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Retinitis pigmentosa (RP) is a group of inherited disor-
ders of the retina that are characterized initially by the loss 
of rod photoreceptor function followed by cone photorecep-
tors. The age of onset and severity vary among affected 
individuals. Night blindness is often the earliest symptom, 
and clinical hallmarks include attenuated retinal vessels 
in the peripheral retina, bone spicule pigments throughout 
the fundus and absent α- and β-waves following electroreti-
nography [1,2]. RP is the most common cause of hereditary 
blindness, with an incidence of approximately 1 in 4,000 in 
the population [3]. The majority of cases are non-syndromic, 
though about a quarter are syndromic, associated with 
non-ocular conditions such as obesity, polydactyly, renal 

malformation, hearing loss and intellectual disability [4]. RP 
is genetically heterogeneous, with autosomal dominant, auto-
somal recessive and X-linked patterns of inheritance. To date, 
mutations in 93 genes have been shown to cause the condition 
(RetNet). These genes encode proteins that are required for 
the development and maintenance of photoreceptor structure 
and its matrix membranes, visual transduction, ciliary traf-
ficking and photoreceptor outer segment shedding. Recent 
advances in technology have helped to identify the genetic 
causes of up to 70% of RP patients, with the remaining group 
still of unknown etiology [5,6].

The neural retina leucine zipper gene (NRL, OMIM 
162080) maps to human chromosome 14q11.2 [7] and encodes 
a 237 amino acid protein that belongs to the Maf subfamily 
of transcription factors, which are required for cell differ-
entiation [8]. The protein has a Maf transactivation and a 
bZIP (basic leucine zipper) DNA-binding and dimerization 
domain. During mammalian retinal development, NRL is 
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required for rod photoreceptor differentiation and synergis-
tically interacts with CRX, NR2E3 and other transcription 
factors to regulate the activity of photoreceptor-specific 
genes such as rhodopsin [9-11]. The transgenic knockout 
mouse (Nrl−/−) has an unusual retinal photoreceptor layer 
with shorter outer and inner segments, a functionally rod-less 
retina and super-normal cone function mediated by S-cones 
[12]. The transgenic overexpression of Nrl in mouse retina 
induces postmitotic photoreceptor precursors to drive differ-
entiation toward rods instead of cones [13]. This function of 
Nrl to induce rod development while repressing the S-cone 
pathway acts through direct activation of the transcription 
factor Nr2e3 [14]. Mutations in NRL have been associated 
with both dominant and recessively inherited retinal disease 
in humans [15,16]. The study reported herein describes novel 
recessive mutations in NRL causing non-syndromic RP in one 
family and two sporadic cases.

METHODS

Patient recruitment and sampling: Ethical approval for 
the study was obtained from the committees of the Leeds 
Teaching Hospitals National Health Service Trust ([17]/
YH/0032) and the Fundación Jiménez Díaz University 
Hospital in Madrid (reference number PIC 134–2016_FJD). 
Consent was obtained from the individuals and their guard-
ians where appropriate. The patients were diagnosed with 
non-syndromic RP following detailed clinical examination 
by an experienced ophthalmologist and after taking a clinical 
history. Blood samples were collected and stored in BD 
vacutainer® EDTA blood collection tubes (BD Biosciences, 
Oxford, U.K.). Genomic DNA was extracted from peripheral 
blood cells according to standard protocols using a QIAamp 
DNA blood midi kit (Qiagen Limited, Manchester, U.K.).

Exome sequencing: Targeted enriched libraries were prepared 
using either SureSelect Human Whole Exome reagent v.5 
(Agilent Technologies, Santa Clara, CA), Clinical Exome 
solution (Sophia Genetics, Boston, MA) covering the exons of 
4,490 known disease-related genes or a customized Haloplex 
reagent (Agilent) of the exons of 73 genes associated with RP/
LCA as previously described [17]. Libraries were sequenced 
using a paired-end protocol on the HiSeq2500 or NextSeq500 
platforms (Illumina, Little Chesterford, U.K.).

The quality of the output sequencing data was evaluated 
using FASTQ tools on the Galaxy platform [18]. After quality 
control filtering, the sequencing data was aligned against the 
reference human genome (hg19/GRCh37) using Bowtie2 and 
processed in SAM/BAM format using SAMtools and the 
Genome Analysis Toolkit (GATK). Potential PCR duplicates 

were removed using Picard, and the mean depth of reads per 
base was noted. Insertions, deletions and single nucleotide 
variants were noted in VCF format using the Unified Geno-
typer function of GATK.

The variant list was annotated with ANNOVAR software 
and filtered to include only non-synonymous coding vari-
ants, insertions and deletions affecting the coding sequence 
and any variants within 5 bp of splice donor and acceptor 
sites, with a minimum read depth of 10 and a minor allele 
frequency ≤1% in the Exome Variant Server, as well as the 
1000 Genomes and Genome Aggregation databases. The 
pathogenicity of missense variants was assessed using the 
following prediction software: PolyPhen2, SIFT and CADD. 
For the analysis of whole exome and clinical exome data, the 
variant list was compared against the known retinal dystrophy 
genes in RetNet (accessed December 2021).

To detect homozygous regions from exome sequencing 
data, the AgileGenotyper software was used [19]. The 
exported variant list was analyzed using AutoSNPa, and the 
homozygous regions were visualized against a circular ideo-
gram of Chromosomes 1 to 22 using AgileMultiIdeogram.

Microsatellite genotyping: Oligonucleotide primer pairs 
spanning polymorphic short tandem repeats were selected 
from the UCSC database. The PCR was performed with the 
primers on genomic DNA, and the products were genotyped 
on the ABI3130xl Genetic Analyzer (Applied Biosystems, 
Warrington, U.K.). Allele sizing was achieved using the 
GeneMapper v.4 software (Applied Biosystems).

PCR and Sanger sequencing: The PCR was typically 
performed on 30 ng of genomic DNA in 10 μl volumes 
according to standard protocols, which included 40 cycles 
of 94 °C for 30 s, 55–60 °C for 45 s and 72 °C for 45 s. An 
aliquot of the reaction product was visualized by agarose gel 
electrophoresis, and the remaining mixture was treated with 
ExoSAP-IT (GE Healthcare, Chalfont St. Giles, U.K.). The 
treated PCR product was cycle sequenced using the BigDye 
Terminator v.3.1 reaction mix (Applied Biosystems) and run 
on an ABI3130xl Genetic Analyzer (Applied Biosystems). 
The sequencing output was analyzed using the Sequence 
Analysis v.5.2 software package (Applied Biosystems) 
according to the manufacturer’s instructions.

Bioinformatics: Genomic DNA sequence information was 
downloaded from the NCBI website. Oligonucleotide primer 
pairs were designed to amplify across the variant of interest 
using Primer3 software. The primers used in this study are 
listed in Appendix 1. The SMART tool was used to predict 
protein domains in the amino acid sequence.
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RESULTS

One family of Pakistani origin (MM1) and two sporadic cases, 
one of Spanish ancestry (RP-3051) and the other of Romanian 
descent (RP-1553), were investigated in this study (Figure 
1). All the affected subjects were diagnosed with early-onset 
retinitis pigmentosa (Table 1). None of the examined patients 
showed extraocular features. Where a family history of 
consanguinity was known, it suggested an autosomal reces-
sive pattern of inheritance for disease transmission.

Clinical details and molecular analysis of family MM1: The 
proband (IV:2) in family MM1 is one of three affected indi-
viduals in a Pakistani family with consanguineous parents. 
She has had problems with her vision since early childhood 
and had surgery for strabismus when she was seven years old. 
At 19 years old, she was registered as visually impaired with 
grossly constricted visual fields and best corrected acuity 
of 6/24 and 6/36. Ophthalmic examination revealed typical 
clumped pigment deposits, and posterior subcapsular cata-
racts developed gradually in both eyes. At 43 years old, the 

Figure 1. Families analyzed in 
this study. The structures of the 
pedigrees are shown for A: family 
MM1, B: case RP-3051 and C: 
case RP-1553. The proband in each 
pedigree is highlighted with an 
arrow. Microsatellite genotyping 
in family MM1 around the NRL 
locus is shown with allele sizes and 
haplotypes for three microsatellite 
markers, D14S1280, D14S608 and 
D14S599, located at 26.7, 28.8 and 
34.7Mb from the top of chromo-
some 14 using the hg19/GRCh37 
human reference genome. Haplo-
type analysis (red block) confirmed 
homozygosity in family MM1 
around the NRL locus only in the 
affected cases. The NRL mutation 
(located at 24.6 Mb) is stated as 
M1, M2 and M3. Genomic DNA 
was only available from members 
to whom a genotype has been 
assigned. Note that only the affected 
individuals are homozygous for the 
mutation.
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best corrected acuity was 6/36 and 6/60. Her younger brother 
(IV:3), when examined at 20 years old, had amblyopia in his 
left eye and best corrected visual acuity of 6/9 and 6/36, with 
a fundus consistent with typical RP changes. At 33 years old, 
when he was last examined, he had no response to electroreti-
nography and had developed posterior subcapsular cataracts. 
The other affected case (IV:5) in the family was not available 
for further examination.

Whole exome sequencing of the genomic DNA from 
subject IV:2 identified 60,603 total variants that differed from 
the reference genome sequence. After filtration, 119 variants 
remained, of which 25 were homozygous changes. After 
comparing the variant list against the known RetNet genes, 
a single candidate—a novel homozygous stop-loss mutation, 
NM_006177.5: c.713G>T, p.*238Lext57 (ClinVar accession 
SCV001478096) in the transcription factor gene NRL—was 
identified as the best candidate. AgileMultiIdeogram analysis 
of the WES data highlighted a 3.4 Mb homozygous region 
that contained the NRL gene (Appendix 2), and microsatel-
lite genotyping with polymorphic markers confirmed this 
homozygosity (Figure 1A). The NRL variant was present 
once in 115,494 alleles in the gnomAD database, and Sanger 
sequencing (Figure 2A) confirmed that the mutation segre-
gated with the disease phenotype in the family (Figure 1A) 
as expected for a recessive condition.

Clinical details and molecular analysis of case RP-3051: The 
index case (II:6) in the family RP-3051 is the sixth child of 
a consanguineous Spanish couple from a small village with 
a relatively high level of endogamy. He was referred for 

genetic testing at 57 years of age with a clinical diagnosis of 
RP. He had night blindness since childhood, loss of visual 
acuity since the third decade, and was now experiencing 
photophobia and slight dyschromatopsia. A second sibling 
manifested a similar presentation of RP, but clinical data were 
unavailable for that person.

Clinical exome sequencing of the index case II:6 
followed by filtration analysis identified a novel homozygous 
nonsense mutation, c.238C>T, p.Gln80* (ClinVar accession 
SCV001478094) in the NRL gene, as the most likely cause 
of RP in the patient. This variant, which was absent in the 
gnomAD database, was verified by Sanger sequencing in 
patient genomic DNA (Figure 2B).

Clinical details and molecular analysis of case RP-1553: The 
patient (II:1) in the family RP-1553 is the only affected child 
of a Romanian couple who are not known to be related. She 
had visual impairment since two years old and was diagnosed 
with early-onset RP at five years of age. Her most recent 
examination at 21 years old showed nystagmus, complete 
loss of the visual field, best corrected visual acuity of 6/60 in 
both eyes, non-recordable electroretinography and typical RP 
presentation upon funduscopy.

Genomic DNA from patient II:1 underwent targeted 
exome sequencing for the 73 RP/LCA genes. Following 
variant prioritization, a novel homozygous mutation in NRL, 
c.544C>T p.Gln182* (ClinVar accession SCV001478095), 
was found as the most likely disease candidate. This variant 
was confirmed by Sanger sequencing the DNA of the patient 
(Figure 2C) and was absent from the gnomAD database.

Table 1. Clinical details of retinal dystrophy patients examined in this study.

Family 
ID Ethnicity Subject Gender

Age at 
examination 
(years)

Best 
corrected 
visual acuity 
(OD & OS)

Fundus 
examination Diagnosis

Additional 
Findings

MM1 Pakistani IV:2 F 19 6/24 & 6/36
Pigmentary 
retinopathy

Retinitis 
pigmentosa

Posterior subcap-
sular opacification

        43 6/36 & 6/60      

    IV:3 M 20 6/9 & 6/36 Pigmentary 
retinopathy

Retinitis 
pigmentosa Amblyopia (OS)

        33 NA     Posterior subcap-
sular opacification

RP-3051 Spanish II:6 M 57 NA Pigmentary 
retinopathy

Retinitis 
pigmentosa

Photophobia, 
dyschromatopsia

RP-1553 Romanian II:1 F 21 6/60 & 6/60 Pigmentary 
retinopathy

Retinitis 
pigmentosa

Nystagmus, 
complete scotoma

The gender, age at examination, corrected visual acuity, ophthalmoscopy results, diagnosis and any additional findings are summarized. 
M=male, F=female, OD=right eye, OS=left eye, NA=not available.
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DISCUSSION

Mutations in the NRL gene have been reported to cause either 

recessive or dominantly transmitted retinal disease in humans 
(see Figure 3). The type of mutation, null allele or missense, 
and the location of missense mutations in the protein 

Figure 2. Conf irmatory NRL 
sequence analysis. Chromatograms 
of the NRL sequence variants from 
a normal control individual and 
affected subjects, IV:2 from family 
MM1 (A), II:6 from family RP-3051 
(B) and II:1 from family RP-1553 
(C). Note that homozygous muta-
tions c.713G>T in family MM1, 
c.238C>T in family RP-3051 and 
c.544C>T in family RP-1553 are 
shown.
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sequence determine the inheritance pattern of disease trans-
mission. There are only five published reports of NRL muta-
tions causing recessive disease [16,20-23]. These mutations 
are all either null alleles caused by nonsense or frameshift 
mutations or are missense mutations that map to the bZIP 
domain, which is required for DNA-binding, dimerization of 
NRL and interaction with the homeodomain of CRX [10]. 
Nonsense and frameshift mutations are likely to cause disease 
either by nonsense-mediated decay of the mutant transcript 
or, if a truncated protein is synthesized, due to complete or 
partial loss of the bZIP domain that would be detrimental 
to NRL function. However, missense mutations in the bZIP 
domain are also damaging by preventing DNA binding and 
reducing transcription activation [24]. These mutations there-
fore cause recessive disease by loss of normal protein func-
tion. Here, we report three further novel mutations causing 
recessive disease, consistent with this pattern. The p.Gln80* 
mutation removes the C-terminal end of the minimal trans-
activation domain, the DNA-binding basic domain and the 
leucine zipper dimerization domain, whereas the p.Gln182* 
removes only the leucine zipper domain. Despite the absence 
of segregation analysis of these mutations, the loss of key 
functional domains would certainly be consistent with loss 
of NRL function. Though the p.*238Lext57 stop-loss muta-
tion, which segregated with disease in the family, contains 

all the functional domains of the protein, it is most likely 
that the extra amino acids at the C-terminus are problematic. 
Hypothetically, should the mutant transcript escape early 
decay, the extra amino acids would presumably interfere with 
NRL dimerization and protein interactions to impede normal 
function.

To date, the NRL mutations causing dominant retinal 
disease are all missense mutations apart from a single amino 
acid in-frame deletion [15,16,25-29]. In vitro assays have 
shown that these mutations exhibit reduced phosphoryla-
tion of NRL but enhanced transcriptional activation of the 
rhodopsin promoter, resulting in the gaining of function in 
excess of normal promoter activation [15,24,27,28]. Although 
other rod-specific promoters have not yet been directly inves-
tigated, this excessive activation of mutant NRL presumably 
affects several NRL target gene promoters that have been 
found to be important for maintaining rod photoreceptor 
function [30].

The clinical presentation and phenotype of the patients 
is different for recessive and dominant NRL retinopathy. To 
date, 25 patients have been studied with the dominant form 
of disease [15,16,25-29] and, including the patients described 
herein, 12 subjects have been described with recessive disease 
[16,20-23]. Night blindness from early childhood is a common 
symptom, followed by variable amounts of progressive visual 

Figure 3. Mapping the NRL mutation spectrum onto the protein sequence. The domains in the 237 amino acid NRL protein are indicated. 
NRL mutations identified in dominant disease [15,16,25-29] are presented in purple text above the protein domain representation, and 
recessive disease [16,20-23] are shown in brown text below the illustration. The novel mutations described in this paper are highlighted in 
red in the diagram.
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field constriction and reduced visual acuity. Other features 
co-existing in patients include nystagmus in 4/12 recessive 
[22,23], this paper] and 1/25 dominant cases [16], strabismus 
or amblyopia in 5/12 recessive [16,23], this paper] and 0/25 
dominant subjects and posterior subcapsular cataracts in the 
more elderly, which was seen in 4/12 recessive [22,23], this 
paper] and 3/25 dominant patients [26]. For recessive NRL 
retinopathy, also called clumped pigment retinal degen-
eration, which is a subtype of autosomal recessive RP, these 
signs coincide with the early fundal appearance of clusters of 
clumped pigmented deposits in the periphery that is accom-
panied by chorioretinal atrophy and attenuated arterioles 
[16,22,23]. However, for dominant disease, fundal abnormali-
ties tend to appear in the third decade with attenuated vessels 
and bone spicule–shaped pigment deposits that are more typi-
cally seen in patients diagnosed with RP [25-29]. Although 
patients with NRL retinopathy show markedly reduced rod 
and cone functions on electroretinography, patients with 
dominant disease also show loss of short wavelength (blue- or 
S-) cone function [16,28] whereas recessive disease patients 
show no detectable rod function and a relatively enhanced 
S-cone function [16,22,23]. This enhanced S-cone feature 
in recessive NRL retinopathy is similar to what is observed 
in Nrl-knockout mice [12] and patients with retinopathy due 
to NR2E3 mutations [31]. It would be interesting to deter-
mine whether the patients described in this report share this 
enhanced S-cone phenotype, though limited patient access 
has precluded further study.

To summarize, we describe one family and two sporadic 
cases with different novel homozygous NRL mutations 
accounting for the disease phenotype. Previously, only five 
families and six mutations had been described with this form 
of RP, so the results contribute to the mutation spectrum 
for this condition. The phenotypes observed are consistent 
with those in previous reports, and the observed mutation 
types and distribution further confirm distinct patterns for 
variants causing recessive and dominant disease. Identifying 
the genetic cause of disease in these patients provides more 
accurate genetic counselling for the families and stratifies 
the patients into distinct groups as future treatments become 
available.

APPENDIX 1. OLIGONUCLEOTIDE PRIMER 
PAIRS FOR THE ANALYSIS OF THE NRL 
MUTATIONS.

To access the data, click or select the words “Appendix 
1.” The DNA sequences, PCR product size and annealing 
temperature of each primer pair are shown.

APPENDIX 2. HOMOZYGOSITY MAPPING IN 
FAMILY MM1 USING WES DATA.

To access the data, click or select the words “Appendix 2.” 
MultiIdeogram of the WES data of patient IV:2 showing 
homozygous regions in blue. The NRL gene (arrowed) is 
located on chromosome 14 at ~24.6Mb (hg19) and maps 
within the homozygous region 21,860,360–25,288,227.
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