

more on the output of other sensors . . . ž. It follows that in the

safety-critical real-time domain, with the current level of un-

certainly that AAs, particularly learning-based ones, are able

to provide, a number of diverse components will be needed to

drive down uncertainty levels low enough to satisfy safety re-

quirements. In this research we consider how a family of such

components should be scheduled so that a specified deadline

for producing the output is satisfied and the required level of

confidence achieved (i.e. the level of uncertainly is guaranteed

to fall below a pre-defined threshold).

Amotivating use-case.We propose an approach for deal-

ing with functional run-time uncertainty for a particular form

of computation involving AAs, that is motivated by the fol-

lowing use-case drawn from a related project on navigation

RTNS ’22, June 7ś8, 2022, Paris, France Sanjoy Baruah, Alan Burns, and David Griffin

in autonomous mobile systems (AMS’s) such as vehicles and

robots:

• A moving AMS repeatedly checks that its designated path is

free of hazards. Each check must be completed by a deadline.

• For each check, the AMS may apply one or several of a range

of available AAs, some of which are learning-enabled, that

take input from different sources (e.g., cameras, lasers, Li-

DAR, radars, microphones, other vehicles, and even satellite

feeds) to evaluate the designated path. An AA, when applied,

outputs its assessment śeither hazard or clearś of the path

ahead:

ś If the assessment is hazard, then the AMS immediately

takes safety action and comes to a stand-still as rapidly as it

safely can.

ś If the assessment is clear then an uncertainty estimate, q

(0 ≤ q ≤ 1), is also output. The effectiveness of each AA is de-

pendent on the current conditions of the environment: road

markings, proximity of other vehicles (AMSs and human

controlled), obstacles close to the designated path, weather,

ambient light etc.; the value of q reflects the confidence one

should place upon the clear designation from this AA in

view of current conditions.

• The AMS applies AAs one at a time until the cumulative

uncertainty falls below a pre-defined level Q. When this hap-

pens the AMS concludes that its designated path is currently

a safe one, and proceeds with additional optimizations (e.g.,

activating actuators that ensure a smoother śless jerkyś ride);

the sooner this happens, the łbetterž the performance of the

AMS (and hence the sooner the cumulative uncertainty falls

below Q the better). However if collective uncertainty does

not fall below Q by the pre-determined deadline then the

AMS flags a potential safety violation and hands control over

to an emergency handler (which may, e.g., bring it to a stand-

still as rapidly as safely feasible). This outcome is considered

a failure for the autonomous advisory system.

Thus, any one of three possible outcomes: (i) hazard desig-

nation; (ii) clear designation at an uncertainty level ≤ Q; or

(iii) failure (an inability to achieve uncertainty level Q in the

clear designation); can happen each time the AMS performs

its hazard check. We are tasked with determining the order in

which the AAs should be applied in order to avoid the third

outcome altogether; subject to this constraint, we would like

to obtain the second outcome ASAP.

The problem considered. Generalizing from the use-case

above, we assume that we have a number of components, each

an abstract representation of some AA, available to us. The

i’th component Ci takes some duration to execute, and we ob-

tain an output with an estimate of the uncertainty associated

with that output. We make the simplifying assumption that

the execution duration of Ci does not vary much on different

executions, and is a priori known.2 However the exact level of

uncertainty that is returned is unknown prior to actually exe-

cuting the component, and will in general differ upon different

executions ofCi . We assume that a pair of upper bounds are a

priori known for this actual uncertainty level:

2 This simplifying assumption removes timing uncertainty from the picture and so allows
us to highlight the primary focus of this paper, which is that of dealing with the functional

uncertainty that characterizes the run-time behavior of many AAs.

• a worst-case bound qi , denoting that the component will pro-

duce output with uncertainty ≤ qi under all circumstances;

and

• a typical-case [31] bound qTi , denoting that the component

will attain an uncertainty level ≤ qTi under all łtypicalž cir-

cumstances ś i.e., all circumstances except perhaps some

highly pathological ones that are extremely unlikely to occur

in practice. Note qi ≥ qTi .

Given a collection of such components, a target uncertainty

level Q that must be attained, and a deadline D, we seek to

determine the order in which the components should be ex-

ecuted in order to ensure that the target uncertainty level is

obtained by the deadline, provided each component obtains a

level ≤ its worst-case bound when executed, and minimize the

duration taken to obtain the target level if each component

obtains a level ≤ its typical-case bound when executed. That is,

we seek to optimize for performance assuming typical circum-

stances, whilst avoiding failure under all circumstances, typical

or not. In this paper we develop an optimal semi-adaptive

algorithm for solving this problem; we will see that the prob-

lem is inherently intractable and hence our algorithm will, in

general, have running time exponential in the number of com-

ponents n. We anticipate that n will not be too large in actual

systems (this is certainly true for our motivating use-case),

and we have performed extensive experimental evaluation

to understand the scalability of our optimal algorithm as the

number of available components n increases. Note that we

assume that the components are executed one at a time, rather

than all in parallel. This has two advantages. First, it saves

resources by not executing components that turn out to not be

needed. Many AMSs (for example self-driving cars) are mobile

and thus not tethered to an energy source; hence engineering

solutions that minimise resource usage are highly desirable.

Typical behaviour may require only 50% of those utilised in

the worst case (see Section 6). As the worst case is expected

to be a very rare occurrence, to execute the larger set of all

components is clearly wasteful. The other advantage comes

from allowing components to benefit from the fact that other

components have already executed. This may allow the de-

livered uncertainty level to be significantly better than the

typical as well as the worst-case estimates. An example of this

relationship are the components that make use of LiDAR and

monocular RGB (Red, Green, Blue camera); both of which can

benefit from the prior execution of the other [37].

In the following descriptions we focus on the notion of

uncertainty (q); an equivalent formulation is one that uses a

measure of confidence p. Both of these metrics are usually

expressed as probabilities, with p = 1 − q.

Organization. The reminder of this paper is organized as

follows. We briefly discuss some related work in Section 2. In

Section 3 we formally define the problem that we are studying

here. We will see that solving this problem requires us to

determine which component is safe to execute at some system

state Ð in Section 4 we show how such safe choices can be

identified. This is used in Section 5 to solve the general problem

in a way that is efficient in terms of run-time complexity.

Functional Uncertainty in Real-Time Safety-Critical Systems RTNS ’22, June 7ś8, 2022, Paris, France

We have conducted extensive simulations upon synthetically-

generated workloads in order to evaluate the performance of

our algorithm: we report on these in Section 6. We conclude

in Section 7 by placing this work within a larger perspective

on the design and analysis of complex safety-critical cyber-

physical systems.

2 RELATED WORK

The importance, and the enormous complexity, of obtaining

assurance for safety-critical CPS’s that incorporate machine

learning has been widely recognized, and several large-scale

initiatives aimed at solving this problem have been launched.

Some examples include the Assured Autonomy Program [26]

of the United States Defense Advanced Research Projects

Agency (DARPA); the Assuring Autonomy International Pro-

gramme [40] funded by the international insurance company

Lloyd’s of London at the University of York (UK); and the

Bounded Behavior Assurance initiative [23], spearheaded by

the major US defense contractor Northrop Grumman Corpo-

ration.

Ourwork here builds on some recent research [3] which pro-

posed a component model in that each component is assumed

to take a certain duration to execute, and to return a value

that can only be determined once the component has com-

pleted execution, but for which worst-case and typical-case

bounds are a priori known. However, [3] deals with a model

of additive value that is accumulated by executing multiple

components, whereas we are concerned here with minimiz-

ing uncertainty/confidence, which is inherently multiplicative

rather than additive. Furthermore, [3] applies its model to

multi-stage computations where there is a choice of compo-

nents for each stage, and the issue is one of choosing a com-

ponent for execution at each stage. In contrast, the problem

we consider here has the added dimension that the order of

execution of components is not fixed but must be determined

by the resource allocation and scheduling mechanism.

In Section 3, we will define static and semi-adaptive variants

of our problem depending on how much of the selection of

components is determined prior to run-time; we note that a

similar distinction between static and adaptive strategies was

made in the context of a graph routing problem in [2, 4].

We emphasize that while there is a tremendous amount of

ongoing research in the design of AAs for provable correctness

(e.g., [15, 17, 32, 35, 36]) and, more specifically, the tailoring

(via focusing on predictability, architectures, scheduling and

WCET estimation) of the application and training of DNNs

(Deep Neural Nets) in real-time systems (e.g., [11, 16, 18, 19, 24,

25, 27, 38, 39, 42]), we look upon such work as orthogonal to

the research reported here: we adopt a łblack-boxž approach

to AAs, whereby they are modelled entirely by their execution

durations and the self-reported uncertainty of the results they

compute, and the a priori estimates of these parameters.

A common form of AA is a classifier [1, 28, 29, 41]. Here an

input is identified as being a member of one (or more) of a set

of classes; each estimation having an associated probability.

So, for example, the probability of input i being a member of

S1 is p1; of S2, p2 etc.. If none of the membership probabilities

is greater than some threshold then the input must be deemed

to be unclassified. This formulation is used by Wang et al. [35]

to explore the use of IDK classifiers [21, 34]: if a łbasežclassifier

is unable to produce an output with sufficient confidence the

IDK classifier declares łI Don’t Knowž. We have recently [5, 6]

begun the consideration of IDK classifiers from a real-time

perspective; the framework developed in the current paper is a

further generalisation. A number of components are available,

their order of execution must be determined and the level of

uncertainty is equivalent, in our use case, to not knowing that

the route is clear. Our scheme is also applicable to a broader

set of machine-learning algorithms.

3 MODEL AND PROBLEM STATEMENT

In this section we provide a formal definition of the problem

that was illustrated via a motivating use-case in Section 1

above. We consider various aspects of this problem: the man-

ner in which outcomes of executing different components are

combined together, as well as restrictions that are placed upon

the component-selection strategies (including whether each

component may be executed multiple times or not). We will

see that different combinations of factors from these different

aspects give rise to different specific problems.

We suppose that n different components C1,C2, . . . ,Cn ,

are available. Component Ci is characterized by the 3-tuple

(di ,qi ,q
T

i), where

• di denotes its execution duration (assumed to be fixed ś see

footnote 2);

• qi is an a priori upper bound on the (unknown) actual un-

certainty that is guaranteed to be obtained by executing Ci
under all circumstances; and

• qT

i is an a priori upper bound on the actual uncertainty that

is guaranteed to be obtained by executing Ci under all typi-

cal [31] (i.e., non-pathological) circumstances.

A target acceptable uncertaintyQ that must be obtained, and a

deadline D within which this must happen, are also specified.

That is, an instance of our problem is specified as follows:
〈{
Ci = (di ,qi ,q

T

i)
}n
i=1,Q,D

〉
(1)

During each execution of this instance, we are to execute

components one at a time until the composite uncertainty

becomes ≤ Q.

1 Q = 1// Current net uncertainty; initialized prior to execution

2 repeat

3 choose a component, and execute it

4 Q = f (Q , q̂), where q̂ is the actual value obtained

// Function f (,) is described in the text

5 until (Q ≤ Q)

Figure 1: A Template of the Run-time Strategy

Correct and Typical Behaviors. As stated earlier, the ex-

act uncertainty of the result obtained by executing a compo-

nent is unknown prior to actually executing it, and the same

component may exhibit different uncertainties upon different

executions. The instance is said to exhibit correct behavior

during an execution if each executed component Ci exhibits

RTNS ’22, June 7ś8, 2022, Paris, France Sanjoy Baruah, Alan Burns, and David Griffin

an uncertainty no greater than its value parameter qi ; it is

additionally said to exhibit typical behavior if each executed

component exhibits an uncertainty no greater than its typical-

value parameter qT

i .

Scheduling goal. Components are chosen for execution

as shown in Fig. 1. In so doing, our safety constraint is that

the repeat-until loop must be exited within an interval of

duration D upon all correct behaviors of the instance. Subject

to satisfying this safety constraint, our optimization objective

is to minimize the duration of execution of the loop during all

typical behaviors of the instance.

Composition of uncertainties. In Line 4 of the pseudo-

code of Fig. 1 above, we update the uncertainty Q based upon

the actual uncertainty returned upon executing the last com-

ponent that was executed, and the uncertainty that had accu-

mulated prior to then. This is represented in the pseudo-code

as f (Q, q̂), where q̂ denotes the value obtained by actually

executing a component. Although the exact form of this func-

tion f will, in general, depend upon application characteris-

tics, for the sake of concreteness we assume in the remainder

of this presentation that this composition is multiplicative:

f (Q, q̂) = Q × q̂. In addition to being applicable to such mul-

tiplicative composition of uncertainties, our results hold for

any system in which the uncertainties exhibited by executing

components are drawn from a totally ordered Abelian group.3

Consider, e.g., our motivating use-case from Section 1, and

suppose that the confidence levels Ðthe p parametersÐ repre-

sent probabilities of success and that the different components

are independent. Let pi be the actual confidence that is output

upon executing the i’th component to be executed. After k

components have been executed, the probability that their

outputs are all incorrect is Πk
i=1(1−pi); hence, the probability

of the output ś clear ś being correct is
(
1 −

(
Π
k
i=1(1 − pi)

))
.

It may be verified that we can have Q equal this expression

after k iterations if we initializeQ to zero in Line 1, and update

it as follows in Line 4: Q = 1 − (1 −Q) × (1 − pi).

Example 1. Throughout this manuscript we will use the ex-

ample instance depicted in Figure 2 as an illustrative example.

There are three components in this instance, with execu-

tion durations 2, 3, and 4 respectively, guaranteeing to return

results that have uncertainty no greater than 10−3, 10−4, and

10−5 respectively in all correct behaviors, and no greater than

10−4, 10−5, and 10−6 respectively in all typical behaviors. □

Component re-use. Application characteristics will deter-

mine whether each individual component may be executed

3See, any algebra text or, e.gź https://encyclopediaofmath.org/wiki/Totally_
ordered_group (accessed February 17th, 2021) for a precise definition.

Ci di qi qT
i

C1 2 10−3 10−4

C2 3 10−4 10−5

C3 4 10−5 10−6

Figure 2: An example collection of components

{C1,C2,C3}

at most once, or multiple times, during a single execution of

the instance. Our application domains of interest generally do

not allow for re-use; accordingly we will restrict our attention

here to the case where such re-use is forbidden. (We point out

that forbidding re-use is the more difficult problem from an

algorithmic perspective in the sense that relatively straight-

forward dynamic programming strategies can be applied to

solve the variants with re-use permitted.)

Static and adaptive strategies. We distinguish between

static and adaptive run-time strategies depending upon the

manner in which the choice of components is made in Line 3

of Figure 1. A static strategy determines the order of execution

prior to run-time, before the first one is executed; in contrast,

only the first component is chosen prior to run-time by an

adaptive strategy, and the actual uncertainty with which the

result was returned upon executing a component is taken into

account in choosing the next component to execute.

Not surprisingly, adaptive strategies are generally able to

guarantee superior performance (i.e., shorter execution dura-

tions for typical behaviors); we illustrate below on our running

example instance from Figure 2:

Example 2. Consider the example collection of three com-

ponents shown in Figure 2, with deadline D = 8 and target

value Q = 10−9. Since d1 + d2 + d3 = 9 while the available

duration is 8, all three components cannot be executed.

A static schedule can only guarantee an overall uncertainty

of 10−4 × 10−5 = 10
−9, by choosing components C2 and C3.

Under a typical behavior in which each component obtains a

value equal to its qT

i parameter, we would need to execute both

components in order to drive the uncertainty down to ≤ Q

(i.e., 10−9); hence the schedule duration in a typical behavior

is d2 + d3 = 7.
Now consider the following adaptive strategy:

execute C3

if actual uncertainty returned by this execution is ≤ 10−6

then execute C1

(for a guaranteed uncertainty ≤ 10−6 × qi = 10−6 × 10−3 = 10
−9)

else execute C2

(for a guaranteed uncertainty ≤ q3 × qi = 10−5 × 10−4 = 10
−9)

This strategy is safe since the maximum duration is d3+

max(d1,d2) = 4 + max(2, 3) = 7. In a typical behavior, note

that C3 would obtain a value ≤ 10−6 and hence C1 would be

executed next, for a duration of d3 + d1 = 6. □

The following lemma asserts that adaptive strategies may out-

perform static ones by an arbitrarily large degree:

Lemma 1. Static strategies may have arbitrarily poor perfor-

mance when compared to adaptive ones.

Proof.Consider an instance comprising the following three
components:

Ci di qi qT
i

C1 D − 1 10−4 10−4

C2 1 10−2 10−4

C3 1 10−2 10−4

with deadline D, and a target acceptable uncertainty Q = 10−6.

An adaptive schedule may execute one of C2 or C3. If the

uncertainty in the result of this execution ≤ 10−4, then the

other one of these is executed; else, C1 is executed. Since q
T

2

Functional Uncertainty in Real-Time Safety-Critical Systems RTNS ’22, June 7ś8, 2022, Paris, France

and qT

3 are both 10−4, the schedule duration in the typical-case

is 1 + 1 = 2.

A static schedule, on the other hand must include C1 and

one of C2 or C3 in order to guarantee an overall uncertainty

Q = 10−6 under all correct behaviors. Hence even in typical-

case behaviors its schedule duration is as large as D. The ratio

of the typical-case schedule durations achievable by static

versus adaptive strategies is thus D/2, which→ ∞ as D →

∞. □

By demonstrating that adaptive strategies can perform arbi-

trarily better than static ones, Lemma 1 above argues in favor

of considering the use of adaptive strategies rather than static

ones. The remainder of this paper is devoted to the exploration

of such an adaptive strategy: in Section 4 below we describe

some pre-processing that enables us to very efficiently identify

which components it is safe to execute at any given system

state, and in Section 5 we describe how to optimize over all

such safe components in order to choose one that minimizes

typical response time (i.e., the duration needed to reduce the

uncertainty to below the specified amount under all typical

circumstances).

4 IDENTIFYING SAFE CHOICES

As discussed in Section 3 above, during run-time our algorithm

repeatedly (Line 3, Figure 1) selects a component from amongst

the ones that are eligible for execution in order to minimize

the duration by which the overall uncertainty falls below the

acceptable level, Q, in all typical instance behaviors. Since

the selection must also meet the safety constraint that the

duration will not exceed the specified deadline in all correct

(even if not typical) behaviors, the selected component must

be one that is able to guarantee safety even if it (and some

or all subsequent components that are executed) return[s]

results with uncertainties that are as large as their respective

maximum values ś their qi parameters. In this section we

describe some pre-processing that is done by our algorithm in

order that the set of such components eligible for selectionmay

be identified efficiently. This algorithm is used as a subroutine

in Section 5 to design an algorithm that optimizes performance

while respecting this safety constraint.

For a given set S of components, a target uncertainty q,

and a duration d , the set of safe choices, denoted safe(S,d,q),

is the set of all the components that it is łsafež to execute in

the sense that if it is executed an overall uncertainty ≤ q can

be guaranteed within a duration d under all correct (but not

necessarily typical) behaviors. Observe that determining these

sets of safe choices is computationally intractable: it can be

shown by a simple polynomial-time reduction to the Product

Knapsack problem [10, 30] that it is an NP-hard problem to

even determine whether such a set is empty or not, and we

should therefore not expect to be able to solve it in polynomial

time.4

Let S denote any subset of the set of components, and let d

be any non-negative integer. LetM(S,d) denote the minimum

4Note that it therefore follows that our overall problem is computationally intractable: given
the set of all components, it is NP-hard to determine whether the safety constraint can be

satisfied.

SafeSeqence(S , d)

// Returns the sequence of components ∈ S whose execution guarantees

an uncertainty M (S , d) within an interval of duration d .

1 if (M (S , d) ≥ 1.0) return ⟨ ⟩// The empty sequence

2 seq = ⟨ ⟩// Inititalise to the empty sequence

3 repeat

4 Suppose that the component MC (S , d) is Ck
5 append Ck to seq

6 S = S \ {Ck }

7 d = d − dk
8 until (M (S , d) ≥ 1.0)

9 return seq

Figure 3: Identifying the sequence of components in S

whose execution guarantees a value M(S,d) within du-

ration d .

uncertainty that can be guaranteed over an interval of dura-

tion d , given the set S of components, in all correct behaviors

of the instance. Below we write a recurrence relation defin-

ing values of M(S,d) in terms of M(S ′,d ′) where S ′ ⊊ S and

d ′ < d . We also define an auxiliary functionMC (S,d), denot-

ing the first component we should execute in order to achieve

this minimum uncertainty; in Fig. 3 we will use MC (S,d) to

reconstruct the subset of components that guarantees this

smallest uncertainty.

Base Case: S is a singleton set.

M({Ci },d) =

{
1.0, d < di
qi , d ≥ di

(2)

and

MC ({Ci },d) =

{
−, d < di
Ci , d ≥ di

(3)

Recursive case:

M(S,d) = 1.0 and MC (S,d) = − if
(
d < minCi ∈S {di }

)
; other-

wise,

M(S,d) = min
(Ci ∈S)∧(d≥di)

{
qi ×M

(
S \ {Ci },d − di

)}
(4)

MC (S,d) = The Ci that minimizes the RHS above (5)

Example 3. The values of M(S,d) and MC (S,d) for our

three-component running example (Figure 2) are provided

in tabular form in Figure 4, for all non-empty subsets S ⊆

{C1,C2,C3} and alld ≤ d1+d2+d3 = 9. Each row corresponds

to a non-empty subset of the set of components, and each

column to a value of d . Each entry in this table is in the form

of an ordered pair: the first element in the ordered pair in the

d’th column of the row labeled S is M(S,d), and the second

element is the index of the component MC (S,d). Hence for

example the entry in the last column of the first row states

that an uncertainty as low as 10−12 can be guaranteed by the

entire set of three components over an interval of duration

9, and that executing component C3 first would enable us to

achieve this guarantee. In a similar vein, we see that the set

of components {C1,C2}, over an interval of duration 7, can

RTNS ’22, June 7ś8, 2022, Paris, France Sanjoy Baruah, Alan Burns, and David Griffin
S (↓) / d (→) 0 ś 1 2 3 4 5 6 7 8 9

{C1,C2,C3 } (1, -) (10−3 , 1) (10−4 , 2) (10−5 , 3) (10−7 , 2) (10−8 , 2) (10−9 , 3) (10−9 , 3) (10−12 , 3)
{C2,C3 } (1, -) (1, -) (10−4 , 2) (10−5 , 3) (10−5 , 3) (10−5 , 3) (10−9 , 3) (10−9 , 3) (10−9 , 3)
{C1,C3 } (1, -) (10−3 , 1) (10−3 , 1) (10−5 , 3) (10−5 , 3) (10−8 , 3) 10−8 , 3) (10−8 , 3) (10−8 , 3)
{C1,C2 } (1, -) (10−3 , 1) (10−4 , 2) (10−4 , 2) (10−7 , 2) (10−7 , 2) (10−7 , 2) (10−7 , 2) (10−7 , 2)
{C3 } (1, -) (1, -) (1, -) (10−5 , 3) (10−5 , 3) (10−5 , 3) (10−5 , 3) (10−5 , 3) (10−5 , 3)
{C2 } (1, -) (1, -) (10−4 , 2) (10−4 , 2) (10−4 , 2) (10−4 , 2) (10−4 , 2) (10−4 , 2) (10−4 , 2)
{C1 } (1, -) (10−3 , 1) (10−3 , 1) (10−3 , 1) (10−3 , 1) (10−3 , 1) (10−3 , 1) (10−3 , 1) (10−3 , 1)

Figure 4: The functions M(S,d) and MC (S,d), described in Section 4, for the example instance of Figure 2. Each row

corresponds to a non-empty subset of components; each column to a possible value of d . The ordered pair in the row

labeled S and column labeled d denotes
(
M(s,d),MC (S,d)

)
. (The first two columns have been compressed into a single

column, since they are identical across the two columns for all rows.)

guarantee an uncertainty as low as 10−7, and that executing

componentC2 would enable us to achieve this guarantee.
5
□

Computational Complexity. Expressions 2ś5 are in the

form of standard recurrences; for a given instance ⟨{C1, C2,

. . . ,Cn },Q, D⟩, a table of the form depicted in Figure 4 can

be generated in Θ (2n × D) time via a standard bottom-up dy-

namic programming implementation of these recurrences. We

believe it reasonable to expect the value of D to not be particu-

larly large in real-time systems; the dependence on 2n indicates

that the running time of the algorithm scales exponentially

with the number of available components. Our experimental

evaluations (Section 6) indicate that this is unlikely to prove a

limitation in practice: even upon modestly-equipped general-

purpose laptop computers, we are comfortably able to handle

up to 30 or so components in very reasonable amounts of time.

Reconstructing the sequence of components: The pro-

cedure SafeSeqence(S,d) listed in Figure 3 applies standard

dynamic programming techniques to reconstruct the sequence

of components that guarantee a valueM(S,d) for a set of com-

ponents S and duration d , in time linear in the number of

components in the sequence; its use is illustrated in Example 4

below.

Example 4. Suppose that we have components {C1,C2}

available, and an interval of duration 4. Procedure SafeSe-

qence (Figure 3) is called with S = {C1,C2} and d = 4. The

column labeled 4 of the row labeled {C1,C2} in Figure 4 con-

tains the entry (10−4, 2); the second item in this ordered pair

denotes thatMC ({C1,C2}, 4) = C2. Procedure safeSeqence

therefore appends C2 to the initially empty seq, and repeats

the loop with S = {C1} and d = 4 − d2 = 4 − 3 = 1. Since

M({C1}, 1) equals one (the first column śthe one labeled ł0 ś

1žś of the last row), SafeSeqence exits the loop, returning

the sequence ⟨C2⟩ of components.

As another example, suppose that all three components are

available, and the interval duration is 8. Procedure SafeSe-

qence (Figure 3) is called with S = {C1,C2,C3} and d =

8. The second-last column śthe one labeled 8ś of the first

row in Figure 4 contains the entry (10−9, 3), indicating that

MC ({C1,C2,C3}, 8) = C3. The procedure safeSeqence there-

fore appends C3 to the initially empty seq, and repeats the

5We will see below, in Example 4, how this latter piece of information may be
used to reconstruct the set of components that guarantees an uncertainty of

10−7 over an interval of duration 7.

loop with S = {C1,C2} and d = 8 − d3 = 4. Since the en-

try in the column labeled 4 of the row corresponding to the

subset {C1,C2} in Figure 4 contains the entry (10−4, 2), pro-

cedure safeSeqence concludes that MC ({C1,C2}, 4) = C2

and appends C2 to seq. Now S = {C1} and d = 4 − d2 = 1;

since M({C1}, 1) equals zero (the first column śthe one la-

beled ł0 ś 1žś of the last row), SafeSeqence exits the loop

and returns the sequence ⟨C3,C2⟩ of components. It may be

verified that their cumulative duration is ≤ 8 (d3 + d2 = 7),

and their cumulative worst-case value-guarantees is indeed

10−9 (q3 × q2 = 10−5 × 10−4 = 10
−9).

For a final example, let us compute SafeSeqence(C2, 2).

The entry in Figure 4 in the row labeled {C2} and column

labeled 2 is (1,−); i.e., M({C2}, 2) = 1.0 (in other words, we

cannot reduce the uncertainty at all over an interval of size

two with only component C2 ś not surprising, since d2 > 2).

Hence by Line 1 of the pseudo-code of Figure 3, the empty

sequence ⟨ ⟩ is returned. □

Computing safe(S,d,q).Wenowdescribe how safe(S,d,q),

the set of components that may be executed without compro-

mising safety is computed when given the components in S ,

an interval of duration d , and a target maximum uncertainty

q. It is safe to execute component Ci when an uncertainty

≤ q must be guaranteed over an interval of duration d , if and

only if, in the event of this execution achieving an uncertainty

that is as poor as its worst-case guarantee of qi , it remains

possible to achieve the remaining uncertainty needed, (q ÷qi),

within the remaining interval, of duration (d − di), from the

remaining components, i.e., (S \ {Ci }):

safe(S,d,q) =
⋃

Ci ∈S

{
Ci | M

(
(S \ {Ci }), (d − di)

)
≤ (q ÷ qi)

}

(6)

Once the values of M(S,d) have been pre-computed for all

S and d , observe that determining safe(S,d,q) is an efficient

operation that can be performed in time linear in the number

of components in S : simply check, for each Ci ∈ S , whether

M
(
(S \ {Ci }), (d − di)

)
≤ (q ÷ qi).

Example 5. We illustrate the use of Expression 6 on the

collection of components depicted in Figure 2, for a couple of

example values of S , d , and q.

(1) safe({C1,C2,C3}, 8, 10
−9):

For eachCi , we need to determinewhetherM({C1,C2,C3}\

{Ci }, 8−di ,) is ≤ 10−9÷qi . For instance forCi ← C1, this

Functional Uncertainty in Real-Time Safety-Critical Systems RTNS ’22, June 7ś8, 2022, Paris, France

checks whether

M ({C2,C3 }, 8 − 2) ≤ 10−9 ÷ 10−3

≡ M ({C2,C3 }, 6) ≤ 10−6

≡ 10−5 ≤ 10−6 (From Figure 4 ś 2nd row, column labeled 6)

which is false. Hence C1 < safe({C1,C2,C3}, 8, 10
−9). In

a similar vein, we can verify

• C2: IsM({C1,C3}, 8−3) ≤ 10−9÷10−4? I.e., isM({C1,C3}, 5) ≤

10−5? ś Yes

• C3: IsM({C1,C2}, 8−4) ≤ 10−9÷10−5? I.e., isM({C1,C2}, 4) ≤

10−4? ś Yes

And hence safe({C1,C2,C3}, 8, 10
−9) = {C2,C3}

(2) Another example: safe({C1,C2}, 4, 10
−3) = {C1,C2} since

• C1: IsM({C2}, 4−2) ≤ 10−3÷10−3? I.e., isM({C1}, 2) ≤

1? ś Yes (trivially)

• C2: IsM({C1}, 4−3) ≤ 10−3÷10−4? I.e., isM({C1}, 1) ≤

10?ś Yes (again, trivially)

(3) A final example: safe({C1,C3}, 5, 10
−4) = {C3} since

• C1: IsM({C3}, 5−2) ≤ 10−4÷10−3? I.e., isM({C3}, 3) ≤

10−1? ś No

• C3: IsM({C1}, 5−4) ≤ 10−4÷10−5? I.e., isM({C1}, 1) ≤

10?ś Yes, trivially

□

5 AN OPTIMAL SEMI-ADAPTIVE
STRATEGY

Recall that adaptive strategies choose components for execu-

tion one at a time during run-time: the actual uncertainties

at which results are returned by executing components play

a role in determining which component to execute next. We

have seen (Lemma 1) that adaptivity is desirable since non-

adaptive (i.e., static) strategies may perform arbitrarily poorly

when compared to adaptive ones. However, one potential draw-

back of adaptive strategies is the computational complexity

of each selection step during run-time; indeed, the following

is a correct optimal adaptive strategy: (i) determine the first

component to execute; (ii) execute this component and note

the uncertainty under which it returns its result; and (iii) re-

curse on the remaining components for the target uncertainty

divided by this obtained uncertainty, and a duration equal to

the original duration minus the execution duration of the com-

ponent that was executed. Notice that such a naïve approach

would require us to solve the NP-hard problem identified in

Section 3 each time a component is selected during run-time:

we expect that this is not realistic for all but the smallest prob-

lem instances. In this section we discuss a somewhat restricted

form of adaptivity called semi-adaptivity [2], for which the

pre-processing is more efficient than for general adaptivity.

A semi-adaptive strategy is a restricted form of an adaptive

strategy, that is of the following kind:

• An initial sequence of components is determined prior to

run-time. This initial sequence specifies the order in which

components should be executed in all typical behaviors.

• An alternative sequence of components is defined, also prior

to run-time, for each component specified in the initial se-

quence6. If a component in the initial sequence fails to return

its result with an associated uncertainty no smaller than its

typical uncertainty parameter (its qT) upon being executed,

the original sequence is abandoned henceforth and the al-

ternative sequence defined for this particular component is

executed instead. The alternative sequence is then followed;

the original sequence is no longer utilised.

Example 6. The adaptive strategy discussed in Example 2

can in fact be looked upon as a semi-adaptive one: the initial se-

quence is ⟨C3,C1⟩, and alternative sequence ⟨C2⟩ is associated

with the first component of this original sequence.

(This example also illustrates why there may sometimes

be no need for specifying an alternative sequence for the last

component of the initial sequence: even the worst-case min-

imum uncertainty for this last component suffices to satisfy

the safety constraint.) □

Once the initial and alternative sequences have been deter-

mined prior to run-time, we point out that choosing the next

component during run-time becomes a Θ(1) (i.e., constant-

time) operation: there is a choice of at most two components

to execute next depending upon the actual value obtained by

the just-executed component.

We now derive an algorithm for synthesizing the initial

sequence and the alternative sequences. Let G(S,d,q) denote

the minimum duration over which we can guarantee to achieve

an uncertainty no larger than q under typical circumstances,

whilst simultaneously guaranteeing to achieve an uncertainty

no larger than q over an interval of duration d ≥ 0 under all

circumstances. Example 7 illustrates this notation.

Example 7. As stated in Example 6 above, the scheduling

strategy described in Example 2 is a semi-adaptive one which

guarantees an uncertainty no larger than 10−9 over an interval

of duration 8 using the three components {C1,C2,C3} under

all circumstances, and a duration 6 under all typical circum-

stances. It may additionally be verified that no other semi-

adaptive strategy that guarantees an uncertainty no larger

than 10−9 over an interval of duration 8 under all circum-

stances can guarantee a duration smaller than 6 under all

typical circumstances. In the notation introduced above, this

can be represented as

G({C1,C2,C3}, 8, 10
−9) = 6

□

Wewill write a recurrence relation defining values ofG(S,d,q)

in terms ofG(S ′,d ′,q′)where S ′ ⊊ S ,d ′ < d , andq′ > q. Anal-

ogously with the case of minimum uncertainty above (Equa-

tions 2-5), we will also define an auxiliary function GC (S,d)

that we will use to reconstruct a sequence that achieves this

minimum duration.

6Other than perhaps the last component in the initial sequence ś the example below illus-

trates why this alternative sequence is not always needed for the last component.

RTNS ’22, June 7ś8, 2022, Paris, France Sanjoy Baruah, Alan Burns, and David Griffin

Base case: S a singleton set.

G({Ci },d,q) =




0 if q ≥ 1

di , if 1 > q ≥ qi and d ≥ di
∞ otherwise

(7)

and

GC ({Ci },d,q) =

{
Ci , if 1 > q ≥ qi and d ≥ di
−, otherwise

(8)

Recursive case:

G(S,d,q) = min
Ci ∈safe(S ,d ,q)

{
di +G

(
S \ {Ci },d − di ,min

(
(q ÷ qT

i), 1
))}

(9)

GC (S,d,q) = The Ci that minimizes the RHS above (10)

Example 8. We illustrate the computation ofG(S,d,q) and

GC (S,d,q), by computing these functions for S comprising

the three components of Figure 2, d = 8, and q = 10−9. The

recursion graph for this computation is depicted in Figure 5.

The numbers 1ś6 labeling the nodes represent a possible order

in which the recursive calls are made, assuming a standard

top-down recursive implementation.

Let us start with the initial call, at the root node. We have

already seen (Example 5) that safe({C1,C2,C3}, 8, 10
−9) =

{C3,C2}; hence, only two recursive calls are made with C3

and C2 being the potential components executed first. In Ex-

ample 5 we have also seen (by explicitly computing them), that

safe({C1,C2}, 4, 10
−3) = {C1,C2} and safe({C1,C3}, 5, 10

−4) =

{C3} Ð these explain the nodes that are explored in the recur-

sion graph of Figure 5.

It is evident that the path in this graph that is highlighted

in blue has the minimum duration (d3 + d1 = 4 + 2 = 6). This

path bears witness to the fact that G({C1,C2,C3}, 8, 10
−9) = 6

(as stated in Example 7 above), andGC ({C1,C2,C3}, 8, 10
−9) =

C3. □

Synthesizing the Sequences. Having computed the func-

tionsG() andGC () defined above, we can use them to generate

the initial sequence, and the SafeSeqence procedure of Fig-

ure 3 that was derived in Section 4 to generate the alternative

sequences. The manner in which we do so is represented in

pseudo-code form in Figure 6 Ð given an instance
〈{
Ci =

(di ,qi ,q
T

i)
}n
i=1,Q,D

〉
, a call to generateSeqences({C1, C2,

. . . ,Cn },D,Q) returns the initial sequence, and sets the vari-

able Ai to be the alternative sequence for the i’th component

of the initial sequence, i = 1, 2, The pseudo-code for this

is pretty self-explanatory; we illustrate its use in Example 9

below.

Example 9. Let us revisit the situation discussed in Exam-

ple 8 above, afterG({C1,C2,C3}, 8, 10
−9) andGC ({C1,C2,C3}, 8, 10

−9)

have been computed Ð i.e., after all the recursive calls of the

recursion graph depicted in Figure 5 have completed. We ex-

plain how the initial sequence and alternative sequences are

computed for this example, by tracing the execution of the

pseudo-code in Figure 6.

• Since GC ({C1,C2,C3}, 8, 10
−9) = C3, the initial iteration of

the while loop would set seq to ⟨C3⟩, and A1 to

safeSeqence({C1,C2}, 4)Ðwe have seen in Example 4 that

this is the sequence ⟨C2⟩.

• The next iteration has S = {C1,C2}, d = 8 − 4 = 4 and

v = 10−9 ÷ 10−6 = 10
−3. Notice that this sub-problem has

been solved (represented by the node in Figure 5 labeled

({C1,C2}, 4, 10
−3)).

• Since GC ({C1,C2}, 4, 10
−3) = C1, C1 is appended to the end

of seq, which now has value ⟨C3,C1⟩. A2 is set equal to

safeSeqence({C2}, 2). We saw in Example 4 that this is

the empty sequence ⟨ ⟩, which is the value assigned to A2.

• Now, Line 10 assign q a value 10−3 ÷ 10−4, or 10. Therefore

the while loop is exited and we return from the call to gen-

erateSeqences.

Summarising, the returned sequence is ⟨C3,C1⟩, while the

alternative sequences are A1 = ⟨C2⟩ and A2 = ⟨ ⟩. The reader

may verify that this is indeed the semi-adaptive strategy we

had presented (without derivation) in Example 2. □

6 EVALUATION

In this section we conduct simulation experiments upon ran-

domly-generated synthetic workloads in order to experimen-

tally evaluate our semi-adaptive strategy. In this evaluation

we first examine how long it takes our algorithm to construct

the initial and alternative sequences: these experiments reveal

the scalability of our approach Ð how many components our

algorithm is able to accommodate with acceptable pre-run-

time overhead. We then compare the schedules generated at

run-time by the semi-adaptive algorithm with those gener-

ated by a static approach. We are thus able to experimentally

characterize the benefits of adaptivity.

Random sets of components, representing the AAs available

to us, are obtained by sampling uncertainty values generated

by the DRS algorithm [13]. DRS enables a given budget of

worst case and typical estimated of uncertainty to be uniformly

divided amongst the components, while maintaining the nor-

mal relationship between worst case and typical. In addition,

bounds are provided to prevent any given component from

having an uncertainty value which is too dominant. Execution

times for components were generated from a uniform distri-

bution. Hence for these experiments a set of n components is

defined by the following:

(1) Array d = [randint(min_execution_time,

max_execution_time) for _ in range(n)]

(2) Array X = drs(n, total_worst_case_uncertainty, up-

per_bound=1.0, lower_bound =

worst_case_lower_bound)

(3) Array Y = drs(n, total_worst_case_uncertainty, up-

per_bounds=X, lower_bound =

typ_case_lower_bound)

(4) Ci = (di ,Xi ,Yi))

where drs(n, u, ...) is the DRS function that returns an array

of n floating point values that multiply7 to u, with additional

constraints as specified by the named parameters, and C is a

component as defined by Equation (1).

7The normal DRS algorithm uses the sum; however, as the positive real numbers
under addition are isomorphic to [0, 1) under multiplication, it is trivial to adapt
DRS to a multiplicative domain.

Functional Uncertainty in Real-Time Safety-Critical Systems RTNS ’22, June 7ś8, 2022, Paris, France

1 : ({C1,C2,C3 }, 8, 10
−9)

(6,C3)

2 : ({C1,C2 }, 4, 10
−3)

(2,C1)

5 : ({C1,C3 }, 5, 10
−4)

(4,C3)

3 : ({C1 }, 1, 1.0)

(0, −)

4 : ({C2 }, 2, 1.0)

(0, −)

6 : ({C1 }, 1, 1.0)

(0, −)

C3 C2

C2 C1

C3

Figure 5: An example of recursive calls made during pre-processing by the Semi-Adaptive Strategy (discussed in

Example 8). Each vertex is labeled with the three-tuple (S,d,q), denoting that an uncertainty ≤ q over an interval

of duration d must be guaranteed using the set of components S . The values returned by each call are given as an

ordered pair: the ordered pair over the vertex labeled (S,d,q) represents (G(S,d,q),GC (S,d,q)).

generateSeqences(S,d,q)

// Returns the initial sequence, and sets Ai to be the

// i’th alternative sequence
1 seq = ⟨ ⟩// Initialise the initial sequence to be the

// empty sequence

2 i = 1

3 while (d > 0) ∧ (q < 1)

4 Suppose that the component GC (S,d,q) is Ck
5 append Ck to seq

6 Ai = SafeSeqence(S \ {Ck },d − dk)

// Pseudo-code in Figure 3

// If Ck returns an uncertainty > qT

k
, then set Ai

// to the schedule that guarantees the minimum

// required uncertainty within the remaining

// duration (d − dk), using the remaining

// components (S \ {Ck }).
7 i = i + 1

8 S = S \ {Ck }

9 d = d − dk
10 q = q ÷ qT

k
11 return seq

Figure 6: Semi-adaptive Strategy: Generating initial and

alternative sequences

Once the components are specified, the deadline D is ob-

tained by multiplying the total execution time by a constant

that represents the proportion of components that can be con-

sidered for execution. Multiple values for this constant were

tested and not found to have a significant effect on the results

obtained, so only the results for 0.9 are presented. Finally, the

target uncertainty bound Q is calculated by computing the

best safe bound that the system is capable of. Due to the man-

ner in which the target uncertainty bound is set, the impact

of the majority of parameters is minimised.

Figure 7 shows how the running time of the algorithm

scales with the number of components considered, with each

data point representing the average of the generation times

FIGS/fig2.pdf

Figure 7: Median Observed Running Time for Table-

Generation

of schedules for 250 randomly-generated instances. (These

measurements were taken on an AMD EPYC 7501 running

at 2.4GHz.) As can be seen, for the semi-adaptive algorithm

this duration grows exponentially with respect to the number

of components. The data in Figure 7 indicate that tables for

up to 20 components can be constructed in approximately 15

minutes. In practice perhaps 6, or at most 10 components are

likely to be employed in an AMS, in which case the running

time for schedule generation is then less than a second.

Having thus established the viability of the semi-adaptive

strategy, we next evaluate its efficacy by computing the re-

sponse time (predicted execution time) of the typical sequence

and comparing this to the response time if we were to have

done static scheduling. Figure 8 shows these values for the

number of components ranging from 3 to 20 (each point being

the median value of 250 randomly produced examples). The

RTNS ’22, June 7ś8, 2022, Paris, France Sanjoy Baruah, Alan Burns, and David Griffin

FIGS/fig1.pdf

Figure 8: Response Time for Static and Semi-adaptive

Schedules

figure shows a clear reduction: for most numbers of compo-

nents response times are less than half that required by even

an optimal static scheme. This additionally implies that fewer

than half the number of components are typically executed

under semi-adaptive scheduling when compared to the static

method.

The results presented in Figure 8 are for randomly gener-

ated parameters following uniform distributions Ð we were

unable to find convincing arguments in, e.g., the machine

learning literature, to support the use of other distributions

for modeling AA components. However, it is reasonable to

speculate that some AA components are likely to have more

skewed behaviours: there may be AI-based algorithms that can

only guarantee very poor outcomes (uncertainty close to 1.0)

in the worst case, but perform much better śexpress lower un-

certainty (i.e., greater certainty) that the outputs they generate

are correctś under typical circumstances. It is expected that

the availability of such components will significantly enhance

the performance of semi-adaptive strategies vis-a-vis static

ones since they would never form part of a static sequence

but are likely to be chosen in semi-adaptive sequences.

Finally, whilst the above has illustrated the benefits that

accrue when typical values (or better) are experienced it is

theoretically possible for semi-adaptive scheduling to perform

worse than static scheduling, provided that a sufficient num-

ber of components return their worst-case uncertainty value.

An investigation was undertaken to find these situations in

our analysis, and calculate an upper bound on the probability

of the failure of a component to return its typical case un-

certainty value. This was accomplished by enumerating all

possible schedules and determining how many such failures

were necessary to cause semi-adaptive scheduling to perform

worse than static scheduling. Even in the worst case, it was

found that provided the probability of a worst case uncertainty

value being returned was less than 0.45, semi-adaptive sched-

uling would perform at least as well as static scheduling. As a

probability of 0.45 would represent a common event, this sug-

gests that for the hypothesis that a typical uncertainty value

represents the worst case in all but very rare circumstances,

semi-adaptive scheduling will perform better than static sched-

uling. It is possible to devise pathological cases which push

the performance down further, but these seem to be extremely

rare when using randomly generated parameters.

7 CONCLUSIONS

Autonomous Agents (AAs), including ones that are based upon

deep learning and similar AI-based principles, are increasingly

used in safety-critical CPS’s; it is therefore imperative that

the safety-critical systems research community devise tech-

niques that enable the analysis of such systems to both assure

safety (which is essential) and optimize performance (which

is desirable, for cost and related reasons). This paper reports

on some of our ongoing efforts in this direction. Building off

recent work on typical-case analysis pioneered in [31] we have

argued that safety-critical systems whose run-time behaviors

incorporate a great deal of uncertainty should be designed to

optimize for performance in the typical case (while guaran-

teeing safety in all cases, including atypical ones). We have

developed a model for representing the run-time behaviour

of some kinds of AAs that exhibit run-time functional uncer-

tainty in a quantitative manner. We have applied this model

to a problem that arises in an application relating to naviga-

tion in autonomous mobile systems, in which one or more

of an available array of AAs are to be used, in any desired

order, to perform a safety-assessment operation as soon as

possible (for superior performance), but definitely within a

specified deadline (for safety). We have identified a trade-off,

formalized in the concepts of static, and semi-adaptive strate-

gies, between run-time performance and the pre-run time

computation that is needed, and have developed and experi-

mentally evaluated algorithms for obtaining provably optimal

semi-adaptive strategies.

Future work will look to move from a semi-adaptive to a

more fully adaptive scheme. For such schemes the run-time

overhead may be prohibitive; but this is yet to be fully investi-

gated.

Acknowledgements

The research reported in this paper was partially funded by the

EPSRC (UK) grant MARCH (EP/V006029/1), and the National

Science Foundation (US).

REFERENCES
[1] Aysegul Acar, Yakup Demir, and Cuneyt Guzelis. 2017. Object recognition

and detection with deep learning for autonomous driving applications.
SIMULATION 93, 9 (2017), 759ś769.

[2] Kunal Agrawal and Sanjoy Baruah. 2019. Adaptive Real-Time Routing in
Polynomial Time. In Real-Time Systems Symposium (RTSS), 2019 IEEE.

[3] Kunal Agrawal, Sanjoy Baruah, and Alan Burns. 2020. The Safe and
Effective Use of Learning-Enabled Components in Safety-Critical Systems.
In 2020 32nd Euromicro Conference on Real-Time Systems. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik.

[4] Sanjoy Baruah. 2018. Rapid routing with guaranteed delay bounds. In
Real-Time Systems Symposium (RTSS), 2018 IEEE.

Functional Uncertainty in Real-Time Safety-Critical Systems RTNS ’22, June 7ś8, 2022, Paris, France

[5] Sanjoy Baruah. 2021. Real-Time Scheduling of Multistage IDK-Cascades.
In 2021 IEEE 24th International Symposium on Real-Time Distributed Com-
puting (ISORC). 79ś85. https://doi.org/10.1109/ISORC52013.2021.00021

[6] Sanjoy Baruah, Alan Burns, and Yue Wu. 2021. Optimal Synthesis of IDK-
Cascades. In Proceedings of the Twenty-Ninth International Conference on
Real-Time and Network Systems (RTNS ’21). ACM, New York, NY, USA.

[7] Peter Bishop, Robin Bloomfield, and Peter Adelard. 2002. Justifying the
use of software of uncertain pedigree (SOUP) in safety related applications.
In Proceedings of the 5th International Symposium Programmable Electronic
Systems in Safety Related Applications.

[8] Robin E. Bloomfield. 2001. Methods for assessing the safety integrity of
safety-related software of uncertain pedigree (SOUP). Prepared by Adelard
for the Health and Safety Executive (HSE), UK.

[9] R. Calinescu, K. Johnson, and C. Paterson. 2016. FACT: A Probabilis-
tic Model Checker for Formal Verification with Confidence Intervals. In
Tools and Algorithms for the Construction and Analysis of Systems, Mar-
sha Chechik and Jean-François Raskin (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 540ś546.

[10] Claudia D’Ambrosio, Fabio Furini, Michele Monaci, and Emiliano Traversi.
2018. On the Product Knapsack Problem. Optimization Letters 12, 4 (2018).
https://doi.org/10.1007/s11590-017-1227-5

[11] J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill, M. Liu, D. Lo, S.
Alkalay, M. Haselman, L. Adams, M. Ghandi, S. Heil, P. Patel, A. Sapek, G.
Weisz, L. Woods, S. Lanka, S. K. Reinhardt, A. M. Caulfield, E. S. Chung, and
D. Burger. 2018. A Configurable Cloud-Scale DNN Processor for Real-Time
AI. In Proc. ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA). 1ś14.

[12] Y. Gal and Z. Ghahramani. 2016. Dropout as a Bayesian Approximation:
Representing Model Uncertainty in Deep Learning. In Proc. of the 33rd
International Conference on Machine Learning (Proceedings of Machine
Learning Research), Maria Florina Balcan and Kilian Q. Weinberger (Eds.),
Vol. 48. PMLR, New York, New York, USA, 1050ś1059.

[13] David Griffin, Iain Bate, and Robert I. Davis. 2020. Generating Utilization
Vectors for the Systematic Evaluation of Schedulability Tests. In IEEE Real-
Time Systems Symposium, RTSS 2020, Houston, Texas, USA. IEEE. http:
//eprints.whiterose.ac.uk/167646/

[14] C. Guo, G. Pleiss, Y. Sun, and K.Q. Weinberger. 2017. On Calibration of
Modern Neural Networks. In Proc. of the 34th International Conference
on Machine Learning (Proceedings of Machine Learning Research), Doina
Precup and Yee Whye Teh (Eds.), Vol. 70. PMLR, International Convention
Centre, Sydney, Australia, 1321ś1330.

[15] David Harel, Assaf Marron, and Joseph Sifakis. 2019. Autonomics:
In Search of a Foundation for Next Generation Autonomous Systems.
arXiv:cs.SE/1911.07133

[16] S. Heo, S. Cho, Y. Kim, and H. Kim. 2020. Real-Time Object Detection
System with Multi-Path Neural Networks. In Proc. IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS). 174ś187.

[17] Hanzhang Hu, Debadeepta Dey, Martial Hebert, and J. Andrew Bagnell.
2019. Learning Anytime Predictions in Neural Networks via Adaptive Loss
Balancing. In The Thirty-Third AAAI Conference on Artificial Intelligence,
AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence
Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances
in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 -
February 1, 2019. AAAI Press, 3812ś3821. https://doi.org/10.1609/aaai.
v33i01.33013812

[18] Wonseok Jang, Hansaem Jeong, Kyungtae Kang, Nikil Dutt, and Jong-Chan
Kim. 2020. R-TOD: Real-Time Object Detector with Minimized End-to-End
Delay for Autonomous Driving. arXiv:cs.CV/2011.06372

[19] Weiwen Jiang, Edwin H.-M. Sha, Xinyi Zhang, Lei Yang, Qingfeng Zhuge,
Yiyu Shi, and Jingtong Hu. 2019. Achieving Super-Linear Speedup across
Multi-FPGA for Real-Time DNN Inference. ACM Trans. Embed. Comput.
Syst. 18, 5s, Article 67 (2019), 23 pages.

[20] A. Kendall, V. Badrinarayanan, and R. Cipolla. 2016. Bayesian SegNet:
Model Uncertainty in Deep Convolutional Encoder-Decoder Architectures
for Scene Understanding. arXiv:cs.CV/1511.02680

[21] F. Khani, M. Rinard, and P. Liang. 2016. Unanimous Prediction for 100%
Precision with Application to Learning Semantic Mappings. In Association
for Computational Linguistics (ACL).

[22] B. Lakshminarayanan, A. Pritzel, and C. Blundell. 2017. Simple
and Scalable Predictive Uncertainty Estimation using Deep Ensembles.
arXiv:stat.ML/1612.01474

[23] J. Lee, A. Prajogi, E. Rafalovsky, and P. Sarathy. 2016. Assuring Behavior of
Autonomous UxV Systems. In S5: The Air Force Research Laboratory (AFRL)
Safe and Secure Systems and Software Symposium.

[24] S. Lee and S. Nirjon. 2020. SubFlow: ADynamic Induced-Subgraph Strategy
Toward Real-Time DNN Inference and Training. In Proc. IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS). 15ś29.

[25] Xiaolong Ma, Fu-Ming Guo, Wei Niu, Xue Lin, Jian Tang, Kaisheng Ma, Bin
Ren, and Yanzhi Wang. 2020. PCONV: The Missing but Desirable Sparsity
in DNN Weight Pruning for Real-Time Execution on Mobile Devices. Proc.
of the AAAI Conference on Artificial Intelligence 34, 04 (2020), 5117ś5124.

[26] Dr. Sandeep Neema. [n.d.]. Assurance for Autonomous Systems is Hard.
https://www.darpa.mil/attachments/AssuredAutonomyProposersDay_
ProgramBrief.pdf. Accessed: 2019-03-07.

[27] Wei Niu, Xiaolong Ma, Sheng Lin, Shihao Wang, Xuehai Qian, Xue Lin,
Yanzhi Wang, and Bin Ren. 2020. PatDNN: Achieving Real-Time DNN
Execution on Mobile Devices with Pattern-Based Weight Pruning. In Proc.
oTwenty-Fifth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS). Association for
Computing Machinery, 907ś922.

[28] M.E. Paoletti, J.M. Haut, J. Plaza, and A. Plaza. 2019. Deep learning classi-
fiers for hyperspectral imaging: A review. ISPRS Journal of Photogrammetry
and Remote Sensing 158 (2019), 279ś317.

[29] F. Pereira, T. Mitchell, and m. Botvinick. 2009. Machine learning classifiers
and fMRI: ś a tutorial overview. NeuroImage (2009), S199śS209.

[30] Ulrich Pferschy, Joachim Schauer, and Clemens Thielen. 2019. The Product
Knapsack Problem: Approximation and Complexity. arXiv.

[31] Sophie Quinton, Matthias Hanke, and Rolf Ernst. 2012. Formal Analysis of
Sporadic Overload in Real-time Systems. In Proceedings of the Conference
on Design, Automation and Test in Europe (DATE ’12). EDA Consortium,
San Jose, CA, USA, 515ś520. http://dl.acm.org/citation.cfm?id=2492708.
2492836

[32] Joseph Sifakis. 2018. Autonomous Systems ś An Architectural Characteri-
zation. arXiv:cs.SY/1811.10277

[33] John A. Stankovic and Krithi Ramamritham. 1990. What is Predictability
for Real-time Systems? Real-Time Syst. 2, 4 (Oct. 1990), 247ś254. https:
//doi.org/10.1007/BF01995673

[34] T. P. Trappenberg and A. D. Back. 2000. A classification scheme for ap-
plications with ambiguous data. In Proceedings of the IEEE-INNS-ENNS
International Joint Conference on Neural Networks. IJCNN 2000. Neural
Computing: New Challenges and Perspectives for the New Millennium, Vol. 6.
296ś301 vol.6.

[35] Xin Wang, Yujia Luo, Daniel Crankshaw, Alexey Tumanov, and Joseph E.
Gonzalez. 2017. IDK Cascades: Fast Deep Learning by Learning not to
Overthink. CoRR abs/1706.00885 (2017). arXiv:1706.00885 http://arxiv.
org/abs/1706.00885

[36] Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and Joseph E. Gonza-
lez. 2018. SkipNet: Learning Dynamic Routing in Convolutional Net-
works. In Computer Vision - ECCV 2018 - 15th European Conference, Mu-
nich, Germany, September 8-14, 2018, Proceedings, Part XIII (Lecture Notes
in Computer Science), Vittorio Ferrari, Martial Hebert, Cristian Smin-
chisescu, and Yair Weiss (Eds.), Vol. 11217. Springer, 420ś436. https:
//doi.org/10.1007/978-3-030-01261-8_25

[37] P. Wei, L. Cagle, T. Reza, J. Ball, and J. Gafford. 2018. LiDAR and Camera De-
tection Fusion in a Real-Time Industrial Multi-Sensor Collision Avoidance
System. Electronics 7, 6 (2018).

[38] Y. Xiang and H. Kim. 2019. Pipelined Data-Parallel CPU/GPU Schedul-
ing for Multi-DNN Real-Time Inference. In Proc. IEEE Real-Time Systems
Symposium (RTSS). 392ś405.

[39] S. Yao, Y. Hao, Y. Zhao, H. Shao, D. Liu, S. Liu, T. Wang, J. Li, and T. Ab-
delzaher. 2020. Scheduling Real-time Deep Learning Services as Imprecise
Computations. In Proc. IEEE 26th International Conference on Embedded
and Real-Time Computing Systems and Applications (RTCSA). 1ś10.

[40] York. 2021. Assuring autonomy international programme. https://www.
york.ac.uk/assuring-autonomy/. Accessed: 2021-01-17.

[41] J. Zhang, F. Li, H. Wu, and F. Ye. 2019. Autonomous Model Update Scheme
for Deep Learning Based Network Traffic Classifiers. In Proc. IEEE Global
Communications Conference (GLOBECOM). 1ś6.

[42] H. Zhou, S. Bateni, and C. Liu. 2018. S3DNN: Supervised Streaming and
Scheduling for GPU-Accelerated Real-Time DNN Workloads. In Proc. IEEE
Real-Time and Embedded Technology and Applications Symposium (RTAS).
190ś201.

	Abstract
	1 Introduction
	2 Related Work
	3 Model and Problem Statement
	4 Identifying Safe Choices
	5 An Optimal Semi-Adaptive Strategy
	6 Evaluation
	7 Conclusions
	References

