
Journal of Computational Physics: X 14 (2022) 100109
Contents lists available at ScienceDirect

Journal of Computational Physics: X

www.elsevier.com/locate/jcpx

EPIC: The Elliptical Parcel-In-Cell method

Matthias Frey a,∗, David Dritschel a,∗, Steven Böing b

a Mathematical Institute, University of St Andrews, KY16 9SS, UK
b University of Leeds/Met Office Strategic Research Group, School of Earth and Environment, University of Leeds, LS2 9JT, UK

a r t i c l e i n f o a b s t r a c t

Article history:
Received 5 November 2021
Received in revised form 21 May 2022
Accepted 3 June 2022
Available online 6 June 2022

Keywords:
PIC
Elliptical parcels
Lagrangian methods
Density stratified flows
Turbulent flows

We present a novel approach to simulating general two-dimensional flows, which could
also be applied to other areas of continuum mechanics. The approach generalises the
Particle-In-Cell (PIC) method, originally used to model two-dimensional hydrodynamics,
by representing fluid elements by elliptical parcels. The rotation and deformation of these
parcels are calculated, and parcels split beyond a critical aspect ratio. Conversely, small
parcels are eliminated by merging them with larger ones. The elliptical parcels well
represent the flow deformation and have excellent conservation properties. In contrast to
earlier work that combined PIC with elliptical parcels that split and merge, a vorticity-
based framework is used, and accurate integration over ellipses is performed efficiently
by two-point Gaussian quadrature. The small-scale mixing associated with parcel splitting
and merging is shown to be strongly convergent with grid resolution. The robustness,
versatility, accuracy and efficiency of the new Elliptical Parcel-In-Cell (EPIC) method is
demonstrated for a variety of standard test cases, and compared with a standard pseudo-
spectral method. The results indicate that EPIC is a promising, Lagrangian-based alternative
to grid-based methods.
© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The numerical representation of fluid flows and other continuum mechanical systems by Lagrangian particles or parcels
(the latter objects having a finite volume) communicating with an underlying grid has a long history dating back to
[1,2] (for a historical review please see [3–5]). There have been diverse applications, ranging from two-dimensional vor-
tex interactions, to galaxy dynamics and even to gaming. There have also been diverse approaches, such as in the way
the particles/parcels communicate with the underlying grid (e.g. interpolation). Yet, despite this, fully grid-based methods
are overwhelmingly preferred by the scientific community, especially in fluid dynamics (hydrodynamics) and magneto-
hydrodynamics. For example, some of the most intensive uses of computer resources are in weather forecasting and in
climate modelling, and those models almost without exception use a fixed computational grid. Largely this is driven by de-
velopments in parallelism and the need to parametrise processes such as unresolved convection, radiation and gravity-wave
drag, which are often designed around grid-based approaches. Having a fixed number of computational elements allows
certain efficiencies and appears simplest.

Fluid flows, in particular the ultra-high Reynolds number turbulent fluid flows found in atmosphere/ocean dynamics,
exhibit energetic fine-scale structures like fronts, storms, etc which play an important role in the evolution of the system.
These are not well captured using a fixed computational grid, and invariably significant errors accrue when under-resolving

* Corresponding authors.
E-mail addresses: mf248@st-andrews.ac.uk (M. Frey), david.dritschel@st-andrews.ac.uk (D. Dritschel).
https://doi.org/10.1016/j.jcpx.2022.100109
2590-0552/© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jcpx.2022.100109
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcpx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcpx.2022.100109&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:mf248@st-andrews.ac.uk
mailto:david.dritschel@st-andrews.ac.uk
https://doi.org/10.1016/j.jcpx.2022.100109
http://creativecommons.org/licenses/by/4.0/

M. Frey, D. Dritschel and S. Böing Journal of Computational Physics: X 14 (2022) 100109
(or not resolving) such structures. While adaptive mesh refinement (AMR, e.g. [6–9]) helps to provide additional resolution
in the most turbulent regions of a flow field and can go part way in following complex structures if a moving mesh
is used, this method can be challenging to implement in an efficient way. Arguably, a more natural approach is to use
Lagrangian computational elements (particles/parcels). They offer great flexibility and may be relatively easily focused in
regions requiring greater resolution. They also offer great adaptability, allowing one to increase or decrease the number of
parcels in response to changing conditions.

Other advantages include a fully explicit representation of turbulent mixing (especially in the Elliptical Parcel-In-Cell
method we introduce below, this is in contrast to Eulerian methods where there is numerical diffusion in all prognostic
fields), and an ideal framework for the Lagrangian advection of tracers (both active and passive). Each parcel can carry
an arbitrary list of attributes besides its position: shape, volume, mass, vorticity, as well as thermodynamical, chemical
and even biological attributes. A separate partial differential equation for each attribute is not required as in fully grid-
based methods. Any materially-conserved quantity remains exactly conserved (e.g. a passive tracer, and density or mass in
an incompressible fluid), at least when parcel splitting/merging is done consistently (see below and [4]). This means that
conservative tracer dynamics can be computed almost for free; only a space in memory is required. Other attributes (e.g.
vorticity) are updated by ordinary differential equations (ODEs). Parcels also sample subgrid scales, and thereby offer an
alternative to grid-based subgrid closure schemes.

Parcel-based approaches, however, do have potential shortcomings. Besides the greater challenges of parallelisation men-
tioned above, two serious issues are (1) the difficulty in maintaining an adequate number of parcels in each grid cell, and
(2) an underestimation of turbulent mixing. The first issue can also lead to problems in representing incompressible flows,
where one would ideally like to ensure that the gridded volume (or area in two dimensions) — obtained by interpolation
from the parcels — remains constant. The Lagrangian advection of a finite set of parcels does not automatically preserve
gridded volume. The second issue regarding mixing is discussed in more detail in [10]. Although this previous study included
a description of parcel stretching and mixing at small scales, convergence analysis suggested that too little mixing occurred
at small scales. This is important for example in properly modelling (in a statistical sense) thermodynamical processes and
chemical reactions on small scales. A lack of mixing may be the result of either the formulation of parcel stretching, or
due to the lack of explicit subgrid scale parcel-parcel interactions [e.g. 11,12] or processes at scales smaller than individual
parcels.

The current paper makes major progress on both of these issues. We develop an approach which ensures adequate par-
cel representation in each grid cell and the preservation of the parcel-interpolated gridded volume, without the need to
occasionally reset the parcel distribution. We also show that deformable elliptical parcels significantly improve the repre-
sentation of subgrid scale turbulent mixing.

The article is structured as follows. In the next section, we detail the key elements of the EPIC method after first
reviewing the basic aspects of the Particle/Parcel-In-Cell (PIC) method. In Section 3, the structure of the numerical algorithm
is presented, including a flowchart. In Section 4, we examine the performance of the EPIC method in three diverse test cases.
The results allow us to determine numerical parameter values by balancing cost and accuracy. The objective is to produce
the most efficient method for a chosen underlying grid resolution, and to provide a simple user interface wherein only initial
data on the grid is required, as in conventional fully grid-based approaches. Our conclusions are offered in Section 5. There
we note that the present two-dimensional method is easily extended to three dimensions, with all of the same advantages.
We will report on this extension in a subsequent paper.

2. Methodology

2.1. Parcel-In-Cell (PIC): a brief overview

The PIC method was developed to accurately treat advection by following Lagrangian parcels (or particles) directly,
while making use of an underlying grid structure to accelerate the calculation of interactions between parcels (the parcels
communicate via the grid). For a large number of parcels, the direct calculation of all such interactions is computationally
expensive. Instead, the PIC method interpolates parcel properties to the underlying grid where well-established efficient
methods exist e.g. for inverting Poisson’s equation and for calculating spatial derivatives. Quantities computed on the grid
are then interpolated to the parcel positions, e.g. the velocity field required to move each parcel. Then, simple ODEs are
used to update parcel positions and possibly other attributes.

The version of the PIC method developed by [2], for example, followed clouds of point vortices to study the behaviour of
an unstable jet (two side-by-side bands of approximately uniform vorticity). Point vortices are particles of infinite vorticity,
zero area, but finite circulation (the product of vorticity and area). Their direct interaction can be computed in theory, but
this is much more expensive than first building a gridded vorticity field from the point vortices, inverting Poisson’s equation
and computing the velocity field on a regular grid, and finally interpolating this velocity field to each point position. Each
particle requires two ODEs to update its x and y coordinates. The approach is simple and efficient, and when it was first
developed, it led to a breakthrough in the understanding of nonlinear, inviscid two-dimensional flows.

The PIC method approximates the particle-particle or parcel-parcel interaction to gain efficiency (for a large number of
parcels). The error depends on the resolution of the underlying grid and the number of parcels used (as well as details of
2

M. Frey, D. Dritschel and S. Böing Journal of Computational Physics: X 14 (2022) 100109
the interpolation, etc). This error is unlike that made by fully grid-based methods: it is not diffusive (no numerical diffusion
is required for stability).

Parcels, unlike particles, have finite area (or volume in three dimensions). Parcels are usually overlapped to represent
properties continuously on a grid. Using a small number of parcels per grid cell will invariably lead to errors in this
representation, but computational cost usually dictates the grid resolution and the approximate number of parcels per
cell.

The PIC method has been extended in many ways and we will not attempt to review the entire literature on this subject
(some discussion can be found in [3–5,10]). Here we instead focus on a relatively simple form of PIC recently developed
to model three-dimensional convective clouds in the atmosphere [4], and shown to provide some advantages over fully
grid-based Large-Eddy-Simulations (LES) [10]. The PIC method in [4] represents an incompressible density-stratified three-
dimensional flow containing water vapour and liquid water by a space-filling distribution of spherical parcels of variable size.
Each parcel carries a series of attributes (volume, buoyancy, specific humidity and vorticity) some of which can change in
time either by condensation/evaporation or natural advection (e.g. stretching of vorticity). Gridded properties are obtained
from the parcels using simple tri-linear interpolation, and these are used to compute the velocity field and the vorticity
tendency on the grid. These gridded quantities are then interpolated back to the parcels, again using (reverse) tri-linear
interpolation. Then ODEs are solved to move the parcels forward and to update their vorticity. To model the natural scale
cascade in a turbulent three-dimensional flow, an estimate of parcel stretch is used to approximate each parcel’s total
deformation; however, the parcels are kept spherical at all times. When this stretch exceeds a threshold, the parcel is split
into two equal parts along the direction of the local vorticity vector. This splitting will create progressively smaller parcels,
and a growing population of them. To limit this process, small parcels below a threshold volume (1/63 of the grid cell
volume) are eliminated. Their properties are given back to other parcels in their vicinity by interpolation to and from the
grid. In this way, conservation of total volume, mass, etc is preserved.

The present paper describes a further extension of the PIC method which allows for deformable, elliptical parcels. Here
we develop the two-dimensional algorithm for a dry density-stratified flow and defer the three-dimensional algorithm to a
subsequent paper. A similar extension (the Deformable Particle-In-Cell method, which was the first method to combine a
PIC method with elliptical parcels that split and merge) was recently developed in [5], who showed that elliptical parcels
significantly improve the representation of fluid flows in various test cases examined. In particular, elliptical parcels much
better preserve the gridded areas obtained from parcel interpolation in an incompressible flow compared to non-deformable
(circular) parcels. Elliptical and ellipsoidal parcels have also been used in other approaches, such as Smoothed Particle
Hydrodynamics (a meshfree approach) and the moving particle semi-implicit (MPS) method [e.g. 13–15].

The EPIC method developed here could be considered to fall into a wider class of Deformable Parcel-In-Cell methods:
we use the name EPIC as it makes it explicit that ellipses are used, and makes it easier to refer to the entire framework
presented here. The main difference between our work and [5] is in the way parcel attributes are transferred to the grid,
and vice-versa. Here we use a much simpler approach involving two support points placed between the foci of the ellipse,
rather than a much more expensive numerical area integration. These two points correspond to the Gaussian quadrature
points for an ellipse, as shown in [16], and there is a simple generalisation to 3D ellipsoids requiring four support points
[17]. Another difference is that our parcels are space filling (sum to the domain area), whereas they are not in [5] (they are
largely kept from overlapping). In contrast to DPIC, the parcels in the EPIC framework carry vorticity, which evolves only
due to horizontal buoyancy gradients. We document the procedure for obtaining the velocity field from vorticity below.
Furthermore, the parcel splitting and mixing procedures differ. During splitting, we additionally preserve the second-order
spatial moments (besides volume and centroid). We identify mergers using the distance between centres and the parcel
areas, whereas [5] does this by locating two or more parcels in a grid box on a finer grid. The construction of the resulting
merged parcel also differs as illustrated in Fig. 1 (for details, see below). Our criterion aims to preserve the second-order
moments as well as possible. We also preserve parcel gridded area with much smaller errors by applying an area-based
correction to the parcel positions, avoiding any need for parcel re-gridding. Finally, there are differences in interpolation:
here we use bi-linear interpolation whereas [5] uses a step function (nearest grid cell).

2.2. The flow model

We here develop the EPIC method for simulating two-dimensional (2D) inviscid, incompressible density-stratified flows.
However, we stress that the method is much more widely applicable, even beyond fluid dynamics (see discussion). The flow
model here is still sufficiently complex to stringently test the new method and relates to a problem of significant importance
in environmental modelling. Moreover, it is readily extended in multiple ways, e.g. to include moisture, a magnetic field,
etc.

We use x for the horizontal coordinate and y for the vertical one (gravity points downwards in y). We assume the density
ρ varies only slightly from a constant background value ρ0. Then, making the Boussinesq approximation, we arrive at the
following system of equations for the scalar vorticity ζ = vx − u y (spatial subscripts indicate partial differentiation while
u = (u, v) is the velocity field) and buoyancy b = −g(ρ − ρ0)/ρ0:

Dζ = bx (1)

Dt

3

M. Frey, D. Dritschel and S. Böing Journal of Computational Physics: X 14 (2022) 100109
Fig. 1. Merger of three elliptical parcels in DPIC [5] and EPIC. While the centroid is located at the same position, the rotation angle, semi-major and
semi-minor axes are not identical.

Db

Dt
= 0 , (2)

where g is the acceleration due to gravity and D/Dt denotes the material or Lagrangian derivative (see e.g. [18]). Since the
flow is incompressible (ux + v y = 0), we can introduce a streamfunction ψ in terms of which u = −ψy and v = ψx . Then
the definition of vorticity leads to a Poisson equation for ψ :

∇2ψ = ζ . (3)

To solve this, we need to consider boundary conditions. Here we assume the domain is periodic in x and is confined
between impermeable boundaries at y = ymin and y = ymax. As the flow is inviscid, only the normal component of the
velocity must be zero on the y boundaries, i.e. v = 0 there. But since v = ψx , then ψ must be constant on each y boundary.

Due to the periodic x boundaries, and the fact that the governing equations Eq. (1) and Eq. (2) have no explicit x
dependence, the solution of Eq. (3) for ψ is most easily accomplished in spectral space after a Fast Fourier Transform (FFT)
in x. However, this does not generally provide the entire velocity field since ζ may have a component which is independent
of x, say ζ̂0(y) in spectral space. But using again the definition of vorticity, we have dû0/dy = −ζ̂0. Integration in y then
provides the x-independent part of u, apart from a constant. The latter is determined by fixing the global average value of
u, which is constant by momentum conservation. Details can be found in Appendix A.

2.3. Elliptical parcels: basic representation and dynamics

Given an Eulerian velocity field u(x, t), a Lagrangian fluid parcel i at position xi(t) evolves in time t according to

dxi

dt
= ui(t) ≡ u(xi, t) (4)

where ui(t) denotes the parcel velocity interpolated from the grid. We represent parcels in coordinates relative to their
centres by the ellipse equation [17]

xᵀ(t)B−1(t)x(t) = 1 (5)

where ᵀ denotes a transpose, and B is a symmetric positive-definite matrix with constant determinant B11(t)B22(t) −
B2

12(t) = a2b2 for an incompressible flow. Here a and b are the semi-major and semi-minor axis lengths, and their product
multiplied by π gives the ellipse area (here subscripts i are suppressed for simplicity).

Unlike point parcels, elliptical parcels can deform due to local gradients in the velocity field

S = ∇u =
(

ux u y

vx v y

)
(6)

as described in [19]. Assuming a locally linear background flow

u(x, t) = S(t)x(t) , (7)

in a frame of reference moving with the parcel, the time derivative of Eq. (5) yields

dB

dt
= B Sᵀ + S B (8)

after making use of Eq. (4) and Eq. (7) — see [17,19] or Appendix B. Although we only apply this to two-dimensional (2D)
flows in this paper, Eq. (8) is also valid in 3D, and indeed in any dimension. For a 2D incompressible flow, i.e. ∇ · u =
ux + v y = 0, Eq. (8) simplifies to
4

M. Frey, D. Dritschel and S. Böing Journal of Computational Physics: X 14 (2022) 100109
dB11

dt
= 2

(
ux B11 + u y B12

)
(9)

dB12

dt
= vx B11 + u y B22 , (10)

where we have exploited the fact that the determinant of B is preserved in time. This property further allows us to store
only two matrix components and compute B22 when needed. This makes EPIC as memory efficient as possible.

In [5], the elliptical parcel deformation was computed instead with the simpler equation dM/dt = S M where M is
related to B above by B = M Mᵀ . This leads to our equation for B in Eq. (8). Nevertheless, here we evolve B since this is
needed to find the ellipse semi-axis lengths a and b from the eigenvalues of M Mᵀ = B (see below and section 4.3 in [5]).
Furthermore B is more useful than M for parcel splitting and merging.

2.4. Interpolation

As mentioned in the introduction, we only use two support points to interpolate from the parcels to the grid and vice-
versa. These points lie between the foci of the ellipse at x± = x ± 1

2 câ (these are the Gaussian points, see [16]), with
semi-focal length

c =
√

a2 − b2 =
√

2a2 − B11 − B22 (11)

and principle eigenvector (lying along the major axis)

â = 1√
(a2 − B22)2 + B2

12

(
a2 − B22

B12

)
(12)

where

a2 = 1

2
(B11 + B22) +

√
1

4
(B11 − B22)2 + B2

12 (13)

is the largest eigenvalue of B .
Following the notation of [4], the value at a grid point x̄ = (x̄, ȳ) of some gridded field q̄(x̄, t) is found by interpolating

the attribute qi of all parcel support points x±
i lying within the four surrounding grid cells, P(x̄). As we are using two-point

Gaussian quadrature, there is an additional weight of 1/2 to apply.

q̄(x̄, t) = 1

2V̄

⎛
⎜⎝ ∑

x−
i ∈P(x̄)

φ(x−
i − x̄)qi V i +

∑
x+

i ∈P(x̄)

φ(x+
i − x̄)qi V i

⎞
⎟⎠ (14)

where analogously

V̄ (x̄, t) = 1

2

⎛
⎜⎝ ∑

x−
i ∈P(x̄)

φ(x−
i − x̄)V i +

∑
x+

i ∈P(x̄)

φ(x+
i − x̄)V i

⎞
⎟⎠ (15)

is the gridded area and

φ(x±
i − x̄) =

(
1 − |x±

i − x̄|
�x

)(
1 − |y±

i − ȳ|
�y

)
(16)

are the bi-linear interpolation weights.
Similarly, the interpolation from the grid to the parcels is given by

qi(t) ≡ q(xi, t) = 1

2

⎛
⎜⎝ ∑

x̄∈G−
i

φ(x−
i − x̄)q̄(x̄, t) +

∑
x̄∈G+

i

φ(x+
i − x̄)q̄(x̄, t)

⎞
⎟⎠ (17)

where G±
i stands for the four grid points of the cell in which the support point x±

i is located. The two support points do
not necessarily lie in the same cell. The sums in Eq. (14) to Eq. (17) are efficiently computed by summing over all parcel
support points.
5

M. Frey, D. Dritschel and S. Böing Journal of Computational Physics: X 14 (2022) 100109
Fig. 2. An elliptical parcel splitting into two parcels of half the area and equal shape, with the same total centroid and total second order moments as the
original parcel.

2.5. Parcel splitting

When the elliptical parcels evolve in an incompressible velocity field with non-zero strain, they deform according to
Eq. (8) while preserving their area. This can result in extremely elongated parcels with aspect ratios λ = a/b � 1. By
contrast, a material area would also bend as it stretches: the elliptical deformation only captures the local strain (or average
strain over the area). As the elliptical parcels cannot bend, we instead split them when λ > λmax (a user-defined threshold
> 2) or when their area is bigger than a maximum prescribed parcel area V max = Ṽ max V cell (Ṽ max is also user-defined; see
the recommended parameter settings below). Although the individual parcel area is not preserved when splitting or merging
occurs, the total area (i.e. the sum over all parcels) is conserved at all times. Parcel merging, as discussed in Section 2.6,
reduces the number of parcels per grid box, while the maximum area criterion ensures that we have at least a certain
minimum number of parcels per grid cell.

A parcel is split into two equal-shaped ellipses (‘child parcels’) having half the area of the ‘parent’ parcel, as illustrated in
Fig. 2. Their centres are separated by a distance h = √

3a/4 from the centre of the parent parcel x, and along the direction
of the eigenvector â corresponding to the largest eigenvalue, i.e. the new centres are x ± hâ. This construction guarantees
that the total area, centroid and second-order spatial moments are conserved. This also results in a simple equation for the
shape matrices of the child parcels:

B1 = B2 = B − 3

4
a2ââᵀ

. (18)

Other parcel properties such as vorticity and buoyancy remain unchanged. A complete derivation of Eq. (18) is given in
Appendix C. Note that the parcel splitting used by [5] does not conserve the second-order moments; instead the parcels are
prevented from overlapping. A small overlap is required to conserve these moments.

2.6. Parcel merging

Splitting leads to an ever-increasing number of small parcels. In order to limit computational cost, and to model the
eventual mixing that takes place due to this scale cascade, we remove parcels of area less than a prescribed minimum
area V min by merging them with neighbouring ones. In practice, V min is chosen to be a prescribed fraction Ṽ min of the
cell area V cell = �x�y. A parcel, indexed say by i, is first marked ready to be merged if its area is smaller than V min (i.e.
V i < V min). Then nearby grid cells are searched for the closest other parcel, say i	 (for an efficient algorithm, see Section 3.4
and Appendix D). Every small parcel i always has a closest other parcel i	: we say ‘i points to i	 ’. Note, several parcels can
point to the same parcel, and two small parcels can point to each other (they are ‘double-linked’). Small parcels can point
to other small parcels, because in some cases a large number of parcels in a region can become small in a single time step.
In such cases, allowing mergers between small parcels ensures that merging takes place over small distances. If i	 is a large
parcel with V i	 ≥ V min, then i	 does not point to another parcel, but small parcels with V i < V min can point to i	 (all links
are ‘single links’).

Details of the numerical algorithm which enforces these rules can be found in Appendix D, where directed graphs are
used to represent different configurations of parcel links. The algorithm prevents chains of parcels from merging, as in
parcel a pointing to b pointing to c and so on. This is done by breaking some single links between small parcels using
an iterative approach. Otherwise, mergers could result in a highly distorted parcel and may be more difficult to parallelise.
Nevertheless, the algorithm ensures that every small parcel is merged in each time step. This is important in particular for
the Taylor-Green flow studied in Section 4.1, where we found that the number of small parcels increased without bound
when using a simpler approach that did not ensure this. The merging algorithm results in a unique solution, except if the
neighbouring parcels are equidistant from the small parcel to be merged with.

Similar to parcel splitting, parcel merging aims to preserve the total area, centroid, and second-order moments.
The merged parcel has area V = πab = ∑

i V i (where V i = πaibi and the sum is over all merging parcels), centroid
x = V −1 ∑

i V ixi , and (tentative) second-order moments
6

M. Frey, D. Dritschel and S. Böing Journal of Computational Physics: X 14 (2022) 100109
Fig. 3. Parcel to grid interpolation across periodic boundaries (x grid points are labelled). Here, the elliptical parcel whose centre lies in the first horizontal
grid cell has a support point in the periodic extension lying in the grid cell at the opposite end of the domain.

B	
11 = 1

V

∑
i

V i

(
4x̌2

i + B11,i

)

B	
12 = 1

V

∑
i

V i
(
4x̌i y̌i + B12,i

)
(19)

B	
22 = 1

V

∑
i

V i

(
4 y̌2

i + B22,i

)

where x̌i ≡ xi −x (see Appendix D for details). They are tentative because these matrix components as given do not generally
preserve the total area, i.e. B	

11 B	
22 − (B	

12)
2 	= a2b2. In order to resolve this issue, we simply scale each entry in Eq. (19) so

that the new matrix preserves area, i.e.

B = ab√
B	

11 B	
22 − (B	

12)
2

B	 . (20)

Note that merger is the inverse of splitting, in that two split parcels, if allowed to re-merge, would give back the original
parent parcel. In general, however, the merging parcels are not identical nor aligned, so it is impossible to exactly conserve
the second-order moments after merging, though area and centroid are conserved.

2.7. Enforcing boundary conditions on parcel operations

We use periodic boundaries in the horizontal (x) direction and free-slip boundaries in the vertical (y) direction. The
implementation of periodic boundary conditions is the same as in PIC with point-like parcels. Parcels and support points
that leave the domain on one side reenter on the opposite side. A simulation having nx grid cells horizontally consists of
the same number of grid points, i.e. the rightmost grid point of Fig. 3 is a periodic copy of grid point 0 on the left. In the
example shown, one of the ellipse support points lies in grid cell 1 along with the ellipse centre, while the other lies in
grid cell nx across the periodic edge. The orange lines show how the support points contribute to the gridded values at the
cell corners. Note that both support points contribute to the two grid points on the periodic edge (ix = 0).

To ensure the x coordinate of a point lies within the periodic domain, a simple construction is used. Let xc = (xmin +
xmax)/2 denote the domain centre in x, and Lx = xmax − xmin denote the domain width. Then we use

x ← x − Lx [2(x − xc)/Lx] (21)

where [s] denotes the ‘integer part’ of s. This integer part is −1 if x < xmin; in this case x is increased by Lx . The integer
part is +1 if x > xmax; in this case x is decreased by Lx . Otherwise x is unchanged. It is assumed that x is within Lx/2 of a
periodic edge, but in practice x is always within a few grid spacings �x.

For the free-slip impermeable boundaries at y = ymin and ymax, a different interpolation in the parcel-to-grid algorithm
is required. We introduce a row of halo cells next to each y boundary, effectively extending the y grid points from i y = −1
to ny + 1. Then if an ellipse support point lies within a halo cell, see e.g. Fig. 4, each parcel attribute qi and area V i is
interpolated to the four corners of that cell in the normal way, using Eq. (14) to obtain the product q̄V̄ and Eq. (15) to
obtain V̄ . Next, after all parcel points have been interpolated, the gridded values of q̄V̄ and V̄ at i y = −1 are added to those
at i y = 1; likewise the gridded values at i y = ny + 1 are added to those at i y = ny − 1. Furthermore, the gridded values at
i y = 0 and ny are doubled. Finally, q̄V̄ is divided by V̄ to determine q̄. This construction ensures that the total parcel area ∑

i V i equals the total gridded area
∑

x V̄ (x) = LxL y , and moreover ensures
∑

i qi V i = ∑
x q̄(x)V̄ (x) for each attribute.

Care must also be taken when interpolating from the grid to the ellipse support points, see Eq. (17). If one of these
support points lies in a halo cell, interpolation requires the gridded values at the outer edge of that cell (either at i y = −1
or ny + 1). We only need this interpolation for the velocity field to advect the parcels, for the strain matrix to update the
shape matrix B , and for the vorticity tendency to update dζi/dt on each parcel i.
7

M. Frey, D. Dritschel and S. Böing Journal of Computational Physics: X 14 (2022) 100109
Fig. 4. Parcel to grid interpolation across free slip boundaries (y grid points are labelled).

Fig. 5. Parcel mirroring at vertical boundaries. The child parcel in the halo region (black, dashed ellipse) is mirrored such that its centre is inside the
domain. The orange, dashed ellipse denotes the parent parcel that was split.

For the velocity, we assume the x component ū is symmetric across the y boundaries for simplicity, so we copy the
values at i y = 1 to i y = −1, and likewise copy the values at i y = ny − 1 to i y = ny + 1. We assume the y component
v̄ is anti-symmetric, so we do the same copy but also flip the sign of v̄ . This is compatible with the no normal flow
boundary conditions, v̄ = 0 at i y = 0 and ny . We have tested a more complicated interpolation which exploits the definition
of vorticity, ū y = v̄x − ζ̄ , but numerical tests indicate this produces only very minor differences because ellipse support
points are never more than a small fraction of the grid cell width �y from a boundary. The current procedure is efficient.

For consistency, for the strain matrix S components, we assume symmetry for ūx and v̄ y (= −ūx), and anti-symmetry for
v̄x . For ū y , we use the definition of vorticity, but this requires ζ̄ in the halo regions. As there are no symmetry requirements
to guide us here, we use extrapolation,

ζ̄i,−1 = 2ζ̄i,0 − ζ̄i,1

ζ̄i,ny+1 = 2ζ̄i,ny − ζ̄i,ny−1
∀i = 0, 1, . . . , nx − 1 . (22)

This extrapolation assumes the second y derivative of ζ̄ is zero at each domain edge. For consistency, the same extrapolation
is used to set the gridded vorticity tendency b̄x in the halo regions.

Notably, it is rare that parcel support points lie in the halo, and when they do, they lie close to the inner edge of the
halo region near one of the y boundaries (this is ensured by the time step choice as explained in Section 3.2). Thus, such
support points receive their dominant contribution from grid points along the boundaries. To ensure this, parcel centres are
forced to lie within the physical domain after each full time step. The vanishing of v̄ on the y boundaries implies that the
parcel centres remain within the domain, assuming accurate advection. On the other hand, a parcel near a boundary could
split into two, and one part could have a centre lying in a halo. When this occurs, the parcel centre is mirrored across the
domain edge and the B12 component of its shape matrix B is flipped in sign. This has the effect of mirroring the entire
parcel across the domain edge (cf. Fig. 5). In this way, all parcel centres remain inside the physical domain, though support
points may still lie in the halos.

2.8. Incompressibility

In general, parcel methods struggle to maintain incompressibility, as a result of using a finite number of parcels to
represent the flow (see e.g. [20] and section 4.8 in [4]). One common solution is to occasionally re-distribute the parcels to
ensure the gridded area found by particle interpolation is the same as the actual grid box area (see e.g. [5] and references
therein). For short-time integrations, the error in the interpolated gridded area can be kept small when using a sufficient
number of parcels [4,5,10]. However, for long-time integrations, a remedy is required. Re-distributing parcels is excessively
8

M. Frey, D. Dritschel and S. Böing Journal of Computational Physics: X 14 (2022) 100109
Fig. 6. Reduction of the average error of the gridded area V̄ due to the divergent flow and gradient correction. The divergent flow and gradient corrections
alone do not correct the gridded area as well as when they are combined.

diffusive [5]; in particular, it destroys fine-scale structure which might be needed to resolve important features like fronts.
Below, we discuss an effective alternative which preserves this fine-scale structure. We perform two operations: a divergent
flow correction followed by a parcel density gradient correction. This is done at the end of every time step (it can be done
less frequently but it is efficient), and usually repeated twice (tests show that this is adequate, see below). The corrections
provide a systematic way to ensure the gridded area remains nearly uniform.

2.8.1. Divergent flow correction
The basic idea here is to displace parcel centres slightly to correct for errors in the gridded area V̄ in Eq. (15). In theory,

we would like to maintain V̄ = V cell = �x�y at all times, but invariably V̄ 	= V cell due to the advection of a finite number of
parcels. To correct for this, we add a purely divergent displacement field d = ∇φ where φ(x) is the solution to the Poisson
equation

∇2φ = V̄ /V cell − 1 . (23)

Tests with random area errors show that this correction rapidly and monotonically reduces those errors, with the biggest
error reduction occurring in the first iteration. However, the reduction in error is not as great as found when coupling this
correction to the gradient correction discussed next.

2.8.2. Gradient correction
In order to further improve the homogeneous distribution of parcels over the grid, parcels are moved down gradients

of gridded area. This additional correction is applied inside each individual grid box, and we ensure a parcel cannot leave
a grid box due to this correction, so that the flow field remains continuous. Below, we use x̃ to denote the x coordinate
relative to the grid cell (i.e. it has a value between 0 and 1). For a one-dimensional problem, we can specify a gradient
correction in position by a fractional grid-box distance dx̃ at the end of the time-step of the form

dx̃ = C x̃(1 − x̃) (24)

where C is a pre-factor which depends on the gradient in gridded area: |C | determines the maximum degree to which the
locations of parcel centres are compressed at the edges of the cell. We limit this such that |C | ≤ Cmax. Otherwise, C between
grid points i and i + 1 is given by

C = −β
V̄ i+1 − V̄ i

V cell
. (25)

The default value of β , 1.8, was chosen on the basis of one-dimensional tests with parcels initially located in random
locations, where the gradient correction and the divergent flow correction were combined.

In the two-dimensional case, a similar correction is applied independently in the y-direction. The gradients with respect
to x which determine Cx are determined by linear interpolation between the bottom and the top of the grid box (depending
on the vertical position of the parcel), while those in y are determined by linear interpolation between the left and right
sides of the grid box.

In Fig. 6 we show the convergence of the gridded area V̄ towards the cell area V cell when applying both correction
algorithms. To generate this figure we first placed four circular parcels per grid cell (as described below in Section 3.1)
in the domain [0, 1]2 discretized by 32 × 32 cells, and we assigned an area of V cell/4 to each parcel. We then perturbed
their horizontal and vertical positions randomly by up to ±�x/4 from this optimal setup and applied the parcel correction
algorithms iteratively as would be done in a simulation (cf. Fig. 7). Both the divergent flow and the gradient correction
reduce the area error, but the combination significantly increases the convergence rate.
9

M. Frey, D. Dritschel and S. Böing Journal of Computational Physics: X 14 (2022) 100109
Fig. 7. Parcel configurations before (leftmost) and after applying the different parcel correction methods 2 times in the domain [0, 1]2, discretised into
32 × 32 cells. Each subplot shows only the lower left sixteenth of the domain. The divergent flow correction tends to cluster the parcels compared to the
gradient correction. The parcels are more homogeneously distributed after applying the divergent flow and gradient corrections sequentially.

2.9. Energy conservation

The total energy, here kinetic plus potential, is conserved in the density-stratified flow model considered (see Sec-
tion 2.2). The degree to which the numerical model conserves energy is a useful measure of accuracy, and is discussed in
relation to the Straka and Robert test cases in Section 4.2 and Section 4.3 below. Here, we discuss the calculation of kinetic
and potential energy using elliptical parcels.

The kinetic energy (per unit mass) is the integral

K = 1

2

¨
(u2 + v2)dxdy (26)

where the integral is over the entire domain. The actual kinetic energy is K multiplied by the constant background density
ρ0 (a consequence of the Boussinesq approximation). Numerically, we calculate K by a sum over parcels:

K = 1

2

∑
i

(u2
i + v2

i) V i (27)

where (ui, vi) is the velocity at the parcel centre, and i ranges over all parcels.
The potential energy (per unit mass) is the integral

P = −
¨

b y dxdy . (28)

Here, recall b = −g(ρ − ρ0)/ρ0 where g is the acceleration due to gravity. Numerically, we calculate P by the sum

P = −
∑

i

bi yi V i (29)

where yi is the height of the parcel centre. However, this potential energy cannot all be converted to kinetic energy. The
part which cannot be converted is the potential energy of the hydrostatic equilibrium, P ref, found by re-arranging b as
a monotonically increasing (or non-decreasing) function of y. Using parcels, this is done by sorting bi , then obtaining a
reference height yref by summing the parcel areas V i divided by the domain width Lx . Specifically, we compute

yref
1 = ymin + V 1

2Lx
(30)

yref
i = yref

i−1 + V i−1 + V i

2Lx
, i = 2, 3, ..., nparcels (31)

then find P ref from

P ref = −
∑

i

bi yref
i V i . (32)

Since b is materially conserved, this only needs to be computed at t = 0; it remains constant. The available potential energy
is then just the difference P − P ref. In the results below, we simply use P to denote the available potential energy.

The flow model in Section 2.2 exactly conserves any functional of b, namely¨
F (b)dxdy =

∑
i

F (bi) V i (33)

where F (b) is an arbitrary function of b; this is a consequence of material conservation of b. The numerical model only
conserves the linear functional F (b) ∝ b due to mixing associated with parcel merging.
10

M. Frey, D. Dritschel and S. Böing Journal of Computational Physics: X 14 (2022) 100109
3. Structure of the algorithm

3.1. Initialisation: parcel locations and attributes

To prepare the initial conditions for an EPIC simulation, the first step is to place the parcels on the grid. Here we use
m × m parcels per grid cell (m = 3 is sufficient as the tests below demonstrate). In each cell, their centres xi are placed
in a regular array, at the locations (�x(i − 1/2)/m, �y(j − 1/2)/m) relative to the lower left corner of the grid cell, for
i = 1, ..., m and j = 1, ..., m. For square grid cells, �x = �y, each parcel is a circle with area �x�y/m2. Otherwise, we
initialise with ellipses of the same area; if �x > �y, they are aligned with the x axis and have aspect ratio λ = �x/�y; if
�x < �y, they are aligned with the y axis and have aspect ratio λ = �y/�x. The grid length ratio is assumed to lie in the
range λ−1

max to λmax, but a unit value is recommended. In principle, higher grid anisotropy can be handled using a different
arrangement of parcel centres (not m × m). In practice, we currently split parcels if λ > λmax.

Once the parcels have been placed, the next step is to prepare the initialisation of their attributes. The user supplies a
gridded field for each attribute, say q̄(x̄, 0) for all grid points x̄, and the algorithm below converts these data into parcel
attributes qi(0), for i = 1, ..., n where n is the total number of parcels (this algorithm is adapted from section 2.2 of [21]).
The qi are chosen so that the parcel-interpolated gridded field in Eq. (14) matches the given gridded field (to high precision,
see below).

To this end, first the parcel weights φ are computed from Eq. (16) but using the parcel centres xi in place of the support
points x±

i . Then the parcel density ρ̄ at each grid point x̄ is determined from

ρ̄(x̄) =
∑

i∈P(x̄)

φ(xi − x̄) . (34)

For the parcel placement described above, this is equal to m2 for all grid points (the approach taken here is analogous to
the interpolation algorithm for gridded area in Section 2.4). From this, the inverse parcel density αi is determined from

αi = 1/
∑
x̄∈Gi

φ(xi − x̄)ρ̄(x̄) . (35)

Again, this works out to 1/m2 for all parcels when placing them as described above. The next steps can be repeated for
each attribute q. First, a guess is made for the parcel attribute:

qi = αi

∑
x̄∈Gi

φ(xi − x̄)q̄(x̄,0) . (36)

Next, a residual R̄(x̄) is computed from

R̄(x̄) = q̄(x̄,0) −
∑

i∈P(x̄)

φ(xi − x̄)qi . (37)

Then the parcel attributes are updated using

qi ← qi + αi

∑
x̄∈Gi

φ(xi − x̄)R̄(x̄) . (38)

These values are accepted if the maximum value of |R̄| < εq (a prescribed tolerance), otherwise we repeat the last two
operations (updating R̄ and qi). The tolerance used here is εq = 10−9q̄′

rms where q̄′ is the departure of q̄ from its domain
mean. In practice, the algorithm converges rapidly, requiring only a few tens of iterations for convergence. If the user
supplies a constant field q̄, the algorithm is bypassed and we simply assign qi = q̄ (constant).

Note that this algorithm still works even for an anisotropic grid. Only the parcel centres are required because the inter-
polation of the ellipse support points is equivalent to the interpolation of the ellipse centres for elliptical parcels aligned
with the x or y axes. This property is convenient for initialisation.

3.2. Time stepping: low-storage Runge-Kutta and adaptation

In EPIC, all time-dependent quantities (xi , B i and ζi) are propagated in time using the five-stage fourth-order 2N-storage
Runge-Kutta scheme (ls-RK4) [22,23] to reduce the memory footprint. Each such quantity, say qi , then requires only one
additional array δqi . Given a time step �t , the ls-RK4 scheme loops over the following two steps for j = 1, 2, ..., 5:

δqi(t j) = a jδqi(t j−1) + q̇i(t j) (39)

qi(t j+1) = qi(t j) + b jδqi(t j)�t (40)
11

M. Frey, D. Dritschel and S. Böing Journal of Computational Physics: X 14 (2022) 100109
Table 1
Coefficients of the five-stage fourth-order 2N-storage Runge-Kutta scheme.

j a j b j c j

1 0 1432997174477
9575080441755 0

2 − 567301805773
1357537059087

5161836677717
13612068292357

1432997174477
9575080441755

3 − 2404267990393
2016746695238

1720146321549
2090206949498

2526269341429
6820363962896

4 − 3550918686646
2091501179385

3134564353537
4481467310338

2006345519317
3224310063776

5 − 1275806237668
842570457699

2277821191437
14882151754819

2802321613138
2924317926251

where q̇i = dqi/dt is the tendency, t j = t0 + c j�t and a j , b j and c j are numerical coefficients listed in Table 1 (note
a1 = c1 = 0, hence δqi(t0) is not required and t1 = t0). δqi stores a weighted combination of the actual tendency and those
from earlier stages for memory efficiency (note that the weights do not add up to one at each stage). q̇i must be updated at
each stage j of the scheme, since the tendency may depend on other evolving quantities as well. This also means that all
quantities must be iterated in the same loop, not sequentially.

Before entering the above loop, we adapt the time step using

�t = min

(
αs

γmax
,

αb

Nmax

)
(41)

where αs and αb are dimensionless constants,

γmax = 1

2

√
max

x̄
{(ūx − v̄ y)2 + (ū y + v̄x)2} (42)

is the maximum gridded strain rate (see Appendix E), and

Nmax =
√

max
x̄

‖∇b̄‖ (43)

is the maximum (generalised) buoyancy frequency [18].
The constant αs controls how much stretch a parcel can experience in a time step �t . The maximum parcel stretch

occurs when the major axis of the parcel is aligned with a local straining flow in which γ = γmax. Taking this axis to be
the x axis without loss of generality, and a straining flow with u = γmaxx and v = −γmax y, one can use Eq. (9) to show that
λ̇ = 2γmaxλ. Thus, over one time step, the maximum parcel stretch is

λ(t + �t)

λ(t)
= e2αs (44)

assuming perfect time integration and that �t = αs/γmax in Eq. (41). It is less than this if �t is limited by Nmax.
In EPIC, αs is chosen small enough to limit the distance between the ellipse support points, c in Eq. (11), to the minimum

grid spacing, �g = min(�x, �y). In this way, parcels may deform and split at subgrid scales, thereby providing a good
representation of the subgrid flow. Moreover, we must ensure that parcel support points never extend beyond the halo
regions next to each y boundary (see Section 2.7) during a time step; the condition c < �g ≤ �y strongly satisfies this
constraint (indeed a support point should never reach further than midway into the halo, but given that the time stepping
is not perfect, this is done for safety).

Using a2 = abλ and b2 = ab/λ, the restriction c2 = a2 − b2 < �2
g implies

λ − λ−1 <
�2

g

ab
. (45)

If we consider the worst-case scenario in which λ(t + �t) = λmaxe2αs , then the above inequality implies

e2αs <
�2

g

λmaxab
, (46)

neglecting λ−1 compared to λ.
Now, the most restrictive condition is obtained when the right-hand side takes its minimum value, i.e. for a parcel of

maximum size ab = V max/π :

e2αs <
π�2

g

λmax V max
. (47)

This is a restriction on αs , but may equally be viewed as a restriction on either λmax or V max/�
2
g , i.e.
12

M. Frey, D. Dritschel and S. Böing Journal of Computational Physics: X 14 (2022) 100109
λmax
V max

�2
g

< πe−2αs . (48)

Written this way, it is convenient to choose a small value of αs (for time-stepping accuracy) and a moderate value of
λmax (to control parcel splitting), then ensure V max/�

2
g satisfies Eq. (48). For an isotropic grid (recommended), note

that V max/�
2
g = Ṽ max, the dimensionless maximum parcel area fraction. Otherwise, V max/�

2
g = Ṽ max Ag where Ag =

max(�x/�y, �y/�x) is the grid aspect ratio.
The constraint in Eq. (48) not only determines the maximum distance between ellipse support points, but also the

maximum separation distance when parcels are split (2h). By neglecting λ−1 compared to λ in Eq. (45) above, we get
a2 < �2

g . Substituting h = √
3a/4 as derived in Appendix C, we find 2h <

√
3�g/2.

We require the additional constant αb not just to resolve buoyancy oscillations (frequencies of O(Nmax)) but also to
ensure a finite time step when starting from a flow at rest (which would have γmax = 0). In practice, we take αb = αs = α,
a single user-defined parameter, based on numerical tests presented in Appendix G.

3.3. Tendency calculation

The time stepping above requires the tendencies q̇i for each time-dependent quantity qi (and for each parcel i). These
are calculated as follows. First, the parcel attributes V i , bi and ζi are interpolated to obtain the corresponding gridded fields
V̄ , b̄ and ζ̄ (in EPIC, this is par2grid). Next, the gridded vorticity ζ̄ is inverted to find the gridded velocity field ū (this is
vor2vel, see Appendix A). These components are differentiated in x to form the strain matrix S (only ūx and v̄x need be
computed, since v̄ y = −ūx by incompressibility, and ū y = v̄x − ζ̄ by the definition of vorticity). Next, the gridded vorticity
tendency b̄x is accurately computed using FFTs and wavenumber multiplication (as are ūx and v̄x). Then these gridded
tendencies are interpolated to the parcel support points to provide the parcel tendencies ẋi , Ḃ i and ζ̇i (this is grid2par).

3.4. Parcel merging and splitting

After the parcels have been advanced one time step, they are checked for merging and for splitting. For merging, any
small parcels with V i < V min are identified and added to a list of parcels available for merger, of length nmerge. To minimise
search costs, separate lists of parcels occupying each grid cell are created (this can be done in O(n) operations for n parcels).
The list of small parcels i is then processed to locate the nearest other parcel i	 . This is done by locating the grid point
(ix, i y) closest to parcel i (using nearest integer arithmetic), then by searching only the 4 grid boxes sharing this grid point
(or 2 when adjacent to a y boundary). After the nmerge small parcels have been processed in this way, the merger rules
described in Section 2.6 are enforced (details of the algorithm may be found in Appendix D).

Note that merging changes all parcel attributes. The new attribute of the merged parcel, say qm , is the area-weighted
mean of the attributes of all merging parcels, i.e.

qm = V −1
m

∑
i

qi V i where Vm =
∑

i

V i (49)

where the sum extends over the merging parcels only. The same formula is used for position xm , vorticity ζm and buoy-
ancy bm (and other attributes if included). In this way the total mass, proportional to

∑n
i=1 bi V i , and the total circulation ∑n

i=1 ζi V i remains conserved for all time, consistent with Eq. (1) and Eq. (2). The shape matrix Bm is handled slightly
differently in that, after the area weighting, Bm needs to be scaled to preserve the parcel area (see Section 2.6).

Next, any parcel satisfying the splitting criteria (see Section 2.5) is split into two parts, creating a new parcel with
identical attributes. Splitting is also conservative, and moreover preserves the second-order spatial moments, besides area
and centroid (the zeroth and first-order moments).

3.5. Parcel adjustment to correct gridded area errors

At the end of every time step, and after all parcel splitting and merging, the parcels are slightly shifted to correct
for gridded area errors. Ideally, we would like to preserve V̄ = V cell = �x�y, but the advection of a finite number of
parcels, splitting and merging inevitably lead to a discrepancy. The algorithm described in Section 2.8 is used to keep this
discrepancy small, typically around 0.01% of V cell (see tests in Appendix G). It can be reduced further, if desired (and at
cost), by increasing the number of times the divergent flow and parcel gradient corrections are applied, as shown in Fig. 6.

3.6. Flowchart

The structure of the EPIC algorithm is shown in Fig. 8. In order to run a simulation, the user only needs to provide
gridded field data from which the parcels are initialised (cf. Section 3.1). Before performing the first low-storage RK4 step,
the time step is calculated and the initial configuration of field and/or parcel data is written to HDF5 [24] files. In a ls-
RK4 sub-step, we first interpolate parcel attributes to the grid (par2grid), then compute the gridded velocity field using
inversion (cf. Appendix A), and the vorticity tendency from the gridded buoyancy by differentiation in semi-spectral space.
13

M. Frey, D. Dritschel and S. Böing Journal of Computational Physics: X 14 (2022) 100109
Fig. 8. Flow chart of the EPIC program. The user provides gridded data fields which are used to initialise the parcels. Occasionally, parcel and field data are
written at specified time intervals (following a par2grid and before the first stage of the ls-RK4 algorithm). The parcels are then evolved in time using
the ls-RK4 algorithm (each update of field tendencies requires a call to par2grid). In the first stage of this algorithm, the time step is adapted after the
call to vorticity tendency. After each ls-RK4 step, the parcels are merged, split and then corrected for incompressibility. The program terminates
once the time limit is reached.

Table 2
Recommended numerical settings in EPIC, independent of the grid resolu-
tion used.

Numerical parameter Value

Initial number of parcels per cell 9
Maximum aspect ratio, λmax 4
Minimum parcel area fraction, Ṽ min 1/40
Maximum parcel area fraction, Ṽ max 1/2.89
Number of iterations to correct for incompressibility 2
Gradient correction pre-factor, β 1.8
Gradient correction max. compression, Cmax 0.5
Time step pre-factor, α 0.2

The strain matrix S needed for evolving the shape matrix B is similarly found by differentiation of the gridded velocity.
Afterwards, these gridded quantities (the tendencies) are interpolated back to the parcels (grid2par) in order to propagate
them.

After each ls-RK4 step, any very small parcels are merged with others and highly-elongated parcels are split. Then
the parcel positions are corrected to enforce incompressibility, see Section 2.8. The parcel correction is an iterative proce-
dure where the parcel area is interpolated to the grid (vol2grid) to apply the divergent flow correction, followed by a
vol2grid to do the gradient correction. The number of correction steps can be controlled by the user, but normally two
steps are sufficient to keep gridded area errors small (cf. Fig. 6). Before the updated configuration is written to the HDF5
files, a new time step is calculated as explained in Section 3.2. Once the time limit is reached, EPIC terminates.

4. Results

In the following subsections we present results for three standard fluid dynamical test cases: (1) the Taylor-Green flow,
(2) a density current simulation developed by Straka [25], and (3) a test case by Robert [26] which collides a large warm
bubble with a much smaller cold bubble. We use the Straka test case to examine the model sensitivity to its numerical
input parameters (see also Appendix G), and establish a recommended model setup in Table 2. These default values are
used in all simulations unless otherwise stated.

All simulations are performed on a laptop running an Intel(R) Core(TM) i7-10750H CPU @ 2.60 GHz. The timing compar-
ison between the numerical models is obtained running EPIC single-threaded, otherwise we used 4 OpenMP threads.
14

M. Frey, D. Dritschel and S. Böing Journal of Computational Physics: X 14 (2022) 100109
Fig. 9. Evolution of the r.m.s. vorticity ζrms for the Taylor-Green test case with initially 9 parcels per cell. The decay reduces with increasing grid resolution.
The slopes of the decay are estimates of the effective viscosity ν as given in Table 3.

Table 3
Viscosity as a function of grid resolution.

Number of grid cells Viscosity, ν

32 × 32 9.86 × 10−6

64 × 64 2.51 × 10−6

128 × 128 6.30 × 10−7

4.1. Taylor-Green test case

In our first test case we use, as the initial condition, the steady incompressible Taylor-Green flow [27] that exhibits two
counter-rotating vortices:

u(x, y) = − 1
2 sin 2x sin y, v(x, y) = − cos 2x cos y (50)

in the domain [−π/2, π/2]2. The corresponding vorticity is ζ = 5
2 sin 2x cos y. Note, this flow is dimensionless. We employ

the same flow model outlined in Section 2.2, except that here b = 0. In a viscous fluid, the flow preserves its spatial form
but decays as e−5νt , where ν is the viscosity coefficient (the factor of 5 comes from the sum of the squared wavenumbers,
22 + 12). The Taylor-Green flow thus provides an analytical solution to the Navier-Stokes equations. (Note: a simpler version
of this test was used in [5] to check code accuracy; results for EPIC may be found in Appendix F.)

In EPIC, we do not include viscosity, so we expect the flow to remain approximately steady. The maximum vorticity in the
flow is 2.5, corresponding to a rotation period of 4π/2.5 or approximately 5 time units. While the flow is (approximately)
steady, fluid particles still circulate, so in EPIC the parcels will move and deform. Moreover, they will split and merge,
resulting in vorticity mixing. This will cause the flow to become (slightly) unsteady.

Here, we measure the impact of this by examining the evolution of the r.m.s. vorticity ζrms in a series of simulations
on grids of dimensions 322, 642 and 1282. As shown in Fig. 9, the r.m.s. vorticity decays as if the flow were slightly
viscous: the fits to an exponential decay are excellent (and continue well beyond the times shown), enabling us to estimate
the effective viscosity ν by fitting ln(ζrms) to a straight line with slope −5ν , as done in Table 3. Moreover, ν is seen
to be inversely proportional to the total number of grid points. Dimensionally, we expect ν ≈ Cνζmax(0)�x�y for some
dimensionless constant Cν which should be independent of grid resolution. The data in Table 3 support this relationship and
indicate Cν ≈ 4.15 × 10−4. Hence, the merger and splitting occurring in EPIC result in a weak diffusion. By comparison with
conventional numerical methods like pseudo-spectral and semi-Lagrangian, the diffusion in EPIC appears to be much less
for comparable grid resolutions [28]. While the latter study examined shallow-water flows, the numerical diffusion effects
are expected to be broadly similar, and this is confirmed for the more realistic Straka and Robert test cases examined
in the following subsections. From the viscosity diagnosed for the 322 grid, we can derive a scaling Reynolds number
Re = ζmax(0)�2/ν ≈ 6.26 × 105, with � the being the shorter extent of one of the vortices (i.e. π/2). This compares to a
prescribed value of 2.48 × 104 used in the convergence tests of the Taylor-Green flow in a previous study [23] (although
the model used there can be used as an implicit LES, i.e. without a prescribed or parametrised diffusion).

A similar series of simulations having a smaller time step pre-factor of α = 0.05 results in viscosity estimates that
are only 3% to 4% smaller compared to Table 3. In fact, by also considering α = 0.1, we find that Cν linearly increases
with α, closely obeying the relationship Cν ≈ 3.96 × 10−4(1 + 0.263α). Hence, a larger time step results in (slightly) more
diffusive behaviour, which suggests that parcel splitting and merging is more vigorous, likely because parcels tend to be
more deformed on average.

We next examine the degree to which the flow remains incompressible. This is measured by the (relative) r.m.s. area
error

√
〈(V̄ − V cell)

2〉/V cell. We consider three different initialisations, with 4, 9 and 16 (circular) parcels per grid cell. The
15

M. Frey, D. Dritschel and S. Böing Journal of Computational Physics: X 14 (2022) 100109
Fig. 10. Gridded relative r.m.s. area error for different initial numbers of parcels per cell. These results are obtained using a grid of 32 × 32 cells.

evolution of the relative r.m.s. area error for the three simulations is shown in Fig. 10, where we see that the eventual error
is approximately the same (and small, around 0.01%) in all cases. This is because parcels can split and merge, and in time
the number of parcels becomes closely similar despite using different numbers initially. At early times, however, the r.m.s.
area error exhibits a significant overshoot when only 4 parcels per cell are used initially. A good choice appears to be 9
parcels per cell initially, as this keeps the relative r.m.s. area error approximately constant during the early stages of the
simulation. The average number of parcels per grid cell saturates at around 21 with a standard deviation between grid cells
of approximately 4 at late times, independent of the number of parcels used initially (not shown).

Finally, we examine the degree to which symmetry is maintained in EPIC. To this end, Fig. 11 shows the parcel config-
uration at times 0, 5, 20 and 80 (for the simulation using all the default parameters in Table 2). The parcels are coloured
with respect to their aspect ratio λ (initially all parcels have λ = 1). The mean aspect ratio, time averaged, is approximately
2.38 with a standard deviation of 0.69 when using either 4, 9 or 16 parcels per cell to initialise. One may observe that,
in time, symmetry is not preserved (compare for example the green-yellow spots at the top left and right of Fig. 11 at
t = 20). Symmetry is broken by parcel mergers on or near the symmetry axis (x = 0) and across the periodic boundary
(x = π/2), another symmetry axis of the Taylor-Green flow. It appears extremely difficult to design a parcel merger algo-
rithm that preserves symmetry, without first imposing symmetry e.g. by simulating only one cell of the flow in a domain
entirely enclosed by free-slip boundaries. Nonetheless, the vorticity field remains closely anti-symmetric in x, as shown in
Fig. 12 which plots the r.m.s. value of ζ(x, y, t) + ζ(−x, y, t) (for x ≥ 0) scaled by ζmax(0) as a function of time. Symmetry
is first broken between t = 2 and 3, but the loss of symmetry is only slight (around 0.15%) over the entire duration of the
simulation, and saturates by around t = 50. The largest errors occur where vorticity gradients are largest, as expected (not
shown).

4.2. Straka density current test case

In the second test case we initialise a cold bubble following the setup of Straka [25], where an ellipse with semi axes
(a◦, b◦) = (4, 2) km is centred at (x◦, y◦) = (0, 3) km in a domain with extent [−25.6, 25.6] ×[0, 6.4] km. Within the ellipse,
i.e. where

r(x, y) =
√

(x − x◦)2/a2◦ + (y − y◦)2/b2◦ ≤ 1 (51)

a temperature perturbation (a cold anomaly) is introduced having the form

�T (r) = −�Tmax[cos(πr) + 1]/2 (52)

with �Tmax = 15 K. The total buoyancy [4] is therefore given by b(r) = g�T (r)/T0 with reference temperature T0 = 300 K
and gravitational acceleration g = 9.81 m/s2 (there is no moisture in this setup). Unlike [25], we consider an incompressible
flow and therefore do not need to solve a pressure or energy equation. Moreover, we consider an inviscid flow, whereas
[25] used a moderately strong prescribed viscosity. Other results for the Straka density current test case without viscosity
can be found in [29], who used radial basis function generated finite differences (RBF-FD) to solve the governing equa-
tions.

In Fig. 13 we show the parcel configuration in the right half of the domain at time 900 s. The simulation is initialised
with 9 parcels per cell (the default) and 4096 × 512 grid cells. In the upper panel of the figure, the parcels are coloured
according to their aspect ratio. At the interface between the passive and active regions, the parcels undergo significant
stretching and have a relatively high aspect ratio. The corresponding parcel buoyancy is shown in the lower panel. Many
small-scale vortices are evident, arising from early Kelvin-Helmholtz instabilities developing on the spreading density cur-
rent.

The evolution of the energy, including the kinetic and potential components, is shown in Fig. 14. The EPIC model con-
serves the total energy very well considering the great complexity of the flow, and this is true even at lower grid resolution.
16

Fig. 11. Parcel configuration at times 0, 5, 20 and 80 (from left to right and top to bottom). The parcels are coloured according to their aspect ratio λ. This
simulation starts with 9 parcels per cell on a 32 × 32 grid, giving a total of 9216 parcels.

Fig. 12. The symmetry error in the Taylor-Green simulation as measured by the r.m.s. value of the vorticity folded into x ≥ 0, normalised by the initial
maximum vorticity.

The net energy loss over time as a function of grid resolution is listed in Table 4, including results for pseudo-spectral
simulations using hyperviscosity and molecular viscosity, PS-h and PS-m (see below). The data indicate that doubling reso-
lution reduces the loss in energy by less than a factor of 2. This is less than the expected factor of 4 for two-dimensional
flows without buoyancy [see sec. 3.4 in 30]; however, buoyancy-driven flows exhibit fine-scale vorticity production, and
thus greater dissipation is to be expected [31].

We next compare EPIC with a standard pseudo-spectral (PS) method [32]. The latter is a grid-based method that has
been extensively used in simulations of fluid flows, in particular turbulence. It is simple and accurate, and is ideally suited
to the flow model considered here (for details, see Appendix I). It uses many of the same components as EPIC, in particu-
M. Frey, D. Dritschel and S. Böing Journal of Computational Physics: X 14 (2022) 100109
17

M. Frey, D. Dritschel and S. Böing Journal of Computational Physics: X 14 (2022) 100109

Fig. 13. Parcel configuration of the Straka density current test case (4096 × 512 grid cells) at 900 s in the subdomain [0, 18] × [0, 6.4] km. This simulation
uses the default parameter values listed in Table 2. Each parcel is coloured according to its aspect ratio (above) or buoyancy (below). The square zoom
windows in the lower panel are 600, 100 and 25 m wide, the last corresponding to two grid cell widths. Individual parcels can be seen in the finest zoom;
they are overplotted depending on their order and thus do not give the actual buoyancy field. To make the images in the lower panel, the buoyancy field
is first obtained on a very fine grid using the subgrid scale visualisation method described in Appendix H, then the individual parcels are plotted over this
background. This ensures that any voids between the parcels are filled. Subsequent figures use subgrid scale visualisation alone, which produces a smoother
image at the finest scales. Note: the parcel number indicated on this figure refers only to the subdomain shown.

Fig. 14. Evolution of the available potential (P), kinetic (K) and total (P + K) energy. The results are obtained using the default parameter values listed in
Table 2 and 4096 × 512 grid cells. The relative total energy loss between the initial time (t = 0 s) and the final time (t = 900 s) is 0.53%.

Table 4
Relative total energy loss between the initial time (t = 0 s) and the final
time (t = 900 s) as a function of grid resolution, and for different numerical
methods (see text). Doubling the grid resolution in both directions for EPIC
reduces the energy loss by a factor ranging from 1.32 to 1.87.

Number of
grid cells

Energy loss (%)

EPIC PS-h PS-m

256 × 32 4.51 4.88 23.55
512 × 64 2.44 2.28 18.69
1024 × 128 1.31 1.44 12.05
2048 × 256 0.70 0.64 7.07
4096 × 512 0.53 0.38 4.01
18

M. Frey, D. Dritschel and S. Böing Journal of Computational Physics: X 14 (2022) 100109
Fig. 15. Zoom of the buoyancy field b at t = 900 s, comparing EPIC (left column), PS with hyperviscosity (PS-h, middle column), and PS with molecular
viscosity (PS-m, right column) for various grid resolutions (increasing downwards as indicated). Note, in any row, the PS simulations employ a grid which
is twice finer than the EPIC one. In this test case, the exact bmin = −g�Tmax/T0 = −0.4905 m/s2, while bmax = 0 m/s2.

lar the same FFTs and the same time-step adaption, to facilitate comparison. For numerical stability, the PS method must
obey an additional CFL constraint on the time step, and furthermore requires small-scale damping. As in many previous
studies, we have implemented both hyperviscosity, ∝ ∇6ζ and ∇6b on the right-hand sides of Eq. (1) and Eq. (2), and or-
dinary (molecular) viscosity. For both forms of damping, the resolution-dependent viscosity coefficient is tuned to minimise
spurious Gibbs fringing and ensure decay in spectra at high wavenumbers (small scales) — full details may be found in
Appendix I.

We start with a qualitative comparison of the methods in Fig. 15 (note that some of the details of these plots are best
seen using a detailed digital zoom), which shows a portion of the buoyancy field at the final time, at various grid resolutions,
and for EPIC and PS simulations using hyperviscosity and molecular viscosity (PS-h and PS-m). The EPIC fields are derived
using the fine-scale visualisation method in Appendix H. Across any row, the grid resolution used in EPIC is half that (in
each direction) used in PS. The EPIC fields compare well with the PS-h ones at four times higher resolution, while the PS-m
fields are comparatively diffusive. Indeed, only the highest resolution PS-m field (bottom right) is comparable to, yet still
more diffusive than, the coarsest resolution EPIC field (upper left), which uses 16 times lower resolution.

While PS-h is much less diffusive than PS-m, there is a price to pay: the extrema bmin(t) and bmax(t) do not remain
within their initial bounds, and do not vary monotonically in time, as in PS-m (almost, here the diffusion is marginally
sufficient) and in EPIC — see Fig. 16. Not only does hyperviscosity cause fringing, it leads to overshoots and undershoots
where steep gradients develop, as is well known [33,34]. As a result, field extrema may lie well outside their initial range,
here up to 50% of bmax(0) − bmin(0). Moreover, the situation worsens for increasing resolution, and is not improved by
increasing the damping rate (we have tested a 10-fold increase). This is a particularly undesirable feature in atmospheric
models, as it is critical that certain fields remain monotone to prevent spurious negative tracer concentrations, e.g. water
vapour.

While other advection schemes could be used to preserve monotonicity, they are typically much more expensive than
the PS method used here [25]. EPIC, by construction, preserves monotonicity: buoyancy only changes when parcels merge,
and the resulting buoyancy value always lies between the minimum and maximum buoyancy of the merging parcels by
Eq. (49).

A quantitative comparison of the EPIC and PS methods is provided by examining the buoyancy power spectra, P (k), the
spectral variance of b as a function of total wavenumber k (the magnitude of the wavevector). Fig. 17 compares the spectra
at the final time in the EPIC, PS-h and PS-m simulations across a wide range of resolutions. The strong diffusion in PS-m is
especially evident, and it affects the entire range of scales. By contrast, EPIC and PS-h exhibit power-law spectra with little
evidence of diffusion, and the spectra are closely comparable over shared wavenumber ranges, indicating good convergence
with resolution. Overall, EPIC captures the widest range of scales for a given grid resolution, about four times wider than
PS-h. And EPIC does this while remaining monotone.

Notably, Table 4 indicates that the net energy loss in the EPIC simulations is comparable to that in the PS-h simulations
at the same grid resolution. As discussed below in Section 4.3, this is due to the fact that EPIC obtains its vorticity tendency
bx from gridded values of the buoyancy b̄. This limits vorticity growth (though it is still higher than in PS-h as shown
19

M. Frey, D. Dritschel and S. Böing Journal of Computational Physics: X 14 (2022) 100109
Fig. 16. Comparison of the buoyancy extrema bmax(t) (top row) and bmin(t) (bottom row) in the Straka test case, for different grid resolutions, and for
different models (EPIC, PS-h and PS-m). The dashed lines indicate the exact initial values, which are theoretically conserved by Eq. (2). In EPIC, bmax(0) and
bmin(0) vary with resolution because parcel attributes are initialised from gridded fields — see Section 3.1.

Fig. 17. Comparison of the gridded buoyancy power spectrum P (k) at t = 900 s in the Straka test case, for different grid resolutions, and for different
models (EPIC, PS-h and PS-m). The power spectrum satisfies Parseval’s identity, namely ́ P (k)dk =˜

b̄2 dxdy. Note: the EPIC results were obtained by first
interpolating the buoyancy onto a grid which is 12 times finer in each direction, using the method described in Appendix H. Also note: spectra are cut off
below P = 103.

below), and reduces the kinetic energy content of the flow, since a part of the subgrid scale velocity field is unresolved in
EPIC. This explains the comparable decay in total energy seen in EPIC and in PS-h. The latter method, however, achieves its
level of energy conservation by creating spurious overshoots and undershoots in b and ζ . A monotone method like PS-m is
far more dissipative. EPIC achieves its level of conservation while remaining monotone.

Regarding the numerical cost, Fig. 18 compares EPIC, PS-h and PS-m over a 16-fold variation in grid resolution. EPIC is
seen to be most costly, as expected, given the relative simplicity of the PS method. However, the cost increase per doubling
in resolution is less, rising by a factor of approximately 6.3, and at the highest resolution, 4096 × 512, the numerical costs
of the three simulations is more closely comparable. EPIC then takes 3.4 times longer than PS-h (at 2048 × 256, EPIC takes
8.4 times longer). The steeper growth in cost in the PS method is due to the CFL stability constraint on the time step, which
is not present in EPIC. This constraint limits the time step over an increasing proportion of the simulation with increasing
resolution (at early times, the buoyancy frequency limits the time step, see Eq. (41)). It is evident from Fig. 16 and Fig. 17
20

M. Frey, D. Dritschel and S. Böing Journal of Computational Physics: X 14 (2022) 100109
Fig. 18. Cost in CPU seconds versus resolution for EPIC, PS-h and PS-m in simulating the Straka test case.

Fig. 19. Development of the buoyancy field in the Robert test case using 256 × 384 grid cells in EPIC. Only the vertical range [100,1350] m is shown.

that EPIC is considerably more accurate than PS at the same resolution, comparable to PS-h at 4 times resolution and with
no fringes or overshoots, and more accurate than PS-m even at 16 times resolution. Taking this into account, EPIC can be
seen to be an efficient, cost effective means to model density-stratified flows.

4.3. Robert warm bubble test case

In our final example we demonstrate EPIC with the asymmetric bubble test case introduced by [26]. This case starts with
a large warm and a small cold ‘bubble’. Each bubble has a potential temperature profile of

�θ(r) =
{

A if r ≤ R,

A exp{−(r − R)2/σ 2} if r > R
(53)

where r(x) = ‖x − xc‖. The warm bubble is centred at xc = (0, 300) m with A = 0.5 K, R = 150 m and σ = 50 m, while the
small cold bubble is centred at xc = (60, 640) m with A = −0.15 K, R = 0 m and σ = 50 m. The bubbles are contained in a
box of width 1000 m and height 1500 m, whose lower left corner lies at (−500, 0) m. The corresponding buoyancy used in
EPIC is b(r) = g�θ(r)/θ0 with reference potential temperature θ0 = 303.15 K and gravitational acceleration g = 9.81 m/s2.

The evolution of the flow to the final time of 900 s is shown in Fig. 19, which displays the buoyancy field b in an
EPIC simulation using 256 × 384 grid cells. The two bubbles collide around t = 300 s, and the larger bubble draws in
environmental air from below forming a characteristic mushroom shape. Thereafter the flow grows rapidly in complexity.
By t = 600 s, the stretched and sharpened buoyancy interfaces roll up into a multitude of vortices, with many incipient ones
developing. This is especially visible on the right, along the thin filament connecting the main head of the bubble with the
complex structure to the lower right. By the final time (t = 900 s), the flow has become exceedingly complex, but the wake
region also shows significant mixing with the environment and is thus losing its buoyancy.

This test case was run at various grid resolutions with initially 9 parcels per cell and the default parameter settings
in Table 2. The net energy loss reduces by a factor of around 2 in EPIC when doubling the resolution as summarised in
Table 5. The evolution of the kinetic and potential energy for 1024 × 1536 grid cells is illustrated in Fig. 20. By the end of
the simulation, nearly half of the available potential energy has been converted into kinetic energy. The kinetic energy likely
grows further before saturating and oscillating, as in the Straka test case (cf. Fig. 14).
21

M. Frey, D. Dritschel and S. Böing Journal of Computational Physics: X 14 (2022) 100109
Table 5
Relative total energy loss between the initial time (t = 0 s) and the final
time (t = 900 s) as a function of grid cell resolution. Doubling the grid reso-
lution in both directions for EPIC reduces the energy loss by a factor ranging
from 1.88 to 2.27. The energy loss in the EPIC simulations is comparable to
that in the PS-h simulations at the same grid resolution.

Number of
grid cells

Energy loss (%)

EPIC PS-h PS-m

32 × 48 3.54 3.50 10.13
64 × 96 1.88 2.16 9.36
128 × 192 0.84 1.21 6.63
256 × 384 0.37 0.53 4.38
512 × 768 0.17 0.22 2.64
1024 × 1536 0.09 0.10 1.52

Fig. 20. Evolution of the available potential (P), kinetic (K) and total (P + K) energy for the Robert warm bubble case. The results are obtained using the
default values listed in Table 2 and a grid of 1024 ×1536 cells. The relative total energy loss between the initial time (t = 0 s) and the final time (t = 900 s)
is 0.09%.

Regarding accuracy and efficiency, Fig. 21 (top panel) shows that the r.m.s. area error overshoots at early times, reaching
approximately 1.5 × 10−4, before decreasing and stabilising at later times to around 10−4, independent of grid resolution.
This decrease occurs because the number of parcels per cell (middle panel) increases, enabling the code to better preserve
incompressibility. Despite the increase in parcels, the percentage of small parcels (with V i < V min, see bottom panel) in the
pool of all parcels before merging remains around 5% or less.

The convergence of the spatial fields of both buoyancy and vorticity at the final time t = 900 s is presented in Fig. 22
and Fig. 23, comparing EPIC and pseudo-spectral simulations using hyperviscosity and ordinary viscosity, PS-h and PS-m.
The height of the leading edge of the rising bubble is closely similar at all resolutions in EPIC, but this edge becomes
increasingly convoluted with resolution. As expected in a flow where the production of vorticity is proportional to the
buoyancy gradient, and therefore inversely proportional to the grid cell width, each increase in grid resolution will activate
more intense and smaller-scale vortices. As soon as buoyancy gradients are limited by the grid resolution, results (on small
scales) will differ from those generated at higher resolution. At the time shown in these figures, buoyancy gradients are
limited even at the highest resolution, so results at yet higher resolution will differ, but primarily at small scales. The
only way to achieve pointwise convergence is to compare an early time at which buoyancy gradients are not limited by
resolution, like at t = 304.1 s in Fig. 19. However, this hardly challenges the numerical method.

As previously found in the Straka test, qualitatively EPIC resembles a PS-h simulation run at 4 times finer resolution
(in each direction). Moreover, EPIC has none of the numerical artefacts of overshoots and undershoots seen in PS-h (see
Fig. 24). PS-m is more diffusive than EPIC even when the latter uses 16 times coarser resolution in each direction. Notably
however, vorticity extrema in EPIC and PS-h are comparable at the same grid resolution. This is due to the fact that EPIC
computes the vorticity tendency, bx , from the gridded buoyancy field b̄. Thus, the growth in vorticity is limited ultimately
by the inverse of the grid spacing. Yet, what matters to the velocity field is the circulation deposition, effectively the area-
integrated vorticity tendency, and this only requires an accurate gridded buoyancy field. Note, the streamfunction ψ(x, t)
is essentially the (spatial) sum of the local circulation ζ(x′, t)dxdy multiplied by the appropriate Green function G(x, x′)
for the domain. In EPIC, the main limitation is that the subgrid scale velocity field is crudely represented — it varies only
linearly in each coordinate, holding the other fixed, by Eq. (17). Nonetheless, the missing part of the subgrid scale velocity
field is much weaker than the resolved field, and so parcel advection is accurate, indeed significantly more accurate than
the finite grid resolution would suggest. The dominance of the resolved velocity field in advection is key to the accuracy of
Lagrangian-based methods, see e.g. [18,28,35] and references therein.

As in the Straka test case, it is instructive to study how the numerical results converge across scale by examining the
buoyancy power spectrum P (k), and again comparing with PS simulations using hyperviscosity and molecular viscosity,
22

Fig. 21. Evolution of the gridded relative r.m.s. area error (top), average number of parcels per grid cell (middle), and the percentage of small parcels
(bottom) for the asymmetric Robert test case at different grid resolutions.

PS-h and PS-m. This is done in Fig. 25 for the final time, and across a wide range of resolutions. Again, PS-m exhibits strong
diffusive effects and poor convergence. PS-h and EPIC are much less diffusive and show stronger convergence. Again, EPIC
captures the widest scale range without noticeable effects of diffusion, about 4 times wider than PS-h.

The cost of the simulations over a wide range of resolutions is shown in Fig. 26, comparing EPIC with PS-h and PS-m.
Again, EPIC costs more at any given resolution, but considering it is also most accurate, perhaps 4 times more accurate than
PS-h (and without the associated numerical artefacts), EPIC is seen to be highly cost effective. The cost increase in EPIC per
doubling in resolution is approximately 6.5, while it is more than 8 in PS-h and PS-m. Closely similar results were found in
the Straka test case, see Fig. 18.

We finish by examining the mixing properties of EPIC for this case. For this, we form a histogram of parcel buoyancy to
see how the initial buoyancy values mix as a result of parcel splitting and merging (the only source of mixing in EPIC). The
histogram is created by summing parcel volumes V i into buoyancy bins (like when forming a PDF), then normalising so that
the area under the histogram is 1 (without loss of generality). The results are shown in Fig. 27, for the initial conditions (top
panel), the final configuration (middle panel), and the difference between the final and the initial configurations (bottom
panel) — for all six grid resolutions considered. The large peak at b = 0 corresponds to the neutrally buoyant background
(here most of the domain), while the secondary peak near b = 0.0163 corresponds to the uniform buoyancy inside the large
bubble. The broader distribution of the histogram seen at low resolution is a consequence of our initialisation of parcel
buoyancy values from a given gridded field. The differences shown in the bottom panel indicate the net mixing that has
taken place from the initial to the final time. We see that the middle range of positive buoyancy values has filled in, while
the lower negative range of buoyancy has been depleted. The latter is a consequence of the intense stretching and folding of
the cold bubble, seen e.g. in Fig. 19 (right panel). Similarly, high buoyancy values mix with lower values or the environment,
especially around the sharp interfaces which develop as a result of material stretching.

An especially notable feature is the strong convergence displayed by even the difference histograms with increasing
grid resolution. This is promising, as it shows that the mixing of buoyancy, here a material tracer, is well modelled by
parcel splitting and merging in EPIC. Such strong convergence was not obtained previously using point parcels in MPIC
[10], which used an ad hoc, implicit model of stretching (since point parcels cannot explicitly deform). It appears, therefore,
that the ability to explicitly deform parcels in EPIC is key to properly modelling small-scale mixing. Stretching is accurately
modelled by following the shape of each parcel, and a single criterion is used for parcel splitting (a high aspect ratio). Parcel
merging is also handled differently in EPIC compared to MPIC. The latter method removes small parcels by spreading their
M. Frey, D. Dritschel and S. Böing Journal of Computational Physics: X 14 (2022) 100109
23

M. Frey, D. Dritschel and S. Böing Journal of Computational Physics: X 14 (2022) 100109

Fig. 22. Buoyancy at 900 s for various resolutions, and for EPIC, PS-h and PS-m, as indicated. Only the vertical range [100, 1350] m is shown. In this test
case, the exact bmin = −0.4854033 × 10−2 m/s2, while bmax = 1.6180109 × 10−2 m/s2.

Fig. 23. Vorticity at 900 s for various resolutions, and for EPIC, PS-h and PS-m, as indicated. Only the vertical range [100,1350] m is shown.
24

M. Frey, D. Dritschel and S. Böing Journal of Computational Physics: X 14 (2022) 100109

Fig. 24. Comparison of the buoyancy extrema bmax(t) (top row) and bmin(t) (bottom row) in the Robert test case, for different grid resolutions, and for
different models (EPIC, PS-h and PS-m). The dashed lines indicate the exact initial values, which are theoretically conserved by Eq. (2). In EPIC, bmax(0) and
bmin(0) vary with resolution because parcel attributes are initialised from gridded fields — see Section 3.1.

Fig. 25. Comparison of the gridded buoyancy power spectrum P (k) at t = 900 s in the Robert test case, for different grid resolutions, and for different
models (EPIC, PS-h and PS-m). Note: spectra are cut off below P = 0.01. For comparison with the Straka test case, see Fig. 17.

Fig. 26. Cost in CPU seconds versus resolution for EPIC, PS-h and PS-m in simulating the Robert test case.
25

M. Frey, D. Dritschel and S. Böing Journal of Computational Physics: X 14 (2022) 100109
Fig. 27. Volume-weighted buoyancy histograms of the Robert test case at times t = 0 s (top panel) and t = 900 s (middle panel), together with the difference
(final minus initial, bottom panel) for various grid resolutions. The bin width is 2.32 × 10−4 m/s2. Each histogram is normalised such that its area sums
to 1.

properties to the corners of the grid cell they occupy; these properties are then shared among all remaining parcels. In EPIC,
by contrast, parcels are merged with the closest other parcel, an operation which is much more local and independent of
the grid. Arguably, it is also a more natural approach, and leads to the excellent mixing properties observed in Fig. 27.

5. Discussion

In this paper, we have formulated and tested a new, robust and efficient parcel-in-cell based approach for the simulation
of two-dimensional flows and related physical systems. The approach, called EPIC after ‘Elliptical Parcel-In-Cell’, makes use
of deformable elliptical parcels as in [5], but differs in several fundamental ways. These include (1) ensuring that the parcels
are space-filling (generally overlapping), (2) simplifying their interpolation using a pair of representative ‘support points’, (3)
splitting highly-deformed parcels in a way that conserves all spatial moments up to second order, (4) merging very small
parcels with larger ones in a more geometric way, and (5) automatically correcting for errors in incompressibility without
the need to ever re-grid the parcels. Other details also differ.

Three different test flows were used to quantify accuracy, measure convergence and investigate the dependence on
numerical parameters. These tests demonstrate that complex flows exhibiting sharp variations and extreme values can be
handled efficiently and robustly with the new EPIC method. Moreover, we have compared results obtained with a standard
pseudo-spectral method, widely used in fluid dynamical modelling, and have shown that EPIC offers a highly cost-effective
alternative. During the development stage, we have exhaustively tested each component individually in a wide variety of
‘unit tests’. We have ensured that steady flows like Taylor-Green remain very close to steady for long times. We have ensured
that incompressible flows remain area preserving, a known challenge for parcel-based methods [4,5,10,20]. Finally, we have
also ensured that the EPIC code database is easy to use and is readily adaptable to other problems (see ‘code availability’
below for access).

The many tests conducted helped to pin down choices for the numerical parameters in Table 2. The choice of each
parameter has an impact on both accuracy and efficiency. We have sought a balance. It makes no sense to use a tiny
26

M. Frey, D. Dritschel and S. Böing Journal of Computational Physics: X 14 (2022) 100109
minimum area fraction Ṽ min because this does not improve the subgrid representation without an associated subgrid-scale
velocity field; moreover it is computationally expensive and takes much memory. Likewise, the time step pre-factor α need
not be very small since the greater accuracy in time stepping is then swamped by other errors — like simply using a finite
spatial resolution. The recommended parameters in Table 2 do not appear to be dependent on the grid resolution (not
listed in the table). At higher resolution, we simply use more parcels. The time step will be shorter as the velocity strain
and buoyancy gradients will naturally increase.

Note, the recommended settings need not be strictly adhered to: there is some liberty in the values. We advise against
changing β and Cmax in particular. Making λmax smaller may be more accurate but will lead to many more parcels, so
the code will be less efficient. Likewise, α could be reduced if higher temporal accuracy is needed for some reason. The
values of Ṽ min and Ṽ max can be adjusted, but extensive tests indicate that the recommended values enable an adequate
representation of subgrid-scale variations.

An improvement we hope to make in the near future concerns small, inactive parcels left over following a period of
strong stretching. In the density-stratified flows examined here, a descending patch of denser fluid or a rising patch of
lighter fluid leaves a turbulent wake which decays in time through entrainment and mixing. This may leave many small
parcels in nearly stagnant regions with low strain. Numerically, these small parcels over-represent the flow, and moreover
increase the computational burden and memory footprint. A possible remedy is to make the minimum parcel area fraction
Ṽ min depend on certain flow properties. For example, Ṽ min could increase as the stretching rate γ , buoyancy gradient |∇b|
and/or vorticity gradient |∇ω| decrease.

The EPIC method, developed here for incompressible density-stratified flows under the Boussinesq approximation, could
be extended to much more diverse physical systems. The core aspect of the method, namely representing a continuum by
a space-filling set of elliptical parcels, does not depend crucially on the physical system modelled so long as it is advection
dominated, with diffusion playing a minor role except perhaps in subgrid-scale turbulent mixing. Even if diffusion is im-
portant for certain quantities but not for all quantities, as in magneto-hydrodynamic turbulence at small magnetic Prandtl
number [35], a hybrid EPIC method could be used. This hybrid method would evolve diffused quantities on a regular grid
using conventional numerical methods, and use parcels to evolve the remaining advection-dominated quantities (this would
be analogous to the ‘Contour Advection’ method used in [35]).

A similar strategy may be applied to systems involving a mix of predominantly large-scale waves and advection-
dominated quantities, as in rotating shallow-water turbulence [36]. The latter is an example of a compressible (2D) flow. In
EPIC, parcel areas would generally change in time, meaning that all three distinct components of the shape matrix (B11 , B12
and B22) would have to be evolved independently. This is however straightforward. We would still require that the parcel
interpolated area V̄ at each grid point is as close as possible to the grid cell area V cell. The algorithm to do this is exactly
the same as we have developed for incompressible EPIC.

The original motivation for developing EPIC was to improve the modelling of cloud growth and decay in the atmosphere,
following on from the moist parcel-in-cell (MPIC) method [4,10]. In fact, the 2D model developed here optionally includes
moisture to allow for condensation and evaporation, and the associated latent heat exchanges. Our next step is to generalise
EPIC to three dimensions, to properly account for turbulent processes like vortex stretching. Like in MPIC, each parcel
will now carry a vector vorticity which evolves not only because of buoyancy gradients (baroclinic processes), but also
because of stretching. Otherwise, the attributes carried on parcels are the same as in the 2D model. Moreover, many of
the numerical methods carry over, largely unchanged, to the 3D model. The exception is the shape matrix B , which now
has 5 independent components (in an incompressible flow) rather than 2. The evolution of B is however formally identical.
The interpolation in 3D will use 4 support points lying in the major-middle axis plane of the ellipsoid (rather than 2).
These support points are the analogues of Gaussian quadrature points for volume integration [17]. Their location depends
on obtaining the eigenvalues and eigenvectors of B , which is less straightforward than in 2D but is nonetheless efficient.
A 3D version will also incorporate distributed memory parallelism. Most of the functionality required for parallelism has
been previously implemented for the Moist Parcel-in-Cell method [37], but some adjustments will be needed because the
4 parcel support points can be in different grid cells. The new merging algorithm (see Appendix D) will also require local
parallel communication. We hope to report on the 3D version of EPIC in the near future.

CRediT authorship contribution statement

Matthias Frey: Data curation, Formal analysis, Investigation, Methodology, Software, Validation, Visualization, Writing
– original draft, Writing – review & editing. David Dritschel: Conceptualization, Formal analysis, Funding acquisition,
Investigation, Methodology, Software, Supervision, Writing – original draft, Writing – review & editing. Steven Böing: Con-
ceptualization, Formal analysis, Funding acquisition, Investigation, Methodology, Software, Visualization, Writing – original
draft, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.
27

M. Frey, D. Dritschel and S. Böing Journal of Computational Physics: X 14 (2022) 100109
Code availability

The source code of EPIC is publicly available and version 0.10.8 can be downloaded from [38]. The pseudo-spectral source
code version 0.0.4 can be downloaded from [39]. The static Taylor-Green vortex test case of Appendix F was performed with
a special EPIC code version available from [40].

Third party libraries

In order to post-process the data and generate the figures in this publication we heavily used the following Python
libraries: Matplotlib (version 3.5.1) [41], colorcet (version 3.0.0) [42,43], h5py (version 3.6.0) [44], NumPy (version 1.21.2)
[45], pandas (version 1.3.5) [46,47] and SciPy (version 1.7.3) [48].

Acknowledgements

The authors thank Doug Parker for comments that substantially improved the manuscript. This research is supported by
the UK Engineering and Physical Sciences Research Council (grant numbers EP/T025301/1 and EP/T025409/1).

Appendix A. Inverting vorticity for the velocity field: numerics

Here we discuss the numerical procedure used for determining the velocity field u = (u, v) from the vorticity field ζ in
an x-periodic domain bounded between free-slip walls at y = ymin and y = ymax. As discussed in Section 2.2, the procedure
is facilitated by working in (semi-)spectral space, after a Fourier transform in x. The finite domain length in x gives rise to
a set of discrete wavenumbers k ∈ {0, �k, 2�k, ..., nx�k} where �k = 2π/Lx , Lx = xmax − xmin is the domain width and
nx is the number of x grid points (counting the periodic edge only once). The Fourier transform of ψ(x, y) (here time t is
suppressed) yields ψ̂k(y) for each discrete k.

The first step is to Fourier transform the gridded vorticity field (obtained by par2grid). The x-independent mode
ζ̂ 0(y) is then used to compute the x-independent horizontal velocity component û0(y), making use of the relation ζ̂ 0(y) =
−dû0/dy. Numerically, we integrate this using the trapezoidal rule to obtain û0(y) on a set of ny + 1 grid points in y which
are equally spaced between ymin and ymax. Indexing the y grid points from 0 to ny , we start with û0

0 = 0 and determine
the remaining values from

û0
j = û0

j−1 − �y

2

(
ζ̂ 0

j + ζ̂ 0
j−1

)
, j = 1, ..., ny . (A.1)

We next adjust all values to a prescribed domain mean value 〈u〉 by adding a constant C . The domain mean value is
constant in time due to momentum conservation. The latter follows from the fact that the x momentum equation can be
written in flux form as

ut = −(u2 + p/ρ0)x − (uv)y (A.2)

due to incompressibility ux + v y = 0 (here p is the pressure). Integration over the domain and using v = 0 on the y bound-
aries implies that 〈ut〉 = 0, or 〈u〉 is a constant. Numerically, the constant C required to enforce momentum conservation
is found by summing the tentative values of û0

j (again using the trapezoidal rule), and subtracting this from the prescribed
value of 〈u〉.

The remaining Fourier modes with k > 0 are handled differently. Instead, we solve a Poisson equation, ∇2ψ = ζ , for the
streamfunction ψ . In spectral space, this becomes

d2ψ̂k

dy2
− k2ψ̂k = ζ̂ k (k > 0), (A.3)

and the boundary conditions v = ψx = 0 imply ψ̂k = 0 at y = ymin and ymax. Numerically, this is solved by fourth-order
compact differences, following [49] and [50]. We discretise Eq. (A.3) as follows

ψ̂k
j+1 − 2ψ̂k

j + ψ̂k
j−1

(�y)2
− k2

12
ψ̂k

j+1 − 5k2

6
ψ̂k

j − k2

12
ψ̂k

j−1 = 1

12
ζ̂ k

j+1 + 5

6
ζ̂ k

j + 1

12
ζ̂ k

j−1 (A.4)

for j = 1, ..., ny − 1. Using the boundary conditions ψ̂k
0 = ψ̂k

ny
= 0 results in a simple tri-diagonal problem which is solved

in O(ny) operations. This provides ψ̂k
j at all y grid points. Differentiation in spectral space (by simple wavenumber multi-

plication) then gives v̂k
j . On the other hand, the horizontal velocity component ûk = −dψ̂k/dy must be found by numerical

differentiation. Again we use fourth-order compact differences and solve the tri-diagonal problem
28

M. Frey, D. Dritschel and S. Böing Journal of Computational Physics: X 14 (2022) 100109
1

6
ûk

j+1 + 2

3
ûk

j + 1

6
ûk

j−1 = ψ̂k
j−1 − ψ̂k

j+1

2�y
(A.5)

for j = 1, ..., ny − 1, supplemented by the one-sided compact difference relations at the y boundaries [50]:

1

3
ûk

1 + 2

3
ûk

0 = �y

6
ζ̂ k

0 − ψ̂k
1

�y
(A.6)

2

3
ûk

ny
+ 1

3
ûk

ny−1 =
ψ̂k

ny−1

�y
− �y

6
ζ̂ k

ny
. (A.7)

Finally, inverse FFTs are performed to recover u and v in physical space (on the grid). This completes the inversion problem.
Tests starting from a non-trivial exact solution confirm that errors in the vertical velocity field v scale like n−3

x (taking
ny ∝ nx). This scaling is also found for the horizontal velocity component u when the x-independent component of the
vorticity ζ̂ 0(y) = 0; otherwise the scaling is n−2

x due to limitations imposed by the trapezoidal rule (generally, one cannot
assume any symmetry properties for ζ̂ 0(y) across the y boundaries). The n−3

x scaling for v and for u when ζ̂ 0(y) = 0 is the
best one can do for free-slip boundaries when fourth-order compact differencing is used [50].

Appendix B. The shape matrix B: evolution and eigenvalues

In this section we derive equations Eqs. (8) to (13) given in Section 2.3. We first derive Eq. (8). Taking the time derivative
of the general definition of an ellipse, Eq. (5), and inserting Eq. (7) yields

d

dt
(xᵀ B−1x) = 0 (B.1)

⇒ dxᵀ

dt
B−1x + xᵀ dB−1

dt
x + xᵀ B−1 dx

dt
= 0 (B.2)

⇒ xᵀ Sᵀ B−1x + xᵀ dB−1

dt
x + xᵀ B−1 Sx = 0 (B.3)

⇒ Sᵀ B−1 + dB−1

dt
+ B−1 S = 0 . (B.4)

The evolution of B−1 is therefore given by

dB−1

dt
= −(Sᵀ B−1 + B−1 S) . (B.5)

Multiplying with B from the left and right side and making use of the relation

d(B−1 B)

dt
= dB−1

dt
B + B−1 dB

dt
= 0 ⇐⇒ dB

dt
= −B

dB−1

dt
B (B.6)

results in

B
dB−1

dt
B = −(B Sᵀ + S B) (B.7)

dB

dt
= B Sᵀ + S B (B.8)

which is exactly Eq. (8).
The eigenvalues υ of B determine the squared semi-major and semi-minor axes a2 and b2. These are obtained by solving

(B11 − υ)(B22 − υ) − B2
12 = 0 (B.9)

or υ2 − (B11 + B22)υ + B11 B22 − B2
12 = 0 (B.10)

giving the two roots

υ± = 1

2
(B11 + B22) ±

√
1

4
(B11 + B22)2 − B11 B22 + B2

12 . (B.11)

Since

1
(B11 + B22)

2 − B11 B22 + B2
12 = 1

(B11 − B22)
2 + B2

12, (B.12)

4 4

29

M. Frey, D. Dritschel and S. Böing Journal of Computational Physics: X 14 (2022) 100109
Fig. C.28. An elliptical parcel centred at the origin with major axis along the x axis before splitting. The dashed ellipses represent the child parcels obtained
after splitting.

we may simplify the eigenvalues to

υ± = 1

2
(B11 + B22) ±

√
1

4
(B11 − B22)2 + B2

12 (B.13)

where a2 = υ+ and b2 = υ− (as we require a2 ≥ b2).
The eigenvector along the major axis of the ellipse is given by â = (âx, ̂ay) ≡ (cosϕ, sinϕ), the (normalised) solution to(

B11 − a2 B12

B12 B22 − a2

)(
âx

ây

)
=

(
0
0

)
. (B.14)

Both rows are equivalent; using the second gives Eq. (12). Under the assumption that a ≥ b, the semi-focal length c as given
in Eq. (11) is obtained by inserting Eq. (B.13) into c2 = a2 − b2, yielding

c2 = υ+ − υ− = 2

√
1

4
(B11 − B22)2 + B2

12 = 2a2 − B11 − B22 (B.15)

⇒ c =
√

2a2 − B11 − B22. (B.16)

Appendix C. Parcel splitting

To derive the positions and centres of the two identical ‘child’ parcels that result from splitting, we orientate without loss
of generality the major axis of the ‘parent’ parcel along the x axis, so that its minor axis is along the y axis (cf. Fig. C.28).
After splitting, the child parcels must each have half of the area, the same total centroid and the same total second-order
spatial moments as the parent parcel. The child parcels are therefore centred on the x axis at x′ = x ± (h, 0), with h to be
determined by equating the second-order moments. The moments for the parent parcel are given by

ˆ

�

x2dxdy = a3b

2πˆ

0

1ˆ

0

R3 cos2 θdRdθ = 1

4
πa3b, (C.1)

ˆ

�

y2dxdy = a3b

2πˆ

0

1ˆ

0

R3 sin2 θdRdθ = 1

4
πab3, (C.2)

ˆ

�

xydxdy = 0 (C.3)

where � denotes the area of integration (here we have used elliptical polar coordinates (R, θ) in which x = aR cos θ and
y = bR sin θ). The last integral is zero due to symmetry. Assuming the child parcels have the same shape, we can evaluate
the moments for just one of them and double the result:

ˆ

�′
x2dxdy = 2a′b′

2πˆ

0

1ˆ

0

(h + a′R cos θ)2 RdRdθ = 2a′b′ (πh2 + π

4
a′2

)
, (C.4)

ˆ

�′
y2dxdy = 2a′b′3

2πˆ

0

1ˆ

0

R3 sin2 θdRdθ = 1

2
πa′b′3, (C.5)

ˆ

�′
xydxdy = 0 (C.6)

where �′ denotes the area of the child parcels and a′b′ = ab/2. Equating Eq. (C.2) and Eq. (C.5) gives b′ = b. Hence, equal
area requires a′ = a/2. The distance h is obtained by equating Eq. (C.1) and Eq. (C.4); this yields h = √

3a/4.
30

M. Frey, D. Dritschel and S. Böing Journal of Computational Physics: X 14 (2022) 100109
Fig. D.29. Examples of parcel merging chains and a tree.

Appendix D. Parcel merging

D.1. Enforcing the merger rules

In this section, the algorithm for merging parcels is discussed in detail. We start by showing a number of parcel
configurations of increasing complexity and introducing the concepts of leaf parcels, unavailable parcels and double links.
Subsequently, a full example of the merging algorithm with several iterations is given. The merging algorithm ensures all
small parcels are merged, and consists of an iterative stage, and a second stage that deals with small parcels that point to
each other (i.e. they are each other’s nearest neighbour).

Fig. D.29 shows five different parcel configurations: the arrows in the diagrams refer to parcels pointing to other parcels.

1. The first example is a small parcel pointing to a large parcel, with no other parcels involved. In this example, the
algorithm will merge the two parcels. The small parcel is labelled in green to indicate that it is a so-called leaf parcel.
This terminology comes from graph theory, and more specifically the study of trees. A tree is a connected graph without
cycles. In our case, a leaf parcel is defined as a small parcel that does not have any parcels pointing to it. In the iterative
approach, we ignore merged parcels after each iteration, which means a parcel can become a leaf parcel in a later
iteration (after a parcel that was pointing to it is merged).

2. The second example is a chain, where an additional intermediate small parcel is added. In this case, we merge small
parcels a and b, and ignore parcel c as it is a large parcel. In our algorithm, every parcel that has an (unmerged) non-
leaf parcel pointing at it, such as parcel c which has parcel b pointing at it, will be marked as unavailable for merging
in the current iteration. Unavailable parcels are identified only after all leaf parcels have been determined.

3. In the third example, another intermediate parcel is introduced. In this case, we merge parcels a and b in the first
iteration, where parcels c and d are marked as unavailable. Parcels c and d are merged in a second iteration. An
example of the merging procedure with several iterations is given later in this section.

4. The fourth example is similar, but involves a pair of double-linked parcels instead of a small and large parcel. Again,
a and b are merged in the first iteration. A special procedure that deals with double-linked parcels is introduced
later in this section. Double-linked parcels cannot become leaf parcels during the iterative stage, as they will always
continue to have the incoming link from the other double-linked parcel. For the same reason, they will remain marked
as unavailable.

5. The fifth example shows a group merge, where two parcels (a and b) point to the same parcel (c). Any parcel config-
uration without a double link can be described as a tree structure, where the edges are all directed towards the large
parcel. In graph theory, this is known as an in-tree. Here, the parcels a and b merge with c. The parcel d merges with
parcel e.

A more complex example of a configuration having a double link is given in Fig. D.30. A double link introduces a cycle
into the graph, which therefore no longer is a tree in the strict sense. However, the graph can be described as a combination
of two trees which share two nodes at the double link (a dual tree). In Fig. D.30, the different trees are indicated by the
shading of parcels and links (the purple nodes indicate parcels that are shared between the blue and red tree). Any graph
can contain at most one double link, as each parcel can only point to one other parcel. Larger cycles are also excluded: given
31

M. Frey, D. Dritschel and S. Böing Journal of Computational Physics: X 14 (2022) 100109
Fig. D.30. A parcel merging graph that is a dual tree.

Fig. D.31. Merging procedure example: iterative stage.

a set of small parcels, there will be one link which corresponds to the shortest distance (the double link). The corresponding
parcel pair will not have another outward link that would be needed to form a larger cycle.

The first (iterative) stage of the algorithm deals both with trees having a large parcel, and with any links in a dual tree
that do not involve a double-linked parcel. As discussed above, the double-linked parcels remain unavailable for merging
during the iterative stage of the algorithm and require a separate (though simple) procedure.

An example of the iterative algorithm is given in Fig. D.31. The algorithm gradually merges the (dual) tree, starting from
the initial leaf parcels. In each iteration, we first establish the leaf parcels, followed by the unavailable parcels. Then we
determine valid mergers, which involve a single or multiple leaf parcels merging with an available parcel.

In the first iteration shown in Fig. D.31, parcel c is the only available parcel, and we merge parcels a and b with it.
Subsequently, these parcels are marked as merged, indicated by light blue shading here. The link from the merged parcel c
to the unmerged parcel d is disregarded in the second iteration, and d now becomes a leaf parcel. This subsequently means
parcel f becomes available, and parcels d and e can be merged with it. Once this has been done, no further mergers can
be established: note parcel i cannot merge with the unavailable parcel h.

Once no further mergers have been found during an iteration, the algorithm proceeds to resolving the double links and
parcels that point to double-linked parcels (see Fig. D.32). We now mark any double-linked parcel that is connected to
at least one leaf parcel as available for merging. Here, this means h becomes available for merging and both g and i are
merged with it. In principle, we could mark parcel g as a leaf parcel as well at this point, but there is no need to do this in
our implementation.

The outgoing links from an available parcel are removed in this stage. In some other parcel configurations, both double-
linked parcels have leaf parcels pointing to them and become available: in such cases the double link is broken in both
directions (see Fig. D.33).

An isolated pair of double-linked parcels results in both parcels being marked as unavailable. If a link between two
unavailable parcels is found while resolving double links (e.g. a pointing to b and vice versa, as in Fig. D.34, panel 1), we
mark the parcel with an outgoing link (e.g. parcel a in panel 2) as available, so that parcel b merges with it when the
link pointing from b to a is found (panel 3). Note that because of the conservative properties of the merging process, the
direction of merging is arbitrary: parcel a merging into b yields the same result as b merging into a.

Although the current implementation of EPIC only has shared-memory parallelism, the algorithm has been designed with
distributed parallelism in mind. The number of iterations involved in tests with about 300,000 parcels is typically at most
32

M. Frey, D. Dritschel and S. Böing Journal of Computational Physics: X 14 (2022) 100109
Fig. D.32. Merging procedure example: resolution of dual link and final configuration.

Fig. D.33. Merging procedure example: resolution of a dual link with leaf parcels on both sides. 1) Configuration after first (iterative) stage. 2) Both dual-
linked parcels are made available, and outgoing links are removed. 3) Final configuration.

Fig. D.34. Procedure for resolving isolated dual links. 1) Configuration after first (iterative) stage. 2) The first parcel encountered is made available, and the
corresponding outgoing link is removed. 3) Final configuration.

5, although this number goes up to about 10 during the initial stage of the Taylor-Green simulation, where chains of small
parcels tend to occur near the symmetry axis. The number of parcels that need to be merged in any time step is small, and
none of the operations involved are global.

D.2. Merging parcel groups

The merger rules above identify groups of parcels to be merged in the current time step. The actual merger is carried out
as follows. Each merger group consists of a set of elliptical parcels centred at xk , with areas Vk = πakbk and shape matrices
Bk , i.e.

B11,k = 4

Vk

ˆ

�k

x′2 dx′dy′ (D.1)

B12,k = 4

Vk

ˆ
x′ y′ dx′dy′ (D.2)
�k

33

M. Frey, D. Dritschel and S. Böing Journal of Computational Physics: X 14 (2022) 100109
B22,k = 4

Vk

ˆ

�k

y′2 dx′dy′ (D.3)

where �k denotes the area of integration, while x′ ≡ x − xk and y′ ≡ y − yk are coordinates relative to the parcel centres.
Here the index k identifies the parcels belonging to the specific merger group under consideration.

We then create a merged parcel having total area

V =
∑

k

Vk (D.4)

and centre

x = 1

V

∑
k

Vkxk (D.5)

(modulo periodicity in x). The corresponding B matrix components are found from

B11 = 4

V

∑
k

ˆ

�k

(x̌k + x′)2 dx′dy′ (D.6)

B12 = 4

V

∑
k

ˆ

�k

(x̌k + x′)(y̌k + y′)dx′dy′ (D.7)

B22 = 4

V

∑
k

ˆ

�k

(y̌k + y′)2 dx′dy′ (D.8)

where x̌i ≡ xi − x. Performing the integrals yields Eq. (19). These are scaled by a constant factor as described in Section 2.6
to ensure that the determinant B is a2b2 = (V /π)2, required for consistency.

Appendix E. Time step adaptation

In EPIC, the time step is adapted to ensure that the parcel stretch between successive time steps is kept small, and that
buoyancy oscillations (internal waves) are well resolved in time. The parcel stretch is defined by

γ = 1

a

da

dt
= 1

2a2

da2

dt
. (E.1)

Inserting Eq. (13) to replace a2 by 1
2 (B11 + B22) + Q where

Q ≡
√

1
4 (B11 − B22)2 + B2

12 , (E.2)

and using the shorthand notation Ḃ i j ≡ dBij/dt , we have

da2

dt
= 1

2
(Ḃ11 + Ḃ22) +

1
2 (B11 − B22)(Ḃ11 − Ḃ22) + 2B12 Ḃ12

2Q
(E.3)

Next, using Eq. (8) to replace the time derivatives of Bij , we find

da2

dt
= S11 B11 + (S12 + S21)B12 + S22 B22 + (B11 − B22)(S11 B11 − S22 B22) + (B11 + B22)(S12 + S21)B12

2Q
(E.4)

= S11(B11 − B22) + (S12 + S21)B12 + (B11 + B22)[S11(B11 − B22) + (S12 + S21)B12]
2Q

(E.5)

=[S11(B11 − B22) + (S12 + S21)B12]
[

1 + (B11 + B22)

2Q

]
(E.6)

where we have used incompressibility, S22 = −S11, in the penultimate step. The term in square brackets on the right is just
a2/Q . Hence, it follows that the parcel stretch γ is equal to

γ = 1

2a2

da2

dt
= S11(B11 − B22) + (S12 + S21)B12√

(B11 − B22)2 + 4B2
. (E.7)
12

34

M. Frey, D. Dritschel and S. Böing Journal of Computational Physics: X 14 (2022) 100109
Fig. F.35. Evolution of the tracer scalar field in the static Taylor-Green vortex test case (as defined in [5]) using 100 × 100 grid cells. We use the default
parameter settings as given in Table 2, except for the initial number of parcels per cell, here 4 as in [5]. The black solid line defines the reference solution
obtained from the contour advection (CA) algorithm on a 400 × 400 grid.

Next, we seek to find the parcel shape which maximises γ . To this end, let x ≡ B11 − B22, y ≡ 2B12, σ1 = S11 and
σ2 = (S12 + S21)/2. Then γ may be written more simply as

γ = σ1x + σ2 y√
x2 + y2

= σ1 cos θ + σ2 sin θ (E.8)

where tan θ = y/x. Maximising γ over θ , i.e. setting dγ /dθ = 0, implies

cos θ = σ1√
σ 2

1 + σ 2
2

and sin θ = σ2√
σ 2

1 + σ 2
2

. (E.9)

Hence, the maximum stretch |γ | is simply√
σ 2

1 + σ 2
2 =

√
S2

11 + 1
2 (S12 + S21)2 = 1

2

√
(S11 − S22)2 + (S12 + S21)2. (E.10)

Equation (42) takes the maximum value of
√

σ 2
1 + σ 2

2 over all grid points.

Appendix F. Static Taylor-Green vortex test case

In this section we report results for EPIC running the static Taylor-Green vortex test case discussed by [5]. This case uses
the velocity field

u(x, y) = sinπx cosπ y, v(x, y) = − cosπx sinπ y (F.1)

in the domain [0, 1]2. Each parcel i is given a tracer scalar attribute Ci with value

Ci =
{

2 ri ≤ 0.15

1 ri > 0.15
(F.2)

where r2
i = (xi − 0.5)2 + (yi − 0.75)2. Here, we initialise the parcels directly since the algorithm in Section 3.1 is not able to

handle discontinuous fields (parcels close to the interface with ri ≈ 0.15 would have smoothed values of Ci). Note, we use
a 100 × 100 grid, the coarsest used by [5]. In contrast to all other test cases in this paper, we use the exact gridded velocity
field and its derivatives to advect the parcels in time, as done by [5]; hence there is no need to solve the inversion problem.

In Fig. F.35 we show the tracer scalar field at times t = 5 and t = 15 (reported by [5]), and we compare with a reference
solution using ‘Contour Advection’ (CA) [51]. CA represents the tracer contour by a set of connected nodes, and advects them
in the analytical velocity field. The number of nodes varies in time in response to both contour curvature and length. Here,
we have used enough nodes to ensure an accurate solution (364 initially, rising to 1359 at t = 5 and to 3905 at t = 15). The
time step is fixed at �t = 0.01, and results vary insignificantly when using smaller time steps. The results in Fig. F.35 show
excellent agreement between the two numerical methods, despite the use of a coarse grid in EPIC.

Appendix G. Code performance and parameter choices

Here we discuss some of the tests we have performed in order to determine, or narrow down, appropriate numerical
parameter settings for EPIC. We have varied these settings as indicated in Table G.6. The tests below, and many others like in
35

M. Frey, D. Dritschel and S. Böing Journal of Computational Physics: X 14 (2022) 100109
Table G.6
The ranges of the different input parameters used to investigate code per-
formance. Numbers in bold denote the default values that are used when
another parameter is scanned.

Numerical parameter Value

Maximum aspect ratio, λmax 3, 4, 5
Minimum parcel area fraction, Ṽ min 1/20, 1/40, 1/60
Maximum parcel area fraction, Ṽ max 1/2.25, 1/2.89, 1/3.61
Gradient correction pre-factor, β 1.2, 1.8, 2.4
Gradient correction max. compression, Cmax 0.25, 0.5, 0.75
Time step pre-factor, α 0.1, 0.2, 0.3

Fig. G.36. Timings of the Straka case (for 512 × 64 grid cells) with various time step pre-factors α. All timings below 4% of the total time are accumulated
in others.

Appendix F, form the basis for the recommended parameter settings in Table 2. These tests, for example, included using an
analytical velocity field in the Taylor-Green flow to verify that the deforming elliptical parcels well represent the analytical
vorticity field out to arbitrarily long integration times (there is no degradation and parcel numbers remain approximately
constant despite splitting and merging; note that not all of the cases in this article are run until the parcel number has
equilibrated). Furthermore, we have extensively tested each part of the method by constructing a large number of ‘unit
tests’. Here we focus on the more challenging tests we have performed.

G.1. Time step

A major feature of EPIC which is critical to both accuracy and efficiency is time step adaption (see Section 3.2). An
advantage of EPIC is that the time step �t is chosen purely for accuracy, not for numerical stability (the constraint we
impose on aspect ratio growth here is much weaker than the CFL constraint commonly used in grid-based approaches).
An accurate time step for the fluid model investigated requires one to resolve both the strain and the buoyancy frequency
time scales, respectively γ −1

max and N−1
max, see Eq. (41). The dimensionless pre-factors αs and αb limit the time step �t to

αs/γmax or αb/Nmax, whichever is smaller. Choosing small pre-factors is accurate but it is expensive; the recommended
choice αs = αb = α = 0.2 is a compromise between accuracy and efficiency.

This is summarised in Fig. G.36, where we have broken down the cost for each part of the code in the Straka test case.
The final time of 900 s is reached after 672 time steps when α = 0.1, 337 time steps when α = 0.2 and 233 time steps
when α = 0.3. Increasing α from 0.1 to 0.2 halves the total execution time from 170.046 s to 86.45 s, but α = 0.3 reduces
the execution time further to only 60.78 s. Values of α ≥ 0.4 can cause excessive parcel stretching, violating the consistency
condition, Eq. (48).

Choosing both pre-factors αs and αb to be equal is based on the performance of EPIC in both the Straka and Robert test
cases. For example, in the Straka test, Fig. G.37 shows how the time step is first controlled by the buoyancy frequency when
the flow is less active, then switches to being controlled by the velocity strain at later times. The two time step estimates
are of similar magnitude and tend to co-vary except for the earliest times. This is why we have chosen a single parameter
α for both time-step estimates. After the crossing point, the time step stabilises to about 1.34 s ± 0.30 s.

Similar results are found in the Robert case, see Fig. G.38. Again the time step at early times (before t = 203.5 s) is
limited by the buoyancy frequency. Thereafter, as the flow becomes more active, the time step is limited by the velocity
strain. The two time step estimates differ by a mean value of 1.71 s after the crossing point.
36

Fig. G.37. Evolution of the velocity strain and buoyancy frequency time step estimates Eq. (41) in the Straka test case (for 1024 × 128 grid cells). The
simulation uses the default values listed in Table 2. The initial time step estimate using the velocity strain is undefined (since the flow starts from rest),
but drops substantially after a few time steps. We only show a portion of the y axis range.

Fig. G.38. As in Fig. G.37 but for the Robert test case (for 256 × 384 grid cells).

G.2. Variations in the numerical parameter settings

We next use the Straka test case to find suitable values for all user-defined input parameters. To this end, we fix the grid
resolution at 512 × 64 cells but vary individual input parameters over the ranges indicated in Table G.6, holding all other
parameters fixed to the values indicated in bold. We also use 9 parcels per cell initially, as this appears to be a good choice
for keeping the r.m.s. area error uniformly small in time (see Fig. 10).

The default parameters in Table 2 were chosen for efficiency and accuracy, but the results prove not to be sensitive to
these choices. This is quantified next by comparing the location of the buoyancy-weighted centre of mass (〈x〉b, 〈y〉b) at
time t = 900 s. We evaluate this measure over the right half of the domain (x ≥ 0) using

〈x〉b =
∑

xi≥0 xibi V i∑
xi≥0 bi V i

and 〈y〉b =
∑

xi≥0 yibi V i∑
xi≥0 bi V i

. (G.1)

We then compare these values with their reference values 〈x〉ref
b and 〈y〉ref

b , obtained using all the default parameters in
bold, by computing the maximum relative deviation

|〈x〉b − 〈x〉ref
b |/r◦ and |〈y〉b − 〈y〉ref

b |/r◦ (G.2)

where

r◦ = 1

2π

2πˆ

0

a◦b◦dθ

b2◦ cos2 θ + a2◦ sin2 θ
≈ 2.746 km. (G.3)

is the mean radius of the initial elliptical buoyancy distribution.
The percentage maximum relative deviation is listed in Table G.7 for each varied parameter (holding all others fixed). We

see that the deviations are exceedingly small for both Ṽ max and Cmax, likely because these parameters are rarely needed
over the course of the simulation. On the other hand, and as expected, the maximum aspect ratio λmax and the time step
pre-factor α have the greatest influence on the flow. Nevertheless, the deviations in e.g. 〈y〉b are still small, as shown in
Fig. G.39 for variations in α, despite the complexity of the flow evolution.
M. Frey, D. Dritschel and S. Böing Journal of Computational Physics: X 14 (2022) 100109
37

M. Frey, D. Dritschel and S. Böing Journal of Computational Physics: X 14 (2022) 100109

Table G.7
The maximum relative deviations of the mass-weighted centre of mass at 900 s. The reference
values are obtained using the default parameter settings.

Varied numerical
parameter

Max. relative deviation (%) in

〈x〉b 〈y〉b

Maximum aspect ratio, λmax 1.3 1.9
Minimum parcel area fraction, Ṽ min 1.3 1.6
Maximum parcel area fraction, Ṽ max 6.9 × 10−7 1.1 × 10−8

Gradient correction pre-factor, β 9.1 × 10−1 4.5 × 10−1

Gradient cor. max. compression, Cmax 9.4 × 10−7 2.5 × 10−8

Time step pre-factor, α 1.7 2.0

Fig. G.39. Buoyancy weighted centre of mass in the vertical direction for various time step pre-factors α. Results are obtained with 512 × 64 grid cells.

Fig. G.40. Effect of changing the maximum aspect ratio λmax on (top) the relative r.m.s. area error, (middle) the average number of parcels per grid cell,
and (bottom) the percentage of small parcels with V i ≤ V min following splitting.
38

M. Frey, D. Dritschel and S. Böing Journal of Computational Physics: X 14 (2022) 100109
Fig. G.41. Timing percentages of the Straka and Robert cases using the default parameter values in Table 2 and 512 ×64 and 256 ×384 grid cells, respectively.
As expected the operations par2grid and grid2par take most of the time. Together they account for about 60% of the total time. All timings below 5%
of the total time are accumulated in others.

We next consider the impact of λmax on other measures of accuracy. Fig. G.40 (top panel) shows that the gridded relative
r.m.s. area error reduces when using smaller maximum aspect ratios λmax. This improvement comes, however, at a higher
cost since the number of parcels per cell increases (see middle panel) and parcels split more frequently (see bottom panel).
As the loss in efficiency going from λmax = 5 to λmax = 4 is relatively small, while the gain in accuracy is more significant,
we have adopted λmax = 4 as the default, recommended value.

G.3. Timings

Detailed timing percentages for the Straka and Robert test case are presented in Fig. G.41. The figure shows that the
routines interpolating to and from the grid, i.e. par2grid and grid2par, are responsible for the highest costs. Together,
they take approximately 60% of the total time. The advection of the parcels (parcel push) by the low-storage RK4 algo-
rithm uses about 12%. The newly developed parcel correction methods (gradient and laplace correction) account
for about 20%. All other operations taking less than 5% are accumulated in others, accounting for 8% to 9%.

Appendix H. Subgrid visualisation

For subgrid visualisation and detailed spectral analysis, we follow the approach described in [10], extended to elliptical
parcels with some modifications. Each parcel contributes to the fine-scale gridded field at a number of grid points in its
surroundings. The values of a field q on the fine-scale grid q̆(x̄) (distinguished from an overbar to prevent confusion with
the coarser grid used for advection) are given by a sum of contributions from nearby parcels (indexed by i):

q̆(x̄) =
∑

i qi f (reff(x̄, xi))∑
i f (reff(x̄, xi))

(H.1)

where reff(x̄, xi) is the effective radial distance in elliptical coordinates, i.e. the distance between xi and x̄ normalised by the
distance between the ellipse centre point and its edge on the line connecting xi and x̄:

reff(x̄, xi) =
√

(x̄ − xi)
T B−1

i (x̄ − xi) (H.2)

For the plots in this article, we use a generalised form of equation A7 in [10]:

f (reff) = exp
(−(reff/rv)pv

)
for reff ≤ rmax (H.3)

f (reff) = 0 for reff > rmax .

Here, rv and pv are two coefficients, for which we recommend the choices rv = 1 and pv = 3. A low value of rv (e.g. 1) and
a high value of pv (e.g. 3) result in the shapes of individual ellipses being visible with sharp gradients between individual
ellipses, and give larger spectral contributions at high subgrid wavenumbers, whereas the combination of a relatively high
value of rv (e.g. 2) and a low value of pv (e.g. 2) smooths out filaments in the flow. A low value of pv also means that
parcel contributions fall off less rapidly at larger distances from a parcel.

The area integral
˜

f (reff) dA is proportional to the volume of the parcel. We choose a relatively large value of rmax = 4
here so that the discontinuity in f at reff = rmax is small. In order to calculate the contributions of each parcel efficiently, we
first determine the major semi-axis length of the ellipse ai from B i . We then consider the fine-scale grid points in a square
with sides 2airmax around the ellipse centre (see Fig. H.42). For each such point, we first check if it falls within a circle
39

M. Frey, D. Dritschel and S. Böing Journal of Computational Physics: X 14 (2022) 100109
Fig. H.42. Determination of the region contributing to the subgrid visualisation of a parcel, with the fine-scale visualisation grid shown by grey points.

of radius airmax (this is relatively efficient). If it does, we further check if it falls within the projection ellipse reff < rmax
defined in Eq. (H.3). Only then do we add its contribution to q̆(x̄).

Appendix I. Pseudo-spectral approach

In this appendix we provide details of the pseudo-spectral code which we have used to compare with the EPIC simu-
lations presented in this paper. The essence of the pseudo-spectral approach is to carry out all numerical operations apart
from nonlinear products in spectral space, after a (fast) Fourier transform [32]. That is, the time stepping of the fields and
the calculation of the velocity field from the vorticity field are all done in spectral space. The only operation done in physical
space is the calculation of the terms u ·∇ζ and u ·∇b appearing in the material derivatives Dζ/Dt and Db/Dt , respectively,
in Eq. (1) and Eq. (2). The standard ‘2/3 rule’ is used to truncate all spectral fields prior to use in nonlinear products to
avoid aliasing errors [32].

In the pseudo-spectral code developed, Fourier series are used in both x and y to represent all fields. In the periodic
direction, x, a full sine and cosine series (or a series in eikx) is used in wavenumbers k, as in EPIC (see Appendix A). In
the y direction, we use a cosine series for ζ , b and u, with terms proportional to cos l(y − ymin) where l is the discrete y
wavenumber taking the values 0, π/L y , 2π/L y , ..., nyπ/L y , and where L y is the domain width in y. We use a sine series
for v with terms proportional to sin l(y − ymin) to ensure v = 0 on the y boundaries.

The evolution equations are rewritten as

∂ζ

∂t
= −u ·∇ζ + bx −Dζ (I.1)

∂b

∂t
= −u ·∇b −Db , (I.2)

to include either a molecular diffusion operator D = −ν∇2, or a hyperdiffusion operator D = Cζchar(−∇2)3, for numerical
stability.

When using molecular diffusion, we choose a constant viscosity given by

ν = C
√

(bmax(0) − bmin(0))/k3
max , (I.3)

where C is a dimensionless constant and kmax is the maximum horizontal wavenumber (kmax = nx/2Lx). The rationale
behind this choice is that ν should have units of length-squared over time, and that the length scale should be proportional
to the diffusion length, i.e. ∝ 1/kmax, while the time scale should be inversely proportional to the highest possible buoyancy
frequency, i.e. ∝ 1/

√
kmax(bmax(0) − bmin(0)). By trial and error, and at many different resolutions, we have found that C = 2

well preserves monotonicity: bmax(t) does not increase by more than approximately 10−3(bmax(0) − bmin(0)), and bmin(t)
does not decrease by more than the same amount (theoretically, diffusion can only reduce bmax and increase bmin). Notably,
ν ≈ 89 m2/s in the Straka test case using a 100 m grid spacing (corresponding to 512 × 64 grid cells), which compares
favourably with ν = 75 m2/s used in the original test case [25].

When using hyperdiffusion, C is a dimensionless constant chosen to ensure that field spectra decay at large wavenumbers
(C = 10 was used here for all resolutions — lower values produce visible spurious fringes in physical space and upturns in
field spectra), while ζchar is a characteristic vorticity value computed as follows. We first compute the r.m.s. vorticity ζrms.
Then, for all grid points having |ζ | > ζrms, we accumulate the sums of |ζ | and ζ 2, respectively ζL1 and ζL2. From these, we
define ζchar = ζL2/ζL1. The rationale behind this is to be able to determine a sensible damping rate even for flows in which
vorticity is confined to a small portion of the domain, as in the examples considered in this paper. Using the maximum
(absolute) vorticity ζmax is an alternative, but this is much more variable in time than ζchar. The latter by contrast slowly
varies (see below). Note, for a patch of uniform vorticity ζ0 of any area, we have ζchar = |ζ0|, which is a sensible choice for
the characteristic vorticity.
40

M. Frey, D. Dritschel and S. Böing Journal of Computational Physics: X 14 (2022) 100109
The time stepping of Eq. (I.1) and Eq. (I.2) is done in spectral space, using the (implicit) trapezoidal rule with iteration.
Specifically, if we denote the (k, l) spectral coefficient of any quantity q by q̂, then we solve the equations

ζ̂n+1 − ζ̂n

�t
= Ŝn+1

ζ + Ŝn
ζ

2
− D̂

ζ̂n+1 + ζ̂n

2
(I.4)

b̂n+1 − b̂n

�t
= Ŝn+1

b + Ŝn
b

2
− D̂

b̂n+1 + b̂n

2
, (I.5)

where n denotes the time level, Ŝζ is the Fourier coefficient of the vorticity source term −u ·∇ζ + bx , and similarly Ŝb is
the Fourier coefficient of the buoyancy source term −u ·∇b (all spatial derivatives are computed spectrally by wavenumber
multiplication). In the above, quantities at time level n correspond to time t and are known, while we seek ζ̂n+1 and b̂n+1

at time t + �t . In spectral space, the dissipation operator D̂ = ν(k2 + l2) for molecular diffusion, and D̂ = Cζn
char(k

2 + l2)3

for hyperdiffusion.
We solve the above system iteratively by first using Ŝn+1

ζ = Ŝn
ζ and Ŝn+1

b = Ŝn
b , making a first estimate of ζ̂n+1 and

b̂n+1, then iterating the above equations two more times with improved estimates of the source terms Ŝn+1
ζ and Ŝn+1

b .
Algebraically, it is simplest to first store the fixed quantities ζ̂m ≡ ζ̂n + 1

4 �t Ŝn
ζ and b̂m ≡ b̂n + 1

4 �t Ŝn
b , then, at each iteration,

update

ζ̂n+1 = L̂
(
ζ̂m + 1

4 �t Ŝn+1
ζ

)
− ζ̂n and b̂n+1 = L̂

(
b̂m + 1

4 �t Ŝn+1
b

)
− b̂n (I.6)

where L̂≡ 2/(1 + 1
2 �tD̂) is fixed. The above update is performed three times, each time with an improved estimate of the

source terms.
The time step �t is adapted before the above iteration is carried out using the same restrictions on the maximum

strain rate and buoyancy frequency enforced in EPIC, see Eq. (41), except here we take αs = αb = 0.1 by default. This is
half the default used in EPIC, but the time-stepping used in the pseudo-spectral code is only second order, compared to
fourth order in EPIC. Additionally, to maintain numerical stability, it is necessary to ensure the time step is below the CFL
limit �tCFL = min(�x, �y)/|u|max. Here we require both Eq. (41) and �t < 0.8�tCFL; the factor of 0.8 is necessary due to
nonlinearity, which is not accounted for when deriving the CFL limit.

The source terms in Eq. (I.6) depend on the velocity field u, which must also be updated using the most recent estimate
of ζ̂n+1. Since the flow is incompressible, we do this by expressing u = (−∂ψ/∂ y, ∂ψ/∂x) and finding the streamfunction ψ
from the solution to Poisson’s equation ∇2ψ = ζ as in Appendix A. Here, however, since ζ is represented as a double Fourier
series, it makes sense to represent ψ similarly. Then, the (k, l) Fourier coefficient ψ̂ is found simply from ψ̂ = −ζ̂ /(k2 + l2)
for k and l not both zero. The problem with this solution is that it does not satisfy the boundary condition v = ∂ψ/∂x = 0 on
y = ymin and ymax. This is because ζ is represented as a cosine series in y to allow the vorticity to take arbitrary boundary
values, and v = 0 there requires ψ = 0, except for the x independent Fourier modes with k = 0. It is thus impossible to
express ψ entirely in terms of a cosine series in y. If we further require that the mean horizontal velocity, i.e. the part of
u = −∂ψ/∂ y for k = 0, be zero (without loss of generality), we can then require ψ = 0 on the boundaries, even for the
k = 0 modes.

The boundary conditions on ψ can be enforced by adding solutions to Laplace’s equation, ∇2ψ = 0. Let the streamfunc-
tion ψ be separated into three parts so that ψ = ψa + ψp + ψh , where ψa = 1

2 ζa(y − ymin)(y − ymax) is the part due to
the domain-average vorticity ζa (associated with k = l = 0), ψp is the particular solution arising from ψ̂p = −ζ̂ /(k2 + l2)
in spectral space (for k and l not both zero), and ψh consists of solutions to Laplace’s equation, i.e. linear combinations
of eikxe±ky for each discrete k. We want to choose ψh = −ψp on each boundary, and there are just enough solutions of
Laplace’s equation to do this. If we represent the boundary values of ψp by

ψp(x, ymin) =
∑

k

a−
k eikx and ψp(x, ymax) =

∑
k

a+
k eikx (I.7)

then the solution for ψh is simply

ψh(x, y) = −
∑

k

a−
k sinh k(ymax − y) + a+

k sinh k(y − ymin)

sinh kL y
eikx . (I.8)

The first term in the sum, for k = 0, is found by taking the limit k → 0, e.g. sinh k(ymax − y)/ sinh kL y reduces to (ymax −
y)/L y .

Once the streamfunction ψ is determined, it is re-expressed as a sine series in y. This allows the velocity field u to
be computed efficiently in spectral space by simple wavenumber multiplication. An inverse fast Fourier transform is then
performed to recover u in physical space.

To justify the choice of hyperdiffusion, in particular the choice of the characteristic vorticity ζchar defined above as a pre-
multiplier, Fig. I.43 shows vorticity diagnostics from a 4096 × 512 pseudo-spectral simulation of the Straka test case. Here,
41

M. Frey, D. Dritschel and S. Böing Journal of Computational Physics: X 14 (2022) 100109
Fig. I.43. Time evolution of the rms, maximum and characteristic vorticity values in the Straka test case with hyperdiffusion, as found in a pseudo-spectral
simulation with grid resolution 4096 × 512.

we see that the r.m.s. vorticity ζrms is smallest, as it is dominated by vast areas of the domain with little or no vorticity.
On the other hand, the maximum vorticity ζmax is largest, and is furthermore highly variable in time. The characteristic
vorticity ζchar lies in between ζrms and ζmax, and varies slowly in time like ζrms. Notably, ζchar is about 4 times smaller than
ζmax.

References

[1] F.H. Harlow, The particle-in-cell computing method for fluid dynamics, Methods Comput. Phys. 3 (1964) 319–343.
[2] J. Christiansen, N.J. Zabusky, Instability, coalescence and fission of finite-area vortex structures, J. Fluid Mech. 61 (1973) 219–243.
[3] G.H. Cottet, P. Koumoutsakos, Vortex Methods: Theory and Practice, Cambridge University Press, Cambridge, 2000.
[4] D.G. Dritschel, S.J. Böing, D.J. Parker, A.M. Blyth, The moist parcel-in-cell method for modelling moist convection, Q. J. R. Meteorol. Soc. 144 (715)

(2018) 1695–1718, https://doi .org /10 .1002 /qj .3319.
[5] H. Samuel, A deformable particle-in-cell method for advective transport in geodynamic modelling, Geophys. J. Int. 214 (3) (2018) 1744–1773, https://

doi .org /10 .1093 /gji /ggy231.
[6] M.J. Berger, P. Colella, Local adaptive mesh refinement for shock hydrodynamics, J. Comput. Phys. 82 (1) (1989) 64–84.
[7] S. Popinet, Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries, J. Comput. Phys. 190 (2) (2003) 572–600.
[8] H. Weller, T. Ringler, M. Piggott, N. Wood, Challenges facing adaptive mesh modeling of the atmosphere and ocean, Bull. Am. Meteorol. Soc. 91 (1)

(2010) 105–108.
[9] J.A. Van Hooft, S. Popinet, C.C. Van Heerwaarden, S.J. Van der Linden, S.R. de Roode, B.J. Van de Wiel, Towards adaptive grids for atmospheric boundary-

layer simulations, Bound.-Layer Meteorol. 167 (3) (2018) 421–443.
[10] S.J. Böing, D.G. Dritschel, D.J. Parker, A.M. Blyth, Comparison of the Moist Parcel-in-Cell (MPIC) model with large-eddy simulation for an idealized

cloud, Q. J. R. Meteorol. Soc. 145 (722) (2019) 1865–1881.
[11] J. Walther, G. Morgenthal, An immersed interface method for the vortex-in-cell algorithm, J. Turbul. 3 (1) (2002) 039.
[12] X. Zhang, R. Bridson, A PPPM fast summation method for fluids and beyond, ACM Trans. Graph. 33 (6) (2014) 1–11.
[13] J.M. Owen, J.V. Villumsen, P.R. Shapiro, H. Martel, Adaptive smoothed particle hydrodynamics: methodology. II, Astrophys. J. Suppl. Ser. 116 (2) (1998)

155.
[14] E. Jo, D. Kim, O.-Y. Song, A new SPH fluid simulation method using ellipsoidal kernels, J. Vis. 14 (4) (2011) 371–379.
[15] K. Shibata, S. Koshizuka, I. Masaie, Cost reduction of particle simulations by an ellipsoidal particle model, Comput. Methods Appl. Mech. Eng. 307

(2016) 411–450.
[16] B. Legras, D. Dritschel, The elliptical model of two-dimensional vortex dynamics. I: The basic state, Phys. Fluids A, Fluid Dyn. 3 (5) (1991) 845–854,

https://doi .org /10 .1063 /1.858015.
[17] D.G. Dritschel, J.N. Reinaud, W.J. McKiver, The quasi-geostrophic ellipsoidal vortex model, J. Fluid Mech. 505 (2004) 201–223, https://doi .org /10 .1017 /

S0022112004008377.
[18] M. Carr, J. Franklin, S.E. King, P.A. Davies, J. Grue, D.G. Dritschel, The characteristics of billows generated by internal solitary waves, J. Fluid Mech. 812

(2017) 541–577, https://doi .org /10 .1017 /jfm .2016 .823.
[19] W.J. McKiver, D.G. Dritschel, The motion of a fluid ellipsoid in a general linear background flow, J. Fluid Mech. 474 (2003) 147–173, https://doi .org /10 .

1017 /S0022112002002859.
[20] D. Meyer, P. Jenny, Conservative velocity interpolation for PDF methods, in: PAMM: Proceedings in Applied Mathematics and Mechanics, vol. 4, Wiley

Online Library, 2004, pp. 466–467.
[21] J. Fontane, D.G. Dritschel, The HyperCASL algorithm: a new approach to the numerical simulation of geophysical flows, J. Comput. Phys. 228 (2009)

6411–6425, https://doi .org /10 .1016 /j .jcp .2009 .05 .025.
[22] M.H. Carpenter, C.A. Kennedy, Fourth-order 2N-storage Runge-Kutta schemes, Technical Memorandum NASA-TM-109112 NASA Langley Research Center,

1994, https://ntrs .nasa .gov /citations /19940028444.
[23] C.C. van Heerwaarden, B.J.H. van Stratum, T. Heus, J.A. Gibbs, E. Fedorovich, J.P. Mellado, MicroHH 1.0: a computational fluid dynamics code for

direct numerical simulation and large-eddy simulation of atmospheric boundary layer flows, Geosci. Model Dev. 10 (8) (2017) 3145–3165, https://
doi .org /10 .5194 /gmd -10 -3145 -2017.

[24] The HDF Group, Hierarchical Data Format, version 5, https://www.hdfgroup .org /HDF5/, 1997-2021.
[25] J.M. Straka, R.B. Wilhelmson, L.J. Wicker, J.R. Anderson, K.K. Droegemeier, Numerical solutions of a non-linear density current: a benchmark solution

and comparisons, Int. J. Numer. Methods Fluids 17 (1) (1993) 1–22, https://doi .org /10 .1002 /fld .1650170103.
[26] A. Robert, Bubble convection experiments with a semi-implicit formulation of the Euler equations, J. Atmos. Sci. 50 (13) (1993) 1865–1873, https://

doi .org /10 .1175 /1520 -0469(1993)050<1865 :BCEWAS >2 .0 .CO ;2.
[27] G.I. Taylor, A.E. Green, Mechanism of the production of small eddies from large ones, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 158 (895) (1937)

499–521, https://doi .org /10 .1098 /rspa .1937.0036.
42

http://refhub.elsevier.com/S2590-0552(22)00005-1/bibFBF245795EC5AF11615A47C6E96DA985s1
http://refhub.elsevier.com/S2590-0552(22)00005-1/bibFE91929B6E859F2B8494C72F2387D74Es1
http://refhub.elsevier.com/S2590-0552(22)00005-1/bib95EF25527A693E61737BB2EFAA9280A7s1
https://doi.org/10.1002/qj.3319
https://doi.org/10.1093/gji/ggy231
https://doi.org/10.1093/gji/ggy231
http://refhub.elsevier.com/S2590-0552(22)00005-1/bib0D6B4813037735B1CC53ADA7B9BF13EBs1
http://refhub.elsevier.com/S2590-0552(22)00005-1/bibBAEB7FF1AAE6DF7ACE15B2BDC5260477s1
http://refhub.elsevier.com/S2590-0552(22)00005-1/bib3098A8C2E63DC36C2A395256AD5B5546s1
http://refhub.elsevier.com/S2590-0552(22)00005-1/bib3098A8C2E63DC36C2A395256AD5B5546s1
http://refhub.elsevier.com/S2590-0552(22)00005-1/bib7D4A7BBA261B24B3DF4A42BFC7D55B04s1
http://refhub.elsevier.com/S2590-0552(22)00005-1/bib7D4A7BBA261B24B3DF4A42BFC7D55B04s1
http://refhub.elsevier.com/S2590-0552(22)00005-1/bib14F30DF6A2ADA79019BDD03E5510F06As1
http://refhub.elsevier.com/S2590-0552(22)00005-1/bib14F30DF6A2ADA79019BDD03E5510F06As1
http://refhub.elsevier.com/S2590-0552(22)00005-1/bib6475F78421BCA1ADD3B47574E12F58ECs1
http://refhub.elsevier.com/S2590-0552(22)00005-1/bibEBAE7F803442DD8806EED0DD2926C4EAs1
http://refhub.elsevier.com/S2590-0552(22)00005-1/bib3180720E2DEB32941C93B5C974E20AE9s1
http://refhub.elsevier.com/S2590-0552(22)00005-1/bib3180720E2DEB32941C93B5C974E20AE9s1
http://refhub.elsevier.com/S2590-0552(22)00005-1/bib13FB282373EC782A7D324AC6BCBCECE1s1
http://refhub.elsevier.com/S2590-0552(22)00005-1/bib301768114B41BB2C8FD6841F763D1DA9s1
http://refhub.elsevier.com/S2590-0552(22)00005-1/bib301768114B41BB2C8FD6841F763D1DA9s1
https://doi.org/10.1063/1.858015
https://doi.org/10.1017/S0022112004008377
https://doi.org/10.1017/S0022112004008377
https://doi.org/10.1017/jfm.2016.823
https://doi.org/10.1017/S0022112002002859
https://doi.org/10.1017/S0022112002002859
http://refhub.elsevier.com/S2590-0552(22)00005-1/bibDB09E6DDDE3F591D9B0E8B6C72470462s1
http://refhub.elsevier.com/S2590-0552(22)00005-1/bibDB09E6DDDE3F591D9B0E8B6C72470462s1
https://doi.org/10.1016/j.jcp.2009.05.025
https://ntrs.nasa.gov/citations/19940028444
https://doi.org/10.5194/gmd-10-3145-2017
https://doi.org/10.5194/gmd-10-3145-2017
https://www.hdfgroup.org/HDF5/
https://doi.org/10.1002/fld.1650170103
https://doi.org/10.1175/1520-0469(1993)050<1865:BCEWAS>2.0.CO;2
https://doi.org/10.1175/1520-0469(1993)050<1865:BCEWAS>2.0.CO;2
https://doi.org/10.1098/rspa.1937.0036

M. Frey, D. Dritschel and S. Böing Journal of Computational Physics: X 14 (2022) 100109
[28] D. Dritschel, R. Polvani, A. Mohebalhojeh, The contour-advective semi-Lagrangian algorithm for the shallow water equations, Mon. Weather Rev. 127 (7)
(1999) 1551–1565.

[29] B. Fornberg, N. Flyer, Solving PDEs with radial basis functions, Acta Numer. 24 (2015) 215–258.
[30] D.G. Dritschel, M.R. Jalali, On the regularity of the Green-Naghdi equations for a rotating shallow-water fluid layer, J. Fluid Mech. 865 (2019) 100–136,

https://doi .org /10 .1017 /jfm .2019 .47.
[31] M.K. Verma, A. Kumar, A. Pandey, Phenomenology of buoyancy-driven turbulence: recent results, New J. Phys. 19 (2017) 025012, https://doi .org /10 .

1088 /1367 -2630 /aa5d63.
[32] D.G. Fox, S.A. Orszag, Pseudospectral approximation to two-dimensional turbulence, J. Comput. Phys. 11 (1973) 612–619.
[33] A. Mariotti, B. Legras, D. Dritschel, Vortex stripping and the erosion of coherent structures in two-dimensional flows, Phys. Fluids 6 (1993) 3954–3962.
[34] H. Yao, D. Dritschel, N. Zabusky, High-gradient phenomena in two-dimensional vortex interactions, Phys. Fluids 7 (1994) 539–548.
[35] D.G. Dritschel, S.M. Tobias, Two-dimensional magnetohydrodynamic turbulence in the small magnetic Prandtl number limit, J. Fluid Mech. 703 (2012)

85–98, https://doi .org /10 .1017 /jfm .2012 .195.
[36] M.R. Jalali, D.G. Dritschel, Balance in non-hydrostatic rotating shallow-water flows, Phys. Fluids 33 (2021) 086601, https://doi .org /10 .1063 /5 .0057707.
[37] G. Gibb, S. Boeing, D. Dritschel, A fully lagrangian dynamical core for the Met office NERC cloud model, Tech. rep, University of Edinburgh, 2018,

https://www.archer.ac .uk /community /eCSE /eCSE12 -10 /eCSE12 -10 _Technical _Report .pdf.
[38] M. Frey, S.J. Böing, D. Dritschel, EPIC – elliptical parcel-in-cell, https://doi .org /10 .5281 /zenodo .6012883, Feb. 2022.
[39] D. Dritschel, Pseudo-spectral code for 2d stratified flows, https://doi .org /10 .5281 /zenodo .5940146, Feb. 2022.
[40] M. Frey, S.J. Böing, D. Dritschel, EPIC version 0.10.8 with static TG, https://doi .org /10 .5281 /zenodo .6560922, May 2022.
[41] T.A. Caswell, M. Droettboom, A. Lee, E.S. de Andrade, T. Hoffmann, J. Hunter, J. Klymak, E. Firing, D. Stansby, N. Varoquaux, J.H. Nielsen, B. Root, R. May,

P. Elson, J.K. Seppänen, D. Dale, J.-J. Lee, D. McDougall, A. Straw, P. Hobson, H. Aizenman, C. Gohlke, A.F. Vincent, T.S. Yu, E. Ma, S. Silvester, C. Moad, N.
Kniazev, E. Ernest, P. Ivanov, matplotlib/matplotlib: Rel: v3.5.1, https://doi .org /10 .5281 /zenodo .5773480, Dec. 2021.

[42] J.A. Bednar, J. Signell, K. Bowen, M. Liquet, C. Ball, J.-L. Stevens, R. Pittman, D.J. Sutherland, K. Pevey, P. Kats, holoviz/colorcet: Version 3.0.0, https://
doi .org /10 .5281 /zenodo .5732885, Nov. 2021.

[43] P. Kovesi, Good colour maps: how to design them, arXiv:1509 .03700, Sep. 2015.
[44] A. Collette, T. Kluyver, T.A. Caswell, J. Tocknell, J. Kieffer, A. Jelenak, A. Scopatz, D. Dale Chen, T. Vincent, H. Payno, J.G. Ferrer, P. Sciarelli, V. Valls, S.

Ghosh, U.K. Pedersen, J. Kirkham, M. Raspaud, C. Danilevski, H. Abbasi, J. Readey, A. Paramonov, L. Chan, V.A. Solé, L. Jialin, Y. Feng, G.A. Vaillant, M.
Teichmann, M. Brucher, S.R. Johnson, h5py/h5py: 3.5.0, https://doi .org /10 .5281 /zenodo .594310, Oct. 2021.

[45] C.R. Harris, K.J. Millman, S.J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N.J. Smith, R. Kern, M. Picus, S. Hoyer,
M.H. van Kerkwijk, M. Brett, A. Haldane, J.F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C.
Gohlke, T.E. Oliphant, Array programming with NumPy, Nature 585 (7825) (2020) 357–362, https://doi .org /10 .1038 /s41586 -020 -2649 -2.

[46] The pandas development team, pandas-dev/pandas: Pandas 1.3.5, https://doi .org /10 .5281 /zenodo .5774815, Dec. 2021.
[47] W. McKinney, Data structures for statistical computing in Python, in: Stéfan van der Walt, Jarrod Millman (Eds.), Proceedings of the 9th Python in

Science Conference, 2010, pp. 56–61.
[48] P. Virtanen, R. Gommers, T.E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S.J. van der Walt, M.

Brett, J. Wilson, K.J. Millman, N. Mayorov, A.R.J. Nelson, E. Jones, R. Kern, E. Larson, C.J. Carey, İ. Polat, Y. Feng, E.W. Moore, J. VanderPlas, D. Laxalde, J.
Perktold, R. Cimrman, I. Henriksen, E.A. Quintero, C.R. Harris, A.M. Archibald, A.H. Ribeiro, F. Pedregosa, P. van Mulbregt, SciPy 1.0 contributors, SciPy
1.0: fundamental algorithms for scientific computing in Python, Nat. Methods 17 (2020) 261–272, https://doi .org /10 .1038 /s41592 -019 -0686 -2.

[49] V. Esfahanian, S. Ghader, A.R. Mohebalhojeh, On the use of the super compact scheme for spatial differencing in numerical models of the atmosphere,
Q. J. R. Meteorol. Soc. 131 (2005) 2109–2129, https://doi .org /10 .1256 /qj .04 .73.

[50] S. Ghader, A. Ghasemi, M.R. Banazadeh, D. Mansoury, High-order compact scheme for Boussinesq equations: implementation and numerical boundary
condition issue, Int. J. Numer. Methods Fluids 69 (2012) 590–605, https://doi .org /10 .1002 /fld .2576.

[51] D. Dritschel, M. Ambaum, A contour-advective semi-Lagrangian numerical algorithm for simulating fine-scale conservative dynamical fields, Q. J. R.
Meteorol. Soc. 123 (1997) 1097–1130.
43

http://refhub.elsevier.com/S2590-0552(22)00005-1/bib09366F2ADC52EC06753DC1045073D148s1
http://refhub.elsevier.com/S2590-0552(22)00005-1/bib09366F2ADC52EC06753DC1045073D148s1
http://refhub.elsevier.com/S2590-0552(22)00005-1/bib45D01F0414DFB3BF1DCADCA1FD7E33A2s1
https://doi.org/10.1017/jfm.2019.47
https://doi.org/10.1088/1367-2630/aa5d63
https://doi.org/10.1088/1367-2630/aa5d63
http://refhub.elsevier.com/S2590-0552(22)00005-1/bibACC6C58CA40C5F12DCF25B2E02DDBAB6s1
http://refhub.elsevier.com/S2590-0552(22)00005-1/bib16053CC5BC31BF05863335E2ADD38487s1
http://refhub.elsevier.com/S2590-0552(22)00005-1/bib18583083DDE4A5E3A58B064651AE3768s1
https://doi.org/10.1017/jfm.2012.195
https://doi.org/10.1063/5.0057707
https://www.archer.ac.uk/community/eCSE/eCSE12-10/eCSE12-10_Technical_Report.pdf
https://doi.org/10.5281/zenodo.6012883
https://doi.org/10.5281/zenodo.5940146
https://doi.org/10.5281/zenodo.6560922
https://doi.org/10.5281/zenodo.5773480
https://doi.org/10.5281/zenodo.5732885
https://doi.org/10.5281/zenodo.5732885
http://refhub.elsevier.com/S2590-0552(22)00005-1/bibD036D242430CAB8DEF4B0B9DE86B0667s1
https://doi.org/10.5281/zenodo.594310
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.5281/zenodo.5774815
http://refhub.elsevier.com/S2590-0552(22)00005-1/bibC9FD8142E1F20F30E3CDB36199CC5ABFs1
http://refhub.elsevier.com/S2590-0552(22)00005-1/bibC9FD8142E1F20F30E3CDB36199CC5ABFs1
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1256/qj.04.73
https://doi.org/10.1002/fld.2576
http://refhub.elsevier.com/S2590-0552(22)00005-1/bib0CA4DF06B86FF16B06ED2A4B74E25DD3s1
http://refhub.elsevier.com/S2590-0552(22)00005-1/bib0CA4DF06B86FF16B06ED2A4B74E25DD3s1

	EPIC: The Elliptical Parcel-In-Cell method
	1 Introduction
	2 Methodology
	2.1 Parcel-In-Cell (PIC): a brief overview
	2.2 The flow model
	2.3 Elliptical parcels: basic representation and dynamics
	2.4 Interpolation
	2.5 Parcel splitting
	2.6 Parcel merging
	2.7 Enforcing boundary conditions on parcel operations
	2.8 Incompressibility
	2.8.1 Divergent flow correction
	2.8.2 Gradient correction

	2.9 Energy conservation

	3 Structure of the algorithm
	3.1 Initialisation: parcel locations and attributes
	3.2 Time stepping: low-storage Runge-Kutta and adaptation
	3.3 Tendency calculation
	3.4 Parcel merging and splitting
	3.5 Parcel adjustment to correct gridded area errors
	3.6 Flowchart

	4 Results
	4.1 Taylor-Green test case
	4.2 Straka density current test case
	4.3 Robert warm bubble test case

	5 Discussion
	CRediT authorship contribution statement
	Declaration of competing interest
	Code availability
	Third party libraries
	Acknowledgements
	Appendix A Inverting vorticity for the velocity field: numerics
	Appendix B The shape matrix B: evolution and eigenvalues
	Appendix C Parcel splitting
	Appendix D Parcel merging
	D.1 Enforcing the merger rules
	D.2 Merging parcel groups

	Appendix E Time step adaptation
	Appendix F Static Taylor-Green vortex test case
	Appendix G Code performance and parameter choices
	G.1 Time step
	G.2 Variations in the numerical parameter settings
	G.3 Timings

	Appendix H Subgrid visualisation
	Appendix I Pseudo-spectral approach
	References

