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 
Abstract—This paper presents a novel framework for image 

classification which comprises a convolutional neural network 

(CNN) feature map extractor combined with a Gaussian 

process (GP) classifier. Learning within the CNN-GP involves 

forward propagating the predicted class labels, then followed by 

backpropagation of the maximum likelihood function of the GP 

with a regularization term added. The regularization term takes 

the form of one of the three loss functions: the Kullback-Leibler 

divergence, Wasserstein distance, and maximum correntropy. 

The training and testing are performed in mini batches of 

images. The forward step (before the regularization) involves 

replacing the original images in the mini batch with their close 

neighboring images and then providing these to the CNN-GP to 

get the new predictive labels. The network performance is 

evaluated on MNIST, Fashion-MNIST, CIFAR10, and 

CIFAR100 datasets. Precision-recall and receiver operating 

characteristics curves are used to evaluate the performance of 

the GP classifier. The proposed CNN-GP performance is 

validated with different levels of noise, motion blur, and 

adversarial attacks. Results are explained using uncertainty 

analysis and further tests on quantifying the impact on 

uncertainty with attack strength are carried out. The results 

show that the testing accuracy improves for networks that 

backpropagate the maximum likelihood with regularized losses 

when compared with methods that do not. Moreover, a 

comparison with a state-of-art CNN Monte Carlo dropout 

method is presented. The outperformance of the CNN-GP 

framework with respect to reliability and computational 

efficiency is demonstrated. 

 
Index Terms—Adversarial robustness, artificial intelligence, 

convolutional neural networks, machine learning.  

 

I. INTRODUCTION 

Robustness in artificial intelligence (AI) is related to 

reliability and explainability, especially when deep neural 

networks (DNNs) are applied in uncertain environments [1]. 

DNNs operate by sequentially learning complex 

representations through layers of linear computations 

followed by non-linear transformations. This form of 

hierarchical learning has, since the previous decade of AI, 

witnessed a giant leap in accuracy, with systems achieving 

near human-level performance on tasks, such as image 

classification [2]. Recently, there is a surge of machine 

learning algorithms that not only predict but also quantify the 

impact of uncertainties over their predictions [3]. Although it 
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is difficult to foresee what the next big leap of AI is going to 

be, there is now a growing motivation towards developing AI 

systems that are robust to adversarial attacks [4]. 

Developing robust AI systems entails plenty of challenges. 

These include tackling human user errors, mis-specified 

goals, incorrect models and unmodeled phenomena [5]. 

Adversarial attacks can be of two types: black box or white 

box [6]. These attacks challenge the network’s learned 
capabilities. Black- box attacks only have access to the inputs 

of the network. White-box attacks [6] on the other hand, have 

full access to the DNN architecture, the inputs, outputs and 

the gradient information in each of the nodes. Mis-specified 

goals often arise because the original intended AI system 

design goals do not meet the end-user goals. The reverse of 

this situation results in incorrect models. Another reason for 

incorrect model occurrence is also the lack of representation 

of model uncertainty. If a model is more uncertain at solving 

the problem, likely it is not suitable for the task. Model 

uncertainty is also referred to as epistemic uncertainty [7]. 

Finally, unmolded phenomenon challenges arise because 

not all AI systems can incorporate prior knowledge of 

everything in the environment. This phenomenon is also 

known as aleatoric uncertainty and is present within the 

inputs of the AI system [7]. Accounting for uncertainty in AI 

systems will also improve its explainability since it allows the 

model to explain its predictions. This is also essential for 

critical decision-making systems. Previous approaches to 

building robust AI systems rarely considered such aspects. 

This is the research challenge that this paper focuses on. 

This paper explores the possibility of building a robust AI 

system with only two convolutional layers and validates it on 

noisy and blurred images and white-box attacks. The tests are 

carried on relatively simple datasets MNIST [8] and 

FMNIST [9], as well as on complex datasets CIFAR10 [10] 

and large dataset CIFAR100 [10]. The main idea is to 

regularize the maximum likelihood with a similarity cost 

function while the input images are perturbed to motivate 

weights that can tolerate noisy, uncertain conditions. The 

proposed framework trains a combined convolutional neural 

network (CNN) [11] feature extractor with a Gaussian 

process (GP) classifier [12]. The GP is introduced for two 

purposes, one to characterize uncertainty and the second to 

use the features from the CNN feature extractor for 

classifying the input images. Further tests on sensitivity to 

attack strength with uncertainty information are carried out. 

The uncertainty is characterized by the variance of the 

post-softmax sample variance sampled from the GP classifier. 

The CNN model transforms large complex input spaces to 

simple, low dimensional features for the GP to classify. The 

CNN-GP training is carried out based on the regularized 

maximum likelihood function in noisy, uncertain conditions. 
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Before the regularization the weight of the CNN-GP are 

updated based on this likelihood.  

The main contributions of this work are highlighted below. 

1) A CNN-GP framework is proposed for classification 

with uncertainty quantification. The framework is 

trained to be robust to noisy, blurred images and 

adversarial attacks. The performance is compared with a 

state-of-the-art approach with Monte Carlo dropout  

2) The framework is extensively tested on four types of 

datasets with increasing complexity; MNIST, FMNIST, 

CIFAR10 and CIFAR100. The framework 

demonstrates that backpropagation of regularized 

maximum likelihood loss with similarity losses is vital 

for developing CNNs and DNNs with strong robustness 

against noisy, blurred images and white-box adversarial 

attacks 

3) The uncertainty quantification is based on the 

post-softmax sample variance. The analysis charts show 

reduced uncertainty in predictions on noisy images. 

Precision-recall and ROC curves characterize the 

accuracy of the results 

4) The proposed framework provides reliable uncertainty 

estimates and has an increased computational efficiency 

compared with the state-of-art CNN Monte Carlo 

dropout approach [13]. The validation is performed with 

increasing strength of the noisy images and white-box 

attacks 

The rest of the paper is organized as follows. Section II 

gives a brief overview of recent methods from the fields of 

meta-learning and adversarial learning. Section III presents 

the proposed framework and Section IV outlines the training 

algorithm. This is followed by Section V which presents the 

robustness analysis and tests on the accuracy of the 

framework based on attacks on four different datasets 

varying in complexity and size. The uncertainty is analyzed 

with the post-softmax variance obtained after sampling from 

GP classifier. The variance information is used to sense the 

increase of attack strength. Section VI presents the discussion 

of the results and finally ends with the section on future 

works in Section VII. 

 

II. RELATED WORKS 

Learning to estimate prediction uncertainty is an actively 

developing field in Bayesian deep learning. It is practiced in 

many forms and under several learning monikers, of the most 

popular ones being meta-learning [14] and adversarial 

learning [15]. Meta-learning treatment of uncertainty-based 

learning consists of recognizing the fact that learning from 

uncertainty is a “meta” step operating in addition to the main 

learning step. On the other hand, adversarial learning treats 

uncertainty as means for generating attacks that may be black 

or white-box. There is a plethora of techniques in both 

regimes [16] as well as defense strategies.  

However, there are a few that leverage uncertainty. 

Amongst these are the works of [1], which focus on the 

detection of attacks, while [17] and [18] focus more on their 

mitigation. Some methods even merge the two fields. For 

example, in [19], a generative adversarial network (GAN) 

based discrimination is used to reduce the epistemic 

uncertainty. In the next section, we study the literature and 

compare baseline CNN techniques to the proposed 

framework. 

A. Comparison of Current Approaches 

Uncertainty related research is adopted in semi-supervised 

tasks. These tasks entail learning from a dataset with limited 

labels. This is carried out in noisy conditions. Examples of 

this in literature can be seen practiced in [20] and [21]. The 

main difference in the individual approaches is that [20] 

adopts a global averaging scheme on DNN weights as a 

means of modelling noise in the labels, while [21] generates 

an external noise model and a student-teacher learning 

scheme to teach their network to be consistent in predictions 

under noisy conditions. Methods that involve external noise 

generation do not require alteration of their training 

architecture and are easy to scale. 

Research in the field of adversarial learning, [17] and [18], 

aim to reduce the effects of adversarial attacks. Major 

differences between the approaches are that [17] uses a GAN 

to train their main network to resist attacks while [18] and [22] 

uses Bayesian methods. Specifically, [18] uses softmax 

variance to account for uncertainty while [22] uses Monte 

Carlo (MC) dropout [13]. MC dropout quantifies uncertainty 

by sampling via multiple forward passes and then computing 

the variance of these samples. GAN methods, on the other 

hand, do not discriminate between black-box or white-box 

attacks. Therefore, such methods are flexible and applicable 

to any form of classifier. MC dropout, on the other hand, can 

scale well with network architecture but at the price of 

computational cost. Additionally, [22] shows that softmax 

variance is an approximation to the measure of mutual 

information. Comparing this with predictive entropy 

obtained from MC dropout, it is proved by [22] that the 

mutual information is informative at detecting attacks. Here, 

information criteria characterize how well the uncertainty is 

represented and its sensitivity to adversarial attacks. 

The drawbacks of the approaches [17], [18] are that GAN 

based methods are difficult to train since they involve 

optimizing two DNN models (discriminator and generator). 

The MC dropout is relatively slow at uncertainty 

computation and the quality of the uncertainty measure is 

dependent on the sampling rate. Another important factor is 

the issue of calibration. Both GAN and MC dropout methods 

have insufficient calibrated representation of uncertainty as 

opposed to the better-calibrated softmax variance in [22]. 

B. Comparison with Proposed Methods 

The aforementioned techniques [17], [18] and [22] provide 

solutions in uncertainty-based robustness. However, they 

only consider test-time estimation of uncertainty. In this work, 

we confirm the theory posed by [1] and improve the methods 

by both [17] and [19]. The framework, proposed in this paper, 

is faster than [17] and [19] and less computationally 

expensive than [17] and [19]. This is because GANs are hard 

to train, and the Monte Carlo dropout methods require a long 

sampling time. The proposed framework uses a Gaussian 

process classifier that allows fast quantification of 

uncertainties. By backpropagating regularized maximum 

likelihood with similarity losses (KLD, Wasserstein and 

maximum correntropy) under noisy conditions, it is possible 

to reduce the uncertainty in the predictions. 
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III. PROPOSED FRAMEWORK 

A. Notations 

This subsection describes the main notations (in Table I) 

used in this paper and especially in the CNN-GP framework, 

described in Section IV. The next subsections introduce both 

the CNN and the GP parts of the proposed framework. It 

presents the formal definitions and the needed concepts. 

 
TABLE I: NOTATIONS AND DEFINITIONS  

Notation Meaning 𝑀 Total number of episodes 𝛾 
Learning rate of the base CNN feature extractor with GP 

classifier 𝐾 Number of neighbors sampled for synthetic image generation 𝑁 Batch size 𝛽 Kullback-Leibler divergence scaling factor 𝑚 Episode number 𝜆 Lengthscale parameters of the GP classifier 𝐴 The amplitude for the squared exponential kernel 𝑢𝑖 Variational free parameters for the 𝑖𝑡ℎ batch of data 𝑞(𝑢𝑖) Variational likelihood based on the 𝑖𝑡ℎ batch of data 𝑝(𝑢𝑖) Expected real likelihood based on the 𝑖𝑡ℎ batch of data 𝜃𝐶𝑁𝑁𝑚  Weights of the CNN feature extractor for the 𝑚𝑡ℎepisode 𝜃𝐺𝑃𝑚  Weights of the GP classifier for the 𝑚𝑡ℎepisode 𝑥𝑖 Data sample from the 𝑖𝑡ℎbatch of data 𝑦𝑖 Label sample from the ith batch of data 𝑋 4D-data tensor holding the data samples 𝑌 4D-data tensor holding the labels samples 𝐷 Dataset ordered pair holding 𝑋 and 𝑌 𝑍 
Number of units passed as features from the final layer of the 

CNN  𝜎𝑖2 Epistemic variance / uncertainty for the ith batch 𝜎̂𝑖2 Aleatoric variance / uncertainty for the ith batch 𝛿𝑥𝑖 The difference between the ith data point and the GP 

prediction  𝑓𝐺𝑃 The Gaussian process function 𝑓𝐶𝑁𝑁 The convolutional neural network function 𝑦̂𝑖𝐶𝑁𝑁 Softmax prediction from the CNN base feature extractor 𝑦̂𝑧𝐶𝑁𝑁 
Prediction from the zth node from the CNN base feature 

extractor ℒ𝑚𝑎𝑥 Maximum likelihood loss ℒ𝐺𝑃 
Similarity loss penalizing output from the GP classifier and 

labels  

B. Convolutional Neural Networks 

CNNs are a specific type of neural networks that learn 

features from images in a hierarchical fashion [11]. The main 

idea is to use convolutional kernels that adapt to the input 

image. Given a loss function, learning in CNNs is performed 

by differentiating the outputs with respect to the loss function 

and updating the weights of each kernel by adding on the 

scaled value, via the learning rate 𝛾, of this gradient. 

The proposed framework combines a CNN feature 

extractor and a GP placed after it, in one architecture (see Fig. 

1). The CNN has two convolution layers of 32 and 64 filters 

of 3×3 kernel size. The padding size of convolutional layers 

varies. This is because MNIST and FMNIST datasets share 

the same input size of 28×28×1 as opposed to CIFAR10 and 

CIFAR100 i.e., 32×32×3. For MNIST and FMNIST padding 

size is set to 2 and 1 for CIFAR10 and CIFAR100. A 

max-pooling layer is introduced between the second 

convolutional and the first dropout layer. Pooling layers 

downsample the features and dropout layers are used as 

regularizers. The fully connected layer, on the other hand, 

flattens the features to a 128×10 (for MNIST and FMNIST, 

128×16 for CIFAR10, 128×100 for CIFAR100) feature 

vector. These features are then fed to the GP half of the 

framework discussed in the next subsection. 

C. Gaussian Process  

A Gaussian Process is a Bayesian nonparametric approach 

[12] that can represent highly nonlinear phenomena. The GP 

approach models a distribution over functions. Learning a GP 

is similar to learning in CNNs, in the sense that it involves a 

kernel learning process. However, the choice of the kernel 

and the likelihood function is problem-dependent. In the 

proposed framework, we use a squared exponential kernel for 

the kernel choice and a softmax likelihood for squashing the 

posterior mean of the output distribution to probabilities. For 

the choice of the GP model, we use Massively Scalable 

Gaussian Processes (MSGP) introduced in [23]. MSGPs are 

the preferred methods for many applications, thanks to their 

scalability and celebrated achievements in sparse GP models 

with inducing points. The computational load of computing 

the inverse of the covariance matrix is reduced by using an 

eigendecomposition of the covariance matrix to a series of 

Toeplitz matrices.  

Within the architecture, the output from the GP is a 

categorical distribution, from which a 1 × 𝑁 vector (𝑁 is the 

batch size) is then estimated via maximum likelihood. 

 

 
Fig. 1. The GP-CNN framework at test time. It consists of a CNN base 

feature extractor with a GP after it.  

 

IV. A CONVOLUTIONAL NEURAL NETWORK COMBINED 

WITH A GAUSSIAN PROCESS FOR UNCERTAINTY 

QUANTIFICATION 

A. Training Algorithm for the Proposed Framework 

Learning within the CNN-GP involves forward 

propagating of the predicted class labels, then followed by 

backpropagation of the maximum likelihood function of the 

GP with a regularization term added. The forward step before 

the regularization involves replacing the original images in 

the mini-batch with their close neighbouring images and then 

providing these to the CNN-GP to get the new predictive 

labels. This step is inspired by the work of [21]. The main 

difference is that they use this step for neighbouring labels 

while our work focuses on input images. Then, looping 

through the entire mini batch. 

The regularizes loss  ℒ𝑀𝐿𝐸 + ℒ𝑆𝐼𝑀  is backpropagated. 

These losses allow the development of noise-tolerant weights. 

Three functions characterize the similarity losses ℒ𝑆𝐼𝑀: a) the 

Kullback-Leibler divergence (KLD), b) the Wasserstein 

distance and c) the maximum correntropy (MC) loss function. 

We formulate the losses in the next sub-section and provide 
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the full algorithm description below. The notations that are 

used in the algorithm section are also provided in Section III. 

Algorithm 1 presented below summarizes the implemented 

CNN and GP framework. The similarity loss functions are 

described in Section IV. 

 
ALGORITHM 1: THE CNN-GP TRAINING ALGORITHM  

All experiments in this paper use the following default arguments; batch 

size=16, episodes=100, learning rate of GP=0.1, neighbors sampling 

number=11, KLD scaling factor = 1 

____________________________________________________________ 

Require: 𝑀: episodes, 𝛾: learning rate (GP), 𝑘: neighbors sampling number, 𝑁: batch size, 𝛽: KLD scaling factor 

DO: initialization of weights: 𝜃𝐶𝑁𝑁𝑚 , 𝜃𝐺𝑃𝑚   

for 𝑚=0,…,𝑀 do 

      Sample mini batch (𝑥𝑖 , 𝑦𝑖), of length 𝑁 from dataset 𝐷 = {𝑋, 𝑌} where 𝑋 and 𝑌 are 4-D tensors holding images and labels from the entire dataset, 

where 𝑥𝑖 ∈ ℝℎ x 𝑤 x 𝑐 (image height, width and channel) and 𝑦𝑖 ∈ ℝ1xC (𝐶 is 

total number of classes).  

       BEGIN    Update of the weights of the CNN-GP based on the  maximum 

likelihood loss ℒ𝑀𝐿𝐸 

       do → forward pass of CNN base represented as a function 𝑓𝐶𝑁𝑁 ∶ 𝑥𝑖 → 𝑧𝑖, where 𝑧𝑖 ∈ ℝ𝑍xC and 𝑍 is the number of hidden units’ feature outputs 
passed from final fully-connected layer of CNN base feature extractor 

       do → forward pass of GP 𝑓𝐺𝑃(𝑧𝑖) to obtain the posterior likelihood 𝑝(𝑦𝑖| 𝑓𝐺𝑃 (𝑧𝑖) ;  𝜇𝑖 , 𝜎𝑖2) = 𝒩(𝜇𝑖 , 𝐾𝑖) 

where 𝜇𝑖 represents the mean of the GP and 𝐾𝑖 is the kernel (i.e., squared 

exponential 𝐾𝑖 = 𝐴 exp [− 12 (𝛿𝑥𝑖𝜆 )] and 𝒩 represents the Gaussian 

distribution 

       Compute the expected log likelihood to obtain max likelihood loss: ℒ𝑚𝑎𝑥 ≈ ∑ 𝔼𝑞  [log(𝑝(𝑦𝑖| 𝑓𝐺𝑃(𝑧𝑖); 𝜇𝑖 , 𝜎𝑖2)  − 𝛽𝐷𝐾𝐿(𝑞(𝑢𝑖) || 𝑝(𝑢𝑖)))]𝑁𝑖=1  

       Compute gradients of loss with respect to weights of CNN base feature 

extractor and GP : 
𝜕ℒ𝑚𝑎𝑥𝜕𝜃𝐺𝑃 , 𝜕ℒ𝑚𝑎𝑥𝜕𝜃𝐶𝑁𝑁 

       Update the parameters of GP and weights 𝜃𝐶𝑁𝑁𝑚+1of the CNN feature 

extractor for the 𝑚𝑡ℎ episode: 𝜃𝐶𝑁𝑁𝑚+1 ← 𝜃𝐶𝑁𝑁𝑚 − 𝛾 𝜕ℒ𝑚𝑎𝑥  𝜕𝜃𝐶𝑁𝑁𝑚  . ℒ𝑚𝑎𝑥, 𝜃𝐺𝑃𝑚+1 ← 𝜃𝐺𝑃𝑚 − 𝛾 𝜕ℒ𝑚𝑎𝑥𝜕𝜃𝐺𝑃𝑚  . ℒ𝑚𝑎𝑥 

       end 

____________________________________________________________ 

        BEGIN    backpropagation of regularized loss  ℒ𝑀𝐿𝐸 + ℒ𝑆𝐼𝑀 

        Make synthetic images via selecting top 𝑘 neighbours to get 𝑥̂𝑖 
        do → forward pass of the CNN base feature extractor 𝑓𝐶𝑁𝑁: 𝑥𝑖̂ →  𝑧̂𝑖 
        do → forward pass of the GP 𝑓𝐺𝑃 ∶  𝑧̂𝑖  → 𝑝(𝑦̂𝑖 | 𝑓𝐺𝑃(𝑧̂𝑖) ;  𝜇̂𝑖 , 𝜎̂𝑖2) =𝒩(𝜇̂𝑖 , 𝐾𝑥̂𝑖) 

         Calculate ℒ𝑀𝐿𝐸 + ℒ𝑆𝐼𝑀 between the labels 𝑦𝑖 and the GP classifier 

posterior mean 𝜇̂𝑖 from the choice of KLD, Wasserstein and maximum 

correntropy 

         Update the new parameters of 𝜃𝐺𝑃𝑚  GP: 𝜃𝐺𝑃𝑚 ← 𝜃𝐺𝑃𝑚 −𝛾 𝜕ℒ𝑀𝐿𝐸+ 𝜕ℒ𝑆𝐼𝑀𝜕𝜃𝐺𝑃𝑚  . ℒ𝑀𝐿𝐸 + ℒ𝑆𝐼𝑀 

         Update the weights of the CNN feature extractor: 𝜃𝐶𝑁𝑁𝑚 ←  𝜃𝐶𝑁𝑁𝑚 −𝛾 𝜕ℒ𝑀𝐿𝐸+ 𝜕ℒ𝑆𝐼𝑀𝜕𝜃𝐶𝑁𝑁𝑚  . ℒ𝑀𝐿𝐸 + ℒ𝑆𝐼𝑀 

          end → End training loop 

 

B. Loss Functions 

Consider two sets of probability mass functions 𝑝(𝑥) and 𝑞(𝑥) that take a data point 𝑥. Finding the shift of mass from 

one set to the other requires calculating the discrepancy 

between the two. The Kullback-Leibler divergence [24] 𝐷𝐾𝐿, 

shown in (1), represents this discrepancy as a measure of 

entropy. It quantifies the shift of probability mass by taking 

the difference of entropy across the distributions. 

The Wasserstein distance [25] solves the problem from the 

point of view of optimal transport. These problems are 

divided into two parts: assignment and cost. The assignment 

strategy determines how much mass is moved across the 

supports of the distributions. The cost measures the effort 

required for the assignment strategy. Two versions of the 

Wasserstein metric are used. One is an approximation (2), 

where matrices 𝑃  and 𝐶  represent assignment and cost 

respectively. The total cost can be obtained by taking the 

Frobenius inner product of the two (i.e., ⟨𝐶, 𝑃⟩ ). The 

transport plan is to obtain the minimum of the product. This is 

subtracted from the regularized entropy in (2). Here, 𝜂  is 

denoted as the scalar multiplier. For these experiments, we 

choose the default value for 𝜂 = 0.1  and a quadratic 

distance-based cost function as an approximation to the exact 

Wasserstein-1 distance formulation in (3). The exact form 

takes the infimum of the absolute difference between the 

masses where 𝛾 denotes the transport plan. This work uses 

the differences between the pair of successive values across 

two masses 𝑝(𝑥) and 𝑞(𝑥) as the transport plan. 

Finally, the maximum correntropy loss function [26] has 

also been implemented in the second backpropagation step. 

The maximum correntropy loss function uses a kernel to 

compute the difference across two variables instead of using 

entropy-based methods such as in KLD and Wasserstein 

functions. The formulation can be seen in (3). The Gaussian 

kernel is a popular one: 𝑘𝜎(𝑝(𝑥) − 𝑞(𝑥))2 =1√2𝜋𝜎 exp (− (𝑝(𝑥)−𝑞(𝑥))22𝜎2 ), where 𝜎2  represents the variance 

of the distribution. The considered cost functions are given 

below. 

 ℒ𝐾𝐿𝐷 = 𝐷𝐾𝐿 (𝑝 || 𝑞) = − ∑ 𝑞(𝑥) log 𝑞(𝑥) + 𝑥 ∑ 𝑝(𝑥) log 𝑝(𝑥) 𝑥  

        ℒ𝑊𝐴𝑆𝑆 =  𝑚𝑖𝑛⟨𝐶, 𝑃⟩ − 𝜂 ∑ 𝑝(𝑥) log 𝑝(𝑥) 𝑥                            
ℒ𝑊𝐴𝑆𝑆−𝐹𝐼𝑅𝑆𝑇 = inf ∫ | 𝑝(𝑥) − 𝑝(𝑦) | 𝛾(𝑝(𝑥) − 𝑝(𝑦))         ℒ𝑀𝐶 =  𝑉𝜎(𝑝(𝑥), 𝑞(𝑥)) = 𝔼[𝑘𝜎(𝑝(𝑥) − 𝑞(𝑥))]= 1𝑁 ∑ 𝑘𝜎(𝑝(𝑥) − 𝑞(𝑥))𝑁

𝑥=1                               
 

The term 𝑉𝜎 refers to the MC and 𝔼 refers to the expected 

value. This measure has been proven to be less sensitive to 

outliers [27]. This is found in many second-order statistics 

measures such as cross-entropy. It is heavily studied in 

outlier suppression [27]. The next Section V presents results 

with different data sets and analyses them. 

 

V. PERFORMANCE VALIDATION 

A. Accuracy, Precision-Recall and ROC Curves 

Before the experiments, the CNN-GP classifier is trained 

with the three different similarity losses. The purpose is to 

observe the accuracy as a means of performance evaluation. 

The average results are calculated by dividing the averaged 

(1) 

 

(2) 

 

(3) 

(4) 
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correct samples by the total number of samples. Experiments 

are run ten times and accuracy values are averaged. The 

standard deviation is ± 2%. Then, the system is disrupted 

using: a) an additive white Gaussian noise (AWGN) and b) 

motion blur (MB). The results are compared with the system 

version where no similarity losses are used (i.e. without 

regularization). These results are presented in Table II. Next, 

the precision-recall and the ROC results characterize the 

performance of the proposed CNN-GP framework. These 

results are plotted for each dataset side to side in Fig. 2. The 

average precision (AP) and ROC area are obtained by 

averaging the individual curve entities. They help in grouping 

entities that give similar results and make it easy to read the 

curves individually. 
 

TABLE II: PERFORMANCE VALIDATION BASED ON TEST ACCURACY FOR 

EACH ATTACK TYPE ON THREE DATASET TYPE  

MNIST No Attack (%) AWGN (%) Motion Blur (%) 

No regularization 88 51 65 

KLD 97  89  72  

WASS 86  77  70  

MC 97  78  75  

WASS-FIRST 97 85 88 

    

    

Fashion-MNIST No Attack (%) AWGN (%) Motion Blur (%) 

No regularization 85 32 12 

KLD 88 53 76 

WASS 81 56 72 

MC 89 35 80 

WASS-FIRST 89 54 77 

    

CIFAR10 No Attack (%) AWGN (%) Motion Blur (%) 

No regularization 67 10 11 

KLD 73 26 38 

WASS 40 28 28 

MC 65 25 38 

WASS-FIRST 68 26 40 

    

CIFAR100 No Attack (%) AWGN (%) Motion Blur (%) 

No regularization 24 10 8 

KLD 30  10 12 

WASS 27  10  10 

MC 28  8 8 

WASS-FIRST 27 10 10 

 
 

 
(A) 

 

 
(B) 

 
(C) 

 
(D) 

 

 
(E) 

 

 
(F) 

Fig. 2. The respective precision-recall and ROC curves for CNNGP 

framework trained on MNIST, FMNIST and CIFAR and on three loss 

functions; KLD, WASS and MC. Each plot considers three attack 

configurations; no attack, a gaussian noise and motion blurring. A) and B) 

show precision-recall and ROC curves for MNIST dataset, C) and D) for 

FMNIST and E) and F) for CIFAR-10. 

B. Uncertainty Analysis 

To further test the hypothesis, considering MNIST only, 

the output mean predictions from the GP classifier and the 

post-softmax sample variance are plotted as bar graphs. As 

shown in Fig. 3. The purpose of this experiment is to 

demonstrate the improved performance with the reduced 

amount of uncertainty on AWGN and motion blurring. Every 

time the label is correct, the appropriate variance is computed 

from the likelihood. Blue bars represent the variance of 

correct samples and orange for the incorrect. This is carried 

for each of the samples in the test set (10000 MNIST images). 
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           (A)                                                                (B)                                                                  (C) 

 
(D)                                                            (E)                                                                 (F) 

 
(G)                                                                (H)                                                                (I) 

 
(J)                                                               (K)                                                             (L) 

Fig. 3. Output variance plots from GP classifier for MNIST dataset for four configurations. The first row considers the case of the model trained without any 

regularization from similarity losses, the second row is for GP classifier trained on KLD similarity loss, the third row for Wasserstein distance and the fourth 

for maximum correntropy. Each of the columns represents the black-box attack types, the first column is for clean MNIST images, the second column for 

white Gaussian noise and the third for motion blurring. 
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The proposed framework is tested with different data sets. 

One case study is on clean MNIST images (column 1), the 

other two on MNIST corrupted by AWGN (column 2) and 

MB (column 3). On Fig. 3 the dense blue bars indicate 

accurate model results, whereas the orange bars indicate 

incorrectly classified samples. If the predictions have high

orange bars than the blue ones, the algorithm is more 

susceptible to attacks.

C. Variance Sensitivity to Attack Strength

To test the sensitivity of the GP classifier to AWGN and 

white-box attacks, two cases are shown in Fig.4A and Fig. 4B. 

Fig. 4A presents results with input MNIST images after being 

perturbed with AWGN. The input images are fed to the GP 

classifier and the post-softmax sample variance from the 

classifier is obtained. Fig. 4A presents the softmax sample 

output variance with respect to the 𝜎𝐴𝑊𝐺𝑁2 of the AWGN, 

varying in range 0.0 to 2.0.

We then test the system with the white-box attack fast 

gradient sign method (FGSM) [27]. This particular method 

works by computing the gradients of the output from the 

CNN feature extractor with respect to the image through a 

sign function to generate a new image that is imperceptible to 



  

the human eye. However, it can easily mislead the system. 

The strength of the attack is denoted by ϵ that increases the 

level of perturbation. The highlighted region in Fig. 4C 

denotes the vital change of state in the system that can alert 

the system of the attack. This serves as a region where a high 

variance can lead to early detection of the attack before its 

intensity builds over time. Beyond this region, any change in 

variance would not be beneficial for a safety-critical system. 

The proposed CNN-GP approach is also compared with 

the standard MC dropout method [13] and results are 

presented in Fig. 4B. The MC dropout results are obtained by 

isolating the pretrained CNN feature extractor and running 

forward passes 100 times. From this, the variance is 

computed and later averaged across the samples. 
 

 
(A) 

 

 
(B) 
 

 
  (C) 

Fig. 4. Output variance computed from the GP classifier compared with the 

strength of both the additive white Gaussian noise in A), similarly for MC 

dropout in B) and fast-gradient sign method in C. 

 
TABLE III: RUN TIME ANALYSIS FOR PROPOSED MODEL CNN-GP AND MC 

DROPOUT 

Model Type Run Time (minutes) 

CNN-GP 1.18 

MC dropout 7.27 

  

D. Computational Time 

The computational time of the proposed CNN-GP 

framework is compared with the MC dropout method [13]. 

Both models provide output variance information on simple 

MNIST input images. The sampling rate for MC dropout 

method is set to 100. The respective run-time for each is then 

computed on the University of Sheffield provided GPU 

cluster (NVIDIA K80). The testing time is measured in 

minutes and the results are tabulated in Table III.  

E. Convergence of Similarity Loss Functions in CNN Only 

Training 

In this experiment, the convergence of the similarity loss 

functions is studied. This involves training the CNN 

component of the CNNGP framework to classify the four 

datasets: MNIST, Fashion-MNIST, CIFAR10 and 100. The 

training. The training is carried out for a total of 100 episodes. 

Every 10th episode, the validation loss is observed and plotted 

as shown in Figures 5(A)-(D). 

 

 
(A) 

 
(B) 

 

 
(C) 

 

 
            (D) 

Fig. 5. Validation losses observed during training CNN on the three 

similarity losses for 100 episodes. (A) shows validation losses during 

training CNN on MNIST, (B) for Fashion-MNIST, (C) and (D) for 

CIFAR-10 and CIFAR-100 respectively. 
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A further test to obtain the test accuracies on each of the 

four datasets for the CNN training is shown in Table IV. The 

results were run 100 times and averaged. This was carried out 

for all three losses. During training, it is observed that placing 

softmax activation after the final layer of CNN and taking the 

log of the probabilities allows the KLD loss to converge, but 

not for WASS, which converges when the final activation is 

switched to hyperbolic tangent. However, the MC loss does 

not converge with neither softmax nor hyperbolic tangent. 
 

TABLE IV: TEST ACCURACY OF THE CNN COMPONENT TRAINED ON KLD, 

WASS AND MC ON MNIST, FASHION-MNIST, CIFAR-10 AND CIFAR-100 

Dataset Type KLD WASS MC 

MNIST 98.75 96.48 8.92 

Fashion-MNIST 90.69 84.92 10.01 

CIFAR-10 73.83 27.00 5.84 

CIFAR-100 28.57 1.00 1.08 

 

VI. DISCUSSION 

Considering the results from Table II, we see that when 

there is no attack, the CNN-GP configurations that 

backpropagate regularized losses, excluding the case with the 

Wasserstein metric (WASS), perform better than without 

backpropagation (no regularization). This confirms that the 

CNN-GP with the regularized loss functions demonstrates 

reliable performance. This is supported further by the 

uncertainty charts in Fig. 3 where the uncertainty measures of 

KLD (row 2) and MC (row 4) have lower bar heights for 

incorrect sample variance (orange bars) than those for the 

cases that do not use any form of regularization (row 1). 

We further see that the prediction results with the 

Wasserstein metric are comparable with the other data, 

regardless of the attack when tested on the complex 

CIFAR10 dataset (40%), it performs rather poorly than 

expected. This agrees with the hypothesis of [28] which 

claims that the Wasserstein metric yields biased gradients 

that have a higher chance of leading to a false local minimum 

than the KLD during optimization.  

The exact Wasserstein metric [25] (WASS-FIRST) 

outperforms KLD in MNIST and Fashion-MNIST examples. 

The approximated version of Wasserstein distance, on the 

other hand, faces loss in performance. This is further 

supported by the precision-recall diagram for the 

approximated Wasserstein metric for all attacks. These show 

that the precision for these methods slowly drop when the 

dataset complexity is increased (from MNIST to CIFAR-10). 

This is further supported in the drop of the true positive rate 

of the ROC curve for MC in Fig. 2D-F for both the case of 

AWGN and MB. 

In order to characterize the robustness of the approaches, 

the recall function is calculated. Precision is heavily affected 

by uncertainties and impacts the results of all methods. 

However, the approaches with the MC dropout and KLD 

maintain a good level of precision despite having poor recalls 

(e.g., in AWGN attacks for MC and KLD). Hence, it is 

possible to diagnose the recall aspect as a measure of 

sensitivity to the attack.   

Then, considering the MC and KLD results, it is evident 

that using these losses results in high accuracies in motion 

blurring when compared with the Wasserstein metric results. 

The performances of the MC and KLD are similar. This is 

further evident in Fig. 3 where uncertainty charts for both 

KLD and MC have a greater number of correct sample 

variance (blue) as compared to those for the Wasserstein 

metric (row 3). For MC, this is expected since this type of 

loss is ideal for robust algorithm design. This is further 

supported in Fig. 2 where the precision-recall for both KLD 

and MC for motion blurring (MB) remains the highest as the 

dataset complexity increases (MNIST to CIFAR10). 

Regarding the variance sensitivity to attack strength, it can 

be seen from Fig. 4A and Fig. 4C that CNN-GP trained on the 

MC similarity loss is more responsive than both KLD as well 

as the no regularization configuration. This also demonstrates 

that the MC is suitable for robust algorithm design. The 

graphs show that both the MC and the KLD functions, start 

with higher confidence in predictions (i.e., low variance) 

before the attack strength is increased when compared to the 

case without regularization. This confirms both our 

hypothesis and our results in Fig. 3 that backpropagation of 

regularized maximum likelihood loss in the CNN-GP 

framework reduces the impact of uncertainties and attacks on 

the classification results and characterizes the model’s 
confidence. For the MC dropout method, it is seen from both 

Fig. 4B and Fig. 4C that this model is not representing the 

uncertainty estimates well when compared with the CNN 

model. Hence, it is not reliable for uncertainty quantification. 

The computational complexity of the compared approaches is 

characterized by Table III which shows that the MC dropout 

method is much slower than the CNN-GP framework. 

The convergence properties of the similarity losses on a 

CNN only component of the CNNGP shows that KLD 

converges only when the log of softmax probabilities is taken, 

this confirms with the equation (1). WASS converges if the 

hyperbolic tangent is used. This was initially spotted in the 

experiments when the input images were normalized in both 

negative and positive ranges, using hyperbolic tangent 

allowed gradients to flow in both negative and positive 

ranges.  

VII.  CONCLUSIONS AND FUTURE WORKS 

This paper proposes a CNN-GP framework that can 

characterize the impact of uncertainties on the classification 

results. Three loss functions – the Kulback-Leibler 

divergence, the Wasserstein distance, and the maximum 

correntropy are used for regularization CNN-GP and their 

performance is compared. The GP layer serves for 

quantifying the uncertainty. A small variance corresponds to 

a small uncertainty, a high variance means high uncertainty 

and hence means that the classification result cannot be 

trusted. The proposed CNN-GP framework is compared with 

a Monte Carlo dropout and it is shown that the CNN-GP is 

more efficient than the MC dropout method, especially with 

respect to computational time. The main limitation of the 

framework is that it is not able to get high accuracies on large 

and complex datasets e.g. CIFAR10 and CIFAR100. That is 

pointing to architecture issues more than the algorithm since 

the state-of-the-art architecture for CIFAR10 uses up to more 

than 15 convolutional layers [29].  

In the future, we will focus on training large complex 

networks. Also, consider the possibility of feeding the CNN 

feature extractor as a covariance kernel to the GP. This may 
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be computationally more feasible and may also improve the 

uncertainty representation in the GP since it will give the GP 

a holistic view of the impact of the dataset on the 

performance of the CNN. This work also investigates the 

relationship between reliable AI and robust AI via 

backpropagation of maximum likelihood loss regularized 

with the three similarity losses and leverages information to 

improve AI reliability.  
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