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Abstract

Contemporary analyses of insect population trends are based, for the most part,

on a large body of heterogeneous and short-term datasets of diurnal species

that are representative of limited spatial domains. This makes monitoring

changes in insect biomass and biodiversity difficult. What is needed is a method

for monitoring that provides a consistent, high-resolution picture of insect pop-

ulations through time over large areas during day and night. Here, we explore

the use of X-band weather surveillance radar (WSR) for the study of local

insect populations using a high-quality, multi-week time series of nocturnal

moth light trapping data. Specifically, we test the hypotheses that (i) unsuper-

vised data-driven classification algorithms can differentiate meteorological and

biological phenomena, (ii) the diversity of the classes of bioscatterers are quan-

titatively related to the diversity of insects as measured on the ground and (iii)

insect abundance measured at ground level can be predicted quantitatively

based on dual-polarization Doppler WSR variables. Adapting the quasi-vertical

profile analysis method and data clustering techniques developed for the analy-

sis of hydrometeors, we demonstrate that our bioscatterer classification algo-

rithm successfully differentiates bioscatterers from hydrometeors over a large

spatial scale and at high temporal resolutions. Furthermore, our results also

show a clear relationship between biological and meteorological scatterers and a

link between the abundance and diversity of radar-based bioscatterer clusters

and that of nocturnal aerial insects. Thus, we demonstrate the potential utility

of this approach for landscape scale monitoring of biodiversity.

Introduction

Insect population trends have been the focus of large

numbers of research publications over the past decade,

with the majority indicating declines (e.g. Hallmann

et al., 2017; van Klink et al., 2020; Wagner, 2020). How-

ever, the quality of the data available has led to debate

over the validity, or at least generalizability, of many of

those findings (Desquilbet et al., 2021; Simmons

et al., 2019). The field of aeroecology has the potential to

contribute a novel and standardized approach to entomo-

logical monitoring, but our understanding of how

changes in the environment affect aerial insect diversity at

the macroscale is still in its infancy (Bauer et al., 2017,

2019; Crossley et al., 2020; Didham et al., 2020;

Shamoun-Baranes et al., 2019; Stepanian et al., 2020).

With observations of birds and insects dating back to the

first use of radar for tracking aircraft, there is a long

698 ª 2022 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use,

distribution and reproduction in any medium, provided the original work is properly cited.

 20563485, 2022, 5, D
ow

nloaded from
 https://zslpublications.onlinelibrary.w

iley.com
/doi/10.1002/rse2.270 by T

est, W
iley O

nline L
ibrary on [11/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0001-7314-656X
https://orcid.org/0000-0001-7314-656X
https://orcid.org/0000-0001-7314-656X
https://orcid.org/0000-0001-8439-290X
https://orcid.org/0000-0001-8439-290X
https://orcid.org/0000-0001-8439-290X
https://orcid.org/0000-0003-4560-4812
https://orcid.org/0000-0003-4560-4812
https://orcid.org/0000-0003-4560-4812
mailto:


tradition of incorporating radar technology into biological

studies to observe and quantify airborne animals (Chap-

man et al., 2002, 2011; Drake & Reynolds, 2012; Hao

et al., 2020), and observations from weather surveillance

radars (WSRs) have long been thought of as tools that

could provide aeroecological observations over large areas

(Stepanian et al., 2016; Vaughn, 1985; Westbrook & Eys-

ter, 2017). In addition to measuring hydrometeors (e.g.

rain, snow, hail), WSRs continuously monitor the move-

ments of volant animals (i.e. insects, birds and bats) over

large spatial and temporal domains with resolution of

<1 km and ~5 min. By combining the observations from

national- and continental-scale networks, WSRs have the

potential to provide unprecedented information about

macroecological patterns. Yet this potential has not been

fully realized because few rigorous methods exist for sepa-

rating, identifying and classifying biological information

within WSR observations (Gauthreaux & Diehl, 2020).

Here, we describe a novel, unsupervized method for

extracting information about bioscatterers (i.e. volant bio-

logical scatterers) from dual-polarization Doppler WSRs.

Numerous proof-of-concept and observational studies

have shown that Doppler WSRs, with and without dual-

polarization, can be used to observe birds and insects and

have argued for the potential of WSRs to provide insights

into ecology (e.g. Bachmann & Zrni�c, 2007; Chapman

et al., 2011; Chilson, Bridge, et al., 2012; Chilson, Frick,

et al., 2012; Dokter et al., 2011; Drake, 1990; Gauthreaux

et al., 2008; Gauthreaux & Belser, 1998; Gourley

et al., 2007; Melnikov et al., 2014; Melnikov et al., 2015;

Rennie et al., 2010; Russell & Wilson, 1997; Russell &

Wilson, 2001; Stepanian et al., 2020; Tielens et al., 2021;

Westbrook et al., 2014; Westbrook & Eyster, 2017; Wil-

son et al., 1994; Zrnic & Ryzhkov, 1998; among many

others). However, despite over 70 years passing since the

first description of animals on radar (Crawford, 1949;

Lack & Varley, 1945), the widespread application of

WSRs for routine monitoring of volant animals is still

hampered by two key problems: (i) the useful identifica-

tion or categorization of taxa (the ‘classification prob-

lem’), and (ii) the quantification of biomass and

biodiversity (the ‘quantification problem’).

These twin problems have been solved—to an extent—
using small biological radars (e.g. vertical looking radars,

VLRs), in the UK, and insect monitoring radars in Aus-

tralia), but these small radars are few and limited in their

spatial coverage. VLRs are typically well-calibrated, oper-

ate on their own, produce relatively small volumes of data

that can be expertly examined, and the analysis of their

observations benefits from a priori information about the

organisms being observed. These are all factors that disad-

vantage the use of WSR observations as these data will

come from radars whose calibrations [especially when it

comes from power-based observations such as reflectivity

factor (Z)] will fluctuate through time and may not be

consistent with other radars within the WSR network.

Furthermore, the ability to make assumptions about the

scatterers within the observed volumes of data and

expertly examine the data is limited due to the size and

diversity of the data collected across a network. Dual-

polarization Doppler WSRs have yielded promising results

that enhance our ability to extract information about the

size and shape of organisms, and, thus, a more accurate

assessment of biodiversity that might resolve these chal-

lenges (Gauthreaux & Diehl, 2020). For these reasons,

here we aim to demonstrate a novel method for analysing

WSR observations that moves away from traditional,

reflectivity-based metrics to create a method that

may be applied at large-scale to benefit macro-ecological

analyses.

Meteorological monitoring has significantly improved

through advances in polarimetric radar technology and

an increasing understanding of the electromagnetic prop-

erties of hydrometeors (e.g. rain, hail, snow), facilitating

the development of classification algorithms for those

objects (Gourley et al., 2007; Lim et al., 2005; Liu &

Chandrasekar, 2000; Marzano et al., 2007; Park

et al., 2009; Snyder et al., 2010; Straka et al., 2000;

Vivekanandan et al., 1999; Zrnic et al., 2001). Corre-

spondingly, radar entomology, which is part of the

broader discipline of aeroecology (Chilson, Bridge,

et al., 2012, Chilson, Frick, et al., 2012; Vaughn, 1985), is

entering a new phase, with the ability to monitor flying

insects country- and continent-wide using networks of

dual-polarization Doppler weather radars (Boulanger

et al., 2017; Dokter et al., 2011; Gourley et al., 2007; Mel-

nikov et al., 2015; Mueller & Larkin, 1985; Stepanian

et al., 2016, 2020). This approach has proved especially

valuable for observing migratory pests (Westbrook

et al., 2014; Westbrook & Eyster, 2017).

Among the parameters of the observed polarimetric

radar returns, the co-polar correlation coefficient (qHV,

an indicator of the diversity of the observed scatterers)

has been found to be useful for separating bioscatterers

from hydrometeors (Huuskonen et al., 2014; Zrnic &

Ryzhkov, 1998). It has been shown that birds and insects

may be distinguished from each other by their Doppler

velocity (Huuskonen et al., 2014; Rennie et al., 2010;

Zhang et al., 2005) and differential reflectivity (ZDR, an

indicator of shape) (Browning et al. 2011; Melnikov

et al., 2015; Mueller & Larkin, 1985; Wilson et al., 1994).

Other useful quantities for bioscatterer classification

include: differential phase shift (ΦDP), which is sensitive

to size and shape (note that ΦDP comprises a propagation

term that dominates in rain and a backscattered compo-

nent, d, that dominates in bioscatterers) (Melnikov
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et al., 2015; Zrnic & Ryzhkov, 1998); the total measured

phase difference between horizontal and vertical polariza-

tions (wDP) as in Stepanian et al. (2016); linear depolar-

ization ratio (an indicator of shape) and differential

Doppler velocity (i.e. the difference in the velocity

observed at the horizontal and vertical polarizations),

which has been shown to differentiate effectively between

hydrometeors and specific groups of birds and insects

(Melnikov et al., 2014). For a full review of the use of

dual-polarization Doppler WSRs within aeroecology

please see Drake and Reynolds (2012), Stepanian

et al. (2016) and Chilson et al. (2017).

Novel analytical tools are needed to process the consid-

erable volume of data from dual-polarization Doppler

WSR networks. Machine learning (ML) tools offer an

opportunity to extract new, biologically meaningful infor-

mation from the data but have only been applied to

specific biological phenomena (Chilson et al., 2019; Gau-

threaux & Diehl, 2020; Lin et al., 2019). More developed

methods for species identification and application to non-

avian bioscatterers have been reported for vertical-looking

radar (e.g. Hao et al., 2020; Hu et al., 2016), but not

applied to horizontally looking WSRs. Thus, new

approaches are required that can classify WSR data

beyond simple biomass estimates of larger organisms

(Chilson et al., 2019).

Here, we demonstrate the use of a novel method

(Lukach et al., 2021) applied to quasi-vertical profiles

(QVPs; Kumjian & Ryzhkov, 2012; Ryzhkov et al., 2016)

of observations made by a mobile dual-polarization X-

band Doppler WSR (Neely III et al., 2018) over an agri-

cultural landscape in the southern United Kingdom.

QVPs make the ML classification application computa-

tionally tractable while still representing a large spatial

region. The ML classification results are used in conjunc-

tion with historical data collected by the Rothamsted

Insect Survey (RIS) light-trap network (Fox et al., 2021;

Woiwod & Harrington, 1994). The RIS light trap net-

work provides near-daily, systematic monitoring data at

80 sites throughout the United Kingdom and Ireland.

These moth communities have been shown to have com-

plex long-term temporal dynamics (Bell et al., 2020),

making this taxon a prime candidate for testing innova-

tive biomonitoring techniques that WSR could provide.

Specifically, we test the following three hypotheses: (i)

meteorological and non-meteorological signatures can be

differentiated in WSR data using hierarchical clustering

methods; (ii) the same method can be applied to distin-

guish different morphotypes between groups of nocturnal

bioscatterers (classification) and (iii) that the abundance

of nocturnal bioscatterers observed via WSR provides a

proxy for entomological abundance or biomass (quantifi-

cation).

Materials and Methods

Weather radar data selection and pre-
processing

In this study we utilize observations from May, June and

July 2017 collected by the UK’s National Centre for

Atmospheric Science’s (NCAS) mobile X-band dual-

polarization Doppler WSR (NXPol; Bennett, 2020).

NXPol-1 is a Meteor 50DX manufactured by Selex-

Gematronik (now Leonardo Germany GmbH), modified

to operate with a larger 2.4 m diameter antenna that pro-

duces a 0.98° half-power beam width and does not have a

radome. At the time, NXPol-1 was deployed at the Chil-

bolton Atmospheric Observatory (CAO; 51°8040”N,
1°26019.00”W). For more technical details on NXPol-1

and the facility used to support the radar during the

deployment, please refer to Neely III et al. (2018). Note

that all NXPol-1 analyses in this work utilize open-source

radar software (Heistermann et al., 2015). Specifically, we

utilize routines from the following Python modules: Py-

ART (Helmus & Collis, 2016), wradlib (Heistermann

et al., 2013) and scikit-learn (Pedregosa et al., 2011). We

also make extensive use of the Lidar Radar Open Software

Environment (LROSE) Core Software (Dixon &

Javornik, 2016). Figure 1 shows a typical example of indi-

vidual horizontal (3° elevation plan position indicator

(PPI); Fig. 1A) and vertical [range height indicator

(RHI), Fig. 1B] scans in comparison to the QVPs created

for the entirety of June 6, 2017. The first scanned volume

in the path of a 3° elevation beam starts at 86 m above

ground level 150 m from the NXPol-1 and reaches a

height of c. 1.57 km at a distance of 60 km from the

radar.

Figure 1. An example of typical radar data used in the analysis. Observations shown here are from June 6, 2017. (A) is a 3° elevation PPI of ZH
observed from 21:30:03 to 21:35:09 UTC. The black cross hairs indicate the location of the radar. Range rings are drawn every 5 km. The black

ray indicates the azimuth of the RHI scan in (B). The black triangle is the location of the Porton Down light trap and the black square indicates

the location of the Bentley Wood light trap (two sites within the Rothamsted light-trap network). The regions where NXPol-1 is either blocked or

did not pick up any signal are white. (B) An RHI of horizontal reflectivity (ZH) taken at an azimuth of 253° observed from 21:28:29 to 21:30:03

UTC. The elevation of the PPI scan in a) and from which the QVPs are formed is indicated by the black ray. (C–F) depict QVPs of the four radar

input variables used in this analysis formed from all the 3° elevation PPIs observed from 00:00:00 to 23:59:59 UTC. The approximate time of the

PPI and RHI are indicated by the vertical black line. PPI, plan position indicator; QVP, quasi-vertical profile; RHI, range height indicator.
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Before the cluster method is applied, the reflectivity and

differential reflectivity observations are calibrated, and each

PPI scan is transformed into a QVP (see Fig. 2). Individual

QVPs are then concatenated together to form a dataset that

represents time on the x-axis and altitude on the y-axis,

with pixel value giving the value of the radar variable.

QVPs were first used in Kumjian and Ryzhkov (2012) and

Ryzhkov et al. (2016) as a way of constructing a substitute

for a vertical profile from a scan conducted at constant ele-

vation, which is a typical mode of scanning for weather

radars used in operational networks.

NXPol-1 observations from an elevation angle of 3°
were used to create the QVPs in this study. The location

of the NXPol-1 at the CAO has azimuthal directions

(from 45° to 185°, where 0° is North) where the radar

beam is either blocked at low elevation angles due to

obstacles such as other observational instruments and

buildings, or where the transmitter is switched off to

avoid interference (see the white or blank sectors in

Fig. 1). These azimuthal directions were removed from

the PPI scan data before being transformed into a QVP.

In general, utilization of QVPs has, in this context, both

advantages and disadvantages. The advantages of QVPs are

related to the fact that averaging values reduces statistical

errors in the WSR data (Ryzhkov et al., 2016). Also, it rep-

resents well the movement of individual ‘volume targets’

when there are many individuals in the volume sampled

by the WSR data at different altitudes. But this might also

be a disadvantage as validation data are collected from the

air column at one point of the QVP domain, and single

individuals collected in this way might be not represented

by ‘volume targets’ in the data. In this analysis, we chose

to use the QVP representation of the data to reduce the

overall dimensionality of the data. This allowed us to focus

on the adaptation of the original clustering method, which

is based on QVPs, to bioscatterers. Through doing this, we

have ignored the azimuthal asymmetries associated with

insects. This limits the analysis of the orientation of the

observed organisms which would provide useful ecological

information about the travel of the observed insects. For

example, in directed migration with large extent a strong

azimuthal variation in ZDR will be smoothed out. Simi-

larly, high spectrum width could indicate either multiple

insect morphologies in the beam, or random flight orienta-

tion (e.g. in low wind) of similar-sized insects. These are

limitations that we must bear in mind while we analyse the

resulting clusters and their characteristics. In general, the

clustering method may be applied to any geometry of

WSR input dataset. This includes PPIs, RHIs, volumes of

PPIs and vertical columns extracted from a specific loca-

tion within a PPI.

Forty 24-h periods, belonging to seven continuous time

series of data were selected for inclusion in the analysis.

From these periods, 33 nights of continuous NXPol-1

observations were selected based on the availability of light

trap data (see below) and a preliminary analysis of the PPI

data. The analysis allowed us to check that no bird migra-

tions were observed over the focal nights. The nights

included were: 11–14 and 31 May; 1, 14–21 and 25–27
June; and 1–11, 17–18 and 24–26 July. QVP data were

only utilized for the periods of time when light trap data

were also available, from civil dusk to civil dawn. QVPs of

horizontal reflectivity factor ZH [dBZ; mm6/m3], vertical

reflectivity factor ZV [dBZ; mm6/m3], differential reflectiv-

ity ZDR [dB], co-polar correlation coefficient RhoHV [unit-

less] and specific differential phase KDP [° km�1], were

selected as input to the clustering algorithm utilized here.

Example 24-h QVP time series are shown in Figure 1.

Bioscatterer classification algorithm

The method used in this study is based on the iterative

hierarchical clustering algorithm developed by Lukach

et al. (2021) for classifying hydrometeors. This algorithm

(hereafter, the bioscatterer classification algorithm, or

BCA) is an implementation of a ‘top-down’ approach in

which all multivariate data points are first considered as

one main cluster and then split into an optimal number

of sub-clusters in a recursive procedure by applying prin-

cipal component analysis (PCA) in each separate splitting

step. The splitting step is performed in the ‘inner loop’,

that iteratively increases the number of clusters starting

from two and stops at an optimal number of clusters for

a given subset of the data. The PCA reduces the dimen-

sionality of the data and detects identifying features in

the data subsets. After the features are detected, the set of

clusters for the subset is passed to the ‘outer loop’ that

examines the overall structure of the clusters.

Figure 2. A schematic depicting the geometry of the weather radar

PPI that forms the basis of a single QVP. To form a QVP, the cone of

the single PPI scan is azimuthally averaged and the resulting data at

each slant range is projected onto the height axis. Note that the

diameter and height are given for the 3° elevation scan used in this

work. This figure is adapted from similar schematics in Kumjian &

Ryzhkov (2012) and Ryzhkov et al. (2016). PPI, plan position indicator;

QVP, quasi-vertical profile.
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The optimality of the splitting in the BCA is deter-

mined with two criteria: one ‘inner loop’ and one ‘outer

loop’. The first criterion is determined as a measure of

compactness based on the distances between the points

and the barycenters of all clusters. The algorithm termi-

nates the process when the clusters of the ‘inner loop’

subset reach the most compact form. These clusters are

passed to the ‘outer loop’ and the posterior probability of

a total clustering being true is estimated for all input

points. In this way, the BCA creates a hierarchical tree

that maximizes the information of the identified clusters

throughout its structure. As there is no predisposition of

the algorithm to focus on any particular property of the

data, it is agile and is just as suited to examining bioscat-

terers as hydrometeors.

Advantages of this algorithm are that it is a purely

data-driven classification and that it allows for choice in

the level of classification detail used in the subsequent

analysis due to its hierarchical structure. The main idea

behind the data-driven clustering method is the splitting

of multivariate data into an optimal number of classes

according to underlying characteristics manifested in a

principal components space while keeping track of the

hierarchical sequence of the splitting process. Full details

of the algorithm may be seen in Lukach et al. (2021).

Entomological data selection

The output of the BCA through time was compared to

observations from the RIS light-trap network. We focused

on two light trap sites located at Bentley Wood

(SU253324) and Porton Down (SU223384). The distance

between the two light traps is c. 6.7 km, and both are

within 20 km of the CAO, providing optimal resolution

within the NXPol-1 data across both sites. For the com-

parison, we chose sampling dates between May and July to

maximize the diversity of macro-moth species likely to be

present. Specific sampling days were chosen to exclude

both significant meteorological phenomena and any moth

catches involving more than one night of sampling (i.e.

where the catch would be representative of two or more

nights instead of a single night). This process of data selec-

tion resulted in 33 days of sampling. The Bentley Woods

light trap was active across all these dates while NXPol-1

was in operation (see above), whereas the Porton Down

trap was only operational across 16 nights: 31 May; 1, 14–
15, 21, and 26 June; and 3–6, 10–11, 18 and 24–26 July.

Light trap data analysis

The two focal light traps captured 177 macro-moth spe-

cies (N = 2030 individual moths) across our 33 chosen

sampling dates. Individuals are identified by trained

experts who monitor the traps. We collated a morphome-

tric trait database (Dally et al., 2021) containing mean

measurements for six traits: forewing length (mm), body

length (mm), thorax length (mm), abdomen length

(mm), thorax width (mm) and abdomen width (mm),

for each of these 177 species using digitized specimens

from the collection of the Natural History Museum, Lon-

don (NHM) (Natural History Museum, 2014) and the

(to-scale) colour photographic plates present in Skin-

ner (2009) (see Supplementary Materials). We estimated

a further four mean traits per species: fresh body mass

(mg) (see Kinsella et al., 2020; Rydell & Lancaster, 2000),

the depth of the thorax (mm) and the lateral (body

length/thorax depth) and anterior (thorax width/thorax

depth) aspect ratios, using several of the original mean

trait values (see Supplementary Materials for a full

methodology). This trait database was used to create a

corresponding matrix of mean trait values per species per

sampling date. Micro-moth species were not well-

represented in the RIS light trap data, and those that were

present did not have records digitized by the NHM. We

therefore decided to concentrate our analysis on macro-

moth species only. As such, based on the dimensions of

the sampled moths, it is highly likely that we observed a

mixture of scatterers in the Rayleigh and Mie regimes,

with size parameters ranging from 0.1 to 2.5. Therefore,

the interpretation of the results should not be wholly con-

sidered with Rayleigh assumptions.

All entomological data analyses were carried out in R,

version 4.0.2 (R Core Team, 2021). PCA, via the prcomp

function, was used to reduce dimensionality within these

nightly trait data. Trait data were standardized prior to

the PCA, and the first two principal components (PCs)

were retained. The variable loadings show PC1 as having

a weak positive association with all morphometric traits,

while PC2 has a strong positive association with the lat-

eral and anterior aspect ratios (see Table S1), suggesting

that PC1 indicates insect size, while PC2 indicates insect

shape. Community-weighted mean (CWM) scores for

PC1 and PC2 were calculated per night, weighted by both

macro-moth abundance and biomass. Macro-moth abun-

dance and biomass were also summed per night. To

attempt to generate a biomass variable that scales more

linearly with horizontal reflectivity factor, we calculated a

further variable: (mass2) 9 abundance (hereafter termed

‘mass-squared abundance’: ‘MSA’). Finally, we used these

derived variables to test for relationships between the light

trap samples and the BCA clusters.

Canonical correspondence analysis

We used canonical correspondence analysis (CCA), via

the cca function in the vegan package (Oksanen
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et al., 2020) within R, to link the relative abundances of

the different BCA clusters per night to the corresponding

macro-moth community traits derived above. The CWM

scores for PC1 and PC2, together with the summed values

for abundance, biomass and MSA, were used to generate

four CCA models to evaluate different methods of incor-

porating mass and abundance into the entomological

data: (i) CWM scores for PC1 and 2 were weighted by

macro-moth abundance, includes summed abundance

and biomass; (ii) CWM scores for PC1 and 2 were

weighted by macro-moth abundance, includes summed

abundance and MSA; (iii) CWM scores for PC1 and 2

were weighted by macro-moth biomass, includes summed

abundance and biomass; (iv) CWM scores for PC1 and 2

were weighted by macro-moth biomass, includes summed

abundance and MSA. The model that explained the great-

est proportion of constrained inertia was selected. Con-

strained inertia is the sum of the eigenvalues associated

with the constrained CCA axes (representing the explana-

tory variables) and is presented here as a proportion of

total inertia. This is comparable to the variance within

the species scores explained by the constrained CCA axes

and is accepted as a measure of model fit (Økland, 1999;

Ter Braak, 1986). The significance of this model, its axes

and terms were assessed using permutation tests via the

anova.cca function in the vegan package.

Diversity analysis

To obtain measures of taxonomic diversity, we calculated

the Shannon diversity of both the macro-moth commu-

nity and the BCA cluster ‘community’ (treating each clus-

ter as a separate ‘species’) per night using the diversity

function in the vegan package. To obtain a measure of

macro-moth morphometric diversity, we measured the

functional dispersion (Lalibert�e & Legendre, 2010) of all

10 macro-moth morphometric traits per night, using the

fdisp function in the FD package within R (Lalibert�e

et al., 2014; Lalibert�e & Legendre, 2010). Morphometric

trait data were transformed into a distance matrix using

the Bray–Curtis dissimilarity index using the vegdist func-

tion in the vegan package. We used Spearman’s rank cor-

relation to quantify relationships among these three

measures of diversity, using the rcorr function in the

Hmisc package (Harrell Jr., 2021) within R.

Macro-moth abundance correlations

Finally, we tested for correlations between macro-moth

abundance per night and the nightly abundance of each

individual BCA cluster, as well as the total abundance

across all BCA clusters per night (calculated by adding

together the number of cells in the NXPol-1 scan that are

classified in one of the four bioscatterer classes), using

Pearson’s correlation or Spearman’s rank correlation

depending on whether the data conformed to the

assumptions of parametric tests.

Results

Distinguishing between meteorological vs.
non-meteorological WSR signatures

The hierarchical clustering tree resulting from the BCA is

shown in Figure 3, illustrating how the data were divided

into five clusters. Figure 4 illustrates the mean and vari-

ability of the five radar variables used to determine each

of the clusters. Figure 4 also provides a summary of the

altitudes (Fig. 4F) at which each of the clusters could be

found throughout the dataset to help describe the clusters

further, but altitude was not included in the BCA to

determine the clusters.

Note that the set of clusters output by the BCA

depends on (i) the selection of the set of input variables

utilized, and (ii) the set of points in the multivariate

space of selected input variables. For the BCA to be stable

in this context, the use of the same input data will always

lead to the same output set of clusters. As in Lukach

et al. (2021) we tested the BCA for stability by clustering

the data multiple times and found the results to be the

same.

The BCA makes a clear distinction in Cluster 5 from

the remaining four clusters at the first iteration level, and

the characteristics (Fig. 4) of Cluster 5 strongly suggest

that this cluster represents meteorological phenomena,

dominated by rain. Cluster 5 has the highest (above 0.96)

RhoHV mean value of all the clusters. Cluster 5 also has a

narrow distribution of ZDR values that is centred close to

Figure 3. Classification tree created by the application of the BCA to

the 33 nights of NXPol-1 observations. The colour of the tree label of

the clusters corresponds to the colours used in the following figures.

BCA, bioscatterer classification algorithm.
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0 dB. This implies that the observed radar backscatter

possibly originates from spherical targets. The mean val-

ues in the horizontal and vertical reflectivities (ZH and

ZV) are highest among the other clusters (18 and 19 dBZ)

but should be considered as low for meteorological obser-

vations and in most cases would represent light rain in

the weather radar observations. Combining all these com-

ponents together, we consider Cluster 5 as representing

light rain.

As the meteorological and the non-meteorological clus-

ter branches were separated from each other at the first

level of the BCA’s tree it is easy to generalize the charac-

teristics of all the other clusters together. The characteris-

tics of the non-meteorological, or bioscatterer, branch

formed by Cluster 1, 2, 3 and 4 can be described by low

mean ZH and ZV values (between 0 and �12 dBZ),

slightly positive mean ZDR values (between 1 and 2 dB)

and low RhoHV mean values (<0.7).
From the bioscatterer clusters, Cluster 1 has the lowest

mean reflectivity values (�10 dBZ for ZH and �12 dBZ

for ZV) and a mean ZDR value near 1 dB. These charac-

teristic values suggest that data points belonging to Clus-

ter 1 should come from observations comprised of

ensembles of bioscatterers with low number densities (i.e.

few animals in the observed radar volume) that have rela-

tively small bodies that are slightly elongated and hori-

zontally oriented. Conversely, Cluster 2 has the highest

mean reflectivity values among all the bioscatterer clusters

(close to 0 dBZ in both ZH and ZV). Like Cluster 1, Clus-

ter 2 has a mean ZDR value of ~1 dB and a mean RhoHV

value of ~0.7, but Cluster 2 is also distinguished by hav-

ing a negative mean KDP value. This suggests Cluster 2 is

comprised of observations of relatively dense ensembles

of larger, horizontally oriented bioscatterers with slightly

elongated bodies. The inferred larger size of the bioscat-

terers comprising this cluster is also supported by the fact

that Cluster 2 is found closer to the surface than Cluster

1 (Helms et al., 2016; Hespenheide, 1975, 1977; Smith

et al., 2000).

The mean reflectivity values of Clusters 3 and 4 are

intermediate to those of Clusters 1 and 2. Thus, Clusters

3 and 4 are mostly separated from the other clusters by

the remaining polarimetric radar variables. In particular,

Cluster 3 has the lowest mean RhoHV value (~0.6) and

the highest mean ZDR value (~2 dB). Combined with its

other characteristics, these values suggest that Cluster 3

represents observations of bioscatterers with low number

density that have elongated body shapes that are highly

uncorrelated in the observed air volume. The uncorrelated

signature of Cluster 3 may be partially due to variations

in body geometry caused by wing beating which could

influence the bioscatterers backscattering characteristics.

Unlike the other three bioscatterer clusters, Cluster 4 has

a near 0 dB mean ZDR value. Thus, combined with also

having the most negative mean KDP value (~
�2.5°km�1), Cluster 4 likely comprised a collection of

bioscatterers with low numbers of larger but more spheri-

cal bodies.

If we assume that the clusters are primarily representa-

tive of insects, we can think of Cluster 1 as representing

smaller individuals that are homogenous in terms of their

morphology, with slightly longer, slimmer body shapes—
potentially reminiscent of smaller Diptera. This cluster is

ubiquitous within the air column, being present between

~100 and 800 m in altitude (Fig. 5), but is present at low

densities. Cluster 2 represents insects that are similar in

Figure 4. Box plots describing radar variable characteristics in (A-E) of the five BCA clusters shown in Figure 3. A summary of the altitude at

which each of the clusters is found is also included in (F). The box shows the quartiles of the dataset while the whiskers extend to show the rest

of the distribution, except for points that are determined to be ‘outliers’ using a method that is a function of the inter-quartile range. BCA,

bioscatterer classification algorithm.
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body shape to those in Cluster 1 but are larger and are

present at greater densities. This cluster is similarly pre-

sent throughout the air column. Cluster 3 represents

insects that are very elongate in shape but are otherwise

more diverse in morphology than Clusters 1 and 2, indi-

cating a mixture of taxonomic groups present predomi-

nately between 300 and 500 m and at lower densities.

Whereas Cluster 4 represents insects that are

morphologically homogenous, but with larger, more

spherical bodies. This cluster is present at lower densities

and is found closer to ground-level (<300 m).

The ecological interpretation of these clusters in the

context of ‘biodiversity’ is not straightforward. An

increase in cluster 3 at the expense of clusters 1 and 2

may involve an increase in overall diversity as one of the

features of cluster 3 is that the constituent objects are

Figure 5. Time series of the input data (A) horizontal reflectivity, (B), vertical reflectivity, (C) differential reflectivity, (D) correlation coefficient, (E)

specific differential phase) and the resulting distribution of the 5 BCA clusters (F) across 2 nights of QVP observations. BCA, bioscatterer

classification algorithm; QVP, quasi-vertical profile.
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diverse in size and shape. However, an increase in the

diversity of clusters will still tend towards an increase in

the broader diversity of insect morphotypes, as the clus-

ters each represent different community structures drawn

from the wider species pool. Further work will be needed

to explore the extent to which species overlap in their

memberships of different clusters and cluster-specific

spatio-temporal distributions.

Linking these clusters to specific (groups of) taxa will

require a series of cross-validation studies. These studies

could involve VLR or other entomological radars that can

identify species at different heights. However, those VLRs

suffer from similar issues to the WSRs in that they can

vary in calibration and power. Aerial netting can be used

to capture animals in the air column, but this is a consid-

erable logistical exercise that captures relatively few ani-

mals. Finally, it is possible to use natural experiments

during mass emergences or migrations of known insect

taxa to explore the link between radar measurements and

those specific morphotypes. Examples of such natural

experiments include aquatic insect emergence (e.g. Stepa-

nian et al., 2020) or ant nuptial flights.

The main difficulty in direct attribution of the detected

clusters to possible classes based only on the mean char-

acteristics of the clusters, is related to the nature of WSR

observations. These are influenced by the size, shape,

number density and dielectric properties of the targets as

well as the wavelength of the radiation being utilized by

the WSR. This multitude of influences makes any

property-based attribution only tentative, and a proper

assignment requires support of a detailed analysis and

validation based on ground-based or aerial observations

of the morphology of nocturnal insect taxa.

Figure 5 shows the results of the BCA applied to two

consecutive nights of NXPol-1 observations from the

33 days used in this study. In addition to the clusters, we

also show the time series of the input data to the BCA to

enable a comparison of the observed variables to the out-

put of our algorithm. These nights were chosen as a rep-

resentative sample of the entire time series. The vertical

and temporal pattern of the clusters on the first night

(July 18, 2017) is typical for nights of high general

bioscatterer activity and no significant meteorological

phenomena. Generally, Cluster 1 is always detected first

(and on nights with little activity may be the only cluster

observed) and rises from the near surface before sunset

(cut off here and not included in the analysis) then moves

to higher altitudes later in the night. This is followed by

the dominance of Cluster 2 near the surface and Cluster 3

at higher altitudes. Cluster 4 typically always appears after

Cluster 3 near the surface. Cluster 1 also generally makes

a reappearance before dawn after the altitudinal extent of

Cluster 3 has decreased. The second night (July 19, 2017)

shows a similar pattern, but in this case the time series is

interrupted by a brief period after midnight where Cluster

5 dominates. Comparison to observations from the UK

Met Office’s WSR network confirm that widespread rain-

fall moved from the south of the UK northwards during

this period.

Bioscatterer classification and abundance

The BCA results in Figure 3 support the existence of four

discrete, radar-derived bioscatterer clusters that vary in

their observed scattering characteristics which is assumed

to be caused by differing morphometric characteristics of

the observed volumes of organisms; Figure 4. The four

BCA clusters were tested for their relationships with the

light trap samples using three complementary approaches.

First, for each night of sampling, macro-moth community

traits were compared against the relative frequencies of

the BCA clusters using CCA. This test allows us to estab-

lish whether it is possible to explain statistically the varia-

tion in the relative abundance of BCA clusters using

known traits data in the local macro-moth community,

based upon similarity of morphology, abundance and

biomass.

Of the four CCA models, model 3 (Table 1) explained

the greatest proportion of constrained inertia (0.251) and

provided a statistically significant prediction of the BCA

clusters based on community traits [F(4,28) = 2.339,

P = 0.043]. Approximately 89% of the constrained inertia

of this model was explained by the first axis, although this

axis did not statistically predict BCA clusters alone

[F(1,29) = 8.647, P = 0.064]. This axis was characterized

by moderate-to-high scores for summed abundance

(eigenvalue weighting: 0.88) and summed biomass (0.71)

per night. BCA Cluster 3 displayed a weak positive score

for this axis (0.35) (Fig. 6A). Permutation tests show that

summed macro-moth abundance was the only significant

predictor of BCA clusters in the model [F(1,28) = 6.511,

P = 0.015] when all terms were tested sequentially, but

that no terms were significant when each was tested inde-

pendently. Overall, this indicates that, while BCA cluster

3 can be typified by an increased abundance in compar-

ison to the other clusters, we can make no assumptions

regarding the morphology of the bioscatterers character-

ized by the BCA clusters.

The second approach compared the diversity of BCA

clusters with the diversity of macro-moths captured per

night. Diversity was expressed both as taxonomic diversity

(Shannon diversity, based on relative frequencies of dif-

ferent macro-moth species or radar clusters) and func-

tional dispersion (a measure of macro-moth

morphological variability). Results showed a strong posi-

tive correlation between the taxonomic diversity of both
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the aerial macro-moth community and the BCA clusters

per night [Rs(31) = 0.60, P < 0.001] (Fig. 6B).

Finally, correlation tests showed significant positive

relationships between macro-moth abundance and the

abundance of BCA clusters 2 (Rs(31) = 0.5, P = 0.003), 3

(Rs(31) = 0.73, P < 0.001) and 4 (Rs(31) = 0.53,

P = 0.002), as well as total abundance across clusters 1–4
(Rs(31) = 0.57, P < 0.001), per night (Fig. 6C).

Discussion

While the potential for the use of dual-polarization Dop-

pler WSRs has been recognized for the study of aerial

insects (Bauer et al., 2019; Didham et al., 2020), our

study represents the first demonstration that classification

algorithms can extract meaningful community data from

WSR data without a priori information. Our results show

that meteorological scatterers can be distinguished mean-

ingfully from biological scatterers using an unsupervised

algorithm if both types of scatterers are represented in the

original data. We go on to demonstrate the important

next step: that biological information from WSRs has

ecological meaning in terms of the abundance and diver-

sity of insects at or near ground level. While we do not

argue that the bioscatterers in the radar data correspond

directly with the community of moths at ground level, we

have provided strong evidence for a correlation between

the two communities that is likely caused by one or more

shared drivers (e.g. weather, phenology, etc.). As such,

our findings suggest that the radar-derived measure of

abundance and diversity of nocturnal insects can be used

to predict—if not measure—ground-level biodiversity.

A range of algorithms has been proposed to extract

data on bird movements from WSRs. The vol2bird algo-

rithm works based upon the velocities of birds relative to

hydrometeors using volume velocity profiling (Dokter

et al., 2011); though it is recognized that this would not

be as useful for insects as many species move passively

with the wind. Meanwhile other techniques have relied

on convolutional neural networks to process spatiotempo-

ral arrays of radar data (Lin et al., 2019). In comparison

to the wider literature, the BCA used here is capable of

distinguishing hydrological from biological scatterers at

least as well as existing supervised classification methods

but, importantly, without any additional assumptions

regarding how these classes are represented in the original

data. The BCA here needs no training data to inform the

clustering and can be applied to all QVP-data universally

—requiring no adjustments for different data types. The

BCA additionally probes the data to explore the extent of

morphological (and hence, potentially, taxonomic) differ-

entiation present in the air column. However, the output

of the clustering is heavily reliant upon the quality and

content of the input data. If certain data classes (e.g.

hydrometeors) are not present, or are present but in very

low densities, then these classes have a low chance of

being represented in the set of final clusters.

This well-supported differentiation between scatterers

opens the possibility for the quantification of biomass

regardless of the taxonomic resolution of the data, as has

been done in the case of bird migrations (Chilson

et al., 2019; Lin et al., 2019). Even if our analysis had not

demonstrated additional value in the data in terms of esti-

mating biological diversity, quantification of abundance

would be a useful insight for future research. The fact that

we can extract relatively strong correlations between ento-

mological measures of abundance and measures of overall

radar reflectivity also raises the exciting prospect of using

WSR observations as a general proxy for biomass at a large

scale. Such work using WSRs has previously been focused

on mass emergences (Stepanian et al., 2020) or swarming

events (Westbrook et al., 2014), but, as yet, there has been

no attempt at creating a regional map of standing insect

biomass that is relevant for ground-level ecosystems.

Additionally, our findings show that the taxonomic

diversity of moths on the ground correlates with the

Table 1. The proportion of constrained inertia explained by each of the four CCA models, together with corresponding pseudo-F statistic,

degrees of freedom and P-value. CCA, canonical correspondence analysis.

Model

Proportion of constrained

inertia explained Pseudo-F statistic df P

[1] CWM PC1 & PC2 (abundance); summed

abundance & biomass

0.224 2.023 4, 28 0.082

[2] CWM PC1 & PC2 (abundance); summed

abundance & MSA

0.202 1.766 4, 28 0.131

[3] CWM PC1 & PC2 (biomass); summed

abundance & biomass

0.251 2.339 4, 28 0.043

[4] CWM PC1 & PC2 (biomass); summed

abundance & MSA

0.244 2.259 4, 28 0.062

CWM, community-weighted mean; PC1 and PC2, the scores for the first and second principal components from the PCA.
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Figure 6. (A) CCA biplot showing the four BCA clusters and their relationship to four derived macro-moth community traits: community-

weighted mean values for PC1 and PC2 (weighted by biomass) per night, and summed abundance and biomass per night, indicated by the four

labelled arrows; (B) scatterplot showing the relationship between the taxonomic (Shannon) diversity of both the macro-moth community and the

BCA cluster community present per night over our two focal RIS light-trap sites; (C) scatterplot showing the relationship between summed macro-

moth abundance per night and the summed abundance of bioscatterers described by BCA clusters 1–4 (calculated by adding together the number

of cells that are classified as one of the four bioscatterer classes) per night over our two focal RIS light-trap sites. BCA, bioscatterer classification

algorithm; RIS, Rothamsted Insect Survey; CCA, canonical correspondence analysis.
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diversity of the bioscatterer clusters. This suggests that the

taxonomic or morphological resolution at which WSRs

can operate—at least in the case of nocturnal insects at

our study sites—can yield ecologically meaningful

insights. However, there is morphological variation within

our bioscatterer clusters that is too subtle to be linked to

explicit morphological variability in the macro-moth

community data. Past work has demonstrated that it is

difficult to differentiate birds and insects in WSR data

(see discussion and methods in Nussbaumer et al., 2021).

This is primarily driven by the lack of in situ observations

to compare directly to WSR observations. In this case, the

interpretation of the results is further complicated due to

the observed bioscatterer clusters most likely being a mix-

ture of both Rayleigh and Mie scatters, so the simple rela-

tions used in the interpretation of the polarimetric

quantities that represent the characteristics of cluster may

not hold. Without additional in situ data and electromag-

netic modelling, these results will remain uncertain. Nev-

ertheless, we still demonstrate how the algorithm may be

utilized as a tool to examine such a dataset.

In this analysis, the in situ observations come from RIS

light traps that are estimated to sample within a radius of

30–50 m and feature an opaque covering that obscures

the bulb from insects flying at high altitudes (Bell

et al., 2020). Since only macro-moth species are counted

and identified from among all insect taxa attracted to the

traps, the light trap samples are considered to provide a

standardized measure of the relative abundance of local

macro-moth populations. They are not, however, neces-

sarily representative of broader crepuscular and nocturnal

aerial insect communities, which may comprise a mixture

of dipteran, coleopteran, neuropteran, trichopteran and

ephemeropteran species, in addition to both macro- and

micro-moth species, depending on the time of year, habi-

tat and environmental factors (Chapman et al., 2004;

Wakefield et al., 2018; Wickramasinghe et al., 2004;

Wood et al., 2010). Further, we would also not expect

actively migrating moth species to be well-represented

within the RIS light trap data since these migrations

occur at high altitudes (Wood et al., 2009). However,

migratory moth species are often found within RIS light

trap samples, representing individuals that are either yet

to begin their migration or that finished migrating and

are engaging in local flights in search of food etc.

In addition, the QVP representation of bioscatterer

abundance is calculated over a much larger area

(~2800 km2) than that estimated to be sampled by each

light trap, providing a landscape scale measure of aerial

bioscatterer activity. This difference in the scale of spatial

sampling, together with the focus on macro-moth species

in the light trap data, may be responsible for our inability

to relate moth morphometric diversity to the different

BCA clusters since, depending on the level of landscape

heterogeneity surrounding our two focal light traps, aerial

insect (and macro-moth) diversity may differ significantly

within the area represented by the QVP. However, the RIS

light-trap network remains the only source of systematic

nocturnal insect monitoring data in the United Kingdom.

Bird and bat populations will also have contributed to pat-

terns of biological activity on WSR observations (Boero

et al., 2020; Nilsson et al., 2019; Stepanian et al., 2019)

but, as no large-scale bird migrations were identified in the

data and no large populations of high-flying bat species

have been observed within the study area, the impact of

this on our analysis is minimal (NBN Atlas, 2021).

However, one promising method may be the linking of

morphology with radar scattering based on electromag-

netic modelling, although this approach is in its infancy

(Drake et al., 2017; Mirkovic et al., 2016, 2018). Electro-

magnetic modelling would allow researchers to make

‘bottom-up’ predictions of radar echoes based on size and

shape in a range of taxa, effectively starting with a search

image derived from the modelling and searching through

data for that specific object. Such an approach would be

complementary to the ‘top-down’ approach shown in our

study of taking a series of radar observations and categoriz-

ing combinations of values. At present, in our data, while

there is some evidence that the ensembles of bioscatterers

represented by the clusters vary in size and shape, this vari-

ation appears to be too broad (or our taxonomic sampling

too specific) to detect a correlation between radar-

observed scattering characteristics and macro-moth mor-

phology. This is further complicated by the need to

account for Mie scattering in our interpretations.

The scattering attributes of individual radar targets,

relating to their size, shape and mass, have been previously

used to distinguish different insect taxa in vertical-looking

radar (VLR) scans (Chapman et al., 2002; Drake, 1984;

Reynolds et al., 2005; Smith et al., 2000; Wood

et al., 2006, 2009). Following the longstanding success of

VLR radar analysis, dual-polarization weather radar has

been identified as a tool (Bauer et al., 2017, 2019; Chilson,

Bridge, et al., 2012, Chilson, Frick, et al., 2012; Dokter

et al., 2011; Gauthreaux et al., 2008; Shamoun-Baranes

et al., 2019; Stepanian et al., 2016, 2020) for examining

biodiversity over larger spatial areas if the information

within the backscattered electromagnetic signals could be

tied to meaningful biological and ecological information.

Following this path, our analysis represents the first

attempt to demonstrate this link using detailed ground-

truthing data in nocturnal insect communities. Our results

provide strong evidence for the value of dual-polarization

weather radar data to the monitoring of nocturnal biodi-

versity, although there is no reason to expect that the

approach would be limited to that application.

710 ª 2022 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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Widespread application of polarimetric Doppler WSRs

for the monitoring of standing insect biomass at an inter-

national scale and at high temporal and spatial resolutions

would inform insect conservation legislation and practice

at a scale that is currently unprecedented. Much of the

promise of weather radars for biological monitoring can

be unlocked with greater advances in algorithmic classifi-

cation tools and the adoption of standardized data storage

formats that facilitate wider access (Bauer et al., 2017;

Gauthreaux & Diehl, 2020). We note that although the

WSR used in this study is an X-band system, S- and C-

band are the most common frequency bands utilized WSR

networks. As the insects, especially moths and other

‘macro-insects’, are fairly large in X-band (~3 cm wave-

length) and relatively smaller targets in C- and S-band (~5
and ~10 cm in wavelength), the polarimetric quantities

and even reflectivity may have significant differences from

one radar band to another. Even so our algorithm would

still be readily applicable and should be able to easily dis-

cern between differing clusters within the observed radar

volumes as it does not require a priori information. In

fact, the algorithm would even more beneficial when try-

ing to combine observations of a single volume from two

radars of differing frequency as the framework provided

by the algorithm would allow for a combined classification

of the polarimetric quantities at both wavelengths. Such

an approach should be cross-validated using the same

sorts of insect monitoring datasets we apply in the present

study from the entirety of Rothamsted Research’s light

and suction trap networks from across the UK.

However, many of the most pressing issues to which

WSR observations can be applied, for example the moni-

toring of swarms of destructive pests and the tracking of

biodiversity trends in megadiverse areas, are in the Global

South (Boero et al., 2020) where the infrastructure and

resources for the creation and maintenance of radar net-

works are limited. Hence, most applications in those areas

have relied upon remote sensing from satellite data

(Schulte to B€uhne & Pettorelli, 2018) which hitherto has

shown limited abilities for monitoring aerial biodiversity.

As the WSR networks are developed in those countries, the

integration of aeroecological algorithms like ours will help

to maximize the return on that infrastructure investment.

Conclusion

Polarimetric Doppler weather radars have the potential to

resolve long-standing issues in ecological monitoring. We

provide an attempt to classify aerial nocturnal insects

(bioscatterers) using X-band dual-polarization weather

radar observations with ground truthing using high-

resolution ecological community data. We demonstrate

that our BCA, based on a novel iterative hierarchical

clustering technique, easily distinguishes meteorological

from non-meteorological phenomena. Additionally, the

clusters corresponding to bioscatterers were primarily sep-

arated along axes of biomass and aspect ratio, although

strong support only exists for only a subset of the clusters.

This indicates a relatively weak ability (in this analysis) to

provide higher taxonomic resolution for these bioscatter-

ers. This result is most likely due to the strong influence of

Mie scatterers and the lack of in situ data within the

observed radar volume (i.e. above the ground). Finally,

and most interestingly, we show that the diversity of radar-

observed bioscatterer clusters correlates significantly and

positively with the diversity of moths that dominate the

nocturnal air column. Taken together, these results

demonstrate a proof of concept for the application of dual-

polarization WSR networks to monitor UK insect commu-

nities at a national scale, with the potential for dissemina-

tion wherever there are comparable operational WSR

networks. These novel data sources may represent a step-

change in the monitoring of insect populations by provid-

ing a much-needed international, standardized source of

information to identify and diagnose changing population

trends.
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